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Abstract: The recent popularity and widespread use of deep learning heralds an era of artificial
intelligence. Thanks to the emergence of a deep learning inference service, non-professional clients
can enjoy the improvements and profits brought by artificial intelligence as well. However, the input
data of the client may be sensitive so that the client does not want to send its input data to the server.
Similarly, the pre-trained model of the server is valuable and the server is unwilling to make the
model parameters public. Therefore, we propose a privacy-preserving and fair scheme for a deep
learning inference service based on secure three-party computation and making commitments under
the publicly verifiable covert security setting. We demonstrate that our scheme has the following
desirable security properties—input data privacy, model privacy and defamation freeness. Finally,
we conduct extensive experiments to evaluate the performance of our scheme on MNIST dataset.
The experimental results verify that our scheme can achieve the same prediction accuracy as the
pre-trained model with acceptable extra computational cost.

Keywords: artificial intelligence; commitment; data privacy; data security; secure three-party
computation

1. Introduction

In recent years, artificial intelligence (AI) has been applied to more and more fields, such as
agriculture [1], industrial control [2], smart home [3] and, most popularly, medical treatment [4–7].
As one of the most representative technologies of AI, deep learning has been widely studied in terms of
model accuracy improvement [8,9] and computational cost cutting [10,11]. The accuracy and cost are
key to the availability of deep learning but the security might be the foundation of a wide acceptance
of deep learning. However, research on ensuring the security of deep learning are not enough or
satisfactory. As is stated in Reference [12], deep learning mainly faces challenges in generalizing
unseen examples. Furthermore, the data hungriness can be seen as an extension of this problem.
In fact, data are generated anytime and anywhere. It is the improper approaches to data collection
and data utilization that cause data hungriness in deep learning. To be specific, designers of existing
deep learning schemes rarely consider the plight of data contributors or data owners. They just stand
at the perspectives of the users of deep models (model accuracy improvement) or the deep network
trainers (computational cost cutting). From the data owner’s point of view, it is not secure to give out
personal data to a server (network trainer) without any commitment. Therefore it is reasonable that
the data owners are unwilling to contribute their data to deep learning even when they intend to make
inference on their data, which is the source of data hungriness. In other words, the data hungriness in
deep learning reflects the lack of secure and satisfactory deep learning scheme for data owners.
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The emerging Deep Learning Inference Service (DLIS) [13], where clients can enjoy a deep learning
inference service on a pay-per-use basis provided by servers who pre-train deep learning models,
requires attention to the privacy of the sensitive input data of clients as well as the models of servers.
Not all types of data on which an inference is to be made are sensitive and must be private but in some
scenarios, such as medicine and finance, the privacy of clients’ data should be protected [14]. On the
other hand, model parameters of the models pre-trained by servers should be secure as well because
training models costs servers time and money (for collecting training data or buying infrastructure).

However, existing privacy-preserving deep learning schemes do not satisfy the security
requirements of DLIS very well. These schemes are mainly based on two techniques: homomorphic
encryption (HE) and secure multi-party computation (SMPC). As for HE-based schemes, computational
complexity is a major challenge when inference is made on encrypted data. Another challenging aspect
is that servers cannot inspect the data flowing in the trained models to check and find mislabelled items.
Thus HE-based schemes do not seem to be feasible in DLIS. With regard to SMPC-based schemes,
the efficiency declines dramatically when the number of parties grows to three or above.

Our scheme tackles this problem in the context of a deep learning inference service wherein a
server has a convolutional neural network (CNN) trained on its private data and a client wishes to get
classification results on its private images. Furthermore, there are three workers that help finish the
model inference based on secure three-party computation.

1.1. Our Contribution

We design and implement a general scheme for privacy-preserving and fair deep learning
inference service in the three-worker model under the setting of publicly verifiable covert security.
Our contribution is that our scheme enjoys the following properties of security, accuracy and efficiency.

• Security: Our scheme protects the private input data of the client as well as the pre-trained model of the
server. Also, the workers do not need to worry about being framed. Moreover, we do not need to assume
that the server would not collude with any one of the workers or the client would not collude with any one
of the workers. Cheating behaviours will be caught and be publicly verifiable so that our scheme can act as a
deterrent to misbehaviours.

• Accuracy: Our scheme provides identical inference accuracy to the pre-trained deep learning model. That is
to say, after secure sharing the pre-trained model and implementing inference based on secure three-party
computation in our scheme, the model accuracy does not decrease.

• Efficiency: Since we just utilize simple and technically mature hash function and RSA signature, the extra
computational cost of our scheme is acceptable compared to the existing SMPC-based scheme.

1.2. Organization of This Paper

The rest of the paper is organized as follows. We introduce the recent works related to
privacy-preserving deep learning in Section 2. The preliminaries and problem definition are given in
Section 3. Our innovative privacy-preserving and fair deep learning inference scheme is proposed in
Section 4. The security analysis of our scheme is given in Section 5. We analyze the performance of our
scheme from theoretical and experimental respects respectively in Section 6. Lastly, we conclude the
paper in Section 7.

2. Related Work

In this section, we review recent representative research related to privacy-preserving deep
learning. There are two main aspects: model training and inference.

2.1. Model Training

In order to protect the privacy of data owner in model training process, a line of work uses HE
and another line of work takes advantage of SMPC.
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2.1.1. HE-Based Methods

Le Trieu Phong et al. [15] build a privacy-preserving deep learning system using HE for neural
network weights encryption in which multiple learning participants perform neural network training
cooperatively, without actually revealing their local data to a central server. However, the system
is based on the assumption that the server and any learning participant do not collude. Once they
collude, the server could decrypt and get data from all learning participants [16]. So there are potential
risks for the privacy of data owners.

Ehsan Hesamifard et al. [17] adopt convolutional neural networks (CNNs) within the practical
limitation of current homomorphic encryption schemes. More specifically, they first design methods
to approximate the activation functions commonly used in CNNs such as ReLU, Sigmoid and Tanh,
via low degree polynomials, which replace original activation functions in CNNs training. Then CNNs
could be implemented over encrypted data using HE. However, using HE for model training which
relies on large amount of training data, computational complexity is a major challenge.

The above works leave much room for improvement in security or efficiency.

2.1.2. SMPC-Based Methods

A privacy-preserving neural networks (NNs) training system is proposed and implemented
in Reference [18]. The authors consider the setting that there are two non-colluding servers
and multiple distributed data owners. Using the secure two-party computation (2PC) technique,
they develop techniques to support secure arithmetic operations on shared decimal numbers and
propose SMPC-friendly alternatives to non-linear functions (i.e., sigmoid and softmax).

Bita Darvish Rouhani et al. [19] design a framework called DeepSecure, which enables
privacy-preserving execution of deep learning models. However, besides using Yao’s Garbled Circuit
(GC) protocol, a set of pre-processing techniques are needed for further reducing the GC runtime in
this solution.

Payman Mohassel and Peter Rindal [20] propose a mixed protocol framework for
privacy-preserving machine learning (ML) model training which supports linear regression, logistic
regression and neural network. The framework is based on secure three-party computation
(3PC). It yields the state-of-the-art performance for privacy-preserving model training. However,
the framework does not realize convolutional neural network training for ease of implementation.
The convolutional kernel is replaced with a fully connected layer.

2.2. Inference

Applying learned neural networks to encrypted sensitive data is considered by Nathan
Dowlin et al. [21]. By using homomorphic encryption, they present CryptoNets, which transfers
trained neural network and supports inference on encrypted sensitive data, such as financial and
medical data. The neural network is first trained in the cloud server, so that Machine Learning as a
Service (MLaaS) can be provided. Then a data owner sends encrypted data to the cloud server to get
corresponding encrypted prediction labels. However, further progress is needed for the CryptoNets,
such as more efficient encoding schemes and faster homomorphic computation [22].

Fabian Boemer et al. [23] present nGraph-HE, Intel’s deep learning graph compiler, which enables
deploying trained models with popular frameworks (i.e., TensorFlow) by treating homomorphic
encryption as another hardware target. It helps data scientists to benchmark deep learning models
with less overhead. But extra hardware is needed.

The problem of privacy-preserving inference is explore by Jian Liu et al. [24] as well.
They propose MiniONN, which transforms a trained neural network to an oblivious one to support
privacy-preserving inference. However, oblivious transformations are needed in the whole execution of
inference, which incurs considerable efficiency overheads and degrades the model accuracy inevitably.
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Chiraag Juvekar et al. [25] introduce Gazelle, a system for secure neural network inference,
which integrates homomorphic encryption and secure two-party computation. They design a
homomorphic encryption library and homomorphic linear algebra kernels. Moreover, encryption
switching protocols which seamlessly convert between homomorphic and garbled circuit encodings
are presented to enable implementation of neural network inference. Such hybrid of homomorphic
encryption and secure two-party computation delivers faster performance at the expense of much
higher communicational costs.

2.3. Summary

We summarize the contributions of above related works and compare them with our work, which
can be seen in Table 1.

Table 1. Related works comparison.

Works Privacy Properties Techniques Shortages Application Scenarios

Le [15] Data privacy HE Collusion risk NNs training
Ehsan [17] Data privacy HE High computational overhead CNNs training

Secureml [18] Data privacy 2PC Collusion risk NNs training

DeepSecure [19]
Data privacy,

model privacy Yao’s GC Need much preprocessing Deep learning

ABY3 [20] Data privacy 3PC Not support CNN ML
CryptoNets [21] Data privacy HE Need efficiency improvement MLaaS
nGraph-HE [23] Data privacy HE Need extra hardware Benchmark DL models
MiniONN [24] Data privacy SMPC Need oblivious transformations NN Inference

Gazelle [25] Data privacy HE and SMPC High communicational costs NN Inference

Our scheme
Data privacy,

model privacy,
defamation freeness

3PC
Need expand to large scale

CNNs and various networks MLaaS

As listed in Table 1, we compare our scheme proposed in this paper with eight state-of-the-art
literatures on privacy properties, techniques, shortages and application scenarios. It is shown that our
scheme has the most privacy properties. Most of the related works only focus on protecting the data
privacy of the data owners. But our scheme not only protects the data privacy of the data owners but
also protects the model privacy of the server and the fame of honest workers.

3. Preliminaries and Problem Definition

We present the notations used in our description in Table A1 in Appendix A.

3.1. Preliminaries

3.1.1. Publicly Verifiable Covert (PVC) security

PVC security for secure two-party computation is proposed in Reference [26]. Under the
setting of PVC security, the honest party could detect cheating behaviour with reasonable probability.
Furthermore, if cheating behaviour is found, the honest party could generate a publicly verifiable
certificate of that misbehaviour. Parties such as commercial cloud servers care about their reputation
seriously and of course avoid being caught cheating. Therefore PVC security can have an obvious
deterrent effect to cheating behaviours.

PVC security is deemed as a compromise between semi-honest and malicious security. In other
words, PVC security provides more security guarantees than that of semi-honest security but less than
that of malicious security. However, the overhead that it requires is less than that of malicious security
but more than that of semi-honest security.
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In this paper, we extend the PVC security for secure two-party computation to one for
secure three-party computation, so that our scheme based on secure three-party computation is
privacy-preserving and fair under the setting of PVC security.

3.1.2. Secure Multi-Party Computation

SMPC has been applied to privacy-preserving machine learning recently to relieve worries about
privacy leakage. Generally SMPC, especially secure 3PC, is based on secret sharing [27], arithmetic
sharing [28], binary sharing [29] and Yao sharing [30] protocols.

However, these protocols usually work over low-level circuits (either arithmetic or boolean). So for
computationally expensive tasks, such as deep neural network training and prediction, SMPC-based
protocols are so highly inefficient that these protocols can take forever to execute.

In these paper, we utilize a generic framework for privacy-preserving and federated deep
learning called PySyft [31], which is based on SPDZ [32] and SMPC, to realize our scheme efficiently.
The replicated secret sharing technique [29] is used in our scheme. There are two reasons why we
choose three workers to hold different secret shares (x1, x2), (x2, x3), (x3, x1) in our scheme. The first
reason is about security. Any two out of the three workers can reconstruct the secret value x by addition:
x = x1 + x2 + x3. That is to say, our protocol based on secure 3PC can tolerate up to a single corruption,
which cannot be achieved in 2PC-based protocols. The other reason we choose three workers is that
3PC is more efficient than 2PC according to existing studies [20].

3.1.3. Deep Learning Inference Service

In deep learning training service, the users need to not only provide their training data but also
care about the model architecture, model initial weights and so on. It may be a difficult task for some
non-professional users who just want to enjoy the inference service but not the customized service
from model training to model inference. Different from deep learning training, deep learning inference
only requires the users to input their data on which they want to infer.

In fact, inference is not possible to happen without training. Therefore nowadays, many famous
technology companies provide DLIS, such as Microsoft Azure [33], Amazon Elastic Inference and
NVIDIA. The reason for DLIS becoming popular is that DLIS is convenient, economic and user-friendly.
More specifically, the cloud servers of the companies are responsible for computationally intensive
training and the clients of DLIS enjoy the service on a pay-per-use basis.

Training a large and deep neural network model usually requires not only several terabytes of
training data but also dozens of exaflops of compute, such as Baidu’s Chinese speech recognition
model [34]. After training is completed, the trained model is deployed to inference using what it has
learned. In other words, clients of DLIS do not need all the storage and computing infrastructure of
the entire training cycle. Therefore, DLIS is a speedier and easier way of benefiting from deep learning
for general clients.

3.2. Problem Definition

The goal of our scheme is that both the cloud server that holds the model parameters and the
client who owns the input data can protect their own information in DLIS, as well as obtaining correct
inference results for the client. Besides, the scheme should be fair for workers so that they can be free
of being framed.

Since SMPC for more than two parties is expensive for clients, it is not practical to perform
SMPC among them [18]. Therefore we consider a worker-aided setting where the client outsources the
computation to three untrusted workers. According to the definition of SMPC, the sensitive data leaks
only if all the three workers are corrupted.

So in our scheme, in order to protect data privacy and model privacy, the client secretly shares its
input data among the workers; and the trained model provided by the server is secretly shared among
workers, too. Then the workers can compute the inference results cooperatively. Finally, the inference
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results are sent to the client for output recovery. Moreover, to achieve fairness and correct results, all the
parties in our scheme generate publicly verifiable commitments via hash and signature operations [35]
for their computation.

Threat Model: We use the similar security model as that in Reference [26]. But we extend it to the
three-party case. That is to say, there are three workers who are responsible for computation. They are
supposed to be in the publicly verifiable covert security setting, which is a compromise between
malicious security and semi-honest security. And we assume that a malicious adversary Ad could
corrupt at most one of the three workers. Also, the client may be malicious and want to steal the model
of server. Similarly, the server might be interested in the input data of the client. That is to say, we
suppose that at most one worker, or the client, or the server would be corrupted by Ad.

Application Scenario: One application of our scheme is that a client (such as a patient) can
get private inference results based on its sensitive data (such as the biomedical data of the patient
collected by mobile telemonitoring system) without worrying about the privacy and accuracy in DLIS.
Meanwhile, the workers responsible for inference computation are exempt from being framed. What’s
more, the model which belongs to the server is free from being stolen. That is to say, our scheme is
quite fair for all parties.

We justify the proposed scheme is fair for the reason that our scheme is not partial to anyone and
each of roles enjoys the rights they are entitled only if it obey the procedure of our scheme. For example,
the honest client can enjoy deep learning inference service without the risk of data privacy leakage;
the honest server can provide deep learning inference service without the risk of model privacy leakage;
and the honest workers can execute model inference without the risk of being framed.

4. Our Scheme

In this section, we design a privacy-preserving and fair scheme for performing deep learning
inference on private input data based on secure three-party computation under the setting of publicly
verifiable covert security.

4.1. System Architecture

We consider a system that there are three workers (computation implementers), one client (input
data provider as well as service consumer) and one server (model provider) involved in our scheme.
The client C wants to get confidential inference results (such as prediction values or classification
labels) on her own private data. And the server S first trains a deep learning model with its collected
data and then provides DLIS. Three workers denoted as W1, W2, W3 take responsibility for performing
deep learning inference using a pre-trained and shared model. The system architecture is depicted in
Figure 1.

Model sharing

Client

X

x1

x2

x3

m(x)m2(x)

m3(x)

m1(x)

Server

Worker1

Worker2

Worker3

y1

Y y2

y3

InferenceInput sharing and
output recover

Figure 1. System architecture.
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The relationship between the three roles of our scheme can be summary as follows: the client
shares her private input data among three workers and the server shares her pre-trained model among
three workers as well. Then the workers perform secure three-party computation to get inference
results. Finally, the inference results are sent to the client to recover the output.

4.2. Scheme Description

In order to achieve publicly verifiable covert security in our “server–three workers–client” system,
we design a privacy-preserving and fair scheme for realizing deep learning inference service against a
malicious adversary who may corrupt a single worker, or the client or the server. Here, we present the
main steps of our scheme as follows.

4.2.1. Input Data Preparation

The client C holds input data set 〈X〉 which include k test cases 〈x〉. And the labels of 〈x〉 are 〈y〉,
which are only known to C at first. No one knows which part of input data are the test cases except C.
Then C secretly shares the input data among the three workers evenly and randomly.

Meanwhile, C generates the commitment about the shared input data and makes the commitment
public to all of the parties in the scheme. More specifically, if the number of data items that
C shares among workers is m and the indexes of k test cases (denoted as I) as well as their
corresponding labels (denoted as L) are (I1, L1), (I2, L2), ..., (Ik, Lk), then the data commitment is
computed as share_data_com = SignC(hash(k||(I1, L1)||(I2, L2)||...||(Ik, Lk)||m)), where SignC(input)
means computing client’s signature of the input, hash(input) denotes calculating the hash value of the
input and || indicates the operation of concatenate strings.

4.2.2. Model preparation

The server S first trains a model and determines the model accuracy threshold λ. Specifically,
the model could be trained on the dataset which is bought or collected by the server or donated by
some organizations without worrying about data privacy. Considering the randomness of test results,
in order to decrease the possibility of getting one wrong, here we set the minimal test accuracy as the
model accuracy threshold λ according to multiple experimental results after model training.

Then S secretly shares the model among the three workers. For the sake of fairness, S provides
the commitment about the shared model for public verification as well. The commitment of the model
is computed as share_model_com = SignS(hash(model_params)), where model_params denotes the
shared parameter values of the pre-trained model.

4.2.3. Inference Based on 3PC

Three workers perform the deep leaning inference cooperatively using the shared input data and
the shared model based on secure three-party computation (3PC). Finally, each worker W sends its
computation result to the client C to recover the output. Concretely, Wi obtains result 〈Y〉i and sends
it to C (i = 1, 2, 3). Simultaneously, in order to supervise and urge the workers to honestly compute
and comply with the scheme, each worker must generates commitment for every result it obtains.
For example, if worker Wi get the shared input data 〈X〉i at the beginning and obtains result 〈Y〉i after
computation, then it makes a public commitment

result_com = SignWi (hash(i, 〈X〉i , 〈Y〉i)). (1)

And the intermediate results should be recorded, too. That is to say, before sending the
intermediate result yin which Wi computes to another worker for multi-party computation, Wi makes
a commitment for yin:

inter_result_com = SignWi (hash(count, yin)), (2)
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where count is the order of the intermediate result. Finally, all the commitments are public after
multi-party computation.

4.2.4. Output Recovery and Check

After receiving inference results and corresponding commitments from three workers, the client
C recovers final output via addition:

〈Y〉 =
3

∑
i=1

(〈Y〉i). (3)

When C obtains final output, she can check the labels of the test cases and calculate accuracy
of the inference on test cases. For instance, if n test data items are judged correctly in the total k test
cases, then the inference accuracy is n

k . If the accuracy is lower than the model accuracy threshold
λ, we deem the inference results questionable, which means one of the workers is cheating (here we
suppose only one worker might cheat). Otherwise, the inference output based on 3PC is achieved now.

4.2.5. Cheat Forensics and Punishment

In case cheat is found in the previous step, the client C needs to obtain evidence of cheating.
Most importantly, which worker cheats should be found out and publicly verified. Here we make
full use of the commitments made in above steps. The method is to check the workers one by one.
Take checking Wi for example. Let the server perform the same execution as Wi from the beginning.
In other words, the shared input data and model which were assigned to Wi before are sent to the
server now, who performs deep learning inference with other two workers cooperatively based on
3PC. The key is that the server should generate and disclose the commitments for the final result and
intermediate results:

result_com = SignS(hash(i, 〈X〉i , 〈Y〉i)) (4)

inter_result_com = SignS(hash(count, yin)) (5)

After decrypting the commitments in Equations (1), (2), (4) and (5) with public keys of Wi and the
server S respectively, two hash(i, 〈X〉i , 〈Y〉i) and hash(count, yin) can be obtained and then compared
by everyone. If they are not the same, then Wi is verified cheating. Otherwise, check another worker.

What’s more, the cheating one should be punished so that our scheme have a deterrent effect.
Then the workers would be afraid to cheat. The punishment can be adding the cheating one to a
blacklist and announce its cheating behaviour to the public.

5. Security Analysis

The security properties of our scheme can be summarized as follows: input data privacy, model
privacy and defamation freeness.

First, we summarize the different attack scenarios considered in Figure 2.
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Figure 2. Attack scenarios.

5.1. Input Data Privacy

The client’s sensitive input data and corresponding inference outputs are only revealed to herself,
even in the presence of a malicious adversary.

Proof Sketch. A malicious adversary Ad, who wants to get the private input data of the client C,
can corrupt the server S or any one of the workers in our system. Given that our scheme is symmetric
with respect to the three workers, we just need to consider the scenario where Ad corrupts S or worker
W3. A simulator Sim is set to simulate Ad in the ideal world.

5.1.1. Ad Corrupts Server S

First, we consider the scenario that Ad corrupts the server S. Sim sends the corrupted server’s
model and accuracy threshold to Ad. Then Sim runs Ad. On behalf of S, Sim shares the model among
three workers randomly and generates commitment of the model with the private key of S. If the
model is wrong or the accuracy threshold is too high, the commitment will be an evidence of the
misbehaviour of the server. So Sim would like to share the model honestly. Because we suppose all
parties except for the server are honest in this scenario, there is no need to perform workers cheating
forensics. Therefore this is the only execution where S is involved. It is obvious that Ad′s views in
the ideal and real worlds are indistinguishable. And Ad cannot obtain any private information of the
input data.

5.1.2. Ad Corrupts Worker W3

Second, let us consider the other scenario that Ad corrupts worker W3. Sim sends the shared
input data and shared model which the corrupted worker received to Ad. Then Sim runs W3.
On behalf of W3, Sim performs three-party computation in interactions with other two honest workers.
After computation, Sim sends intermediate and final inference results to Ad and generates public
commitments with the private key of W3. Finally, Sim sends final inference result to the client C, as well
as opens its commitments.

We argue that the views of Ad in both ideal and real worlds are indistinguishable. And the input
data and corresponding inference results cannot be retrieved from the shared information Ad has.
This is because the security of the arithmetic secret sharing and secure multi-party computation. If W3

does not obey the steps of our scheme and cheats, the commitments will be the evidence of cheating
and W3 will be blacklisted. So the worker would be afraid to cheat and behave honestly.

To sum up, the input data privacy and output privacy of the client can be achieved in our scheme
even in the presence of a malicious adversary that could corrupts the server or one of the workers.
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5.2. Model Privacy

The model which is pre-trained by the server remains private to the server in our scheme, without
the risk of being stolen by a malicious adversary who could corrupt the client or one of the workers.

Proof Sketch. A malicious adversary Ad, who wants to get the private model parameters of
the server S, can corrupt the client C or any one of the workers in our model. Since our scheme is
symmetric with respect to the three workers, we only consider the scenario where Ad corrupts C or
worker W3. A simulator Sim is set to simulate Ad in the ideal world.

5.2.1. Ad Corrupts Client C

First, we consider the scenario that Ad corrupts the client C. Sim sends the corrupted client’s
input data to Ad. Then Sim runs Ad. On behalf of C, Sim shares the input data among three workers
randomly and generates commitment of the shared data with the private key of C. After the inference
computation, Sim receives the final results from three workers and recovers the output. Finally, Sim
sends the output to Ad. It is obvious that Ad′s views in the ideal and real worlds are indistinguishable.
And Ad cannot obtain any private information of the model.

5.2.2. Ad Corrupts Worker W3

Second, let us consider the other scenario that Ad corrupts worker W3. Sim sends the shared
input data and shared model which the corrupted worker received to Ad. Then Sim runs W3.
On behalf of W3, Sim performs three-party computation in interactions with other two honest workers.
After computation, Sim sends intermediate and final inference results to Ad and generates public
commitments with the private key of W3. Finally, Sim sends final inference result to the client C, as well
as opens its commitments.

We argue that the views of Ad in both ideal and real worlds are indistinguishable. And the model
parameters cannot be retrieved from the shared information Ad has. This is because the security of the
arithmetic secret sharing and secure multi-party computation. If W3 does not obey the steps of our
scheme and cheat, the commitments will be the evidence of cheating and W3 will be blacklisted. So the
worker would be afraid to cheat and behave honestly.

To sum up, the model privacy of the server can be achieved in our scheme even in the presence of
a malicious adversary that could corrupts the client or one of the workers.

5.3. Defamation Freeness

Our scheme introduce making commitments to realize the function of anti-being framed and
non-repudiation. Each worker will first verify the correctness of the public commitment of the received
model parameters shared by the server. If the verification of a commitment fails, the protocol aborts.
And the server is deemed to frame the workers (or one worker). Hence the server will be likely to
share her model honestly.

If the client wants to frame an honest worker, it will fail when she performs the cheat forensics.
Because the commitments of the intermediate results and final results computed by the honest worker
can pass the verification performed by the server and other two workers. And after checking three
worker, the client may be deemed to frame the workers (or one worker) if all the verifications succeed.
Thus the client will obey to the scheme and share her input data honestly.

Besides, the verification is simple. For instance, if worker W3 receives shared model parameters
model_params and its corresponding commitment share_model_com = SignS(hash(model_params))
from S, then she decrypts share_model_com using the public key of S and compares the result
with hash(model_params) which she computes herself. If they are equal, the verification succeeds.
Otherwise, it fails and W3 aborts the protocol and reports that S cheats (here we suppose there is not
transmission error). Similarly, the workers and server can verify the correctness of commitments in
cheat forensics.
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As long as the workers compute honestly, they will get the correct results based on the correct
input data and model. Therefore, they will pass the checking of test cases. To sum up, our scheme
protects the workers from malicious defamation.

In conclusion, our scheme is privacy-preserving and fair, which not only preserves the privacy of
both the client and the server but also prevents them framing the workers up.

6. Performance Evaluations

The performance of our privacy-preserving and fair scheme for deep learning prediction service
under publicly verifiable covert security setting is evaluated in this section.

Evaluation metric: There are three main metrics in our evaluation. First, the number of desirable
security properties should be more than that of the existing schemes. Second, model prediction
accuracy should not be decreased apparently after sharing the model based on SMPC. Last but not
least, the extra computational cost of our scheme should be acceptable.

6.1. Theoretical Evaluations

Under publicly verifiable covert security setting, here we make a comparison of security properties
between our scheme (here denoted as Scheme 1) and one recent SMPC-based scheme [31] (here denoted
as Scheme 2).

As described in Section 5, our scheme not only preserve input data privacy of the client but
also guard model privacy of the server. Additionally, our scheme is fair because it protects workers
from malicious defamation. The comparison of desirable security properties between Scheme 1 and
Scheme 2 [31] is listed in Table 2.

Table 2. Security properties comparison.

Security Property Data Privacy Model Privacy Defamation Freeness

Scheme 1 Yes Yes Yes
Scheme 2 Yes Yes No

When it comes to extra computational cost of our scheme, we combine technically mature hash
function and RSA signature to make commitments. Therefore the introduced extra computational cost
is quite low compared to Scheme 2 [31] without making commitments. The detailed analysis of extra
computational cost of our scheme can be seen in Table 3.

Table 3. Theoretical analysis of extra computational cost.

Participant Server Client Worker 1 Worker 2 Worker 3

Hash Function 3 1 m+2 m+2 m+2
RSA Signature 3 1 m+2 m+2 m+2

As described in Section 4, the server in our scheme needs to compute three commitments of
three shares of model parameters. And computing one commitment means calculating one time hash
function and RSA signature. So the server needs to calculate three times hash function and RSA
signature. Similarly, the client just needs to calculate one time hash function and RSA signature for
her shared input data. As for the workers, each worker needs to calculate a commitment for every
intermediate result and the final result, so it is m + 1 times, where m is the number of shared input
data. Furthermore, every worker needs to verify the commitment of the shared model parameters
she received. And verifying the commitment needs decrypt the commitment first, which is similar to
signing in RSA signature. Then hash function needs to be calculated, too. Therefore it is m + 2 times
hash function and RSA signature calculation totally for each worker.
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Here we do not consider the computational cost of commitments verification in the cheat forensics
procedure because it depends on the behaviour of scheme participants (and we suppose they all behave
honestly due to the deterrent of our scheme). For example, if one of the scheme participants cheats, the
verification computation will increase. So we just give an approximate evaluation of times that each
scheme participant need to calculate hash function and RSA signature at least here. In the next part,
we implement experiments to run time statistics of our scheme to evaluate the computational cost.

6.2. Empirical Evaluations

Here we describe the experimental settings and results.

6.2.1. Experimental Settings

Our scheme is implemented on a computer with Intel Core i7-8700K CPU 3.70GHz×12 and
62.8GB RAM running on Ubuntu 18.04 LTS, python 3.7. All the five virtual machines representing
three workers, one client and one server are in the same physical machine in our implementation.
We have not specified or measured the communication bandwidth. But the communication time have
been included in running time in our experimental results.

Implementation: The implementation of our scheme is based on the python libraries PySyft and
PyTorch to realize the secure three-party computation and deep learning. As for hash function (we use
SHA-256 here) and RSA signature computation, we utilize another python library PyCrypto. SHA-256
is one kind of hash function usually used for generating certificates to make sure network security.
Moreover, the length of output of SHA-256 is always 256 bits, which is convenient for storage and
comparison in our scheme.

In PySyft, using a list of PointerTensors properly can split and send the shares. Actually, we need
not care much about the basic operations of MPC but just need focus on the implementation of steps
of our protocol. It is the advantage that the python library brings us, which avoids repetitive labour.
The major difference between PySyft and MiniONN is that MiniONN needs transform an existing
neural network to an oblivious neural network. However, PySyft leverages the PointerTensors to split
and share data and model.

We mainly compare the computational cost of Scheme 1 with that of Scheme 2. Furthermore, we
explore the influence of pre-trained model accuracy, the ratio of test cases to the data items in client
input dataset and the key length of RSA signature used in our scheme.

Dataset: Our experiments are conducted on the popular MNIST dataset, which consists of
grayscale images of hand written digits (0 ∼ 9). It contains 60,000 data items for training and
10,000 data items for testing. In our experiment, the training dataset is used for pre-training the model
before the server provides deep model prediction service. And the data items in test dataset are used
as the input data of clients in our experiment. Furthermore, a part of data items in test dataset are used
as test cases of our scheme. In our experiment, in order to explore effects of the number of test cases,
we respectively take 100 (1%) and 200 (2%) test cases from the 10,000 data items in MNIST test dataset
randomly and evenly.

Network architecture: The network architecture used in our experiment is listed in Table 4.
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Table 4. Network architecture.

Layer Number of neurons Activation

Conv2D(10,(3, 3),batch_input_shape=(1, 28, 28, 1)) 10× 3× 3 = 90 -
AveragePooling2D((2, 2)) - relu

Conv2D(32, (3, 3)) 32× 3× 3 = 288 -
AveragePooling2D((2, 2)) - relu

Conv2D(64, (3, 3)) 64× 3× 3 = 576 -
AveragePooling2D((2, 2)) - relu

Flatten - -
Dense 10 logit

6.2.2. Experimental Results

Here we display the results of our experiments. We do not count the pre-training time because
we consider the scenario that the server S first trains a deep learning model with its collected data
and then provides DLIS. When counting the running times, we separate each scheme into two phases:
model sharing and secure prediction (including input data sharing, inference and output recovery).
Specifically, for easy presentation, the two phases in Scheme 1 are denoted as Scheme 1-1 and Scheme 1-2
respectively, which is similar in Scheme 2. And the results are the average time costs of providing
prediction service for 100 input data items. Besides, the unit of time in our paper is second (s).

Influence of pre-trained model accuracy ma: First, we show the time costs of different groups
which are grouped by model and scheme. In order to explore the influence of the accuracy of
pre-trained model, we pre-train two deep CNN models with different model accuracy, denoted as
model a (ma = 98%) and model b (ma = 99%) respectively. But the network architectures (such as
activation function, layer number and node number, etc.) of these two models are the same, which are
shown in Table 4. We just change the training epochs to get different model accuracy. We take 100 test
cases and set key length of RSA signature as 2048 here. The average time costs for providing 100 input
data items inference of different models are listed in Table 5.

Table 5. Average time costs of different models.

Time (s) Scheme 1-1 Scheme 1-2 Scheme 2-1 Scheme 2-2 Accuracy

model a 2.274 2.851 2.229 1.885 98%
model b 2.508 3.425 2.151 1.808 99%

G1 G2 G3 G4

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

Ti
m

e 
co

st
 (s

)

Model sharing
Secure prediction

Figure 3. Average time costs of groups grouped by model and scheme.
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As depicted in Figure 3, there are four groups ( G1∼ G4 ) representing four different combinations
of model and scheme. G1 represents the average time cost of providing model a prediction service for
100 input data items in Scheme 1. That is to say, in Scheme 1, sharing the model a with 98% accuracy
among three workers costs about 2.274 s (the blue bar in G1) and performing secure prediction costs
average 2.85 s per 100 input images (the orange bar in G1). And the black vertical line shows the error
range. Furthermore, the whole bar shows the total time cost of the complete privacy-preserving and
fair prediction service. Similarly, G2 ∼ G4 display time costs of providing model a prediction service in
Scheme 2, providing model b prediction service in Scheme 1 and providing model b prediction service in
Scheme 2 respectively.

When we compare Scheme 1 with Scheme 2 in serving model a with 98% accuracy, the extra
computational cost is approximate 0.045 s in model sharing procedure and 0.966 s in secure prediction
process. And when it comes to model b with 99% accuracy, the extra computational cost becomes 0.356 s
in model sharing procedure and 1.617 s in secure prediction process. The above experimental results
demonstrate that the extra computational cost introduced by our scheme is acceptable. Moreover, the
higher model accuracy is, the higher extra computational cost is.

Influence of ratio of test cases to the data items in the input dataset k
m : Then we show the

computational costs of difference groups which are grouped by scheme and number of test cases.
In order to explore the influence of the number of test cases, we respectively take 100 ( k

m = 1%) and
200 ( k

m = 2%) data items from the 10,000 data items in MNIST test dataset randomly and evenly as test
cases. And we use the pre-trained model a with 98% accuracy and set key length of RSA signature as
2048 here. The average time costs of different number of test cases are listed in Table 6.

Table 6. Average time cost of different number of test cases.

Time (s) Scheme 1-1 Scheme 1-2 Scheme 2-1 Scheme 2-2 Accuracy

k = 100 2.274 2.851 2.229 1.885 98%
k = 200 2.992 4.222 2.180 3.301 98.5%

G1 G2 G3 G4

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
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Model sharing
Secure prediction

Figure 4. Average time costs of groups grouped by scheme and number of test cases.

As depicted in Figure 4, there are four groups ( G1∼ G4 ) representing four different combinations
of scheme and number of test cases. G1 represents the time cost of providing 100 ( k

m = 1%) test cases
prediction service in Scheme 1. That is to say, in Scheme 1, sharing the model a among three workers costs
about 2.274 s (the blue bar in G1) and performing secure prediction costs average 2.85 s per 100 input
images (the orange bar in G1). And the black vertical line shows the error range. Furthermore, the
whole bar shows the total time cost of the complete privacy-preserving and fair prediction service.
Similarly, G2 ∼ G4 display time costs of providing 100 ( k

m = 1%) test cases prediction service in
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Scheme 2, providing 200 ( k
m = 2%) test cases prediction service in Scheme 1 and providing 200 ( k

m = 2%)
test cases prediction service in Scheme 2 respectively.

When we compare Scheme 1 with Scheme 2 in providing 100 ( k
m = 1%) test cases prediction service,

the extra computation cost is approximate 0.045 s in model sharing procedure and 0.966 s in secure
prediction process. And when it comes to providing 200 ( k

m = 2%) test cases prediction service,
the extra computation cost becomes 0.812 s in model sharing procedure and 0.921 s in secure prediction
process. The above experimental results demonstrate that the extra computational cost introduced by
our scheme is acceptable. Moreover, the higher ratio of test cases is, the higher extra computational
cost is.

Influence of key length len: Finally, we show the computational costs of difference groups which
are grouped by scheme and key length of RSA signature. In order to explore the influence of the length
of key used in our scheme for RSA signature, we respectively set key length len = 1024, len = 2048
and len = 4086 (the least key length in RSA is 1024). And we use the pre-trained model a with 98%
accuracy and set k

m = 1% here. The average time costs for providing 100 input data items inference of
different key length of RSA signature are listed in Table 7.

Table 7. Average time costs of different key length of RSA signature.

Time (s) Scheme 1-1 Scheme 1-2 Scheme 2-1 Scheme 2-2 Accuracy

len = 1024 2.147 2.133 1.970 1.773 98%
len = 2048 2.274 2.851 2.200 1.790 98%
len = 4096 3.529 11.171 2.388 1.792 98%

1024 2048 4096
0

2

4

6

8

10

12

14

Ti
m

e 
co

st
 (s

)

Time costs by scheme and key-length
Scheme 1
Scheme 2

Figure 5. Average time costs of groups grouped by scheme and key length.

As depicted in Figure 5, there are three groups representing three different combinations of
scheme and key length of RSA signature (len = 1024, len = 2048 and len = 4086). And each bar
shows the total time cost of the complete privacy-preserving and fair prediction service. The extra
computational cost of Scheme 1 does not increase much when key length len increases from 1024 to
2048 but skyrockets to 14.7 s when len = 4086. We use the RSA cryptography to generates key pairs
for signature in our scheme Scheme 1. And security of RSA with key length len = 2048 is satisfactory
now. The above experimental results demonstrate that the extra computational cost introduced by our
scheme is acceptable while keeping our scheme secure. Moreover, the higher the security is, the higher
extra computational cost is.
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6.3. Summary

The above performance analysis and experimental results demonstrate that the extra
computational cost of our scheme is acceptable through theoretical and empirical evaluations.
Additionally, experimental results show that prediction accuracy does not decrease after model
sharing in our scheme.

7. Conclusion and Future Work

7.1. Conclusion

In this paper, we make the first attempt to design a privacy-preserving and fair scheme for deep
learning inference service under publicly verifiable covert security setting. Focusing on protecting
the privacy of sensitive input data of the client and the pre-trained model parameters of the server,
we carefully analyze the merits and deficiencies of related works to define the problem of deep learning
inference service scheme. Then, we propose a novel approach based on secure three-party computation
and making commitments to solve the problem. The security analysis demonstrates that our scheme
has the following desirable security properties: input data privacy, model privacy and defamation
freeness. And the experimental results verify that our scheme is able to achieve the same prediction
accuracy (up to 99%) as the pre-trained model while providing privacy and fairness guarantees.
We also explore the effects of pre-trained model accuracy, the ratio of test cases and the key length of
RSA signature respectively. Experimental results show that the higher pre-trained model accuracy is,
the higher computational cost is: when the accuracy of pre-trained model accuracy grows from 98% to
99%, the total computational time is 0.808 s higher for 100 input images in our scheme. And the higher
ratio of test cases is, the higher computational cost is: when the ratio of test cases rises from 1% to 2%,
the total computational time is 2.089 s higher. Furthermore, the larger key length of RSA signature is,
the higher computational cost is: when the key length of RSA signature increases from 1024 to 4086,
the total computational time is 10.42 s higher. So we suggest that len = 2048 is proper considering the
balance of security and computational cost. The results are quite reasonable intuitively and the extra
computational costs of our scheme is acceptable.

7.2. Limits and Suggestions for Future Works

The deep neural network used for verifying our scheme in implementation is a medium scale
CNN. The feasibility study of our scheme on large scale and various kinds of deep neural networks
are the future works. We believe that the design rationale and the solution developed in this paper
will motivate more research on privacy-preserving and fair deep learning inference service.
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Appendix A

Table A1. Notations.

Symbol Meaning

C the client (data provider and service consumer)
S the server (model provider)

W1, W2, W3 three workers (computation implementers)
〈X〉 the input data set that client C holds

k the number of test cases
〈x〉 test cases data set
〈y〉 the labels of 〈x〉
m the number of input data items that C shares
Ij the index of jth test case
Lj the corresponding label of jth test case

share_data_com the commitment of the shared data
SignC(∗) the signature of input of C
hash(∗) the hash value of input
|| the operation of concatenate strings
λ the model accuracy threshold

share_model_com the commitment of the shared model
model_params the parameter values of the shared model

〈Y〉i the inference result Wi obtains
〈X〉i the shared input data worker Wi gets
yin intermediate inference result
n the number of test cases judged correctly
〈Y〉 the recovered output of inference
Ad a malicious adversary
Sim a simulator set to simulate Ad in the ideal world

Scheme 1 our scheme
Scheme 2 scheme proposed in Reference [31]

ma pre-trained model accuracy
len the key length of RSA signature
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