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Abstract: For power management in the energy harvesting wireless sensor networks (EH-WSNs),
it is necessary to know in advance the collectable solar energy data of each node in the network.
Our work aims to improve the accuracy of solar energy predictions. Therefore, several existing
prediction algorithms in the literature are surveyed, and then this paper proposes a solar radiance
prediction model based on a long short-term memory (LSTM) neural network in combination
with the signal processing algorithm empirical mode decomposition (EMD). The EMD method is
used to decompose the time sequence data into a series of relatively stable component sequences.
For improving the prediction accuracy further by utilizing the current day solar radiation profile in
one-hour-ahead predictions, similar solar radiation profile data were selected for training LSTM neural
networks. Simulation results show that the hybrid model achieves better prediction performance
than traditional prediction methods, such as the exponentially-weighted moving average (EWMA),
weather conditioned moving average (WCMA), and only LSTM models.

Keywords: solar radiance; machine learning; time series prediction

1. Introduction

The energy harvesting technique is a promising approach for widening applications of wireless
sensor networks (WSNs) in the Internet of Things (IoT) fields by breaking the power limitations and
extending the lifetime of the whole network. Among the available energies that could be harvested,
such as wind, solar power, thermoelectric, and piezoelectric, solar power is the most efficient and
widely used form [1]. Because solar energy is not controllable but predictable, the average energy that
can be obtained from solar energy varies periodically with the season and time, as shown in Figure 1a.
The efficiency of solar energy is affected by factors such as geographical location, sun illumination time,
and lighting trend. Figure 1b indicates that the daily light intensity fluctuates greatly due to the weather,
and the patterns of the solar radiation curve in two adjacent days are completely different. On the
morning of 8 January 2010, the weather pattern turned to overcast from cloudy, and in the afternoon, it
changed to cloudy in contrast to the typical sunny day of 9 January 2010. The wireless sensor network
for energy harvesting (EH-WSN) constantly collects these environmental energies and the remaining
usable energy changes in regularity with time, which is not like the traditional WSNs where the node
energy model is of continuously decreasing energy. Therefore, accurate energy prediction methods for
each node have significant importance in EH-WSNs [2]. Time series prediction methods play a very
important role in these practical engineering fields, such as energy and information technology [3].
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Accurate prediction results could be further used to optimize energy utilization, such as making
routing decisions and adjusting duty cycles [4].
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Figure 1. (a) Average solar radiation varied in months; (b) Different solar radiation on different days. 

2. Related Work 
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Figure 1. (a) Average solar radiation varied in months; (b) Different solar radiation on different days.

As a result, researches have been carried on the studies of solar radiation prediction algorithms.
Prediction algorithms can make predictions in the presence of weather forecasting information or not.
Since the weather forecasting information is not always available, our research focuses on prediction
approaches without weather information. Under this category, the solar radiation prediction models are
categorized into three major classes: statistical, stochastic, and machine learning methods [5]. Statistical
models are based on statistical information, such as standard deviation, variance, mean, and moving
average, which includes the classic exponential weighted moving average (EWMA) [6], the weather
conditioned moving average (WCMA) [7] and their improvements. Stochastic models use various
stochastic processes to represent signals, such as Markov chains. Machine learning prediction uses
machine learning-based techniques, such as neural networks (NN) [8] and fuzzy logic (FL) [9], to build
models to handle time series prediction. Machine learning prediction schemes are shown to outperform
the traditional models by achieving increased accuracy but with a more substantial computational
burden [5]. However, neural networks have two obvious weaknesses, i.e., slow convergence and
the presence of local optima. The prediction error could be large if using a single neural network
model, for example, long short-term memory (LSTM) [10]. To improve prediction accuracy, this
paper takes advantage of empirical mode decomposition (EMD) to decompose the original signal
into more stabilized components. Although theories of the EMD method are still under research,
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such as end-effects, over-envelopes, under-envelopes, and modal confusion, the method has been
widely used in the seismic signal analysis, marine signal analysis, mechanical fault diagnosis, and
other fields [11–13]. This paper attempts to fuse these algorithms in solar radiation prediction field
and build a hybrid model to improve the prediction accuracy. In an EH-WSN, there are different
requirements of prediction horizon, from short-term prediction such as several-minute-ahead to
one-hour-ahead, to medium-term such as one-hour-ahead to one-day-ahead, and long-term prediction
such as several-day-ahead to one-year-ahead. Especially for short-term and medium-term prediction
when the solar profile of that day is available, this profile can be utilized for improving the prediction
accuracy further. Therefore, a solar profile selection method based on K-means clustering [14] is
performed for better data training in LSTMs. The experimental simulation shows that this joint model
has better prediction accuracy than other single models.

Our contributions in this paper can be summarized as follows:

(1) A hybrid algorithm of prediction algorithms based on EMD and LSTM is proposed for improving
the accuracy of prediction results by stabilizing elements of data through the EMD method.

(2) On short-term and medium-term prediction, when the current day solar radiation profiles are
available, solar profiles are classified by the K-means clustering method, and similar solar profiles
can be retrieved to improve the prediction accuracy more efficiently.

(3) Designed experiments and simulations are conducted to compare the proposed algorithm with
existing popular algorithms, i.e., EWMA, WCMA, and single LSTM model on performance.
Parameters for different models are tuned carefully. The prediction error rate is analyzed for
different time slots in a day, as well.

The remaining paper is organized as follows. Section 2 reviews the related work on state-of-the-art
prediction models and discusses their advantages and limitations. Section 3 introduces our proposed
prediction method based on LSTM neural networks, EMD method, and solar profiles. Then Section 4
presents the designed simulation and comparison results of our method to three other methods.
Finally, conclusion and future work are given in Section 5.

2. Related Work

In this section, we summarize the state-of-the-art prediction models. As we have mentioned
earlier, solar radiation prediction models have statistical, stochastic, and machine learning methods [5].
Statistical models include the classic exponential weighted moving average (EWMA) [6], the
weather conditioned moving average (WCMA) [7], and the profile-energy (Pro-Energy) model [15].
The autoregressive integrated moving average (ARIMA) and linear regression (LR), which fall into this
category, were also used for solar prediction in [16]. A multivariate linear regression (MLR) analysis
model was proposed to generate solar energy prediction with probabilities [17]. Stochastic models
use stochastic processes, such as Markov chains, to represent signals. A first-order Markov chain
model was developed in [18] for classifying global solar irradiation and generating predictions for
photovoltaic systems. The accurate solar irradiance prediction model (ASIM) [19] uses increasing order
Markov chains to predict solar energy in a long term prediction horizon. Although there are quite a lot
of prediction methods on time series in general, we focus more heavily on typical prediction models
on solar radiation in the wireless sensor network area, i.e., traditional EWMA, WCMA, Pro-Energy,
and machine learning approaches, and review their advantages and limitations in detail.

2.1. Exponentially-Weighted Moving Average

The EWMA and its improved algorithms [6,20] are the most popular and commonly used
algorithms for solar energy prediction. The EWMA algorithm divides one day into N fixed-length
(usually 30 min) time slots. Its underlying principle is that the energy collected at a time duration on a
certain day is assumed to be similar to the energy collected at that time duration on the previous day.
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Therefore, in the EWMA, the predicted energy is the weighted average of the energy from the previous
days, and the closer to the day, the greater the energy coefficient given in Equation (1).

E(d, n) = αE(d− 1, n) + (1− α)H(d− 1, n) (1)

where d represents the current date, and n represents the time slot number. The EWMA adds up the
last harvested energy H and the estimated energy E according to the weighting factor α (0 < α < 1).

The advantage of the EWMA is that it makes full use of the solar cycle and adapt to seasonal
changes. When the weather has been in a stable state, such as continuous sunny days and cloudy days,
the prediction error of the algorithm is extremely small. At the same time, the main disadvantage of the
EWMA is its vulnerability to rapidly changing weather conditions. In particular, the EWMA produces
significant prediction errors during mixed sunny and cloudy days. To reduce the error rate under
unstable weather conditions, the current solar conditions should be integrated into the energy estimate.

2.2. Weather Conditioned Moving Average

The WCMA model [7,21] is a statistical-based algorithm designed to consider the current and
past weather conditions. It collects the energy values of the past D days and stores them in the matrix
E(D, N), where N is the time slot in D day. The WCMA does not maintain a weighted average like
the EWMA but instead incorporates the energy collected in the previous time slot into the prediction
formula. The average of energy values in the certain time slot of previous days also contributes to the
prediction equation. Therefore, the prediction equation for a particular time slot is related to the energy
in the previous time slot, the average of the corresponding time slots and the current solar conditions
are given in Equation (2).

E(d, n + 1) = αE(d, n) + (1− α)M(d, n + 1)GAP(d, n, K) (2)

where α is the weighted factor, and M represents the average of the (n + 1)th slots in previous D days,
E(d, n) is the actual harvested energy in the last slot, and GAP(d, n, k) is the value that reflects the
current solar condition related to previous days, defined as Equation (3).

GAP =
V·P∑

P
(3)

where the vector V is the ratio of the value to the average value of previous values, the vector P indicates the
distance which means the closer the sample is, the bigger the weight it will be given. The UD-WCMA [22] is
an improvement of the WCMA by adaptive tuning the weighting factor depending on the changes.

The peak of the error of the WCMA algorithm appears at the sunset and sunrise times and is
more obvious when α > 0.5. This is due to the fact that the WCMA takes into account the preceding
time slots when predicting solar radiation. There are always dramatic changes in sunshine conditions
during sunrise and sunset, so high errors are caused.

2.3. Profile-Energy Model

The principle of Pro-Energy [15] is to use a representative full-day energy harvesting profile to
represent available energy. Each day is divided into N time slots. The vector with length N stores the
energy collected on the day. Pro-Energy estimates the available energy for the next time slot by looking
for the profile in the profile pool that is most similar to the weather of the day. The similarity of two
different profiles is determined by calculating the Euclidean distance of the two vectors. The available
energy for the next time slot is calculated from this most similar profile. Therefore, the combination
of the energy observed in the previous slot and the energy of the most similar day helps predict the
current energy, as shown in Equation (4).

E(d, n) = αH + (1− α)EMS (4)
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where H represents the amount of energy collected in the previous time slot and EMS is the energy
observed in time slot n on the most similar day. To determine the level of similarity from the previous
few days to the day of D, the mean absolute error (MAE) of each stored day of the K previous time
slots up to the current time slot is calculated in Pro-Energy as in Equation (5). Calculate the mean
absolute error (MAE) with each stored profile and select the profile with the smallest MAE.

Ed = min
Ed∈E

t∑
i=t−K

1
K
|Ci − Ed

i | (5)

where K is the number of previous time slots we use, Ci is the solar energy in time slot i of the current
day C. When the MAE is above a set threshold, a new profile is stored into the database.

Pro-Energy tracks a typical set of previous profiles, each representing different solar conditions.
The stored profile is dynamically updated to accommodate predictions for changing seasonal patterns.
To further improve the accuracy of the forecast, Pro-Energy recommends combining multiple profiles
instead of extracting values from the most similar days. In addition, as an analytical method, Pro-Energy
can outperform the EWMA and WCMA for utilizing solar radiation profiles and overcoming their poor
performance in dramatic weather changes. An improvement energy prediction model for lowering
memory and energy usage in Pro-Energy is proposed as Pro-Energy-VLT (Profile energy prediction model
with variable-length timeslots) [23], with varying length of timeslots according to the harvested energy.

2.4. Machine Learning Methods

Machine learning methods, such as neural networks (NN), fuzzy logic (FL), and reinforcement
learning (RL), are introduced in prediction solar energy in the works of literature. A neural network
model in [8] was proposed to predict solar radiance over a half-day time, which outperforms the
autoregressive and fuzzy logic models. A hybrid model based on the generalized fuzzy model
(GFM), which incorporated a Gaussian mixture model (GMM), was proposed in [24] for long-term
prediction in solar energy. Deep learning methods are also incorporated in some research, such as
an autoencoder-LSTM based model to predict solar energy [25]. The experiment results showed that
deep learning algorithms outperform other artificial neural networks. Studies have been undertaken
to compare LSTM with other machine-learning models in one-day-ahead prediction in solar radiance,
and LSTM achieves the best performance overall [26].

Reinforcement learning has also been tried in solar power prediction research. A Q-learning based
solar energy prediction algorithm (QL-SEP) is proposed as Equation (6) and is compared with other
algorithms, such as EWMA, Pro-Energy, which shows QL-SEP outperforms other algorithms [27].

Qt+1(s) = Qt(s) + γ(r−Qt(s)) (6)

where s is the time slot, r is the reward calculated to be −1 or +1 according to the reliability of the
prediction to the actual value, and γ is the learning rate. As shown in Equation (6), basically the
Q-learning in this research uses value iteration to update the reliability of prediction accuracy in
previous time slots. It does not show the suitableness by using the reinforcement learning method in a
time series prediction problem.

Table 1 shows the solar prediction related methods in the literature review overall. More specifically,
the EWMA and WCMA methods are fundamental solar radiation prediction methods in the wireless
sensor network area. Pro-Energy and its improvement utilize the solar profiles to improve the approaches.
Machine learning methods have been proved to achieve the best performance over traditional methods.
Based on these facts, a hybrid solar radiation prediction method is proposed in the next section.
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Table 1. Literature review of solar radiation prediction methods.

Category Prediction Models Description

Statistical

EWMA [6,20] EWMA computes the predicted energy as the weighted average energy from the
previous days, and the closer to the day, the greater the energy coefficient given.

WCMA [7,21] and UD-WCMA [22]
WCMA predicts energy in a particular time slot being related to the energy in the

previous time slot, the average of the corresponding time slots, and the current solar
conditions. UD-WCMA is adaptive, tuning the weighting factor in WCMA.

Pro-Energy [15] and Pro-Energy-VLT [23]

Pro-Energy uses energy in the previous time slot and the most similar profile
selected from the profile pool for prediction. Pro-Energy-VLT is an improvement

prediction model for lowering memory and energy usage in Pro-Energy with
varying lengths of timeslots.

ARIMA [16] ARIMA is a general statistical time series prediction model also used as solar
irradiation prediction method.

MLR [17] A multivariate linear regression (MLR) analysis model is proposed to generate
predictions of solar energy prediction with probabilities.

Stochastic
ASIM [19] ASIM uses increasing order Markov chains to predict the solar energy in a long

term prediction horizon.

First-order Markov chain approach [18] A first-order Markov chain approach for classifying global solar irradiation and
generating predictions for photovoltaic systems.

Machine learning

Generalized fuzzy model (GFM) + Gaussian
mixture model (GMM) [13]

A hybrid model based on GFM incorporated with a GMM is proposed for
long-term prediction in solar energy.

Autoencoder-LSTM [25] Autoencoder with LSTM based model is proposed to predict solar energy.

QL-SEP [26] QL-SEP is a Q-learning prediction model based on the prediction reliability of
different time slots.
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3. Hybrid Solar Radiation Prediction Method

To increase the accuracy of the solar prediction method, we propose the EMD model to stabilize
the time-series information before the LSTM structure. In addition, having learned from the idea of
Pro-Energy that using the solar energy profile of the current day could help to improve the accuracy of
the prediction, we also utilize the profiles to increase the accuracy of the prediction and the similar
solar radiation datasets as the training dataset for the LSTM model to improve the convergence and
reduce the computation time.

Figure 2 shows the overall structure of our proposed method. The original signal is compared
with stored solar radiation categories and selects the most similar category. These data in this category
will later be trained for the LSTMs. After that, the EMD module is then applied to decompose the
original file into the different components, and each component goes into the LSTM neural network,
and the results are finally summed and reconstructed into the prediction result.Energies 2020, 13, x FOR PEER REVIEW 7 of 20 
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3.1. Empirical Mode Decomposition

Solar radiance sequences are non-stationary time series with certain periodicity and randomness.
Empirical mode decomposition (EMD) [28,29] is a method to process time series, which may be
non-linear or non-stationary and decomposes the signal into some sequences which overcome the
difficulty of selecting wavelet basis function in other transforming methods. The idea underlying EMD
is that the time series need to be transformed when the number of minima or maxima is greater than
the upper zero crossings or the number of zero crossings is two or more. The original data are then
decomposed into several sub-sequences from a sifting process, and the sub-sequences are called the
intrinsic mode function (IMF) component. The process of the EMD algorithm is shown in Figure 3.
For any original signal x(t), maximum and minimum points are identified. Then the upper and lower
envelopes of the signal u(t) and l(t) are recognized, and the average of the envelopes are calculated as
m(t). The candidate IMF component from the envelope mean is obtained from subtracting x(t) from
m(t), and whether it meets the criteria of an IMF is determined. If it meets the criteria of an IMF, it is
considered as an IMF component, and the original signal is subtracted from this IMF component as
the new x(t) and continues from the beginning. Otherwise, the candidate IMF is considered as the
new signal and repeats the loop from the beginning. Finally, the EMD decomposes the time sequence
original data into a series of relatively stable IMF components and a residual.
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Figure 3. Process of the empirical mode decomposition (EMD) algorithm.

Figure 4 is an example of daily global horizontal solar radiation data from 1 January to 31 December
2008 in Alabama, which depicts the total amount of modeled direct and diffuse solar radiation received
on a horizontal surface. The data are retrieved from the United States national solar radiation
database [30]. Figure 5 shows the corresponding original, hourly data and the 10 extracted IMF
components decomposed by the empirical mode decomposition method from high frequencies to low
frequencies in order.
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Figure 4. Typical daily solar radiation data from 1 January to 31 December 2008 in Alabama.
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3.2. Long Short-Term Memory Networks

The LSTM networks proposed by Hochreiter et al. in 1997 [31,32] are based on recurrent neural
networks (RNN) architecture. LSTM was mainly motivated and designed to mitigate the vanishing
gradient problem of the standard RNN when dealing with long term dependencies and have been
extensively applied in various fields. Moreover, LSTM is a popular time series forecasting model and
can expertly deal with long-term dependencies data.

The LSTM model has a special structure called a memory cell, which includes the input gate,
output gate, and forget gate. As shown in Figure 6, the gates control whether the information can go
through or be got rid of. The activation functions of the gates are described in Equations (7)–(12).

ft = σ
(
W f ·[ht−1, xt] + b f

)
, (7)

it = σ(Wi·[ht−1, xt] + bi), (8)

Ĉt = tanh(WC·[ht−1, xt] + bC), (9)

Ct = ft ×Ct−1 + it × Ĉt, (10)

ot = σ(Wo·[ht−1, xt] + bo), (11)

ht = ot × tanh(Ct), (12)

where ft represents the forget gate, it represents the input gate, Ct−1 and Ct represent the last cell state
and the current cell state, respectively, ot represents the output gate, ht−1 and ht represent the output of
the previous cell and current cell, respectively.
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Our LSTM network uses a multilayer architecture that consists of two LSTM layers and one
fully connected layer. A series of IMFs decomposed by the EMD use this model to predict for each
subsequence. The model finally combines the prediction results of each subsequence to obtain the final
predicted value.

3.3. Energy Profile Selections by K-Means Clustering

Due to the different clarity situations of the sky and other weather conditions, solar radiation for
each day obviously has different energy profiles. Figure 7 shows the values of global horizontal solar
radiation in a continuous 5 days at the site of Alabama in 2008 from the United States national solar
radiation database [30]. It shows the different energy profiles with changes in the amount of hourly
solar radiation received on a horizontal surface due to the different weather conditions. From the
research of Pro-Energy [15], it stores typical solar radiation profiles in the database which cover the
clear sky and cloudy sky and dramatic changes in weather condition. The profile analyzer selects the
most similar stored profile with the smallest mean absolute error (MAE) compared to the current day
with each stored profile. The whole process can improve prediction accuracy based on EWMA. With
similar consideration as in Pro-Energy, in medium-term prediction horizon, such as the one-hour-ahead
prediction, the already occurred radiation profile of the current day could be utilized for improving
our LSTM model. So for any particular dataset, we first use the K-means clustering method to classify
the radiation profiles into specific N clusters where the K-means model is one of the most popular
clustering algorithms [14]. The average of all the data in this cluster is called the centroid. The distance
between each data and its centroid is calculated using a proximity measure, such as the Euclidean
distance. Each data is then assigned to the closest centroid. The centroid of each cluster is updated
based on the mean of data in that cluster. The assignment of data points to the closest cluster, and the
updating of the centroids is repeated until no data points change their cluster, and the centroids remain
the same.

Equation (13) shows the objective function F of K-means where N is the number of clusters, Ck is
the centroid of kth cluster, and n is the number of data in one cluster, xi is the ith data in one cluster.

F =
N∑

k=1

n∑
xi∈Ck

||xi −Ck||
2 (13)

For any historical solar radiation dataset, solar radiation data are divided by 24 h, so one sample
of each day has 24 attributes. The number of N clusters is specified by users and need to be optimized
during the simulation. When the current solar radiation profile is partially available, the current solar
data are classified into these N categories.



Energies 2019, 12, 4762 11 of 21

Energies 2020, 13, x FOR PEER REVIEW 10 of 20 

 

𝐶௧ =  𝑓௧ × 𝐶௧ିଵ + 𝑖௧ × 𝐶መ௧, (10) 𝑜௧ =  𝜎(𝑊௢ ∙ ሾℎ௧ିଵ, 𝑥௧ሿ + 𝑏௢), (11) ℎ௧ =  𝑜௧ × 𝑡𝑎𝑛ℎ(𝐶௧), (12) 

where 𝑓௧  represents the forget gate,  𝑖௧ represents the input gate, 𝐶௧ିଵ and 𝐶௧ represent the last cell 
state and the current cell state, respectively, 𝑜௧ represents the output gate, ℎ௧ିଵ and ℎ௧ represent 
the output of the previous cell and current cell, respectively. 

Our LSTM network uses a multilayer architecture that consists of two LSTM layers and one fully 
connected layer. A series of IMFs decomposed by the EMD use this model to predict for each 
subsequence. The model finally combines the prediction results of each subsequence to obtain the 
final predicted value. 

3.2. Energy Profile Selections by K-Means Clustering 

Due to the different clarity situations of the sky and other weather conditions, solar radiation for 
each day obviously has different energy profiles. Figure 7 shows the values of global horizontal solar 
radiation in a continuous 5 days at the site of Alabama in 2008 from the United States national solar 
radiation database [30]. It shows the different energy profiles with changes in the amount of hourly 
solar radiation received on a horizontal surface due to the different weather conditions. From the 
research of Pro-Energy [15], it stores typical solar radiation profiles in the database which cover the 
clear sky and cloudy sky and dramatic changes in weather condition. The profile analyzer selects the 
most similar stored profile with the smallest mean absolute error (MAE) compared to the current day 
with each stored profile. The whole process can improve prediction accuracy based on EWMA. With 
similar consideration as in Pro-Energy, in medium-term prediction horizon, such as the one-hour-
ahead prediction, the already occurred radiation profile of the current day could be utilized for 
improving our LSTM model. So for any particular dataset, we first use the K-means clustering 
method to classify the radiation profiles into specific 𝑁  clusters where the K-means model is one of 
the most popular clustering algorithms [14]. The average of all the data in this cluster is called the 
centroid. The distance between each data and its centroid is calculated using a proximity measure, 
such as the Euclidean distance. Each data is then assigned to the closest centroid. The centroid of each 
cluster is updated based on the mean of data in that cluster. The assignment of data points to the 
closest cluster, and the updating of the centroids is repeated until no data points change their cluster, 
and the centroids remain the same. 

 
Figure 7. Different energy radiation profiles of 2008 in Alabama. 

Equation (13) shows the objective function 𝐹 of K-means where 𝑁 is the number of clusters, 𝐶௞ is the centroid of 𝑘th cluster, and 𝑛 is the number of data in one cluster, 𝑥௜  is the 𝑖th data in one 
cluster. 

0
100
200
300
400
500
600
700
800
900

1:
00

6:
00

11
:0

0
16

:0
0

21
:0

0
2:

00
7:

00
12

:0
0

17
:0

0
22

:0
0

3:
00

8:
00

13
:0

0
18

:0
0

23
:0

0
4:

00
9:

00
14

:0
0

19
:0

0
0:

00
5:

00
10

:0
0

15
:0

0
20

:0
0

So
la

r R
ad

ia
tio

n 
of

 G
lo

ba
l 

Ho
riz

on
ta

l (
W

h/
m

2 )

Time (Hour)
17 Sept              18 Sept               19 Sept             20 Sept           21 Sept

Figure 7. Different energy radiation profiles of 2008 in Alabama.

4. Performance Evaluation and Discussion

To show the performance of our proposed approach in predicting solar radiation, we designed
experiments to evaluate these prediction models, including EWMA, WCMA, LSTM, and our model.
We first start by explaining the chosen dataset and then show the steps of our experiments, including
the tuning parameters, the performance results of different algorithms, and how well the algorithm
performs when adding clustering solar profile data. All the algorithms are written in Python.

4.1. Datasets

Datasets are normally researched for validating and evaluating our model. The data from the
United States national solar radiation database [30] contains comprehensive solar and meteorological
related data in more than 1000 locations of the United States for the years 1999–2010. This solar
radiation historical data have a one-hour sample rate over a whole year period, and normal statistics
results are accessible. Lately, datasets are also available, which can be retrieved with smaller time
duration and weather condition information. Data from three different locations, one from Michigan,
one from Alabama, and the other from Nevada, were used in the experiments. Although the simulation
can still not be exhaustive, selected various locations provide sufficient coverage of different solar
radiation conditions.

4.2. Performance Metrics

For measuring prediction accuracy, since root mean square error (RMSE) and mean absolute
percentage error (MAPE) are the most commonly used and have typical application areas, both metrics
were chosen to evaluate the experimental results. The RMSE as Equation (14) was chosen as the metric
to evaluate the performance between these prediction models in our experiments.

RMSE =

√√√
1
N

N∑
i=1

(yi − ŷi)
2, (14)

where yi is the actual value, ŷi is the prediction value, and N is the number of tested data. In the RMSE,
where errors are squared before averaging, it may give a relatively high weight to abnormal points.
Mean absolute percentage error (MAPE) was also used as a metric defined as in Equation (15) when
analyzing the prediction accuracy in different time slots.

MAPE =
1
N

N∑
i=1

|yi − ŷi|

|yi|
(15)
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4.3. Tuning Parameters in LSTM

The performance of LSTM models usually relies heavily on several hyperparameters. Our model
consists of two LSTM layers and one fully connected layer. By tuning these hyperparameters listed in
Table 2, some experiments were conducted to get a relatively good performance. The epoch number
was set as 200, which can achieve relatively low RMSE, and the iteration number was set to be 300.
The data set was normalized between 0 and 1 using the MinMax normalization. When applying our
LSTM models, four steps were taken: clean data, do the normalization of the data, split data, and
construct network structure. The split rate in the simulation was set as 0.8, which means around 80%
of the dataset (produced by 8760 or 8764 original records) was processed as training data to build the
LSTM model and 20% as testing data. According to different prediction horizons, i.e., one-hour-ahead,
several-hour-ahead, or one-day-ahead, all the original data were loaded and retrieved into the training
dataset. For example, for one-hour-ahead prediction, each data record was composed of one specific
hourly solar radiation data and 24 previous slots data. About 6988 records were set to be training data,
and 1747 were set to be testing data. For six-hour-ahead prediction, each data record was composed of
certain data and the previous 30th to 7th slot solar radiation data. The optimizer of the neural network
training was RMSprop, an implementation of a mini-batch stochastic gradient descent algorithm [33].

Table 2. Hyperparameter setting in long short-term memory (LSTM).

Epoch Number Iteration Normalization Split Rate Optimizer

200 300 MinMax 0.8 RMSProp

When dealing with the solar radiation data (value = 0) during night hours, it is common to
remove these night hours during the data cleaning preprocess. These night hour data were kept for our
simulation results for considering more general situations when night hours could be different in some
areas. For fitting the general situation, the data preprocessing procedure will be complicated, but the
LSTM neural network still produces negative results when the solar radiation values are close to zero.
During the design procedure, different activation functions of LSTM layers that limit the negative
prediction output were tried, but these options affected the prediction accuracy. Therefore, in our
solution, the final data processing step was added to set these negative values to zero, which also led
to an increase in prediction accuracy and lowered the prediction error. The details of the performance
improvement in the simulation are shown in Section 4.

4.4. Experiment Results

Three different areas’ solar radiation data in three selected years, i.e., 1999, 2004, and 2008, were
used for comparing the performance of EWMA, WMCA, LSTM, and EMD-LSTM methods. In both the
EWMA and WMCA models, the parameters D, K, and α were set as 4, 3, and 0.7. Figure 8 presents
the example results achieved by these four methods in 9 days that have different weather conditions.
The total daily solar radiation in these 9 days of the year 1999 in Alabama varied from 815 Wh/m2 to
3642 Wh/m2. Table 3 shows the mean varied from 46.83 Wh/m2 to 151.75 Wh/m2, and the standard
deviation from 48.04 to 222.82.

Figure 8 shows that all the four methods can follow the radiation trends no matter how dramatically
the weather changes. Since EWMA and WCMA are basically weighted average algorithms, they are
very accurate under stable weather conditions, as well as during the evening when the amount of solar
radiation is continuously 0. The data line of the LSTM algorithm had an obvious depression where
night time starts and later stays stably in 0 while the prediction values from EMD-LSTM fluctuated
around 0 in a small amount of variation during the night time. Considering the solar radiation is not
possible to be below 0, a final processing method was utilized to truncate all the data below zero as
0. Figure 8 also shows the results from the truncated version of the LSTM model and the truncated
version of the EMD-LSTM model.



Energies 2019, 12, 4762 13 of 21

Energies 2020, 13, x FOR PEER REVIEW 13 of 20 

 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

0

200

400

600

800

19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov 26-Nov 27-Nov

Ho
ur

ly
 S

ol
ar

 
Ra

di
at

io
n 

(W
h/

m
2 ) Actual Data EWMA

0

200

400

600

800

19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov 26-Nov 27-Nov

Ho
ur

ly
 S

ol
ar

 
Ra

di
at

io
n 

(W
h/

m
2 ) Actual Data WCMA

-200

0

200

400

600

800

19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov 26-Nov 27-Nov

Ho
ur

ly
 S

ol
ar

 
Ra

di
at

io
n 

(W
h/

m
2 )

Actual Data LSTM

0

200

400

600

800

19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov 26-Nov 27-Nov

Ho
ur

ly
 S

ol
ar

 
Ra

di
at

io
n 

(W
h/

m
2 ) Actual Data LSTM-Truncated

-200

0

200

400

600

800

19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov 26-Nov 27-NovHo
ur

ly
 S

ol
ar

 R
ad

ia
tio

n 
(W

h/
m

2 )

Actual Data EMD-LSTM

Figure 8. Cont.



Energies 2019, 12, 4762 14 of 21

Energies 2020, 13, x FOR PEER REVIEW 14 of 20 

 

 

(f) 

Figure 8. Prediction results of the different methods compared to actual data: (a) exponentially-
weighted moving average (EWMA); (b) weather conditioned moving average (WCMA); (c) long 
short-term memory (LSTM); (d) LSTM-Truncated; (e) EMD-LSTM; (f) EMD-LSTM-Truncated. 

To evaluate the accuracy of these prediction methods, which is one of the most important 
metrics, experiments for different situations were designed separately for comparisons: (1) one-hour-
ahead prediction, (2) from two-hour-ahead to one-day-ahead prediction, (3) different time period 
accuracy, (4) daily solar radiation prediction, and (5) daily profile for prediction. 

(1) One-hour-ahead prediction 

Tables 4–6 show the RMSE of different methods achieved for one-hour-ahead prediction in 
Alabama, Michigan, and Nevada, respectively, using previously stated datasets. Yearly results varied 
according to different solar conditions. The diversity of weather conditions can be observed between 
these states. The total amount of energy received by the site in Alabama, Michigan, and Nevada 
varied at 1.40 × 106 Wh/m2, 1.68 × 106 Wh/m2, and 2.11 × 106 Wh/m2. The solar radiation intensity, total 
sunny and clear days in these areas were significantly different. The EWMA and WCMA models 
have similar performance, although the WCMA is supposed to be an improved algorithm. The LSTM 
model alone can achieve good results when the parameters are set appropriately. The performance 
of truncated versions of LSTM, which set all the negative values as zero, improved by 1.2%–2.2%. 
The performance of truncated versions of EMD-LSTM improved by 1.75%–2.5%. Compared to the 
LSTM-Truncated model alone, the prediction accuracy of EMD-LSTM-Truncated improved 5.0%–
15.7%. Compared to the EWMA and WCMA models, the truncated version of EMD-LSTM improved 
25.0%–44.3% and 29.0%–48.7%, respectively. Compared with other models, our hybrid model has the 
lowest prediction errors in one-hour-ahead prediction in all the cases, which indicates that our model 
enhances solar radiation prediction accuracy by retrieving stabilized elements of data through the 
EMD method. 

(2) From two-hour-ahead to one-day-ahead prediction 

We compared all four models and the truncated versions in the one-hour-ahead prediction 
comparison. But since EWMA and WCMA are designed for only one-timeslot-ahead prediction, our 
model was compared with the single LSTM model for several-hour-ahead and one-day-ahead 
prediction. Figure 9 shows the RMSE results from LSTM-Truncated and EMD-LSTM-Truncated 
models in two-hour-ahead, six-hour-ahead, twelve-hour-ahead, and one-day-ahead prediction from 
the solar radiation data of Alabama, Michigan, and Nevada in 2008. There are some observable 
tendencies. RMSE increased discernibly when the prediction horizon increases, which is 
understandable since the longer the horizon, the lower the accuracy. In the two-hour-ahead 
prediction results of Alabama, predictions of LSTM-Truncated and EMD-LSTM-Truncated models 
had the absolute value of RMSE as 60.93 and 55.61, respectively, which was 21.0% and 27.0% above 
one-hour-prediction accuracy. The other two locations shared the same trends. In six-hour-ahead, 
twelve-hour-ahead, and one-day-ahead predictions, comparably more obvious higher RMSE was 
observed. Twelve-hour-ahead prediction and one-day-ahead prediction showed similar prediction 

0

200

400

600

800

19-Nov 20-Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov 26-Nov 27-Nov

Ho
ur

ly
 S

ol
ar

 
Ra

di
at

io
n 

(W
h/

m
2 ) Actual Data EMD-LSTM-Truncated

Figure 8. Prediction results of the different methods compared to actual data: (a) exponentially-weighted
moving average (EWMA); (b) weather conditioned moving average (WCMA); (c) long short-term
memory (LSTM); (d) LSTM-Truncated; (e) EMD-LSTM; (f) EMD-LSTM-Truncated.

Table 3. Mean and standard deviation of solar radiation data in 9 days.

19
Nov

20
Nov

21
Nov

22
Nov

23
Nov

24
Nov

25
Nov

26
Nov

27
Nov

Daily Total (Wh/m2) 105.58 46.83 128.79 146.58 121.08 79.67 34.00 97.13 151.75
Standard Deviation (Wh/m2) 159.24 70.59 196.23 216.72 188.28 141.85 48.04 161.84 222.82

To evaluate the accuracy of these prediction methods, which is one of the most important metrics,
experiments for different situations were designed separately for comparisons: (1) one-hour-ahead
prediction, (2) from two-hour-ahead to one-day-ahead prediction, (3) different time period accuracy,
(4) daily solar radiation prediction, and (5) daily profile for prediction.

(1) One-hour-ahead prediction
Tables 4–6 show the RMSE of different methods achieved for one-hour-ahead prediction in

Alabama, Michigan, and Nevada, respectively, using previously stated datasets. Yearly results varied
according to different solar conditions. The diversity of weather conditions can be observed between
these states. The total amount of energy received by the site in Alabama, Michigan, and Nevada varied
at 1.40 × 106 Wh/m2, 1.68 × 106 Wh/m2, and 2.11 × 106 Wh/m2. The solar radiation intensity, total sunny
and clear days in these areas were significantly different. The EWMA and WCMA models have similar
performance, although the WCMA is supposed to be an improved algorithm. The LSTM model alone
can achieve good results when the parameters are set appropriately. The performance of truncated
versions of LSTM, which set all the negative values as zero, improved by 1.2%–2.2%. The performance
of truncated versions of EMD-LSTM improved by 1.75%–2.5%. Compared to the LSTM-Truncated
model alone, the prediction accuracy of EMD-LSTM-Truncated improved 5.0%–15.7%. Compared to
the EWMA and WCMA models, the truncated version of EMD-LSTM improved 25.0%–44.3% and
29.0%–48.7%, respectively. Compared with other models, our hybrid model has the lowest prediction
errors in one-hour-ahead prediction in all the cases, which indicates that our model enhances solar
radiation prediction accuracy by retrieving stabilized elements of data through the EMD method.

Table 4. Root mean square error (RMSE) (absolute) of one-hour-ahead prediction results of the
exponentially-weighted moving average (EWMA), weather conditioned moving average (WCMA), long
short-term memory (LSTM)-Truncated, and empirical mode decomposition (EMD)-LSTM (Alabama).

Year EWMA WCMA LSTM LSTM-Truncated EMD-LSTM EMD-LSTM-Truncated

1999 82.64 80.93 50.34 49.24 46.85 45.89
2004 67.45 55.24 38.15 37.70 35.23 34.61
2008 79.45 78.23 51.34 50.45 44.68 43.78
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Table 5. RMSE (absolute) of one-hour-ahead prediction of EWMA, WCMA, LSTM-truncated, and
EMD-LSTM-truncated in one-hour-ahead prediction (Michigan).

Year EWMA WCMA LSTM LSTM-Truncated EMD-LSTM EMD-LSTM-Truncated

1999 93.26 92.38 55.02 54.17 52.76 51.44
2004 82.72 85.82 69.25 67.93 58.19 57.07
2008 69.16 76.44 51.94 51.25 47.86 46.82

Table 6. RMSE (absolute) of one-hour-ahead prediction results of EWMA, WCMA, LSTM-Truncated,
and EMD-LSTM-Truncated (Nevada).

Year EWMA WCMA LSTM LSTM-Truncated EMD-LSTM EMD-LSTM-Truncated

1999 72.64 70.93 51.34 50.56 48.85 47.83
2004 63.86 66.37 49.14 48.31 46.17 45.30
2008 57.79 55.23 48.72 47.96 42.36 41.45

(2) From two-hour-ahead to one-day-ahead prediction
We compared all four models and the truncated versions in the one-hour-ahead prediction

comparison. But since EWMA and WCMA are designed for only one-timeslot-ahead prediction,
our model was compared with the single LSTM model for several-hour-ahead and one-day-ahead
prediction. Figure 9 shows the RMSE results from LSTM-Truncated and EMD-LSTM-Truncated
models in two-hour-ahead, six-hour-ahead, twelve-hour-ahead, and one-day-ahead prediction
from the solar radiation data of Alabama, Michigan, and Nevada in 2008. There are some
observable tendencies. RMSE increased discernibly when the prediction horizon increases, which is
understandable since the longer the horizon, the lower the accuracy. In the two-hour-ahead
prediction results of Alabama, predictions of LSTM-Truncated and EMD-LSTM-Truncated models
had the absolute value of RMSE as 60.93 and 55.61, respectively, which was 21.0% and 27.0% above
one-hour-prediction accuracy. The other two locations shared the same trends. In six-hour-ahead,
twelve-hour-ahead, and one-day-ahead predictions, comparably more obvious higher RMSE was
observed. Twelve-hour-ahead prediction and one-day-ahead prediction showed similar prediction
accuracy in both models. Overall EMD-LSTM-truncated model works better than LSTM alone in all
different prediction horizons by 5.8–12.5%.

(3) Different time period prediction
As we all know that the solar radiation around the sunrise time can have a dramatic change and

cause high prediction error, we compared the average prediction percentage error according to different
time slots of the day, as shown in Table 7. Since the MAPE did not fit the value, which equals 0, the solar
radiation of night-time slots was not considered in this particular experiment. Only the time slots
from 7 a.m. to 5 p.m. were considered. In the timeslots from 8 a.m. to 5 p.m., the EMD-LSTM model
outperformed EWMA, WCMA, and LSTM except that in the timeslot 11 a.m., the prediction accuracy
of EMD-LSTM-Truncated (1.80%) was a slightly above WCMA (1.78%). The result also verifies the
LSTM with the EMD model achieves the lowest average error percentage. Under the MAPE metrics,
LSTM-Truncated does not show good performance and has a higher percentage error than other
models in this case. Among all the models, we can see the trend that the maximum prediction error
occurs during the sunrise and sunset. Our proposed EMD-LSTM model and its truncated version have
not solved the problem. Ensemble methods were proposed recently for time-series prediction [34–36],
which could be a possible solution by combining different models using adaptive weighting schemes.
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Figure 9. Results of LSTM-Truncated and EMD-LSTM-Truncated in two-hour-ahead, six-hour-ahead,
twelve-hour-ahead, one-day-ahead prediction: (a) Alabama; (b) Michigan; (c) Nevada in 2008.

(4) Daily solar radiation prediction
For a longer-term prediction, we also designed the experiments for the accumulated daily solar

radiation data for one whole year. The data included the 365 or 366 records of each day summed from
24 h of solar radiation values. The daily solar radiation density and weather conditions in different
locations varied dramatically. For example, in Alabama, in the year 2008, the minimum and maximum
daily solar radiation were 698 Wh/m2 and 8099 Wh/m2. The minimum and maximum in Michigan
were 661 Wh/m2 and 3279 Wh/m2, and those in Nevada were 485 Wh/m2 and 8133 Wh/m2, respectively.
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Table 7. Mean absolute percentage error (MAPE) (%) of prediction results of the EWMA, WCMA,
LSTM, and EMD-LSTM in different time slots.

Hour. EWMA WCMA LSTM-Truncated EMD-LSTM-Truncated

7 8.72% 14.29% 36.10% 134.15%
8 7.42% 9.88% 7.25% 4.60%
9 4.96% 4.69% 6.53% 1.45%
10 3.32% 2.51% 3.55% 1.41%
11 2.64% 1.78% 2.43% 1.80%
12 2.98% 2.10% 3.08% 2.03%
13 1.80% 1.23% 2.27% 1.02%
14 2.97% 2.37% 3.90% 1.53%
15 1.92% 2.17% 4.23% 0.79%
16 5.04% 4.72% 8.23% 2.34%
17 88.98% 88.78% 145.29% 71.57%

The hyperparameters of LSTM-Truncated and EMD-LSTM-Truncated were set as the same in
Section 4.3. In all the situations, the EMD-LSTM-Truncated model outperformed the LSTM-Truncated
model by 30.1% to 40.2%, shown in Table 8, which has more performance improvement compared to
5%–15.7% in one-hour-ahead prediction. The results show that in daily solar prediction, the EMD-LSTM
method has more obvious advantages by training LSTM with stabilized subsequences of data when
datasets are not large enough for training.

(5) Daily profile for prediction
To test the performance of utilizing the solar radiation profile of the current day, preliminary

experiments were also done for three different years in Alabama. Each whole year data set was
clustered into N clusters which was set to be 10 during whole experiments. Randomly select 30 days
as test data from the dataset and supposed solar radiation of the previous 16 h in the current day
was known and profiles in the particular cluster most similar to the current day were chosen to train
LSTMs. As a result, the Pro-EMD-LSTM-Truncated model achieved better prediction results than
EMD-LSTM-Truncated for one-hour-ahead prediction shown in Table 9. It shows the LSTM model
with the radiation profile method had smaller RMSE results compared to the EMD-LSTM-Truncated
model in three different datasets by 3.7%–10.4%. The model can enhance solar radiation prediction by
adopting more suitable training data to avoid local optima. The main disadvantage of the K-means
algorithm is that the initial clustering centroids are randomly selected which could lead to different
cluster formations. A poor cluster initialization may cause bad results in clustering [37].

These designed experiments demonstrate the following results:

(1) Overall the proposed LSTM method based on EMD and solar profiles can improve the accuracy
of prediction and achieve better performance than traditional solar prediction methods, such as
WCMA, EWMA. The RMSE values indicate the proposed hybrid model has the lowest prediction
error among all the models in one-ahead-hour prediction.

(2) The LSTM model based on the EMD method is slightly better than solely using the LSTM neural
networks model in the medium prediction horizon, that is, from several-hour-ahead prediction
to one-day-ahead prediction. In the daily solar radiation prediction, using the EMD method
has obvious advantages over the LSTMs alone. The data decomposition method divides time
series data into more stabilized separated IMFs and makes the LSTM more easily to be trained,
which improves the performance of the model.

(3) Using similar day profiles to train data in LSTM neural networks helps to improve the prediction
accuracy noticeably by preventing LSTM from the local optima in one-hour-ahead prediction.

(4) The MAPE metric also shows the hybrid model achieves the best performance in different time
durations of a day among all the models. One thing that needs to be improved is to decrease the
error rate of sunrise and sunset periods in LSTM based models in future work.
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Table 8. RMSE (absolute) of daily prediction results of LSTM-truncated and EMD-LSTM-truncated.

Year
Alabama Michigan Nevada

LSTM-Truncated EMD-LSTM-Truncated LSTM-Truncated EMD-LSTM-Truncated LSTM-Truncated EMD-LSTM-Truncated

1999 1134.23 786.42 1258.23 875.93 1182.48 793.24
2004 1258.23 843.36 1200.91 812.35 1279.23 765.39
2008 1302.72 793.25 1283.01 849.72 1241.23 836.57

Table 9. RMSE (absolute) of EMD-LSTM-Truncated and Pro-EMD-LSTM-truncated for the years 1999, 2004, and 2008.

Year EMD-LSTM-Truncated Pro-EMD-LSTM-Truncated

1999 49.24 47.34
2004 37.70 36.29
2008 50.45 45.18
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5. Conclusions and Future Work

In this paper, an LSTM neural network model with EMD methods was proposed. For a
one-hour-ahead prediction algorithm, the solar radiation profile of that day was also utilized to
select training data from LSTMs. Similar profiles were selected by calculating distances from the
typical profile cluster in the database. EMD was employed to decompose the data into stabilized
components and make LSTM neural networks predict more accurately in the one-day-ahead horizon.
Experiments were done to compare the proposed model with the LSTM, EWMA, WCMA models from
the United States national solar radiation dataset for the one-hour-ahead prediction. Comparison
results demonstrated that the proposed model can approve prediction accuracy.

In future work, we will improve the model in several ways. First, problems with the high error
rate of sunrise and sunset periods in LSTM based models need to be improved. Second, parameters
of K-means clustering for time series data are currently optimized by preliminary tests where we
will do more extensive experiments to learn in more depth the effects on the prediction accuracy.
Third, using the EMD method to decompose data before training as one option, other signal processing
methods would also be tested for better performance. In addition, considering the sole model
may not achieve the highest performance, a combined model combining the state-of-art algorithms
may be considered, for example, proposing a method to weight the combined model in prediction
solar radiation.
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