
sensors

Article

Privacy-Preserving Broker-ABE Scheme for Multiple
Cloud-Assisted Cyber Physical Systems

Po-Wen Chi 1,* and Ming-Hung Wang 2

1 Department of Computer Science and Information Engineering, National Taiwan Normal University,
Taipei 11677, Taiwan

2 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 40724, Taiwan; mhwang@fcu.edu.tw

* Correspondence: neokent@gapps.ntnu.edu.tw

Received: 11 November 2019; Accepted: 9 December 2019; Published: 11 December 2019 ����������
�������

Abstract: Cloud-assisted cyber–physical systems (CCPSs) integrate the physical space with cloud
computing. To do so, sensors on the field collect real-life data and forward it to clouds for further
data analysis and decision-making. Since multiple services may be accessed at the same time, sensor
data should be forwarded to different cloud service providers (CSPs). In this scenario, attribute-based
encryption (ABE) is an appropriate technique for securing data communication between sensors and
clouds. Each cloud has its own attributes and a broker can determine which cloud is authorized
to access data by the requirements set at the time of encryption. In this paper, we propose a
privacy-preserving broker-ABE scheme for multiple CCPSs (MCCPS). The ABE separates the policy
embedding job from the ABE task. To ease the computational burden of the sensors, this scheme leaves
the policy embedding task to the broker, which is generally more powerful than the sensors. Moreover,
the proposed scheme provides a way for CSPs to protect data privacy from outside coercion.

Keywords: attribute-based encryption; multiple cloud-assisted cyber–physical system; deniable
encryption

1. Introduction

Cyber–physical systems (CPSs), first proposed in Rajkumar et al. [1], is a concept in which field data
are monitored and collected by sensor systems and are then relayed to computer systems. Computer
systems then use computer-based algorithms to make decisions regarding how field agents should
proceed to obtain better results and pass these commands on field agents. This architecture is also the
main concept underpinning Industry 4.0 [2,3] and the internet of things (IoT) [4].

Today, cloud computing provides convenient, reliable, and on-demand services and is becoming
increasingly popular. Accordingly, the cyber component in CPS is being extended to cloud computing
to conform to the trend of the time. In 2013, National Institute of Standards and Technology (NIST)
integrated cloud computing and CPS and proposed an architecture known as the cloud-assisted
cyber–physical system (CCPS) [5] (actually, NIST uses the term cyber–physical cloud computing
(CPCC). In this paper, we prefer to use CCPS since this term is consistent with the term CPS).
The associated white paper [5] lists five benefits of CCPS: (1) efficient use of resources, (2) modular
composition, (3) rapid development, (4) smart adaption to the environment at every scale, (5) reliability
and resiliency.

The modular composition aspect is very important. Since it is almost impossible for one cloud
service vendor to provide every type of service, many cloud services are composed of multiple sub-cloud
systems. For example, when a user wants to choose a restaurant, he may draw upon a number of
cloud systems simultaneously to do so, including a map service, a customer comment service, and a

Sensors 2019, 19, 5463; doi:10.3390/s19245463 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5663-078X
https://orcid.org/0000-0002-5680-4003
http://www.mdpi.com/1424-8220/19/24/5463?type=check_update&version=1
http://dx.doi.org/10.3390/s19245463
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 5463 2 of 27

booking service. This is also the case in CCPS. Field sensors collect different types of data. Each CSP
may require a specific subset of data for analysis, decision-making, and the provision of its own unique
service. For example, in a hospital, there may be lots of sensors in a patient, and they periodically report
to different health-care systems, like the disease tracking system, patient caring system, or even air
conditioning system. This facility is called a multiple CCPS (MCCPS). For this scenario, a new entity
called a broker is introduced between the field sensors and CSPs [6,7]. The broker is responsible for
dispatching sensor data to appropriate CSPs according to their requirements or CSP properties. In
general, the IoT gateway can play the broker role. Compared to the sensor, the IoT gateway is usually
considered to be much more powerful. So it is reasonable to move most computational works from the
sensor to the broker. Figure 1 shows a diagram of the broker architecture for the MCCPS.

Broker

Field Sensors

Cloud Service Providers

Figure 1. Broker architecture for the multiple cyber–physical cloud computing (MCCPS).

To secure data communication in the MCCPS, attribute-based encryption (ABE) is an appropriate
technique since sensor data are required by multiple CSPs at the same time. By embedding the appropriate
policy-checking mechanism, only CSPs that satisfy pre-defined policies are authorized to access field
data. As such, data can be encrypted once and then be forwarded to multiple possible cloud service
vendors. However, most ABE schemes require intensive computational resources. Considering the
limited sensor capabilities, applying existing ABE schemes to sensors may not be a good idea.

Data privacy is another important issue in the MCCPS. Since data are processed in clouds, some
entities may force clouds to release field data through some type of power enforcement. For example,
a patient may wear many biosensors to monitor his/her health status. These biosensors forward
collected data to the cloud for further analysis and health determination. If some third party forces
the cloud service vendor to release the patient’s health information, traditional encryption schemes
would not protect user privacy since CSPs handle unencrypted data. Other than expecting the CSP
to reject outside requests directly, CSPs must be provided with a tool to prevent coercion and ensure
data privacy.

To solve these two problems, we propose a privacy-preserving broker-based ABE scheme in
which the policy generation role is moved from the sender, which is the field sensor in this scenario,
to the broker. The reason for this is that the broker is typically more powerful than the sensor. As for
the data privacy issue, we use a deniable encryption property to protect CSPs from being coerced.
When being coerced by outside forces, CSPs can release fake data that include persuasive evidence,
and the outside forces cannot reject claims from the CSPs since the claims are indistinguishable from
those of real data. Thus, the real data are kept safe from coercion.

A deniable encryption scheme is a kind of non-commitment encryption scheme since it is possible
to interpret an existing ciphertext into a fake message other than the user data. Some deniable encryption
schemes will be described in Section 2. In general, these schemes cost a lot of resources and it is not
affordable for a sensor to implement them. For example, Canetti et al. proposed a bitwise deniable

Sensors 2019, 19, 5463 3 of 27

encryption scheme that requires each transmission bit has an independent encryption environment [8].
To overcome this problem, our design is pre-determined and multi-distributional. We show that the
cost of our scheme is reasonable for a sensor in Section 4.

1.1. Contributions

In this paper, we present a deniable broker-based CP-ABE scheme for the MCCPS scenario.
The advantages of this scheme are as follows:

• Broker-based ABE. Most ABE schemes consider only the sender and receiver. In a ciphertext-policy
ABE (CP-ABE) scheme, the sender must embed a policy-checking mechanism in the ciphertext
generation process. Generally speaking, the computational cost of this process depends on the
number of attributes included. When more attributes are taken into account, more computation
power is required in the encryption process. That is, when applying CP-ABE in the MCCPS
scenario, many attributes are required and the field sensor may not have sufficient resources to
encrypt the collected data.

To solve this problem, in this scheme, the broker assumes the policy embedding task. The sensor
encrypts the collected data without considering the required policy. The semi-finished ciphertext,
which as yet remains confidential, is forwarded to the broker. The broker then processes the received
ciphertext and re-encrypts the ciphertext into a new version which requires policy checking upon
decryption. As such, the encryption step, which requires the most computational power, is moved
from the sensor to the broker. Therefore, broker-based ABE is more suitable for the MCCPS scenario.

• Arbitrary policy support without dedicated keys. The broker-based ABE is a variant of the
proxy-ABE, where the broker role is similar to that of a proxy. This intermediary step transforms
the given ciphertext into a new ciphertext. The proxy-ABE requires a re-encryption key, which is
often bundled with the new policy. However, this is not practical in the MCCPS scenario since
there are many types of sensors, many CSPs, and having a re-encrypt key for each combination
would be almost impossible. Besides, as described above, the sensor cannot complete the policy
embedding task due to its limited computational resources. So, the broker does not transform
the ciphertext from one policy into another, but rather adds a policy-checking step to an existing
ciphertext. Moreover, without transformation by the broker, CSPs cannot decrypt these messages
from the sensors. This ensures that a message from a field sensor must pass through the broker
and have had the policy-checking step appended before being received by the CSP. Thirdly,
although the broker is an intermediate entity that participates in the encryption process, it is not
allowed to see the data from field sensors. This arrangement is known as a semi-trusted broker.

In this work, to achieve this feature, we use a composite order group, which can be divided into
two subgroups. The sender, which is a sensor in this scenario, encrypts a message in the composite
order group. The broker and the CSP have keys for different respective subgroups. When receiving
a ciphertext, the broker first removes the secret key for the particular subgroup. Then, the broker
applies the attribute encryption mechanism to the other subgroup and forward the new ciphertext to
the CSP. Note that no re-encryption key is required when embedding policies. The broker only takes
public information to embed the access structure into the ciphertext. Since the CSP has the key of the
subgroup, the CSP can correctly decipher the message.

• Lightweight and blockwise deniable ABE. Deniable encryption is an encryption scheme in which
the sender and receiver can persuade others that a given ciphertext is from a fake rather than a
real message. Most deniable encryption schemes are bitwise encryption schemes that encrypt
only one bit at a time. Undoubtedly, a bitwise encryption can support any kind of message by
repeating the encryption process many times. However, in practice, this is not efficient especially,
when considering the MCCPS scenario, since the sensor cannot support this approach due to its
resource limitations.

Sensors 2019, 19, 5463 4 of 27

Following the concept proposed by Chi et al. [9], in this work, we constructed a blockwise
deniable encryption scheme for the MCCPS scenario. The sensor can easily generate two messages,
one using real data and the other fake data, and prepare two convincing pieces of evidence respectively.
The evidence is taken from a chameleon hash function, for which the collision derivation is very
lightweight, so the overall computation required by the sensor is much less than that required in other
deniable encryption schemes.

Note that in this MCCPS scenario, we focus only on the sensor and CSP in providing the deniability
feature, without considering the broker. The reason for this is that the broker cannot see the content of
the ciphertext, and can, therefore, make no claims about the content.

• Multiple brokers support. In the MCCPS scenario, there are many cloud services that may be
shared by sensors from different fields. That is, one cloud service must simultaneously support
multiple brokers and the sensors that are under these brokers. It is a trivial matter that each broker
and CSP share one unique encryption environment, which is usually the public key. However,
this will increase the management complexity since many brokers and multiple public keys
are required.

In this work, we separate public information into two parts. The first part comprises system-wise
public information and the second broker-wise public information. Broker-wise public information is
only shared by one broker and the sensors that are under this particular broker. The CSP needs only
system-wise public information. This is an advantage that will decrease the public key management
burden on the CSP.

1.2. Organization

The rest of the paper is organized as follows. In Section 2, we briefly introduce some existing
ABE, deniable encryption (DE) techniques and the preliminaries used in this scheme. We present the
proposed scheme is in Section 3. In Section 4, we evaluate the scheme’s security and performance.
In Section 5, we further discuss the proposed scheme. We then conclude the paper and address future
work in Section 6.

2. Related Works

2.1. Previous Works on Attribute-Based Encryption

ABE is an encryption system in which only those who satisfy some specific conditions can
successfully decrypt the ciphered data. This ABE concept was first introduced by Sahai and
Waters [10] (although identity-based encryption (IBE) is also a type of ABE and was first proposed in
Boneh et al. [11], here we only focus on ABE review and do not consider IBE schemes). There are two
types of ABE; key-policy ABE (KP-ABE) and cipher-policy ABE (CP-ABE). Their difference lies in where
the policy-checking step occurs. KP-ABE embeds the decryption policy in the key generation process,
whereas CP-ABE embeds the policy in the encryption process. Goyal et al. proposed the first KP-ABE
construction [12] and Bethencourt et al. proposed the first CP-ABE [13]. Both these schemes support
monotonic formula policy checking. In this paper, we focus only on CP-ABE schemes because CP-ABE
enables the sender to decide who is allowed to see the content. The MCCPS scenario implies that the
broker can decide which cloud services should be launched and that the policy can be modified by the
broker. As such, we only review CP-ABE related techniques. Waters proposed the first fully expressive
CP-ABE based on linear secret sharing schemes (LSSS) [14]. In this paper, we use Water’s CP-ABE as
the base scheme and enhance it to a privacy-preserving broker-ABE. Lewko et al. [15] improved the
Waters scheme [14] to a fully secure CP-ABE, albeit with some efficiency loss. Attrapadung et al. [16]
constructed a CP-ABE that supports a constant-size ciphertext. Tysowski et al. [17] designed their
CP-ABE scheme to support dynamic key management for mobile users.

There is a variant ABE called proxy-ABE, which is a concept for importing a new entity called a
proxy that can re-encrypt ciphertexts. When the sender encrypts data for some group, the proxy can

Sensors 2019, 19, 5463 5 of 27

transform the ciphertext from one receiver group to another. In the re-encryption process, the proxy is
not allowed to decrypt the ciphertext. In this paper, since the broker is at the same logical location as the
proxy and also performs the re-encryption process, we review some proxy-ABE studies. Luo et al. [18]
first proposed ciphertext-policy attribute-based proxy re-encryption (CP-AB-PRE), which allows a
proxy to change the receiver group from one to another. However, their scheme only supports the
AND-gate operation. Li [19] enhanced the Luo et al. scheme [18] by using a matrix access structure.
Liang et al. built a secure proxy-ABE in the chosen-ciphertext model [20]. Chandar et al. [21] used
proxy to re-encrypt ciphertexts for removing the access right of revoked users. Touati et al. [22] studied
the issue of private key updating in a CP-AB-PRE scheme.

Some researchers also focus on how to apply ABE on the IoT environment. Yao et al. claimed
that the bilinear operation is expensive, so they built their scheme the elliptic curve cryptography
without pairing [23]. Oualha et al. made the sensor compute lots of elements in advance to accelerate
the encryption procedure [24]. However, this approach required the sensor to have a large space or
to interact with a trusted party. Some used fog/edge nodes as the intermediate layer and implement
mechanisms on them. Jiang et al. focused on the key-delegation abuse problem and solved this
problem with a traitor [25]. Zuo et al. developed ABE with outsourced decryption for the fog
computing [26]. Li et al. outsourced the exponential operation to speed up both the encryption and
decryption process [27]. Fischer et al. used a proxy to convert a ciphertext into an ABE ciphertext [28].
The problem of Fischer approach is that it is an interactive model. The receiver needs to communicate
with some authority before decryption.

In this paper, we propose an ABE scheme called broker-based ABE. We outsource partial encryption
works to the entity called broker. Although the broker ABE is a kind of proxy-ABE, it is actually more
than that. The broker-ABE is an idea that integrates secret-sharing and proxy re-encryption, whereby
the sender encrypts a message using the secret shared by the broker and CSP. So, neither the broker nor
the CSP can decrypt the ciphertext individually. For re-encryption, the broker can add a policy-checking
mechanism to ciphertexts to verify the CSPs’ attributes.

2.2. Previous Works on Deniable Encryption

The idea of DE was first proposed by Canetti et al. [8]. Like other encryption schemes, DE provides
semantic security to protect encrypted data. In addition, DE allows the sender and/or receiver to
persuade outside coercers that the given ciphertexts have been encrypted from fake messages. A number
of DE techniques have been proposed. Since ABE is a public key encryption system, here we only review
some deniable public-key encryption works. In the scheme proposed by Canetti et al. [8], the authors
used a translucent set to provide fake messages with convincing evidence. A translucent set is one
that contains a trapdoor subset. It is easy to choose a random element from the universal set or the
subset, but it is difficult to determine if a given element belongs to the subset without the use of the
trapdoor. If a sender wants to encrypt one bit 0, the sender sends an element not contained in the subset.
To encrypt one bit 1, the sender sends an element that is contained in the subset. When being coerced,
the sender simply claims a bit from 1 to 0 by claiming the random element from the universal set that
lies in the subset coincidentally. Although this is a sender-deniable scheme, Canetti et al. proved that
this scheme can be extended to a bi-deniable scheme through an interactive model. Following this idea,
Durmuth et al. [29] used samplable encryption to build a translucent set. O’Neill et al. [30] constructed a
bi-translucent set based on a lattice. So, without using an interactive model, this scheme can provide
both sender and receiver deniability, which is called bi-deniability.

Apart from translucent-based schemes, other techniques are used to build DE schemes.
O’Neill et al. [30] made use of a simulatable public key system and used the voting approach to
provide deniability. O’Neill et al. also proposed a new concept called multi-distributional deniability.
They proposed two sets of algorithms and their outputs are computationally indistinguishable. So
a user can use one set but claims using the other one. This approach can support non-interactivity
and fully deniability at the same time. Gasti et al. [31] proposed a DE scheme that creates a secret key

Sensors 2019, 19, 5463 6 of 27

pair between the sender and receiver. Chi et al. [9] proposed a DE scheme based on composite order
groups and used chameleon hash functions to make fake data convincing.

In our proposed scheme, we use a DE scheme to protect user data privacy in CSPs. When being
forced to release field data, CSPs can provide false data to outside coercers, with evidence in the
existing ciphertexts. Note that there are three types of DE schemes: sender-deniable encryption,
receiver-deniable encryption, and bi-deniable encryption. The names specify the entity that can
generate fake evidence. In the MCCPS scenario, since senders are usually sensors with limited
resources and cannot store data for very long, this paper focuses on a receiver-DE scheme to protect
the data privacy of data stored in CSPs. The broker is not allowed to see the content of ciphertexts and
therefore cannot participate in the coercion process.

2.3. Preliminaries

2.3.1. Prime Order Bilinear Groups

Let G and GT be two multiplicative cyclic groups of prime order p, with map function e : G×G→
GT . Let g be a generator of G. G is a bilinear map group if G and e have the following properties:

• Bilinearity: ∀u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
• Non-degeneracy: e(g, g) 6= 1.
• Computability: the group action in G and map function e can be computed efficiently.

2.3.2. Waters CP-ABE Scheme

In this paper, we extend the Waters CP-ABE scheme [14] to a privacy-preserving broker CP-ABE
scheme. Waters used the LSSS as the basis of his construction. To form the secret, he treated attributes
as secret shares and policies. So if an entity can rebuild the secret, this implies that the entity has
enough attributes to satisfy the given policies. The LSSS used by Waters is as follows:

Definition 1 (LSSS: Linear Secret Sharing Schemes [32]). A secret sharing scheme Π over a set of parties P
is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists an l × n matrix M called the share-generating matrix for Π. For all i = 1, . . . , l, the i’th

row of M is labeled by party ρ(i), where ρ is a mapping function from {1, . . . , l} to party field P . When
considering column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp

are randomly chosen, Mv is the vector of l shares of secret s according to Π. The share (Mv)i belongs to
party ρ(i).

Based on the above definition, an LSSS has a linear reconstruction property. That is, with an LSSS
Π, an access structure A, and valid shares of a secret s, s can be easily recovered. Beimel [32] showed
that the recovery procedure is time polynomial to the message size. For an ABE scheme, a party in
P can be treated as an attribute. So if the receiver has attributes that satisfy the decryption policy,
this implies that the receiver can recover the secret s and correctly decrypt the message. The Waters
CP-ABE scheme includes the following algorithms:

• Setup()→ (MSK, PK): This algorithm chooses a bilinear group of prime order p with generator
g, random elements α, a ∈ Zp, and hash function H : {0, 1}∗ → G. The public key PK is
{g, e(g, g)α, ga} and the system secret key MSK is gα.

• Encrypt(PK, (M, ρ), M) → CT: Given message M and LSSS access structure (M, ρ), this
algorithm first chooses a random vector −→v = (s, y2, . . . , yn) ∈ Zn

p. LetM be an l × n matrix and

Sensors 2019, 19, 5463 7 of 27

Mi denote the ith row ofM. This algorithm calculates λi =
−→v Mi, ∀i ∈ {1, . . . , l}. Next, this

algorithm chooses r1, . . . , rl ∈ Zp. The output ciphertext will be as follows:

CT = {M · e(g, g)αs, gs, (gaλ1 H(ρ(1))−r1 , gr1),
. . . , (gaλl H(ρ(l))−rl , grl)}

= {C, C′, (C1, D1), . . . , (Cl , Dl)},

with a description of (M, ρ).
• KeyGen(MSK, S)→ SK: Given set S of attributes, this algorithm chooses t ∈ Zp randomly and

outputs the private key as:

K = gα+at, L = gt, ∀x ∈ SKx = H(x)t.

• Decrypt(CT, SK) → M: Suppose that S satisfies the access structure and let I ⊂ {1, . . . , l} be
defined as I = {i : ρ(i) ∈ S}. This algorithm then finds a set of constants {wi ∈ Zp} such that
∑i∈I wiλi = s. The decryption algorithm computes

e(C′, K)/(∏
i∈I

(e(Ci, L)e(Di, Kρ(i)))
wi) = e(g, g)αs

and derives M from the ciphertext.

The security of Waters CP-ABE scheme is based on the decisional q-parallel bilinear
Diffie–Hellman exponent (BDHE) assumption, which is defined as follows:

Definition 2 (Decisional q-parallel BDHE Assumption). Let a, s, b1, . . . , bq
R←− Zp and g be a generator of

G. Given

D :=

g, gs, ga, . . . , g(aq), g(aq+2), . . . , g(a2q)

∀1≤j≤q
gs·bj , ga/bj , . . . , g(aq/bj),
g(aq+2/bj), . . . , g(a2q/bj)

∀1≤j,k≤q,k 6=j ga·s·bk/bj , . . . , gaq ·s·bk/bj

and element T ∈ GT , we assume that for any probabilistic polynomial time (PPT) algorithm A that outputs
in {0, 1},

AdvA := |P[A(D, e(g, g)aq+1s) = 1]− P[A(D, T) = 1]|

is negligible.

Theorem 1. Suppose the decisional q-parallel BDHE assumption holds, then no polynomial-time adversary can
selectively break the Waters CP-ABE system in the CPA-model.

In this paper, we also use this access structure to build our ABE system. Waters CP-ABE scheme is
semantically secure when the decisional q-parallel BDHE assumption holds. More construction details
and the security proof can be found in Waters’ work [14].

2.3.3. Composite Order Bilinear Groups

The composite order bilinear group was first introduced by Boneh et al. [33]. Let G and GT be
two multiplicative cyclic groups of composite order N = p1 p2 . . . pm, where p1, p2, . . . , pm are distinct
primes, with a bilinear map function e : G×G → GT . G has a subgroup Gpi of order pi for each
prime pi. Let g1, g2, . . . , gm be the generators of these subgroups respectively. Each element in G can
be expressed in the form ga1

1 ga2
2 . . . gam

m , where a1, a2, . . . , am ∈ ZN .
Orthogonality is an important property of the composite bilinear groups. If u ∈ Gpi , v ∈ Gpj and

i 6= j, then e(u, v) = 1, where 1 is the identity element in GT .

Sensors 2019, 19, 5463 8 of 27

There is a complexity assumption in the composite group called the subgroup decision assumption.
In ref. [34], the definition is given as follows:

Definition 3 (General Subgroup Decision Assumption). Let S0, S1, S2, . . . , Sk be non-empty subsets of
1, . . . , m such that for each 2 ≤ j ≤ k, either Sj ∩ S0 = ∅ = Sj ∩ S1 or Sj ∩ S0 6= ∅ 6= Sj ∩ S1. Given group
generator G, we define the following distribution:

PP := {N = p1 p2 . . . pm,G,GT , e} R←− G
Zi

R←− GSi∀i ∈ {1, . . . , k},
D := {PP, Z2, . . . , Zk}.

We assume that for any PPT algorithm A with output in {0, 1},

AdvG,A := |P[A(D, Z0) = 1]− P[A(D, Z1) = 1]|

is negligible.

This assumption implies that it is hard to determine whether two given elements are composed
of the same subgroups when they contain at least one common subgroup. In this work, we utilize this
property to construct a deniable ciphertext that is indistinguishable to a normal ciphertext.

2.3.4. Chameleon Hash

The chameleon hash scheme, which was first introduced by Krawczyk et al. [35], uses trapdoor
pseudo-random permutation functions as one-way functions. Without the trapdoor, a pseudo-random
permutation function can output random results that satisfy the collision resistance and semantic
security of a one-way hash function. With the trapdoor, it is easy to generate collisions. Most public-key
encryption systems can be used as trapdoor pseudo-random permutation functions. That is, it is easy
to construct a chameleon hash function from a public key system. The input of a chameleon hash has
two parts, the input message m and the random string r. The random string r is a parameter used to
provide an opportunity to generate a collision. There are three algorithms in a chameleon hash scheme,
as defined below.

1. Setup(1λ) → {PK, SK}: Given a security parameter, the scheme outputs public parameter PK
and secret trapdoor SK.

2. Hash(PK, m, r)→ h: An efficient and probabilistic algorithm, with inputs PK, a message m, and
a random string r, outputs a hash value h.

3. Forgery(PK, SK, m0, r0, m1)→ r1: An efficient and probabilistic algorithm, with a given message
m0, a random r0, the trapdoor SK and another message m1, outputs a random string r1 that
satisfies the following equation:

CH(m0, r0) = CH(m1, r1).

There are three associated requirements, collision resistance, semantic security and collision
forgery, are listed below.

Definition 4 (Collision Resistance). Given a chameleon hash scheme {PK, SK, CH(·, ·)}, where PK is the
public information, SK is the trapdoor and CH(·, ·) is the hash function. Let m, m′ be two different messages
and r a random string. We call the scheme collision resistant if for any PPT algorithm A, it is hard to output r′

such that CH(m, r) = CH(m′, r′) without SK.

Definition 5 (Semantic Security). Given a chameleon hash scheme {PK, SK, CH(·, ·)}, where PK is the
public information, SK is the trapdoor and CH(·, ·) is the hash function. We call the scheme semantically secure

Sensors 2019, 19, 5463 9 of 27

if for all pairs of message m, m′ and random string r, the probability distribution of CH(m, r) and CH(m′, r)
are computationally indistinguishable.

Definition 6 (Collision Forgery). Given a chameleon hash scheme {PK, SK, CH(·, ·)}, where PK is the
public information, SK is the trapdoor and CH(·, ·) is the hash function. Let m, m′ be two different messages
and r is a random string. We call the scheme a collision forgery scheme if there exists one PPT algorithm A that
on input SK, outputs a string r′ that satisfies CH(m, r) = CH(m′, r′).

In the remainder of this paper, for simplicity, we use CH to denote the chameleon hash public
information and CH(·, ·) to denote the chameleon hash operation.

3. Privacy-Preserving Broker-ABE Scheme

3.1. Overview and Attack Model

The privacy-preserving broker-ABE scheme includes four roles, the trusted key server, the sender,
the broker, and the receiver. The key server generates the encryption environment and related keys.
The sender, which is usually a sensor in the MCCPS scenario, is in charge of data encryption and
forwarding ciphertexts to a broker. The broker re-encrypts the received ciphertexts by embedding
policies according to the sender’s identity. Then the broker sends the ciphertexts to all possible receivers,
which are CSPs in the MCCPS. If a CSP’s attributes satisfy the policy setup by the broker, the CSP
can successfully decrypt the ciphertexts and process the data collected by senders. This procedure is
illustrated in Figure 2.

Figure 2. Key server, sensor, broker and cloud service provider (CSP) in the MCCPS.

Now we describe how the attacker can attack this system. In our scheme, we focus on two attack
ways. First, we assume that an attacker can intercept all encrypted data, including data between
the sensor and the broker and between the broker and the CSP. So the transmission data must be
encrypted confidentially. Those who cannot satisfy the ciphertext policy should not be able to decrypt
the message. Second, we assume that the attacker can force the CSP to release the user data with a
proof to show that the data is decrypted from the ciphertext. Undoubtedly, the most trivial proof is the
CSP key so the attacker can decrypt the ciphertext itself. However, the user data will be released to the
attacker. We want to protect the CSP under this attack scenario.

The first attack is common for most encryption schemes. The security model used in this paper is
described in Section 3.3. As for the second attack way, we apply the concept of deniable encryption.
We make the CSP convince the attacker with fake data so the real data is kept secret. The key point is
that the fake data must be verified with the ciphertext captured by the attacker.

In this paper, we use the multi-distributional deniable encryption approach. The idea of the
multi-distributional deniable encryption scheme is to use two different sets of algorithms. One is

Sensors 2019, 19, 5463 10 of 27

the normal set and the other is the deniable set. The outputs generated from these two sets are
computationally indistinguishable. So the whole system claims to use the normal set while the system
actually uses the deniable set and the attacker cannot challenge the claim. In the deniable set, the sender
can embed a fake message in the encryption step. Since the ciphertext is indistinguishable to the
ciphertext generated from the normal encryption algorithm, we can claim the ciphertext is normally
encrypted and there is no fake data. The process can be shown in Figure 3.

We simply use the secret key in the CSP as the proof, so we use the decryption algorithm as the
verification function.

Figure 3. Data privacy is protected from outside coercion. The CSP can determine which algorithm
should be used when being coerced. With different algorithms, the coercer will get convincing proofs
for different messages.

Note that in our design, the broker will not be allowed to participate in the deniable process.

3.2. Definition

The notations listed in Table 1 are applied throughout this paper.

Table 1. List of notations.

Symbol Meaning

PP, MSK System-wise public information and master key.

PPB, MSKB Broker-wise public information and master key.

SK1, SK2 The broker’s secret key and the CSP’s secret key.

C, C∗, C′ The ciphertext encrypted by the sensor, the ciphertext re-encrypted by
the broker and the ciphertext deniably encrypted by the sensor.

A, S The access structure for a ciphertext and an attribute set.

M, M′ The message and the predefined fake message.

PK System-wise public information but not known to outsiders. That is, PK
is claimed to be not existent.

Sensors 2019, 19, 5463 11 of 27

The algorithms of the privacy-preserving broker-ABE scheme are described below:

1. Setup(1λ)→ (PP, MSK): This algorithm takes security parameter λ as input and returns public
parameter PP and system master key MSK.

2. SetupB(PP, MSK, IDB) → (PPB, MSKB): This algorithm takes the broker ID and system-wise
information as input and outputs broker-wise public parameter PPB and broker-wise master key
MSKB. Note that this information is only for the broker and the sensors under that broker. This
algorithm enables the whole system to simultaneously support multiple brokers.

3. KeyGen1(MSKB)→ SK1: This algorithm takes MSKB as input and returns SK1 for the broker.
4. KeyGen2(MSK, S) → SK2: Given an attribute set S of a CSP and MSK, this algorithm outputs

private key SK for the CSP.
5. Enc1(PPB, M) → C: The phase 1 encryption is performed in the sender. Given the message M

and PPB, the sender can output a ciphertext C that will be delivered to the broker.
6. Enc2(PP, C, SK1, A) → C∗: The phase 2 encryption is performed in the broker. Given the

ciphertext C, PP and LSSS access structure A, the broker can re-encrypt C to a new ciphertext C∗.
7. Dec(PP, SK2, C∗) → {M,⊥}: The decryption is performed in the CSP. If S satisfies A,

the decryption algorithm returns M; otherwise, ⊥.
8. OpenDec(PP, SK2, C∗, M)→ PD: The algorithm is used to release evidence for proving that C∗ is

the encryption result from M.
9. DenSetup(1λ)→ (PP, MSK, PK): This is the deniable version of Setup algorithm. Except for PP

and MSK, the algorithm also generates the system public information PK. PK is known by all
sensors and CSPs, and is kept secret from outsiders. Note that the broker is not in charge of the
deniable part so PK is also kept secret from the broker.

10. DenKeyGen2(MSK, PK, S) → (SK2, SK′2): This is the deniable version of KeyGen algorithm.
Except for SK2, which is derived from the normal function, the algorithm also returns a fake key
SK′2, which is used later to generate fake proof.

11. DenEnc1(PPB, PK, M, M′, A) → C′: Except for the inputs of the normal encryption algorithm,
this deniable encryption algorithm requires public key PK and a pre-defined fake message M′.
The output ciphertext C′ must be indistinguishable from the output of Enc.

12. DenOpenDec(PP, SK, SK′2, C∗, M′)→ P′D: Compared to the normal version algorithm, the algorithm
takes additional inputs FK and M′. The output is evidence that C∗ is from M′ instead of M.

Note that the broker cannot see the message in plaintext form so will not participate in the open
process. Therefore, there is no DenEnc2 and DenKeyGen1. Because of the storage constraint issue, the
sensor stores no historical data and the deniability is only designed for the CSP. For this reason, there
are no OpenEnc and DenOpenEnc algorithms.

For each algorithm, we use Table 2 to point out which entity should run it.

Table 2. List all entities with their own algorithms.

Role Algorithms

Trusted Key Server Setup, SetupB, KeyGen1, KeyGen2, DenSetup, DenKeyGen2
CSP Dec, OpenDec, DenOpenDec
Broker Enc2
Sensor Enc1, DenEnc1

Sensors 2019, 19, 5463 12 of 27

The following properties are required in the proposed scheme:

1. Security: the outputs of Enc1 and Enc2 must be proved to be confidential under the security
model, which is described in Section 3.3. The first protects the segment between the sensor and
the broker, whereas the latter protects the segment between the broker and the CSP. The security
of Enc1 also maintains secrecy from the broker. Note that here we do not mention the security
of DenEnc1 because the outputs of Enc1 and DenEnc1 must be indistinguishable. If one is
secure and the other is not, this will make these two algorithms distinguishable. So, here, the
indistinguishability proof also implies the security proof.

2. Deniability: the proposed scheme is a receiver-DE scheme. That is, given public parameter PP, the
two distribution tuples (M, C, PD) and (M′, C′, P′D) are computationally indistinguishable, where
M, M′ are claimed messages, C, C′ are normally and deniably encrypted ciphertexts, respectively,
and PD, P′D are proofs generated from the normal and deniable open algorithms, respectively.
That is, there is no PPT algorithm A for which

AdvA :=

∣∣∣∣∣ P[A(PP, (M, C, PD)) = 1]
− P[A(PP, (M′, C′, P′D)) = 1]

∣∣∣∣∣
is non-negligible. Note that the deniably encrypted ciphertexts are the outputs of Enc2 since no
entity should be able to decrypt the outputs of Enc1 or DenEnc1. Deniability in the sensor is not
considered since it makes no sense for a sensor to provide lots of storage for evidence.

3. Deniable proof consistency: in the MCCPS scenario, a cloud service may be used by many sensors.
Some sensors may use the privacy-preserving encryption scheme and some may not. When
releasing a deniable proof of a CSP, the proof should look convincing not only to the sensor that
uses the DE algorithms, but also to the sensor that uses the normal encryption algorithms. That
is, given a set of ciphertexts C, including normally encrypted ciphertexts and deniably encrypted
ciphertexts, normal proof PD and deniable proof P′D, there is no PPT algorithm A for which

AdvA := |P[A(C, PD) = 1]− P[A(C, P′D) = 1]|

is non-negligible.

3.3. Security Model

In this subsection, we define the security model used in this scheme. First, an adversary is given a
challenge question and is allowed to query an oracle for some information. The adversary wins the
game if it can correctly answer the question. The formal security game is as follows:

• Setup: the challenger first runs Setup and outputs PP to the adversary.
• Phase 1: the adversary generates queries q1, . . . , qm for the challenger. Query qi can be one of the

following two types of queries:

– Key query: the adversary asks the challenger a key for some entity and obtains its private
key from the challenger.

– Decryption query: the adversary asks the challenger to decrypt ciphertext Ci and obtains its
plaintext.

• Challenge: the adversary chooses two plaintexts M0, M1 for the challenger. The adversary
also provides a challenge condition A∗, which cannot be authorized by the entities used in
q1, . . . , qm. The challenger randomly chooses one bit b ∈ {0, 1} and encrypts the message via
Enc(PP, A∗, Mb)→ C∗. The challenger sends C∗ to the adversary as the challenge ciphertext.

• Phase 2: As in Phase 1, the adversary generates queries qm+1, . . . , qn for the challenger. Query qi
can be one of the following two types of queries:

Sensors 2019, 19, 5463 13 of 27

– Key query: the adversary asks the challenger a key for some entity and obtains its private
key from the challenger. Note that the entity cannot be the one who is authorized to decrypt
the challenge ciphertext.

– Decryption query: the adversary asks the challenger to decrypt ciphertext Ci and obtains its
plaintext. Ci cannot be C∗.

• Guess: The adversary returns guess result b′ ∈ {0, 1}. The adversary wins if b′ = b.

The advantage is defined as |P(b′ = b)− 1
2 |.

Note that the proposed scheme include two encryption algorithms Enc1 and Enc2. The above
definition can be applied to both encryption algorithms (though that there is actually no key can be
used to decrypt the output of Enc1. So we will prove Enc1 to be semantic secure in Section 4. Note
that semantic security is equal to CPA-security). The entity in Enc2 can be treated as a set of attributes
and the condition can be treated as the policy.

Definition 7. An encryption scheme is CPA secure if all polynomial-time adversaries have at most a negligible
advantage in the above game without any decryption queries.

Definition 8. An encryption scheme is CCA secure if all polynomial-time adversaries have at most a negligible
advantage in the above game.

Note that in the privacy-preserving broker-ABE scheme, there are two encryption algorithms,
Enc1 and Enc2. Both output ciphertexts must be verified in the security model.

3.4. Assumptions

In this subsection, we describe some non-computational assumptions in this scheme. First, there
is no traitor on either the sensor side or the CSP side. DE is a technique in which both the sender
and receiver agree to cheat outsiders to protect privacy. If anyone refuses to apply this technique and
releases real data to any third party, the whole system will collapse. That is, in this paper, we do not
consider the issues of a compromising sensor or the CSP leakage.

Second, according to the definition above, the CSP and the sensor share one semi-public secret PK.
This information is shared by every entity that uses the privacy preservation service but is confidential
to outsiders. Here, we assume the existence of an authentication mechanism to determine whether a
new applicant is a spy. If PK is leaked to an outsider, the outsider is then enabled to answer whether a
released proof is normal or deniable by generating a deniable ciphertext. So, we must require PK to be
unknown to adversaries.

Third, we assume that the broker will honestly re-encrypt ciphertexts. In this work, we assume
the broker is semi-trusted which means the broker cannot see the data content. However, the broker is
responsible for embedding the policy checking mechanism into the ciphertexts according to the sensor
types. Although the broker cannot decrypt the ciphertexts, it may embed the wrong policy and launch
other attacks, e.g., denial-of-service. In this work, we assume the broker is honest-but-curious.

3.5. Construction

The proposed scheme, which is based on Waters’s scheme [14], is as follows.

1. Setup(1λ)→ (PP, MSK): this algorithm generates a bilinear group G of order N = p1 p2 p3, where
p1, p2, p3 are distinct primes with the bilinear map function e : G×G → GT . Note that GT is
also order N. G can be separated into three orthogonal subgroups Gp1 ,Gp2 ,Gp3 . This algorithm

Sensors 2019, 19, 5463 14 of 27

picks three generators g1, g2, g3 for Gp1 ,Gp2 ,Gp3 respectively. The algorithm also randomly picks
a, β ∈ ZN and α1 ∈ Zp1 and chooses a hash function H1 : {0, 1}∗ → Gp1 . The output will be:

PP = {G, e, H1, g1, g2, ga
1, e(g1, g1)

α1 , e(g1, g1)
β},

MSK = {α1, β}.

2. SetupB(PP, MSK, IDB)→ (PPB, MSKB): taking PP and MSK as inputs, the algorithm generates
a new public information and a new master key in a broker domain. IDB is the broker identity
and acts an index for recording the secret of a broker. The algorithm first randomly picks α2 ∈ Zp2 .
The output will be:

PPB = {G, e, H1, g1, g2, ga
1, e(g1, g1)

β,
e(g1, g1)

α1 , e(g2, g2)
α2},

MSKB = {α1, α2, β}.

3. KeyGen1(MSKB)→ SK1: the algorithm generates SK1 for the broker as follows:

SK1 = {gα2
2 }.

4. KeyGen2(MSK, S) → SK2: the algorithm generates SK2 for the CSP based on its attributes S.
It chooses t ∈ ZN randomly and outputs private key SK2 as follows:

SK2 = {gα1
1 , gβ+at

1 , gt
1, {H1(x)t}∀x∈S}

= {K, K∗, L, {Kx}∀x∈S}.

Note that, in this system, each CSP will share the same K.
5. Enc1(PPB, M)→ C: given message M, the algorithm randomly picks s ∈ ZN . Then, the algorithm

sets up a one-way hash function H. Note that hash function H can be any kind of one-way
function, including pseudo random permutation functions. Next, the algorithm flips two coins
b0, b1 and selects two random strings t0, t1. The output ciphertext C will be:

C = {A0, A1, B, H, t0, t1, V},

where,
Ab0 = M · e(g1, g1)

α1se(g2, g2)
α2s,

A1−b0

R←− GT ,
B = (g1g2)

s,
V = H(M, tb1)

6= H(A1−b0 · e(g1, g1)
−α1se(g2, g2)

−α2s,
t1−b1).

6. Enc2(PP, C, SK1,A) → C∗: given a ciphertext C and an LSSS access structure A, the algorithm
first removes the Gp2 part in A0 and A1 as follows:

A′b = Ab · e(B, gα2
2)−1 = M · e(g1, g1)

α1s, ∀b = {0, 1}.

Let A = (M, ρ) whereM is a l × n matrix and ρ is a mapping function from {1, . . . , l} to the
attribute field. The algorithm randomly generates two vectors −→v = (s∗, y2, . . . , yn) ∈ Zn

N and
−→r = (r1, . . . , rl) ∈ Zl

N . Then it calculates λi =
−→v Mi, ∀i ∈ {1, . . . , l}. The output ciphertext C′

will be as follows:
C∗ = { A∗0 , A∗1 , B, B∗, (C1, D1), . . . , (Cl , Dl),

H, t0, t1, V},

Sensors 2019, 19, 5463 15 of 27

where
A∗b = A′b · e(g1, g1)

βs∗ , ∀b ∈ {0, 1},
B∗ = gs∗

1 ,
Ci = gaλi

1 H1(ρ(i))−ri , Di = gri
1 , i = 1 . . . l,

B, H, t0, t1, V are directly derived from C and are not changed. A is also appended to C∗.
7. Dec(PP, SK2, C∗)→ {M,⊥}: to decrypt ciphertext C∗ for access structure A, the algorithm first

checks if attribute set S of SK2 satisfies A. Suppose S satisfies A and let I ⊂ {1, 2, . . . , l} be
defined as I = {i : ρ(i) ∈ S}. The algorithm is able to find a set of constants {w ∈ ZN} such that
∑i∈I wiλi = s∗. This algorithm computes M0, M1 as follows:

Mb = A∗b ·
∏i∈I(e(Ci, L)e(Di, Kρ(i)))

wi

e(B, K)e(B∗, K∗)
, ∀b ∈ {0, 1}.

The algorithm then checks tag V as follows:

vi,j = H(Mi, tj), ∀i, j ∈ {0, 1}.

If vi,j is equal to V, then Mi is a true message. Otherwise, this algorithm returns ⊥.
8. OpenDec(PP, SK2, C∗, M) → SK2: to show that C∗ is encrypted from M, the algorithm simply

returns SK2.
9. DenSetup(1λ) → (PP, MSK, PK): (PP, MSK) tuple is generated as Setup. The algorithm also

randomly picks α3 ∈ Zp3 . PK is generated as follows:

PK = {g3, e(g3, g3)
α3}.

Note that PK is kept secret from outsiders, including the broker, since it does not participate in
the deniable encryption process. For the same reason, there is no DenSetupB algorithm.

10. DenKeyGen2(MSK, PK, S) → (SK2, SK′2): SK2 is derived from KeyGen and SK′2 is generated
as follows:

SK′2 = {gα1
1 gα3

3 , gβ+at
1 , gt

1, {H1(x)t}∀x∈S}
= {K′, K∗, L, {Kx}∀x∈S}.

11. DenEnc1(PP, PK, M, M′) → C: the algorithm needs one more input M′ which is the pre-
determined fake message (that is, a fake message is given by users. If the fake message is
obviously far from the normal message, it is the user’s responsibility rather than that of the
proposed scheme). This algorithm first runs Enc and gets λi, ∀i ∈ {1, . . . , l} and b0, b1. Next, this
algorithm sets up a chameleon hash function CH(·, ·). The output deniable ciphertext C will be:

C′ = {A0, A1, B, CH, t0, t1, V},

where,
Ab0 = M · e(g1, g1)

α1se(g2, g2)
α2s,

A1−b0 = M′ · e(g1, g1)
α1se(g2, g2)

α2se(g3, g3)
α3s,

B = (g1g2g3)
s,

V = CH(M, tb1) = CH(M′, t1−b1).

Since a chameleon hash function is a trapdoor pseudo-random permutation function, it is easy to
find tb1 , t1−b1 to generate a collision, which implies that M and M′ can both be valid in decryption.

12. DenOpenDec(PP, SK′2, FK, C∗, M′)→ SK′2: to show that C∗ is encrypted from the fake message
M′, the algorithm simply returns SK′2.

Sensors 2019, 19, 5463 16 of 27

In this construction, the sensor is in charge of Enc1 and the broker is in charge of Enc2 for
embedding policy re-encryption. There is no deniable encryption feature for Enc2 since the broker
knows nothing about the message, which makes it impossible for the broker to create fake messages.
There is only one decryption algorithm because outsiders may run Dec with keys derived from CSPs
to verify message contents. Note that with the correct key, no matter which encryption algorithm is
used, the CSP can always get the correct message. With respect to the fake key, the outsider will get
fake messages if they are deniably encrypted. However, if a message is normally encrypted, the real
message can also be derived via the fake key.

3.6. Correctness

In this subsection, we check the correctness of this construction. Since only the receiver can
correctly decrypt the ciphertext, the correction check is only invoked for ciphertext C and SK2. Below,
we present four scenarios and their corresponding checks.

1. When using the normal key SK2 to decrypt a normally encrypted ciphertext C, the decryption
process will be as follows:

∏i∈I(e(Ci, L)e(Di, Kρ(i)))
wi

e(B, K)e(B∗, K∗)

=
∏i∈I(e(gaλi

1 , gt
1))

wi

e((g1g2)s, gα1
1)e(gs∗

1 , gβ+at
1)

=
e(g1, g1)

at ∏i∈I λiwi

e(g1, g1)sα1+s∗(β+at)

= e(g1, g1)
−α1s−βs∗ .

With the hash function H and V, the receiver can correctly get the message M.
2. When using the normal key SK2 to decrypt a deniably encrypted ciphertext C, the decryption

process will be as follows:

∏i∈I(e(Ci, L)e(Di, Kρ(i)))
wi

e(B, K)e(B∗, K∗)

=
∏i∈I(e(gaλi

1 , gt
1))

wi

e((g1g2g3)s, gα1
1)e(gs∗

1 , gβ+at
1)

=
e(g1, g1)

at ∏i∈I λiwi

e(g1, g1)sα1+s∗(β+at)

= e(g1, g1)
−α1s−βs∗ .

With the chameleon hash function CH and V, the receiver can correctly get the message M.
3. When using the deniable key SK′2 to decrypt a deniably encrypted ciphertext C, the decryption

process will be as follows:

∏i∈I(e(Ci, L)e(Di, Kρ(i)))
wi

e(B, K′)e(B∗, K∗)

=
∏i∈I(e(gaλi

1 , gt
1))

wi

e((g1g2g3)s, gα1
1 gα3

3)e(gs∗
1 , gβ+at

1)

=
e(g1, g1)

at ∏i∈I λiwi

e(g1, g1)sα1+s∗(β+at)e(g3, g3)α3s

= e(g1, g1)
−α1s−βs∗ e(g3, g3)

−α3s.

With the chameleon hash function CH and V, the receiver can correctly get message M′ rather
than the real message M.

Sensors 2019, 19, 5463 17 of 27

4. When using the deniable key SK′2 to decrypt a normally encrypted ciphertext C, the decryption
process will be as follows:

∏i∈I(e(Ci, L)e(Di, Kρ(i)))
wi

e(B, K′)e(B∗, K∗)

=
∏i∈I(e(gaλi

1 , gt
1))

wi

e((g1g2)s, gα1
1 gα3

3)e(gs∗
1 , gβ+at

1)

=
e(g1, g1)

at ∏i∈I λiwi

e(g1, g1)sα1+s∗(β+at)

= e(g1, g1)
−α1s−βs∗ .

With the hash function H and V, the receiver can correctly get the message M.

Based on the above checking process, this scheme has two important properties. First, if a CSP
uses the normal key, whether the sensor normally or deniably encrypts the data, the CSP can always
derive the correct message. Second, with the deniable key, the CSP can get the correct message even
if the sensor normally encrypts the data. That is, if the CSP supports both privacy-preserving and
normal sensors, an outsider cannot challenge the key released from the CSP since the key looks normal,
even when the sensor does not participate in the deniability process.

Theorem 2. The privacy-preserving broker ABE scheme is deniable proof consistent.

Proof of Theorem 2. In this scheme, the CSP key is treated as proof for the CSP claim. Note that
the key is the most immediate proof available. As shown above, both SK2 and SK′2 can be applied
to correctly decrypt ciphertexts. That is, a ciphertext can be decrypted to a meaningful message,
which may be real data or a pre-determined fake message. Given a set of ciphertexts C where its
element may be normally or deniably encrypted, anyone who can differentiate between (C, SK2)

and (C, SK′2) can also differentiate between real and fake data. In other words, these two tuples are
indistinguishable.

3.7. Implementation Issues

In this subsection, we will describe some implementation issues. First, we focus on the
performance issue about composite order bilinear groups. Then, we discuss how to run Enc1 and
Enc2 on the sensor and the broker efficiently. Note that we do not care about the CSP performance
issue because the CSP resource is generally much greater than the sensor and the broker.

In our construction, we use composite order bilinear groups because of their canceling property.
However, the composite order bilinear group operations are prolonged. Table 3 shows the comparison
result of the bilinear operation on a raspberry PI3, where each prime is 512 bits. It shows that the
required operation time grows exponentially. Therefore, some researches suggest that the composite
order group is unlikely applicable [36,37].

Table 3. Pairing operation time.

Order Time (ms) Simulation Time (ms)

p1 69.128 -
p1 p2 418.222 148.912

p1 p2 p3 1321.734 222.367
p1 p2 p3 p4 2999.380 296.672

p1 p2 p3 p4 p5 5676.130 373.077

Sensors 2019, 19, 5463 18 of 27

To solve this problem, in our implementation we used a prime order group to simulate composite
order group behavior, as described in Lewko’s work [34]. The idea is based on dual orthonormal
bases and the subspace assumption. Each prime subgroup is simulated as a distinct orthonormal base.
By the orthogonal property, the bilinear operation will be canceled between different prime subgroups.
In our implementation, each base contains three prime order group elements. So the bilinear operation
is only around three times than the prime order bilinear operation. Table 3 lists the required times of
simulation-based paring operations. We can find that the performance is greatly enhanced.

Some may claim that even with this simulation technique, the bilinear operation is also expensive to
a lightweight node like sensors. We emphasize that in our implementation, there is no bilinear operation
in the sensor node. According to Table 2, the sensor node only runs Enc and DenEnc. In these two
algorithms, e(g1, g1)

α1 , e(g2, g2)
α2 and e(g3, g3)

α3 are all public information and can be pre-computed.
So the sensor does not need to run any bilinear operations.

Now we focus on the broker part. The broker needs to run one bilinear operation and this
operation can be accelerated through the simulation technique. Since the broker is the entity which
embeds policies on the ciphertext, some may doubt it takes lots of computational resources and memory,
especially with the composite order group. We emphasize that this is not true in our implementation.
In this work, we use the composite order group for its canceling property, and we can simulate this
property through the prime order group. That is, all elements are in the prime order group. So in Enc2,
except for one pairing operation, the only operations are the power operation and the multiplication
operation in the prime order group. Moreover, the canceling property is used only between B, SK1, K
in SK2 and K′ in SK′2. So we only need to use orthonormal bases to simulate these elements and the
memory cost will not increase too much.

4. Evaluation

In this section, we evaluate the proposed scheme in three aspects, security, deniability,
and performance.

4.1. Security Proof

In this subsection, we will prove the security of our scheme. For simplicity, though we simulate
the composite order group with a prime order group in our implementation, here we prove the security
with the composite order group. Since this scheme is a re-encryption scheme, it is necessary to show
that both Enc1 and Enc2 are secure. Although there is also another encryption algorithm DenEnc1,
we need not prove its security because the outputs of Enc1 and DenEnc1 are indistinguishable.
The indistinguishability proof is presented in the next subsection. If the output of Enc1 is secure, but
the output of DenEnc1 is not, their indistinguishability will be broken. That is, the indistinguishability
proof ensures the security of DenEnc1 while Enc1 is secure. First, we show that Enc1 is secure under
the discrete logarithm assumption. Then, we prove that Enc2 is secure in the CPA model. We discuss
the Enc2 CCA-security issue in Section 5.

Lemma 1. Enc1 is semantic secure if the discrete logarithm problem is hard.

Proof of Lemma 1. To prove the security of Enc1, the focus should be on e(g1, g1)
α1s · e(g2, g2)

α2s

and (g1g2)
s. The rest of the parts are verification tags through a one-way function, so they have no

information about the message. Therefore, the security proof is the answer to the following question:
given g1, g2, (g1g2)

s, e(g1, g1)
α1 , e(g2, g2)

α2 , is finding e(g1, g1)
α1s · e(g2, g2)

α2s easy or not? Since s can
only be derived from (g1g2)

s, this question is equivalent to a discrete logarithm problem. Although
g1g2 is a group element that supports the bilinear map operation, there is no α1, α2 information
in Gp1 p2 unless α1, α2 can be derived from e(g1, g1)

α1 , e(g2, g2)
α2 , which is also a discrete logarithm

problem. So if the discrete logarithm problem is hard, getting e(g1, g1)
α1s · e(g2, g2)

α2s is also a hard

Sensors 2019, 19, 5463 19 of 27

problem. Therefore, e(g1, g1)
α1s · e(g2, g2)

α2s can be treated as a random element in GT . So, Enc1 is
semantic secure.

The above proof demonstrates that the ciphertext encrypted by the sensor is semantic secure.
Because semantic security is equal to CPA-security, Enc1 is CPA-secure. That is, the message transferred
from the sensor to the broker is secure, even secure from the broker. The next step is to prove Enc2 is
CPA-secure, which implies that the communication between the broker and the CSP is secure. When
considering Enc2, we skip the SetupB step and directly integrate Enc1 into Enc2, since these two
steps belong to their own broker domain. The attacker now is outside the broker domain and has the
system’s public information from Setup. The attacker does not participate in the Enc1 process.

Lemma 2. Enc2 is CPA-secure if Waters CP-ABE scheme is CPA-secure.

Proof of Lemma 2. Let A be an adversary that breaks the above deniable CP-ABE scheme.
An algorithm B that can break Waters CP-ABE scheme can be constructed as follows. B is given public
parameters through the Waters CP-ABE scheme’s Setup algorithm from challenger X as follows:

PPW = {g1, ga
1, e(g1, g1)

β},

with prime number p1, Gp1 , e(·, ·) and H1(·). For convenience, we use a suffix to represent different
subgroups in our proof. Algorithm B proceeds as follows.

• Setup: B first picks two different prime numbers p2 and p3. Next, B generates group G with
order N = p1 p2 p3. Note that the subgroup with p1 order in G should be the same as Gp1 . B then
randomly picks α1 ∈ Zp1 and picks a generator g2 for Gp2 . B then shows the following to A:

PP = {G, e, H1, g1, g2, ga
1, e(g1, g1)

α1 , e(g1, g1)
β}.

Note that e(·, ·) and H1(·) are the same as the given function from X .
• Phase 1: when B receives a key generation query for attribute set S from A, B simply relays the

query to X and obtains SKW as follows:

SKW = {gβ+at
1 , gt

1, {H1(x)t}∀x∈S}
= {K∗, L, {Kx}∀x∈S}.

B then generates gα1
1 and outputs SK2 to X as follows:

SK2 = {gα1
1 , gβ+at

1 , gt
1, {H1(x)t}∀x∈S}

= {K, K∗, L, {Kx}∀x∈S}.

• Challenge: A outputs two messages M0, M1 with access structure (M, ρ) to B, and B directly
relays M0, M1 and (M, ρ) to X as the challenge and obtains the following from X .

CW = {A∗, B∗, (C1, D1), . . . , (Cl , Dl)},

where
A∗ = Mb · e(g1, g1)

βs∗ , b ∈ {0, 1}
B∗ = gs∗

1 ,
Ci = gaλi

1 H1(ρ(i))−ri , Di = gri
1 , i = 1 . . . l.

Sensors 2019, 19, 5463 20 of 27

Mb is chosen by X . B setups a chameleon hash function CH and randomly picks b1, b2 from {0, 1}.
B also randomly picks s ∈ ZN . Finally, B outputs C to A as follows:

C = { A∗0 , A∗1 , B, B∗, (C1, D1), . . . , (Cl , Dl),
CH, t0, t1, V},

where,
A∗b1

= A∗ · e(g1, g1)
αs,

A∗1−b1

R←− GT ,
B = gs

1,
V = CH(M0, tb2) = CH(M1, t1−b2).

Note that a chameleon hash function is used instead of a common hash function. To A, without
the trapdoor, a chameleon hash function is simply a one-way function. Here we ensure that the
verification tag V is valid for both M0 and M1, so the verification process will lease no information
to A.

• Phase 2: the query and response process is the same as that in Phase 1.
• Guess: finally, A outputs guess b′ to B and B forwards guess b′ to X .

If A achieves a non-negligible advantage against the proposed encryption scheme, B can use
the output of A to also achieve a non-negligible advantage against the Waters CP-ABE scheme in the
CPA model.

According to Lemma 1, Lemma 2 and Theorem 1, we can derive the following theorem.

Theorem 3. Suppose the discrete logarithm assumption and the decisional q-parallel BDHE assumption hold,
then no polynomial time adversary can selectively break the proposed encryption system in the CPA-model.

4.2. Deniability Proof

To prove the deniability of this scheme, we must show that the Enc1 output C and the DenEnc1

output C′, the KeyGen2 output SK2 and the DenKeyGen2 SK′2 are indistinguishable respectively.
Here we do not consider Enc2 and KeyGen1 because the broker does not participate in the
deniability process.

Lemma 3. Under the general subgroup decision assumption, normal ciphertext C and deniable ciphertext C′

are indistinguishable.

Proof of Lemma 3. Suppose there exists PPT attacker A who achieves a non-negligible advantage in
distinguishing the deniable ciphertext C′ from the normal ciphertext C of the proposed scheme. A PPT
algorithm B can be constructed that also has a non-negligible advantage against the general subgroup
decision assumption.

The difference between C and C′ is the existence of the g3 element in B. Note that there is
no difference in A1−b0 since in the normal encryption, A1−b0 is randomly selected from GT and
undoubtedly it is possible to include the e(g3, g3) element. There is also no difference about the
verification parts because CH can be treated as a common hash function if the secret key is not released.
Now, given an element T to be determined if T belongs to Gp1 p2 or Gp1 p2 p3 . B can construct a ciphertext
C∗ for the two messages M and M′ as follows:

C∗ = {A0, A1, B, CH, t0, t1, V},

Sensors 2019, 19, 5463 21 of 27

where,
Ab0 = M · e(g1, T)α1 e(g2, T)α2 ,
A1−b0 = M′ · e(g1, T)α1 e(g2, T)α2 e(g3, T)α3 ,
B = T,
V = CH(M, tb1) = CH(M′, t1−b1).

Then B forwards C∗ to A. If A says it is a normal ciphertext, then T is in Gp1 p2 . If A says it is a
deniable ciphertext, then T is in Gp1 p2 p3 .

In the public information PP and PPB, there is no g3 element. Given the general subgroup decision
assumption, it is hard to determine if a given element belongs to Gp1 p2 or Gp1 p2 p3 . So C and C′ should
be indistinguishable.

Next, we check the deniability of the released proof.

Lemma 4. Under the general subgroup decision assumption, normal decryption proof SK2 and deniable
decryption proof SK′2 are indistinguishable.

Proof of Lemma 4 . Suppose there exists PPT attacker A who achieves a non-negligible advantage
in distinguishing the deniable proof SK′2 from the normal proof SK2 of the proposed scheme. A PPT
algorithm B can be constructed that also has a non-negligible advantage against the general subgroup
decision assumption.

In this scheme, SK2 or SK′2 used as the receiver proof. The only difference between SK2 and SK′2
is the existence of element g3 in K. Now given an element T to be determined if T belongs to Gp1 or
Gp1 p3 . B can construct a secret key SK∗2 as follows:

SK∗2 = {Tα1 , gβ+at
1 , gt

1, {H1(x)t}∀x∈S}
= {K, K∗, L, {Kx}∀x∈S}.

Then B forwards SK∗2 to A. If A says it is a normal key, then T is in Gp1 . If A says it is a deniable
key, then T is in Gp1 p3 .

In the public information PP and PPB, there is no g3 element. Given the general subgroup decision
assumption, it is hard to determine if a given element belongs to Gp1 or Gp1 p3 . So SK2 and SK′2 should
be indistinguishable.

From Lemmas 3 and 4, the proposed scheme is a receiver-deniable encryption scheme, which
means that outsiders cannot challenge fake keys provided by CSPs.

4.3. Performance Evaluation

To evaluate the performance of the proposed scheme, we used a Raspberry Pi 3 computer as the
sensor platform and a desktop PC as the broker platform. The PC is equipped with i7-7700 CPU and 16
GB of memory (some may doubt that this PC is too good to be a broker. When considering the fog/edge
trend [38], the edge entity is likely to become more and more powerful). In the implementation, we set
each prime size to 512 bits, which is equal to 256 bits of security [39]. So, while the composite group
order size is 1536 bits, the security level is still 512 bits. We focus on the sensor performance and the
broker performance here. The CSP performance is not our concern since the CSP is generally much
more powerful.

First, we check the required encryption time in the sensor. We compared our work with Waters
scheme [14], which is our base scheme, Yao scheme [23], which is not a pairing scheme, Li scheme [27]
(the outsourcing server is a computer with an INTEL i7 CPU. Li et al. separated the encryption work
into the data owner and the outsourcing server. Here we combine them together to evaluate the
computational cost), which is an outsourcing scheme, and Fischer scheme [28] (Fischer scheme is a
KP-ABE scheme), which is a proxy-based scheme like us. We implement our approach in both the
composite order group and the prime order group. Figure 4 shows the Enc1 process times. We can

Sensors 2019, 19, 5463 22 of 27

find that the attribute number affects the encryption a lot. Only the Fischer scheme and our scheme
can keep the same encryption time when the attribute number grows. The main reason is that the
attribute related part of the encryption process is outsourced to a powerful entity, and therefore, it will
not be counted to the sensor side. So we believe that the broker ABE is suitable for the IoT scenario.
Besides, we can find that our prime order simulation implementation improves the encryption process.
In our experiment, the exponential operation of G is around 33.66 ms when N = p1 and is around
463.95 ms when N = p1 p2 p3. Therefore, we believe that our scheme is affordable for a sensor.

Figure 4. Enc1 execution time on Raspberry Pi3 which plays the sensor role.

Next, we focused on the transmission cost. We used the ciphertext size to evaluate the transmission
cost. Figure 5 is the comparison result. We can find that the ciphertext size has a similar behavior
as the encryption time. In most schemes, the ciphertext size grows linear with the attribute number.
The ciphertext size of the broker ABE, including our scheme and Fischer scheme, stayed the same
since the required attributes are embedded in the broker. Note that the ciphertext size of our scheme
was slightly greater than in the Fischer scheme. The reason is that we added a fake element in the
ciphertext for data privacy against outside coercion. We believe this is not a problem.

Figure 5. The ciphertext size of Enc1.

Sensors 2019, 19, 5463 23 of 27

Then we see the Enc2 performance on the broker. Generally speaking, the broker is much more
powerful than the sensor, so we only compare our scheme with the Waters scheme. Since we want to
evaluate the performance, in our experiments, we make all attributes mandatory so the encryption
will be the max encryption time. Again, we implement our scheme in both the composite order
and the prime order. Moreover, we implement another version with a trade-off between memory
and computation. In our scheme, −→r can be precomputed and therefore H1(x)−ri and gri can also be
precomputed, too. For each x ∈ S, we make the broker generates γ random numbers and then prepare
a pool of (H1(x)−ri , gri), i ∈ {1, . . . , γ}. So there will be |S| pools. Note that one pair in a pool can be
reused because there are total γ|S|+1 combinations among all pools. We make this trade-off because
the broker usually has more memory than the sensor. Figure 6 shows the Enc2 process times. We can
see that we greatly decrease the computational loading of the broker.

Figure 6. Enc2 execution time on a PC which plays the broker role.

5. Discussion

In this section, we discuss two topics related to this scheme. The first topic is CCA-security, and
the second is regarding Chameleon Hash issues.

5.1. CCA-Security

In Section 4, we proved that the scheme is CPA-secure. Boneh et al. proved that an IND-sID-CPA
secure IBE scheme can be transformed into an IND-sID-CCA secure scheme with the help of a one-time
signature scheme [40]. Liang et al. [20] applied this concept and used a random oracle to build a
re-encryption scheme that is also based on the Waters scheme. It is trivial to apply this same approach
to the scheme proposed in this paper. However, since this is a two-step encryption scheme, there will
be two signatures, one by the sensor and the other by the broker. The scheme construction is modified
as follows. The algorithms that are not mentioned remain the same as the original construction.

1. Setupcca(1λ) → (PP, MSK): Aside from the original Setup, the algorithm additionally setup
a hash function H2 : {0, 1}∗ → Gp1 and randomly picks b ∈ ZN . The algorithm then appends
H2, gb

1 to PP.
2. Enc1,cca(PPB, M) → Ccca: The sensor first runs the original Enc1 algorithm and gets C =

{A0, A1, B, H, t0, t1, V}. Then the algorithm calculates B1 = gbs
1 and the output ciphertext will be

as follows:
Ccca = {A0, A1, B, B1, H, t0, t1, V, V1},

where
V1 = H2(A0, A1, B, B1, H, t0, t1, V)s.

Sensors 2019, 19, 5463 24 of 27

3. Enc2,cca(PP, Ccca, SK1,A)→ C∗cca: The broker first verifies the following equations:

e(B, gb
1) =

? e(B1, g1),

e(V′, B1) =
? e(V1, gb

1),

where
V′ = H2(A0, A1, B, B1, H, t0, t1, V).

If the above two equations do not hold, the algorithm simply drops the Ccca and returns.
Otherwise, the algorithm runs the original Enc1 algorithm and gets C∗. Then the algorithm
calculates B2 = gbs∗

1 and the output ciphertext will be as follows:

C∗ = { A∗0 , A∗1 , B, B∗, B2, (C1, D1), . . . , (Cl , Dl),
H, t0, t1, V, V2},

where

V1 = H2

 A∗0 , A∗1 , B, B∗, B2,
(C1, D1), . . . , (Cl , Dl),
H, t0, t1, V

s

.

4. Deccca(PP, SK2, C∗cca)→ {M,⊥}: The CSP first verifies the following two equations:

e(B∗, gb
1) =

? e(B2, g1),

e(V′, B2) =
? e(V2, gb

1),

where

V′ = H2

 A∗0 , A∗1 , B, B∗, B2,
(C1, D1), . . . , (Cl , Dl),
H, t0, t1, V

 .

If the above two equations do not hold, the algorithm simply returns ⊥. Otherwise, it simply
runs Dec and outputs the result.

Theorem 4. The modified scheme is CCA-secure if the original scheme is CPA-secure.

Proof of Theorem 4. The difference between the original and modified schemes is the existence of two
signatures in the broker and CSP. The additional signatures have nothing to do with the confidentiality
of the input messages. Since we proved the original scheme to be CPA-secure in Theorem 3, here
the proof must focus only on how to answer the decryption query. Since there are two encryption
processes in this scheme, we start with the Enc1 part. Although there is actually no entity that can
decrypt the output of Enc1 in this scheme, we still check the CCA-security of this part. When receiving
a decryption query, the oracle proceeds as follows:

1. If e(B, gb
1) = e(B1, g1) and e(V′, B1) = e(V1, gb

1) do not hold, the oracle responds ⊥.
2. In phase 2, if the queried ciphertext is the same as the challenged ciphertext, the oracle responds⊥.
3. The oracle uses the master secret s to calculate e(g1, g1)

αs and e(g2, g2)
βs to decrypt the queried

ciphertext. The oracle then returns the decryption result to the adversary.

The decryption oracle in the second encryption part is similar. So in both encryption parts, it is
easy to build decryption oracles for adversaries. According to the definition in Section 3.3, the modified
scheme is thus CCA-secure.

Sensors 2019, 19, 5463 25 of 27

5.2. Chameleon Hash Issues

In this scheme, the sensor uses a chameleon hash to build convincing evidence for both the real
and fake data. Here, we discuss three issues regarding chameleon hash functions. The first issue relates
to the performance of the chameleon hash. The chameleon hash function can be treated as a trapdoor
pseudo-random permutation function. That is, the cost of the chameleon hash operation is similar to
that of the public key encryption operation. Some may doubt if this expensive operation is suitable for
a sensor with constrained computational power. However, in the proposed scheme, the sensor does
not need to run the chameleon hash function. Instead, the sensor only needs to make a random string
that generates a collision, which is a lightweight operation. In our implementation, we use Krawczyk
et al.’s construction [35] as the chameleon hash function. Given m, m′, r, the forgery string r′ can be
derived as follows:

r′ =
m−m′

x
+ r.

So this operation is simple and affordable for a sensor. The chameleon hash function is used only
in the broker and the CSP which are more powerful than the sensor.

The second issue is that one collision in a chameleon hash function implies the release of the
trapdoor. In the MCCPS scenario, this would become a big problem. In many scenarios, the sensors
collect data only from a limited range. For example, a thermometer sensor may only collect data from
35 ◦C to 42 ◦C. The attacker may try every possible combination to find the collision pair and get the
trapdoor of the chameleon hash. When the trapdoor is leased, the attacker can get real data from
fake data by calculating the collision. To solve this problem, in our implementation, we have added a
timestamp on each piece of data to enlarge the data range and avoid the brute force attack.

The last issue to address is that, in the proposed scheme, the chameleon hash can differ on each
transmission. However, this is impractical since the chameleon hash setup operation is computationally
expensive. So a chameleon hash function will be used many times and it is necessary to consider
the need to update the chameleon hash function. In our implementation, to ease the sensor burden,
the system owner must prepare a chameleon hash function pool. When the lifetime of a chameleon
hash is almost at an end, the system owner dispatches a new chameleon hash function with its
corresponding trapdoor to the sensor. Note that the system owner can generate chameleon hash
functions to the pool in advance. Besides, since a chameleon hash function can be independent in each
transmission, there is no synchronization issue.

6. Conclusions and Future Works

In this paper, we proposed a privacy-preserving broker-ABE for MCCPS scenarios, in which the
burden on the edge sensors is light. In this scheme, the broker is responsible for most of the encryption
work. The evaluation results show the scheme’s performance is acceptable. Moreover, the data stored
in clouds can be kept private even against outside coercion.

Future work will address broker security. Although in this paper, the broker is semi-trusted and
cannot see the content of ciphertexts, the proposed scheme cannot ensure protection in cases where the
broker and CSP are collaborating. Moreover, the broker may embed false policies and try to release
data to those who are authorized to access data. So the next step is to require the broker to embed
policies based on some unforgeable secrets generated by the sensors.

Author Contributions: Conceptualization, P.-W.C.; methodology, P.-W.C. and M.-H.W.; software, P.-W.C.;
validation, P.-W.C. and M.-H.W.; writing—original draft, P.-W.C.; writing—review and editing, P.-W.C. and
M.-H.W.

Funding: This research was funded by Ministry of Science and Technology, Taiwan grant number MOST
107-2218-E-003-002-MY3 and MOST 107-2218-E-035-009-MY3, and in part by the Taiwan Information Security
Center, National Sun Yat-Sen University (TWISC@NSYSU).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2019, 19, 5463 26 of 27

References

1. Rajkumar, R.R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems: the next computing revolution.
In Proceedings of the 47th Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 731–736.

2. Lee, J.; Bagheri, B.; Kao, H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing
systems. Manuf. Lett. 2015, 3, 18–23. [CrossRef]

3. Wan, J.; Xia, M. Cloud-Assisted Cyber-Physical Systems for the Implementation of Industry 4.0. Mob. Netw.
Appl. 2017, 22, 1157–1158. [CrossRef]

4. Mattern, F.; Floerkemeier, C. From the Internet of Computers to the Internet of Things. In From Active Data
Management to Event-Based Systems and More; Springer: Berlin/Heidelberg, Germany, 2010; pp. 242–259.

5. Simmon, E.; Kim, K.S.; Subrahmanian, E.; Lee, R.; De Vaulx, F.; Murakami, Y.; Zettsu, K.; Sriram, R.D.
A Vision of Cyber-Physical Cloud Computing for Smart Networked Systems; US Department of Commerce,
National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013.

6. Lucas-Simarro, J.L.; Aniceto, I.S.; Moreno-Vozmediano, R.; Montero, R.S.; Llorente, I.M. A cloud broker
architecture for multicloud environments. In Large Scale Network-Centric Distributed Systems; Wiley-IEEE
Computer Society Press: Hoboken, NJ, USA, 2013; pp. 359–376.

7. Li, X.; Ma, H.; Zhou, F.; Yao, W. T-broker: A trust-aware service brokering scheme for multiple cloud
collaborative services. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1402–1415. [CrossRef]

8. Canetti, R.; Dwork, C.; Naor, M.; Ostrovsky, R. Deniable Encryption. In Advances in Cryptology; Kaliski, B.S.,
Jr., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 90–104.

9. Chi, P.W.; Lei, C.L. Audit-Free Cloud Storage via Deniable Attribute-based Encryption. IEEE Trans. Cloud
Comput. 2018, 6, 414–427. [CrossRef]

10. Sahai, A.; Waters, B. Fuzzy Identity-Based Encryption. In Eurocrypt; Cramer, R., Ed.; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 457–473.

11. Shamir, A. Identity-Based Cryptosystems and Signature Schemes. In Advances in Cryptology; Blakley, G.R.,
Chaum, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 47–53.

12. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control
of encrypted data. In Proceedings of the ACM Conference on Computer and Communications Security,
Alexandria, VA, USA, 30 October–3 November 2006; pp. 89–98.

13. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-Based Encryption. In Proceedings of the
IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 20–23 May 2007; pp. 321–334.

14. Waters, B. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure
Realization. In Public Key Cryptography; Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 53–70.

15. Lewko, A.B.; Okamoto, T.; Sahai, A.; Takashima, K.; Waters, B. Fully Secure Functional Encryption:
Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In Eurocrypt; Gilbert, H., Ed.;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 62–91.

16. Attrapadung, N.; Herranz, J.; Laguillaumie, F.; Libert, B.; de Panafieu, E.; Ràfols, C. Attribute-based
encryption schemes with constant-size ciphertexts. Theor. Comput. Sci. 2012, 422, 15–38. [CrossRef]

17. Tysowski, P.K.; Hasan, M.A. Hybrid Attribute- and Re-Encryption-Based Key Management for Secure and
Scalable Mobile Applications in Clouds. IEEE Trans. Cloud Comput. 2013, 1, 172–186. [CrossRef]

18. Luo, S.; Hu, J.; Chen, Z. Ciphertext Policy Attribute-Based Proxy Re-encryption. In Information and
Communications Security; Soriano, M., Qing, S., López, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 401–415.

19. Li, K. Matrix access structure policy used in attribute-based proxy re-encryption. arXiv 2013, arXiv:1302.6428.
20. Liang, K.; Fang, L.; Susilo, W.; Wong, D.S. A ciphertext-policy attribute-based proxy re-encryption with

chosen-ciphertext security. In Proceedings of the 2013 5th International Conference on Intelligent Networking
and Collaborative Systems (INCoS), Xi’an, China, 9–11 September 2013; pp. 552–559.

21. Chandar, P.P.; Mutkuraman, D.; Rathinrai, M. Hierarchical attribute based proxy re-encryption access control
in cloud computing. In Proceedings of the 2014 International Conference on Circuits, Power and Computing
Technologies [ICCPCT-2014], Nagercoil, India, 20–21 March 2014; pp. 1565–1570. [CrossRef]

http://dx.doi.org/10.1016/j.mfglet.2014.12.001
http://dx.doi.org/10.1007/s11036-017-0874-1
http://dx.doi.org/10.1109/TIFS.2015.2413386
http://dx.doi.org/10.1109/TCC.2015.2424882
http://dx.doi.org/10.1016/j.tcs.2011.12.004
http://dx.doi.org/10.1109/TCC.2013.11
http://dx.doi.org/10.1109/ICCPCT.2014.7055015

Sensors 2019, 19, 5463 27 of 27

22. Touati, L.; Challal, Y. Instantaneous Proxy-Based Key Update for CP-ABE. In Proceedings of the 2016
IEEE 41st Conference on Local Computer Networks (LCN), Dubai, UAE, 7–10 November 2016; pp. 591–594.
[CrossRef]

23. Yao, X.; Chen, Z.; Tian, Y. A lightweight attribute-based encryption scheme for the Internet of Things. Future
Gener. Comput. Syst. 2015, 49, 104–112. [CrossRef]

24. Oualha, N.; Nguyen, K.T. Lightweight Attribute-Based Encryption for the Internet of Things. In Proceedings
of the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa,
HI, USA, 1–4 August 2016; pp. 1–6. [CrossRef]

25. Jiang, Y.; Susilo, W.; Mu, Y.; Guo, F. Ciphertext-policy attribute-based encryption against key-delegation
abuse in fog computing. Future Gener. Comput. Syst. 2018, 78, 720–729. [CrossRef]

26. Zuo, C.; Shao, J.; Wei, G.; Xie, M.; Ji, M. CCA-secure ABE with outsourced decryption for fog computing.
Future Gener. Comput. Syst. 2018, 78, 730–738. [CrossRef]

27. Li, Z.; Li, W.; Jin, Z.; Zhang, H.; Wen, Q. An Efficient ABE Scheme With Verifiable Outsourced Encryption
and Decryption. IEEE Access 2019, 7, 29023–29037. [CrossRef]

28. Fischer, M.; Scheerhorn, A.; Tönjes, R. Using Attribute-Based Encryption on IoT Devices with instant
Key Revocation. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 126–131. [CrossRef]

29. Dürmuth, M.; Freeman, D.M. Deniable Encryption with Negligible Detection Probability: An Interactive
Construction. In Eurocrypt; Paterson, K.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 610–626.

30. O’Neill, A.; Peikert, C.; Waters, B. Bi-Deniable Public-Key Encryption. In Crypto; Rogaway, P., Ed.; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 525–542.

31. Gasti, P.; Ateniese, G.; Blanton, M. Deniable Cloud Storage: Sharing Files via Public-Key Deniability; WPES: New
York, NY, USA, 2010; pp. 31–42.

32. Beimel, A. Secure Schemes for Secret Sharing and Key Distribution. Ph.D. Thesis, Israel Institute of Technology,
Haifa, Israel, 1996.

33. Boneh, D.; Goh, E.J.; Nissim, K. Evaluating 2-DNF Formulas on Ciphertexts. In TCC; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 325–341.

34. Lewko, A.B. Tools for Simulating Features of Composite Order Bilinear Groups in the Prime Order Setting.
In Eurocrypt; Pointcheval, D., Johansson, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 318–335.

35. Krawczyk, H.; Rabin, T. Chameleon Signatures. In NDSS; The Internet Society: San Diego, CA, USA, 2000.
36. Boneh, D. Bilinear Groups of Composite Order. In Pairing-Based Cryptography—Pairing 2007; Takagi, T.,

Okamoto, T., Okamoto, E., Okamoto, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2007.
37. Cao, Z.; Liu, L. A Note on Bilinear Groups of a Large Composite Order. Cryptology ePrint Archive, Report

2013/812. 2013. Available online: https://eprint.iacr.org/2013/812 (accessed on 1 October 2019).
38. Iorga, M.; Feldman, L.; Barton, R.; Martin, M.; Goren, N.; Mahmoudi, C. The NIST Definition of Fog Computing;

NIST: Gaithersburg, MD, USA, 2017.
39. Barker, E.; Barker, W.; Burr, W.; Polk, W.; Smid, M. Recommendation for Key Management: Part 1: General

(Revision 3); Technical Report; NIST: Gaithersburg, MD, USA, 2012.
40. Boneh, D.; Canetti, R.; Halevi, S.; Katz, J. Chosen-Ciphertext Security from Identity-Based Encryption.

SIAM J. Comput. 2007, 36, 1301–1328. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LCN.2016.100
http://dx.doi.org/10.1016/j.future.2014.10.010
http://dx.doi.org/10.1109/ICCCN.2016.7568538
http://dx.doi.org/10.1016/j.future.2017.01.026
http://dx.doi.org/10.1016/j.future.2016.10.028
http://dx.doi.org/10.1109/ACCESS.2018.2890565
http://dx.doi.org/10.1109/PERCOMW.2019.8730784
https://eprint.iacr.org/2013/812
http://dx.doi.org/10.1137/S009753970544713X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contributions
	Organization

	Related Works
	Previous Works on Attribute-Based Encryption
	Previous Works on Deniable Encryption
	Preliminaries
	Prime Order Bilinear Groups
	Waters CP-ABE Scheme
	Composite Order Bilinear Groups
	Chameleon Hash

	Privacy-Preserving Broker-ABE Scheme
	Overview and Attack Model
	Definition
	Security Model
	Assumptions
	Construction
	Correctness
	Implementation Issues

	Evaluation
	Security Proof
	Deniability Proof
	Performance Evaluation

	Discussion
	CCA-Security
	Chameleon Hash Issues

	Conclusions and Future Works
	References

