
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4, November 2019

1401

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7365118419/2019©BEIESP

DOI:10.35940/ijrte.D7365.118419

 Abstract: In today’s world everything is becoming web

dependent, and due to the advances made in web technologies,

web developers have to face various challenges. Every web

application before being deployed goes through various phases

which may look different on different browsers. It becomes

difficult to identify correct web page when it gives differences

across different browsers. The web pages may give significant

differences and it is known as cross-browser inconsistency. A

technology that has gained a prominent position known as AJAX

(Asynchronous JavaScript and XML), in which the combination

of JavaScript and Document Object Model (DOM) manipulation,

along with asynchronous server communication is used to achieve

a high level of user interactivity. With this change in developing

web applications comes a whole set of new challenges, One way to

address these challenges is through the use of a crawler that can

automatically walk through different states of a highly dynamic

AJAX site and create a model of the navigational paths and states.

Identifying these conflicts manually is a laborious task. Mutual

browser conflict disclosure presents a mechanism to identify

conflicts.

 Keywords: Browser conflicts; Web testing; Web applications,

Inconsistencies.

I. INTRODUCTION

Web applications are all around us. To access web

applications browsers are the primary requirement. Users of

such applications might use any web browser to access them,

and the application is expected to behave consistently across

these different environments. However, web applications

often exhibit differences when executed in different

browsers, leading to browser conflicts[1]. This cause changes

between a web application's appearance, behavior or both,

when it is run on different environments. Once we access the

Amazon website on Chrome, it shows inconsistencies. As

compatibility testing comes under web testing and browser

compatibility comes under the most influencing part of

compatibility testing. That is the images are not properly

shown, the content is not organized in a proper way. This

gives a bad impression to the user and the user might switch

the browser or the application itself. When the user chooses

to change the website, it gives a bad impression for the

previous website and the user may never want to return to use

that website ever again[2]. When the user chooses to switch

the browser, it gives a bad impression of the previous browser

and the user is not satisfied with the previous browser and

may never want to return to the same browser for use. In

Revised Manuscript Received on November 15, 2019

 Chandra Prakash Patidar, Assistant Professor of Information

Technology at the Devi Ahilya University, Indore, India.

 Meena Sharma, Professor of Computer Engineering at the Devi Ahilya

University, Indore, India.

general, if browser conflicts are not identified during
testing, they can adversely degrade the experience of the

users of the web application with the expected browser[3]. In

fact, some inconsistencies completely prevent users from

accessing the functionality offered by the web application,

thereby rendering it useless on that particular platform.

Browser conflicts are thus a serious concern for companies,

which rely on such applications for business or for creating

their public brand image. Our research work is aimed at

finding inconsistencies of web applications.

Inconsistencies can be broadly classified as[4]:

1) Structural: Such conflicts affect the structure or layout
of individual web pages. The web page structure is an

arrangement of elements. For example, the improper

alignment of one or more web page elements on a given web

page, in a particular browser can lead to a structural conflict.

If the webpage shows something horizontally in Google

Chrome but in Internet Explorer the same thing is vertical,

this is structural inconsistency.

2) Content: Such differences can occur, where the visual

appearance of a web page element or the textual value of an

element, are different across two browsers. We further

classify these two cases as visual-content and text-content

conflicts. If the webpage is accessed in Internet Explorer the
image is not present but when the same webpage is accessed

in Google Chrome, the image is present. This is Content

inconsistency.

3) Behavioral: These involve a difference in the behavior

of individual components on a web page. An example of such

would be a button that performs a particular action within one

browser and totally different action, or no action at all, in

another browser. For example hyperlink on the webpage in

Google Chrome works as a hyperlink but this hyperlink

behaves as normal text in Internet Explorer.

II. RELATED WORK

Web crawlers are the tools used to explore the web. A

crawler is a computer program that visits a specific web page

and also visits all other pages that are linked to that page.

Search engines such as Google, Mozilla use crawlers

continuously to crawl websites and keep them up to date. By

exploring websites automatically, crawlers enhance user

interaction, making them appropriate for automatic testing

purposes[5]. Commonly used crawling tools are discussed

below.

1)WebSPHINX:

WebSPHINX (Website Specific Processors for HTML

INformation eXtraction) is a Java class library and interactive

development environment for web crawlers. A web crawler

(also called a robot or spider) is a

program that browses and

processes Web pages

Mutual Browser Conflicts Disclosure
Chandra Prakash Patidar, Meena Sharma

Mutual Browser Conflicts Disclosure

1402 Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7365118419/2019©BEIESP

DOI:10.35940/ijrte.D7365.118419

automatically. It consists of two parts: the workbench and the

class library. Workbench is a graphical user interface that is

used to customize the crawler. It is used to save pages offline

on disk, concatenate pages together, extract text from pages,

visualize a collection of web pages as a graph. The class

library provides support for writing web crawlers using java.

It has features of tolerant HTML parsing, common HTML

transformations, pattern matching, support for reusable page

content classifiers, multithreaded web page retrieval. But the

problem with WebSPHINX is that this tool does not provide

us the option of running a web application across different

browsers[8]. It only generates the graph of

webpage/application across its default browser so we cannot

compare the graph to find out if any inconsistency occurs.

Websphinx is not designed for enormous crawls like the

entire web as search engines do.

2) CRAWLJAX: It is a tool which is used to create a

document object model of web applications by deploying it

across different browsers. It can easily be used with the

command prompt of the system. It is an open-source java tool

for crawling modern web applications. It uses the

event-driven dynamic crawling engine and can explore

Javascript-based Ajax applications. It is also used for

nonfunctional testing like accessibility, validation, etc. It can

detect broken links, images, tooltips. It can easily be

extended through its easy to use plugin architecture. But the

problem with Crawljax is that it cannot be operated on

different browsers[7]. The command specified in its

documentation is not working for different browsers even

with changing the environment variables and contacting with

Github society. So we were not able to find the solution for

running the webpage/application on a different browser

(other than Firefox).

3) SCREAMING FROG SEO SPIDER: The SEO Spider is

a desktop program that can be directly installed on the

computer, Mac or Linux. It crawls websites, links,

applications for evaluation. The SEO spider tool is flexible

and can crawl in short time duration allowing us to analyze

the results in real-time. This tool is good for analysis of larger

websites in which checking all the pages is laborious and

where redirections, meta refresh or duplicate page issues can

easily arrive. This tool exports the data (URL, page title, etc.)

to Excel so it can be used as a base for SEO

recommendations. It is used to crawl a website instantly and

find broken links, identify redirect chains and loops, or

upload a list of URLs to audit in a site migration. It is also

used to analyze page titles, meta descriptions, collect data

from the HTML of a web page using CSS Path, XPath. But

the problem with this tool is that it can only be used on Mac

or Linux operating systems. In the free version, only 500

URLs can be tested, for the complete tool we have to get the

paid version.

4)GRAPHWALKER: GraphWalker is a Model-Based

testing tool. It reads models in the shape of directed graphs,

and generate paths from these graphs. The model is a

collection of arrows and nodes and together they create a

graph. An arrow represents an action and a node represents a

verification. GraphWalker by mathematical algorithms

generates a path which corresponds to your test idea, for this

GraphWalker used generator rule and a model. The aim of the
test design under test is to describe the expected behavior.

The way it works is that you in a finite state diagram, express

an action as a directed edge. An edge is corresponding to a

transition. The edge points to a vertex, known as a node or

state, where the results or the consequence of the previous

action is verified. To use GraphWalker Either download the

standalone jar file or include GraphWalker in your java

project. But the problem with this is that it is

browser-independent. The graph it generates is irrespective

of the browser.

Other related tools in this field include [10]:

1) Carejax: A tool built around Crawljax, which is named

Carejax, a combination of Careweb and Crawljax. Carejax

will provide the foundation for crawling. Careweb is the first

step towards automated regression testing. The main

contribution to the existing works is that state-based crawling

is applied to an industrial rich internet application. There are

a few characteristics of the Careweb application, one is

authorization and user accounts. To use Careweb, a user has

to log in with valid credentials. Choosing a suitable crawl

depth is important. The crawl depth determines the maximum

number of events that should be executed consecutively from

the start state. We have encountered the following

difficulties: Incorrect state identification, state-space

explosion, limited reliability and hard to analyze crawl

results. For Careweb, solving incorrect state identification

was possible through DOM strippers. Limited reliability can

be addressed through improvements to the crawler, while the

analysis of large crawl results could be made easier with

more sophisticated tooling. Nevertheless, by crawling

Careweb, a first step has been set towards crawling-based

regression testing of the application. We think such

automated regression testing is feasible for applications such

as Careweb, provided state space explosion is controlled and

an adequate level of robustness is guaranteed.

2) X-PERT:The technique starts by crawling the web

application, in an identical fashion, in each of the browsers.

In this process, it records the observed behavior as navigation

models. The model is captured as a labeled transition system,

which represents the top-level structure of the crawled web

application. In the model, the states correspond to web

application screens, and each transition is labeled with a

widget action that leads to screen navigation[4]. In the

X-PERT navigation model, record the screen image and the

DOM structure of the elements on each observed screen. Any

web application that runs on desktop browsers supported by

X-PERT. Python and Java are used to write the code of

X-PERT. Popular desktop operating systems, including

Windows, Mac OS X, and Linux can be used to run X-PERT.

III. TECHNIQUE OVERVIEW

Most of the part of cross-browser inconsistency detection

comes under the category of compatibility testing and some

part comes under the category of functionality testing [9][12].

Apart from this we also work on automation testing to find

out the cross-browser inconsistency. In this technique, we use

the principle of Behaviour

Driven Development and

Acceptance Test-Driven

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4, November 2019

1403

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7365118419/2019©BEIESP

DOI:10.35940/ijrte.D7365.118419

Development. We use TestNG, ReportNG,Selenium and

Selenium Grid. We also crawl and compare extracted

attributes to compute inconsistencies. In this method we

divide the process into five different modules Web crawler,

Attribute extractor, Comparator, Classifier, and Report

generator.We compute visual inconsistency by RGB index

and histograms. In this technique we tested

http://www.dauniv.ac.in/. We divide the process into four

parts: State of the link, RGB difference, Histogram

difference, and Coordinate difference. We performed our

experiments on Google Chrome [v14.0.1] and Internet

Explorer [v9.0.9]

We have performed our experiments on Internet Explorer

(11.0), Google Chrome(70.0) and Mozilla Firefox(61.0).

We must fix the number of browsers used in the testing

process.

We use jsoup a java parser to parse the web page. Jsoup is a

Java library for working with real-world HTML. It provides a

very convenient API for extracting and manipulating data,

using the best of DOM, CSS, and jquery-like methods. jsoup

implements the WHATWG HTML5 specification, and

parses HTML to the same DOM as modern browsers do. It

scrape and parse HTML from a URL, file, or string. Also find

and extract data, using DOM traversal or CSS selectors.

Jsoup manipulate the HTML elements, attributes, and text

and clean user-submitted content against a safe white-list, to

prevent XSS attacks. jsoup is designed to deal with all

varieties of HTML found in the wild; from pristine and

validating, to invalid tag-soup; jsoup will create a sensible

parse tree. For parsing the CSS, we need to use

CSSOMPARSER, CSSSTYLESHEET, CSSRULELIST

library. After Parsing CSS, We get the RULELIST means

particular styling in one line.Then, Form a ArrayList of this

rule LIST to check if the property is present or not.

It extracts the Document Object Model. In jsoup, we supply

browsers by method jsoup.connect(), We get the parsing

code. After Parsing the Html code, we need to extract the link

tags from it.Link tags contains the css links which we need to

parse.

We store the parsing code to our database for further

processing. Apply search algorithm by selecting properties

one after another from our database. If it is available then

there is an inconsistency. Classifier gives the type of

inconsistency. Our proposed and implemented model is

depicted in Figure 1 and the algorithm is depicted in

Algorithm 1.

Execution time ‘t’ will be a factor of the following terms:

B= Number of Browsers

x=Number of lines parsed

Hence, t=B*x

Algorithm 1:

Input: Web Page, Browser and Database

(w, Br1, Br2, Br3, D)

Output: Inconsistency (XBI) exists or not.

Method: jsoup (https://webpage)

Get Parse Code (PC=PC1…PCm)

Do

Search in PC ε properties (P1…Pn) stored in D

For(each P1 to Pn)

{

 For(each PC1 to PCm)

{

 If (Pi== PCj) // Where i=1...n and j=1…m

{

 XBIClassifier Database:

 Case 1: Structural

 Case 2: Content

 Case 3: Behavioral

 }

 Else

{

 No XBI

 Exit

 }

 }

}

IV. RESULTS

We categories our test on three categories. First three test

page used as test cases. Next three are the websites that are

used by us in 2016 for knowing the existence of

cross-browser inconsistencies. Next three are from

http://www.uroulette.com/ online random link generator.

Table 1 shows the obtained results.

Mutual Browser Conflicts Disclosure

1404 Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7365118419/2019©BEIESP

DOI:10.35940/ijrte.D7365.118419

Table 1: Results

S. No. URL

Inconsistencies

Structural Content

Behavioral

1 Test Case 1 Yes No No

2 Test Case 2 No No No

3 Test Case 3 No Yes No

4 http://www.emeraldheights.edu.in/Day_School.html No No Yes

5 http://www.tripadvisor.com/ No No No

6 http://www.holidayiq.com/ No No No

7 https://www.ffe.com/ Yes No No

8 http://www.stahnsdorf.de/ No Yes No

9 https://www.niel.be/ No No No

V. DISCUSSION

Currently, all the testing of web pages/applications is done

manually by running everything on different browsers which

consumes a lot of time. There should be a tool that can

directly run the web pages automatically on all the web

browsers without any problems. By which we will be able to

compare in order to find conflicts.

VI. CONCLUSION

We started our work from finding inconsistencies

manually in different websites. At that time we find many

websites were tested manually for cross-browser

inconsistency because that website contains an inconsistency.

It is a very tedious task to find out inconsistency because

many times it happened that websites that produced

inconsistency did not exist or they removed the

inconsistency. Initially, we tried to compute inconsistency by

extracted attributes with the help of crawler. Further, we

compute inconsistency by RGB index and histogram values.

Finally, we conclude our methodology using jsoup parser and

creating our own database. In this way, we can easily trace

out the inconsistency.

Current & Future Developments

Currently, in many organizations, cross-browser testing is

done manually. As we know the future era is of web and to

access web browsers are a primary component. We try to

automate inconsistency. Currently, we consider popular three

browsers and desktop platform. In the future, we will increase

the number of browsers and try to consider the mobile

platform also.

ACKNOWLEDGMENT

Thanks to Dr. Meena Sharma (Professor, IET DAVV, Indore

M.P., India) for the constant guidance and support in this

work.

REFERENCES

1. https://www.w3schools.com/html/html5_webstorage.asp. [Accessed:

Jan 12, 2018].

2. R. Gunasundari and S. Karthikeyan, “A study of content extraction

from web pages based on links”, International Journal of Data Mining

and Knowledge Management Process, Vol. 2, pp. 23-30, 2012.

3. https://www.computerhope.com/jargon/w/webpage.htm. [Accessed:

Jan 10, 2018].

4. https://techterms.com/definition/crossbrowser. [Accessed: Feb 08,

2018].

5. Ochin and J. Gaur, “Cross-Browser Incompatibility: Reasons and

Solutions”, International Journal of Software Engineering &

Applications, Vol. 2, pp. 66-77, 2011.

6. https://www.siteground.com/kb/why_does_my_website_look_differe

nt_on_different_browsers/. [Accessed: February 02, 2018].

7. N. Barskar and C.P. Patidar, “A Survey on Cross Browser

Inconsistencies in Web Application”, International Journal of

Computer Applications, Vol. 137, pp. 37-41, 2016.

8. S.R. Choudhary, M.R. Prasad, and A. Orso, “X-PERT: Accurate

Identification of Cross-Browser Issues in Web Applications”, In Proc.

IEEE International Conference on Software Engineering (ICSE’13),

2012, pp. 702-711.

9. C.P. Patidar and M. Sharma, “An Automated Approach for

Cross-Browser Inconsistency detection”, In Proc. 9th Annual ACM

COMPUTE 2016 held at DAIICT Gandhinagar Gujrat, 2016, pp.

141-145.

10. C.P. Patidar, M. Sharma and V. Sharda, “Detection of Cross Browser

Inconsistency by Comparing Extracted Attributes”, International

Journal of Scientific Research in Computer Science and Engineering,

Vol. 5, pp. 1-6, 2017.

11. https://www.sciencedaily.com/terms/web_crawler.htm. [Accessed:

Feb 05, 2018].

12. A. Pranav and S. Chauhan,

“Efficient Focused Web

Crawling Approach for Search

Engine”, International Journal of

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4, November 2019

1405

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7365118419/2019©BEIESP

DOI:10.35940/ijrte.D7365.118419

Computer Science and Mobile Computing, Vol. 4, pp. 545-551, 2015.

13. N. Kowsalya, “An Approach of Web Crawling and Indexing of

Nutch”, International Journal of Scientific & Engineering Research,

Vol. 5, pp. 766-772, 2014.

14. http://today.java.net/pub/a/today/2006/01/10/intro

duction-to-nutch-1.html. [Accessed: Feb 20, 2018].

15. http://crawljax.com/about/. [Accessed: Feb 15, 2018].

16. https://www.cs.cmu.edu/~rcm/websphinx/. [Accessed: January 10,

2018].

17. S.R. Choudhary, M.R. Prasad and A. Orso “CROSSCHECK:

Combining Crawling and Differencing to Better Detect Cross-Browser

Incompatibilities in Web Applications”, In Proc. IEEE 5th

International Conference on Software Testing, Verification and

Validation (ICST’12), 2012, pp. 171-180.

18. A. Mesbah, E. Bozdag and A.V. Deursen “Crawling Ajax by Inferring

User Interface State Changes”, In Proc. IEEE Computer Society 8th

International Conference on Web Engineering (ICWE’08), 2008, pp.

122–134.

19. A. Mesbah and M.R. Prasad, “Automated Cross-Browser

Compatibility Testing”, In Proc. ACM 33rdInternational Conference

on Software Engineering, 2011 pp. 561-570.

AUTHORS PROFILE

Chandra Prakash Patidar received the B.E. degree

in Information Technology and M.E. degree in

Computer Engineering. He is an Assistant Professor of

Information Technology at the Devi Ahilya

University, Indore, India. His research interests are in

Cross Browser Testing,GPGPU Computing, CUDA

Programming, MultithreadedArchitecture, Compiler

and MemoryArchitecture of Computers.

Dr. Meena Sharma received the B.E. degree in

Computer Engineering and M. Tech degree in Computer

Science in 1992 and 2004 respectively. She received the

Ph. D. Degree in Computer Engineering in 2012.She is a

Professor of Computer Engineering at the Devi Ahilya University, Indore,

India. Her research interests are in Software Engineering, Software Quality

Matrices and Object Oriented Modelling and Design.

