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ABSTRACT The emergence of new classes of HPC applications and usage models, such as real-time
HPC and cloud HPC, coupled with the increasingly heterogeneous nature of HPC architectures, requires
a renewed investigation of memory management solutions. Traditionally, memory is shared by an operating
system using segmentation and paging techniques. At the same time, new classes of applications require
Quality of Service (QoS) guarantees. As such, the typical practice of reserving a subset of the supercomputer
to a single application becomes less attractive, leading to the exploration of cloud technologies. In this
context, a viable scenario is that of multiple applications, with different QoS levels, coexisting on the same
deeply heterogeneous HPC infrastructure and sharing resources. However, for this scenario to succeed in
practice, resources, including memory, need to be allocated with a vision that includes both the application
requirements and the current and future state of the overall system. In this survey, challenges of memory
management in HPC and Cloud Computing, different memory management systems and optimisation

techniques to increase memory utilisation are discussed in detail.

INDEX TERMS Clouds, high performance computing, memory management, resource management.

I. INTRODUCTION

The desire to achieve Exascale leads to the rapid development
of high-performance computing at the hardware, software
and application levels. At the hardware level, heterogeneity
is becoming the main trend towards higher net performance
and, more importantly for Exascale, performance per watt,
as evidenced by the dominance of heterogeneous architec-
tures in the Top500' and Green500° lists. On the application
side, new domains appear that previously lacked access to
HPC resources. While traditional applications of meteorol-
ogy, oil and gas, seismology, or aero- and hydrodynamics
still dominate, the Cloud HPC [1] is now accessed also by
small and medium-sized enterprises [2]. Thus, the traditional
HPC scenario with running batch jobs on separate nodes is
replaced by a new scenario in which several applications with
different QoS levels coexist in the same deeply heteroge-
neous HPC infrastructure and share resources. In this context,
time-critical applications, such as financial analytics, online
video transcoding and medical imaging, require predictable
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performance, which is contrary to the traditional need to
maximise resource utilisation while minimising power con-
sumption.

Moreover, moving HPC to the Cloud requires taking into
account the different resource optimisation targets inherent
to the HPC and Cloud Computing environments. The cloud
aims to serve applications on a reduced amount of available
hardware resources using virtualisation technologies in order
to achieve economies of scale. Recent studies on the resource
management in the Cloud have focused on the virtualisation
techniques [3], such as isolation between Virtual Machines
(VMs) and reducing VM overhead, to increase scalability
and performance. Unlike cloud services, HPC environments
need to maximise the interconnect performance. Thus, HPC
cloud resources need to provide both scalability and high
performance. Research in HPC aims at finding this balance
and at using a unified manager for both Cloud and HPC
targets [4].

In this survey, we first emphasise the importance of mem-
ory optimisation in supporting the Exascale of the future,
and we then describe the scope of memory management in
HPC and Cloud. We mainly focus on the analysis of different
memory management techniques used to achieve the effective
management of memory resources on the different layers of
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hardware/software stack. Some challenges in current research
are highlighted to motivate future research directions. This
survey does not describe each algorithm in detail.

The rest of the paper is organised as follows. The
role of memory management systems is discussed in
Section II. Section III reports some past related surveys.
Sections IV and V present a broad classification of memory
management techniques in HPC and in Cloud Computing,
respectively. Finally, we discuss open problems and future
research directions of memory management in Section VI and
offer some conclusions in Section VII.

Il. SCOPE OF MEMORY MANAGEMENT

Traditionally, HPC systems are designed in a way that all
nodes can run at peak performance simultaneously. It allows
performing computational intensive applications and bench-
marks, such as High-Performance Linpack, with maximum
performance. Such systems are built on a close interaction
between CPU and memory. When the system is scaled,
the CPUs and the memory, since they are physically cou-
pled, they get upgraded proportionally, thereby keeping
the processor-memory ratio constant. However, the memory
bandwidth based on the traditional processor-memory inter-
connection technology will limit also the performance of
heterogeneous architectures with accelerators. In this case,
the memory in fact consumed at a higher rate, proportionally
to their processing capabilities [5]. The current trend in HPC
system design is to increase the number of memory channels
per CPU and the number of I/Os in each double data rate
(DDR) memory generation. This will increase the price and
the memory system power consumption [6]. Modern HPC
architectures meet new challenges.

A. TOWARDS EXASCALE COMPUTING

In the last decade, various researchers have worked to over-
come Exascale challenges. The request for more complex
computational resources was indicated in the International
Exascale Software Project roadmap [7]. Increasing the num-
ber of cores per node is a traditional way to increase com-
putational performance. The roadmap indicated the need for
a wider use of heterogeneous nodes that combine stream-
based cores with traditional cores based on load/store. Also,
it was noticed that in addition to increasing the complexity
of the computational resources, the heterogeneous architec-
ture complicates the programming models and languages
in order to provide the efficient resources sharing (e.g. the
memory bus). The study of data locality was appointed as
one of the directions of the system software development
since it can have a much significant impact on performance
when used in systems with a complex memory hierarchy.
Machines were expected to have deep and non-coherent
memory hierarchies. The locality-aware scheduling in highly
NUMA memory architectures would have demonstrated how
to use them. By 2013, such runtime systems should have
been developed. A dynamic runtime management system
for all types of resources, such as cores, bandwidth, logical
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and physical memory or storage (i.e., data replication man-
agement, coherency and consistency, layout changes more
suitable for specific cores/accelerators), was announced to be
completed by 2019 year.

The importance of new memory management solutions has
also been described in the report on crosscutting technolo-
gies for computing at the exascale level [8]. The memory
management was seen as a significant challenge for exascale
science applications due to deeper, complex memory hierar-
chies and relatively smaller capacities. A complex memory
hierarchy expected at the exascale requires tools and inter-
faces to manage and control memory for runtime systems, and
to provide information to assist the compiler in optimising
memory management. A promising way to deal with mem-
ory complexity issues was to base it on dynamic, latency-
tolerant approaches. The following two main challenges were
highlighted. On-Chip Memory: Given the importance of
minimising unnecessary data movement, the ability to allow
software control of data movement for performance-critical
kernels would be useful. Methods that can coexist with
conventional, automatically managed caches are important
because an incremental porting path is required. Global
Addressing: Message passing probably can continue to be
used for internode communication in exascale systems, but it
is not practical for interprocessor communication at billion-
way parallelism. Global memory addressing is preferred over
cache-coherence for managing fine-grained computation and
data movement on-chip [8].

According to the survey looking at the challenges of the
high-performance computing scaling challenges [9], the com-
plexity of an application and system software will continue to
grow in several dimensions. In the specific case of memory
management, it is expected that both homogeneous and het-
erogeneous designs would probably have multiple levels of
memory; these hierarchical memories would affect the com-
plexity of the software. The challenge proposed to the soft-
ware developer is to find the most efficient way to utilise the
different memory types, as well as to minimise the movement
of data within the hierarchy, due to the NUMA nature of the
hierarchy and the different types of memory. Moreover, there
are clear similarities in HPC and Cloud Computing for what
concerns different architectural and software issues, such as
component rightsizing and optimisation, energy management
and efficiency, and programming efficiency.

The recent crosscut report of exascale requirements
reviews held by Advanced Scientific Computing Research
program [10] highlighted the extreme-scale systems that will
be delivered in 8 to 10 years, and that will offer unprecedented
compute power and challenging parallelism. Relatively slow
interconnects between nodes become the main challenge for
exascale machines that will contain millions of heteroge-
neous cores with deep memory hierarchies. The report dis-
cusses memory issues that significantly complicate software
development, such as the need for explicit control of data
movement, depth and types of memory and burst buffers.
At the same time, planning and distribution policies are also

VOLUME 7, 2019



A. Pupykina, G. Agosta: Survey of Memory Management Techniques for HPC and Cloud Computing

IEEE Access

complicated by the need to support extra functionality in
modern workflows, especially data analysis requirements:
real-time, pseudo-real time, collaborative planning, variable
work requirements, and allocations based on other resources,
such as disk and memory. In real simulations in nuclear astro-
physics, deep memory hierarchies were expected to present
significant challenges because large, multidimensional data
structures are ubiquitous in astrophysical implementations.
So the way the data structure is organised in memory is
essential to ensure effective memory accessibility (for exam-
ple, for vectorisation) and memory allocation. Problems with
memory allocation include the placement of data structures
in certain levels of the memory hierarchy to ensure the best
locality. It was noted that the nuclear physics community
needs a portable way without direct compiler support to effec-
tively manage the memory layout and the memory allocation.
Memory management libraries were proposed as probably
the best method. Fully ceiding memory management solu-
tions in runtime systems were found ineffective since the
requirements for layout and placement are physically moti-
vated and can depend on time.

B. HPC IN THE CLOUD

Another challenging research direction in HPC is moving
HPC to the Cloud, that is, the efficient use of cloud resources
to run HPC applications. There are three ways in which the
cloud abstraction can be used in the HPC context [11]:
HPC in the cloud: moving HPC applications to current cloud
platforms; HPC plus cloud addition HPC resources with
cloud services; HPC as a service (HPCaaS): exposing HPC
resources using cloud services. While HPC architectures have
become more heterogeneous by employing various types of
accelerators, such as NVIDIA GPUs, Intel Xeon Phis, FPGA
based, cloud platforms mostly employ homogeneous archi-
tectures. Nowadays, vendors, such as Amazon (P2, P3, G3,
F1 instances of Amazon EC2 3), provide users with access to
heterogeneous cloud architectures.

The main issue of porting HPC applications to the cloud
environment depends on the difference between the require-
ments and workflow of the traditional cloud services appli-
cations and those of HPC applications. Traditionally, HPC
applications tend to require a higher amount of computing
resources (CPU, memory, network bandwidth) than cloud
services. Regarding the difference in the workflow, HPC
applications are often executed in batches, rather than launch-
ing individual jobs in a 24/7 environment, which is instead
typical for Clouds. Therefore, moving HPC applications to
cloud platforms requires an optimisation of the resource allo-
cation that takes into account the specific HPC application
features.

Efficient management of shared resources, such as mem-
ory, CPU, storage, is a crucial issue in cloud computing. Here,
the client requires resources on-demand, thus making the
behaviour highly dynamic. Resource management in cloud is

3 https://aws.amazon.com/ec2/instance-types/
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a complex process that combines matching resources to appli-
cations according to the requested requirements, scheduling,
allocating those resources, monitoring them over time and
load balancing in order to run applications as efficiently as
possible. The major memory challenge in cloud computing
consists in the imbalance of memory usages in each node.
Cloud systems serve applications with dynamic, heteroge-
neous and complex memory usages. Due to the presence
of data-intensive workloads, such as in-memory databases,
data caching, bioinformatics, and graph processing, avail-
able free memory may vary widely across cloud nodes. The
trade-off between significantly increasing the memory capac-
ity requirements for memory-intensive applications and free
memory on distributed nodes is addressed by rightsizing
memory allocation and exposing a global memory bank to
all machines. This increases the effective amount of memory.

C. MEMORY MANAGEMENT FUNCTIONALITY

The memory management (MM) system runs as a separate
service or as a part of the runtime management system on
Service Node (SN) and it controls memory allocation on
the Computational Nodes (CN). It deals with the following
issues:

o choosing the most suitable memory according to the
allocated processing elements;

« enabling concurrent, thread-safe memory allocation and
deallocation while avoiding fragmentation;

o performing translation from virtual to physical
addresses, and vice versa;

o performing runtime optimisation.

Choosing the most suitable memory In order to select
the best memory modules, the memory manager takes into
account the following search criteria:

« bandwidth between the allocated processing elements

and the memory module;

« latency of the memory module;

o direction of data transfer (in/out);

« space available on the module;

« load on routing and ports.

Actual criteria are defined depending on the QoS require-
ments, which are provided to the memory manager by the
runtime resource manager. Furthermore, depending on the
target architecture, certain characteristics may change at run-
time. In general, memory management systems are based
on an algorithm that takes runtime decisions on the basis
of continuously updated information about the state of the
resources and that aims to:

« allocate the buffer in memory unit near the processing
unit and leave memory units free near unused processing
units;

« leave free spaces for allocation of high priority requests.

Concurrent, thread-safe memory allocation and deallo-
cation. At present, there are many implementations of the
malloc function, each one with its own strengths and weak-
nesses. In general, memory allocation in Clouds is managed
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by the OS when it is executed on the virtual machine. In HPC
systems, control on memory allocation can be taken by the
OS or by the platform-dependent library.

Runtime optimisation. If there is free memory, the memory
manager could evaluate the possibility to migrate the data
of running kernels to more suitable memory modules. This
would allow the memory allocator to optimise the perfor-
mance of already running kernels and to free memory for
higher priority applications; however, the benefits of migra-
tion should be carefully evaluated, because the kernel that
uses the to-be-migrated data must be stopped while the data
is moved.

Ill. RELEVANT SURVEYS

The importance of resource management in HPC, HPC in the
Cloud and Cloud Computing and the relevant solutions were
discussed in several surveys. The Energy-Efficient High-
Performance-Computing Working-Group (EE HPC WGQG)
Energy and Power Aware Job Scheduling and Resource Man-
agement (EPA JSRM) team conducted comprehensive inter-
views and identified the energy- and power-aware scheduling
and resource management solutions that are used on the major
HPC sites [12]. This report showed different trends in power
consumption minimisation, such as the job-killing when the
power limit is exceeded, the analysis of information obtained
from the power system monitoring and the forecast of energy
consumption for each job. The impact of the memory system
on the power consumption is out of scope here.

Research challenges, including resource management
aspects for HPC Cloud, were surveyed in [4]. Overall most
works described in this survey were motivated by net-
work and virtualisation issues from current cloud platforms.
Moreover, it was indicated that performance prediction is key
to allocate resources.

Several studies on memory and device disaggregation are
surveyed in [13]. In addition, an alternative vision on the
future directions for devices disaggregation is proposed.

Survey [14], for instance, emphasises the importance of the
power management solutions in the Cloud and it shows the
place of memory components in the total power consump-
tion. Power Scalable Memories are less commonly viewed as
components designed to minimise the energy consumption.
However, works on memory management energy reduction
are also mentioned in this survey.

Techniques for efficient resource provision on the cloud
platforms were discussed in [15]. The problem was reduced
to that of placing the virtual machines to support the requested
services. More than 150 articles were surveyed and the state
of art of the algorithms, such as virtual machine migration,
forecast methods, stability and availability, to realise these
objectives, was presented.

Forecast models for resources provisioning were surveyed
in [16]. Prediction models take into account different types
of resources, which include physical resources such as mem-
ory, storage, servers, processors and networking. Researches
suggest not to ignore the correlation among resources by
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focusing on one or two of them. [17] discusses and clas-
sifies popular prediction techniques in the general context
of computing systems with an emphasis on multicore pro-
cessors. These prediction techniques are used widely from
predicting simple attributes, such as buffer utilisation in
networks-onchip, to predicting complex relationship affect-
ing the power usage effectiveness in data centres.

Survey [18] focuses on different techniques of memory
partitioning and management across multiple guest OSs in
a virtualised environment where a hypervisor controls and
manages the memory sub-system of the machine. Mem-
ory virtualisation solutions, implemented in software and
with hardware assistance, are evaluated against virtualisation
requirements.

The particular case of resource management for hard and
soft real-time multi-/many-core systems are described in [19].
The resource allocation strategies that satisfy real-time con-
straints were analysed, and experiments were carried out to
compare execution time, energy consumption and utilisation.

In contrast to the surveys mentioned above, this survey
provides a broad summary of the state-of-art techniques in
HPC and Cloud used for memory optimisation, concentrating
on the wide number of objectives to address the different
layers of resource management. To the best of our knowledge,
this survey is the first attempt to put together all direction of
the memory optimisation techniques both in HPC and in the
Cloud.

IV. MEMORY MANAGEMENT TECHNIQUES IN HPC

OS (Linux) based MM is a traditional technology for
many modern HPC systems. It offers wide functionalities,
general applicability and easy of use for application devel-
opers. Linux based MM allows to achieve sufficient perfor-
mance improvement in properly configured HPC systems and
requires less effort to adjust various runtime management
systems and standalone MM. However, as it was mentioned
in the previous section, there is a trend to complicate the
architecture of the HPC system, which requires more OS
functionality. Moreover, the goal of traditional OS resources
optimisation, that is increasing performance, directly con-
flicts with one of the HPC traditional target scenarios that pro-
vide consistent performance to deal with a heavy workload.
To satisfy special functional needs, complex heterogeneous
and configurable architectures require software support at the
runtime system level. Recent deeply heterogeneous memory
systems require additional hardware support.

Dynamic memory allocation is commonly used within tra-
ditional HPC systems and it is usually performed by the OS.
Furthermore, OS-based dynamic memory allocation does not
require changes in common applications. Nevertheless, het-
erogeneous programming models, such as OpenCL, require
applications to declare memory needs before offloading a
computation. This is caused by heterogeneity in both process-
ing units and memory devices.

To cope with the limited number of memory accesses,
which causes the decrease of the modern heterogeneous
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systems performance, NUMA architectures can allocate a
separate memory to perform computational processes and,
at the same time, provide a unification of the use of different
kinds of memory devices. There is ongoing research on cache
optimisation and on the use of scratchpad memory.
Surveyed studies have a combination of different objec-
tives and hardware/software technologies that depends on
the target architecture. The brief overview of the surveyed
memory management techniques is presented in Figure 1.

| Application | | Applicationp,

_I MPI |_| OpenCL |_| NN support |_

Programming Model

_I Global Address
Space

H Partitioned GAS |-| Active GAS |—

|Access Patterns Memory locality |

Policies

Resource

Management
| Allocation | | Migration |
High Non- Resistive Hybrid memory
DDR bandwidth volatile random-access
memory memory memory NVM

FIGURE 1. Layers of the surveyed memory management techniques
in HPC.

A. ACCESS PATTERNS

Regarding the limitation of the data read and write latency
for the eDRAM integrated to the same silicon chip with the
processing logic, [20] aims at hiding the on-chip commu-
nication mechanism between the applications local memory
management. The local memory management system called
Pattern Aware Memory System (PAMS) operates indepen-
dently from the master core. It accelerates both static and
dynamic data structures and their access patterns based on
the information provided by pre-compiled pattern descrip-
tors. In addition to this, PAMS controls data movements
between the main and the scratchpad memories. Sharing-
Aware Memory Management Unit (SAMMU) [21] analyses
the memory access behaviour on the hardware level. It also
provides information to the operating system to perform an
online thread- and data-mapping to increase the locality, thus
improving performance. SAMMU extends the operations of
the MMU to gather information about the threads and NUMA
nodes that accessed the particular physical pages without
stalling the application execution.

A general scheme of the access pattern usage is shown
in Figure 2. The mechanism that utilises hardware event
counters or pre-compiled pattern descriptors to track specific
events allows estimating the impact caused by contention on
share hardware resources. Pattern Aware Memory Controller
is in charge to optimise memory allocation and can be con-
sidered on the different levels of the memory hierarchy.
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FIGURE 2. General scheme of the pattern-aware memory systems.

B. MIGRATION
The memory pages management approach for various hybrid
memories based on page migrations is presented in [22].
The utility-based hybrid memory management (UH-MEM)
systematically estimates both the single application benefits
and the overall system benefits of migrating a page between
different memory types. Decisions on data placement are
based on the estimated benefits. NUMA, that is an abstrac-
tion used to expose heterogeneous memory, has one major
issue. Data migration between devices is only resolved to
page granularity. Other data allocated on the same pages are
migrated as well. A solution based on re-purposing arena-
based heap management to keep locality among related data
structures that are used together is discussed in [23]. Two
mechanisms available on modern Linux systems for migrat-
ing data between physical locations are analysed in [24].
Memory migration mechanisms within the Linux kernel are
far behind a simple user-space memory copy, and, with
additional software degradation, a regular NUMA system
can reasonably approach the bandwidth of a deep-memory
architecture. Experiments carried out on this approximation
platform show that decreasing the number of worker threads
and using them for data migration instead allows getting a
significant speed-up. Reference [25] proposed an operating
system to assist the hierarchical memory management system
designed for the manycore co-processor based heterogeneous
architectures. The co-processor’s RAM is controlled entirely
by the OS kernel, so the OS is in charge of orchestrating
the data movement between the host and the device and of
updating the process virtual memory address space.

The main motivation for the memory migration is that if
a memory page is not migrated along with a task that is
migrated to another node, accessing the page on the orig-
inal node incurs remote memory access. Besides, memory
migration is applied between different types of memory,
which is especially essential for memory-intensive appli-
cations. A general scheme of the memory migration with
page granularity is shown in Figure 3. The migration can be
managed both by the OS, as in [25] and [24], and by the
hardware, as in [24] and [22]. However, page migration is
an expensive operation and can lead to additional overhead
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Processing/Application
Unit A2

i

Migration
Controller

Memory Controller

@ Page B

Small Fast Memory Bank

Page B

Bank

Largre Slow Memory

FIGURE 3. General scheme of the memory migration.

for memory access due to page granularity. The proposed
approaches consider various ways to reduce migration costs.

C. MEMORY LOCALITY

A way to expose processor and memory locality information
in the Linux kernel and in user-space libraries such as the
hwloc software project was discussed in [26]. An exten-
sion of the hierarchical tree to include upcoming heteroge-
neous memory architectures and memory-side caches was
proposed. This solution is convenient to find local resources
and to apply recursive top-down placement algorithms while
correctly exposing the topology of these new architectures.
Flexible and portable memory allocation toolkit hexe [27]
divides memory allocation into three parts: allocating a vir-
tual address, mapping a virtual address to a physical memory
class that is under control of the toolkit, and mapping a
virtual address to an exact physical memory page that will
be used by the OS. The initialisation of the hexe runtime
system and the topology detection are initially performed on
the OS level using hwloc library. Hexe is responsible for a
more comprehensive topology and for architectural feature
detection. An extension of the heap management system
jemalloc in conjunction with memkind library was proposed
in [28]. The goal here is to enable fine-grained client control
over memory properties and to reuse memory modified by
expensive system calls for the highly threaded environment.
A minor modification of the Linux kernel for more intuitive
control of the placement of memory pages was proposed
in [29]. Generally, NUMA is based on a single distance metric
between all domains. In addition, other metrics characterising
relationships between nodes were included, such as latency,
bandwidth, capacity. The NUMA distance becomes a two-
dimensional metric, since this approach matches the source
node with the CPU performing a querying process with the
ordered list of NUMA nodes with memory devices.

The performance of the application is significally affected
by the explicit control of the locality of physical memory.
Furthermore, being able to allocate memory by taking into
account memory locality becomes imperative with upcoming
new memory technologies. A general scheme of the mem-
ory locality usage is shown in Figure 3. Memory allocation
requires not only knowledge about memory hierarchy and
configuration but also detailed application analysis. Current
research shows that the automatic use of memory locality is
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FIGURE 5. Overview of the memory partitioning in HPC.

still not as efficient as having explicit instructions from the
application developer that might require rewriting the code
for each different architecture.

D. PARTITIONS

Adapting the Linux MM in order to subdivide NUMA mem-
ory nodes,thus improving the partitioning of resources among
processes running on the same node, was done by [30].
They extend the Linux kernel with additional resource control
capabilities based on control groups (cgroups) to maximise
resource utilisation with HPC workloads. Linux lacks con-
trol over physical memory location, making it non-effective
for deeply heterogeneous hierarchical memory. To overcome
this limitation, physical NUMA nodes were partitioned into
arbitrary logical blocks at a user-defined granularity and they
were then presented to the rest of the system as separate
NUMA nodes. High Performance Memory Mapping and
Allocation Platform based on bypassing Linux memory man-
agement presented in [31] allow to dynamically partition a
node physical memory and independently manage partitions
in a separate and isolated resource management layer. HPC
applications running on a consolidated platform use a spe-
cialised lightweight memory management framework explic-
itly designed around the requirements of HPC applications.

E. POLICIES

In [32] it was noticed that significant performance improve-
ments could be achieved with data mapping in NUMA
architectures. Generally, locality-based policies improve
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performance more than policies that are based on mem-
ory balance. A mixed policy was proposed to address
the trade-off between optimising locality and balancing
memory controllers. In [33] it was demonstrated that the
performance-focused data placement technique might result
in lower overall reliability. The static, dynamic, and pro-
gram annotation-based reliability-aware data placement tech-
niques were proposed. The reliability-aware data placement
approach analyses memory pages for their hotness (e.g., how
"active’ the page is currently in the cache) and vulnera-
bility at runtime. To avoid prior profiling, the reliability-
aware dynamic migration schemes were developed. The
co-designed hardware-software mechanism HpMC [34]
implements a policy switching engine based on the temporal
locality of applications and several new components that
extend a single-level memory controller to facilitate switch-
ing policies and migrating pages. The periodical analysis of
the temporal locality guides the switch between a hierarchical
inclusive memory system PCache and a flat exclusive mem-
ory system HRank to deliver high performance and energy
efficiency.

dynamic ]

annotation-based

FIGURE 6. Taxonomy of the proposed policies.

Policies

Traditional performance-enhancing mechanisms rely on
increasing the locality of memory accesses. In addition to
the locality-based techniques, recent studies have also pro-
posed to consider several factors when performing memory
mapping, such as balance and reliability, to avoid overload-
ing and guarantee fault tolerance. A brief taxonomy of the
proposed policies is presented in Figure 6. Taking all factors
into account while performing the mapping can result in more
significant improvements than when relying on a single met-
ric only. However, it makes policy computationally expensive
and error-prone. Besides, most of the current techniques con-
sider a single application. Since real HPC systems execute
several applications at the same time, the mapping decisions
can conflict between them.

F. HIGH BANDWIDTH MEMORY

High bandwidth memory (HBM) is a new memory tech-
nology that allows a significant performance improvement
on bandwidth-bound applications. However, more bandwidth
does not always bring a better execution time, especially
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when it is allocated without enough concurrency in the mem-
ory system to support it [35]. In [36], the HBM-DRAM
memory system was analysed in terms of performance ben-
efits of representative HPC applications executions. Such
memory architecture consists in the HBM implemented with
3D-stacked Multi-Channel DRAM (MCDRAM) and conven-
tional DRAM. These are significantly different in terms of
capacity, bandwidth and latency. The HBM-DRAM system
was configured in flat (as an additional NUMA node), cache
and hybrid mode. If the intra-node communicator includes a
sufficient number of processes or if the buffer size requested
is large enough, Enhanced memory management schemes for
HBM based on MCDRAM presented in [37] allocate user and
shared buffers to the high-bandwidth on-package memory.
In addition to this, they reduce the overheads of memory
mapping. A runtime-aware prefetching mechanism presented
in [38] allows within the CHARM++ runtime system to
prefetch and to evict data heterogeneous memory nodes when
the working set does not fit within HBM. The proposed
mechanism was investigated for bandwidth-sensitive HPC
applications on Intel Xeon Phi KNL. Allocating memory-
intensive workloads among MCDRAM and DDR memory
resources in Intel’s manycore processor KNL using different
heterogeneous memory modes is described in [39]. An intel-
ligent scheduling approach based on profiled resource usage
patterns showed that the actual performance of multiple mes-
sage passing interface workloads could be improved in terms
of the execution time and system utilisation.
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FIGURE 7. Overview of the high bandwidth memory modes.

Knowing the application and the architecture’s topol-
ogy is needed to use different memory modes (shown in
Figure 7). The configuration which are better fine-tuned,
have a significant improvement in performance. This, how-
ever, comes at the cost of non-portable optimisations. At the
same time, the basic configurations that do not require appli-
cation or runtime changes can offer less performance. In addi-
tion to the configuration, HBM is challenging in terms of
using in programming models. For instance, communication
libraries such as MPI can use HBM to allocate and manage
internal memory objects for achieving efficient inter-node
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communication support. However, this affects the available
memory budget, reducing the amount of memory accessible
to the user data and, potentially, reducing the overall perfor-
mance. In some studies, HBM has been used as a cache for the
slower memory. One of the critical advantages of a caching
approach is that existing applications can run unmodified.
Accessing and storing a large number of tags are challenging
in the multi-gigabyte cache managing.

T
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FIGURE 8. General scheme of the global address space.
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FIGURE 9. General scheme of the partitioned global address space.

G. GLOBAL ADDRESS SPACE

Collaborating European projects united by a common goal:
ExaNoDe, ExaNeSt and ECOSCALE, propose the memory
model that enabled a real global address space (GAS), where
data are actually shared between multiple partitions with-
out the need to perform memory transfers( [40]-[43]). The
ExaNoDe operating system is a NUMA-aware Linux that
supports dynamic distributed memory management and user-
level socket-based communication across servers to offer
the benefits of UNIMEM system architecture. UNIMEM
provides data movement mechanisms and integration with
peripheral devices, allowing to use memory hierarchy for
the OS by accessing the light RDMA operations. A general
scheme of the GAS is shown in Figure 8. A partitioned
GAS (PGAS) introduced in [44] is a non-uniform global
address space where the representation of a global address
statically encodes the physical address of the memory. PGAS
approaches can be seen as a compromise between expos-
ing locality and presenting global access to data. A general
scheme of the PGAS is shown in Figure 9. Address transla-
tion in PGAS uses static address mappings that are efficient
for RDMA, but that limit the ability for the computation
and communication load balancing. Highly-scalable PGAS
memory-centric system architecture where threads migrate to
the data they access is presented in [45]. A portion of the
address space marked as “Replicated” is used to ensure data
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locality and it is accessible via a programming model. The
instruction code is always maintained in replicated memory
so that a thread can always find its code locally without
knowing where the thread is executing. Active GAS (AGAS)
was designed by [46] for a message-driven runtime system to
dynamically balance load and data during execution. A gen-
eral scheme of the AGAS is shown in Figure 10. AGAS
allows performing hardware-controlled dynamic mapping,
thanks to the fact that distributed shared memory systems
create logical shared address space using distributed memory
hardware at the OS level. Additionally, a network-managed
global virtual memory where the AGAS runtime set-ups the
network fabric to adaptively route messages based on mem-
ory locations rather than host identifiers was proposed.

For the memory accessed via GAS the need for cache
coherency is eliminated since the data does not move.
However, GAS complicates memory access because all mem-
ory accesses are remote, even if memory is located on a
local node. On the other hand, PGAS provide a more-scalable
solution by tightly coupling threads to memory locations.
However, application classes that can utilise PGAS efficiently
are limited due to difficulty in designing algorithms around
the concept of stationary-threads.

H. ALLOCATION

The resource allocation and scheduling techniques can be
applied as a part of MM in order to choose a specific
memory unit for the task. Recent studies on the shared
resource-aware scheduling and task allocation methods for
HPC systems have focused on locality- [47], energy- [48],
performance- [49], resilience- [50] aware usage planning of
the processors and accelerators. The power-aware threads
co-scheduling approach for the multicore processor pre-
sented in [51] takes into account an effect of the shared
last-level cache on the performance degradation. Recent
advances in memory allocation for homogeneous multi-
core architectures have focused on removing the need for
application-specific allocators and on improving scalabil-
ity and allocation speed [52]. The work presented in [53]
addresses the adoption of dynamic memory management for
the design of many-accelerator FPGA-based systems, thus
allowing each accelerator to dynamically adapt its allocated
memory according to the runtime memory requirements.
It supports fully-parallel memory access paths by grouping
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block RAM (BRAM) modules into unique memory banks,
named heaps, each managed by an allocator. The approach
proves effective in increasing FPGA density.

The current research trend in memory allocation is to
perform an online characterisation of the memory access
behaviour and performing page migrations to improve the
behaviour. Data placement for software-controlled on-chip
memory requires more complex design solutions, where the
characteristics of FPGA computation, memory access pat-
terns, as well as the architectural properties, need to be explic-
itly considered. FPGAs come with large on-chip memory
resource these days. However, the limited dynamic mem-
ory management (DMM) support does not allow application
developers to maximise the utilisation of the on-chip memory
resources during run time and thus achieve higher perfor-
mance. CPU-based solutions, such as garbage collection and
slab allocation, lead to significant resource overhead if use
on FPGA directly. Recent research on DMM support for
FPGA deal with reducing high latency of memory allocation.
Another challenge in on-chip memory allocation is synthe-
sising dynamic data structures that require either particular
implementation of an application-specific memory manage-
ment scheme or resolving the dynamic memory usage using
static allocations.

Application
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Memory
Controller Migration

NVM Controller DRAM
Controller Controller
Page l Page l

NVM DIMM Bank Bank| DRAM DIMM

FIGURE 11. General scheme of the hybrid memory.

I. HYBRID MEMORIES

Hybrid memories that include DRAM and non-volatile mem-
ory (NVM) to extend the main memory capacity are used for
large-memory applications. A general scheme of the hybrid
memory is presented in Figure 11. In order to eliminate
longer write latencies and higher write energies in NVMs,
an offline/online placement scheme that uses access profiling
was proposed in [54]. Since it was noticed that heap objects,
allocated in the same place in the code, share similar access
behaviours, in this approach, the global access characteristics
of heap objects guide initial data placement.

Recent research evaluates the speed and endurance of
hybrid memories with DRAM and NVM and mainly focuses
on the identification of the hot/cold pages to move fre-
quently accessed (hot) pages from the slow NVM to the fast
DRAM to achieve higher performance and energy efficiency.
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However, a large number of invalid page migrations, where
the cost to migrate a page is larger than the performance
gain is prone not only to bring a huge overhead but also to
generate unnecessary writes on NVM. Most existing NVM
allocators focus on improving space utilisation and ignore the
wear-leveling problem of NVM cells, especially for the wear
leveling of memory cells within a page. Consequently, NVM
is still suffering from imbalanced wear of memory cells in the
same page.

J. NEURAL NETWORK AND DEEP LEARNING

In order to address the memory bottleneck that arises
while training deep learning (DL) models on HPC sys-
tems, Memory-centric deep learning system architecture was
proposed in [55]. The high-level deep learning framework
analyses the neural network (NN) data dependencies’ struc-
ture at compile-time and derives the data-dependencies of
memory-hungry deep neural network data. This information
is utilised by the runtime MM to schedule performance-
aware, software-managed memory overlaying operations
across the host-device memory to expand the reach of mem-
ory available for the training. The optimisation of the memory
needed for executing NN applications was considered in [56].
A software/hardware interface allows Resistive random-
access memory (RRAM) arrays [57] to be configured as
accelerators for NN applications or as normal memory for a
larger memory space dynamically. This solution provides the
advantages of using RRAM efficiency for NN computation
and the processing in-memory architecture to reduce the data
movement overhead.
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Processing
unit
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Memory node

DMA Unit

Memory controller

Memory DIMM [Memory DIMM
[

ReRAM

Memory subarray
Full function subarrays
Buffer subarrays

Protocol Encryption | | Compression
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FIGURE 12. General scheme of the memory architectures for NN
applications (a - memory hierarchy model, b - RRAM based architectures).

The trend in DL is to employ larger and deeper net-
works that lead to significant memory footprints. Modern DL
frameworks require users to fine-tune their memory usage so
that the training data of a deep neural network (DNN) fits
within the physical memory. Virtualising the memory usage
of DNNs enables all memory hierarchy to be utilised for
memory allocations. A general scheme of the memory archi-
tecture for NN applications is shown in Figure 12 (a). Despite
its merits, virtualising can acquire significant performance
overheads due to huge communication latency between
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memory layers. State of the art solutions commonly employ
bandwidth-optimised 3D stacked memories (such as HBM).
However, increasing the capacity of this on-package memory
is challenging. Furthermore, deploying DNN in embedded
systems requires the memory system to meet the energy
restrictions. As a memory solution for DNN, RRAM has
the advantage of non-volatility, low power consumption and
fast access speed. A general scheme of the RRAM memory
architecture is shown in Figure 12 (b). Although the RRAM-
based architectures achieved excellent results, there is still
room for improvement, such as the resolution of the RRAM
cells and the negative value storing.

K. PROGRAMMING MODELS

Being aware of the OpenCL performance portability issue,
OpenCL software optimisation techniques, including mem-
ory allocation and mapping, for efficient execution HPC
workload on embedded systems-on-chip (SoC) ARM Mali
GPU Compute Architecture was proposed in [58]. The
programmer effort required to manage NUMA-like two-
level memory organisation manually is described in [59].
The application programmer is encouraged to invoke the
TLM-malloc API for the subset of data structures and mem-
ory objects that are important. For the remaining memory
objects (including the function call stack, the code segments,
and other automatic memory items) a simple OS-based mech-
anism is assumed.

Recent research showed that programmer-driven memory
management is the quickest way to reach the target band-
width for the Exascale architecture. The high performance is
achieved only through manual code optimisation and tuning
and can not be reached by using only auto configurable mem-
ory systems. The main goal in optimising program models for
HPC is to provide optimal performance for all applications
in various workflows without any user intervention requires,
such as application changes based on the knowledge of the
low-level details of the hardware.

TABLE 1. Survey of memory management objectives in HPC.

Choosing [26] [29] [30] [33] [34] [40] [45]

the memory unit [54] [59]

Memory allocation [20] [27] [28] [30] [31] [36] [37] [38]

and deallocation [40] [52] [53] [58]

Memory mapping [20] [21] [27] [30] [31] [32] [40] [44] [58]
Memory access [20] [40] [44] [45] [46] [52] [53] [56]

Memory migration [22] [23] [24] [25] [33] [38] [40] [54]

Manage cache or
scratchpad memory [20] [26] [301 [36] [37]

Scheduling [25] [30] [38] [39] [40] [51] [55]

Surveyed research on Memory Management (MM) tech-
niques was summarised with respect to the functionality
objectives (Table 1), the memory methodology (Table 2) and
the evaluated outcome (Table 3). The overall taxonomy is
presented in the Figure 13.
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TABLE 2. Survey of memory management techniques in HPC.

OS modification
or/and extension
Middleware
(runtime systems
or/and platform
dependent libraries)
Hardware
Dynamic allocation
Static allocation
Multi-pattern
allocation

NUMA architecture

[21] [24] [25] [28] [29] [30] [31] [32] [36]
[37] [40] [52]

[20] [23] [26] [27] [33] [34] [36] [38]
[40] [45] [51] [53] [54] [55] [56] [58] [59]

[22] [33] [34] [36] [40] [46] [54] [55] [56]
[27] [28] [31] [36] [37] [38] [46]
[40] [58]

[20] [30]

[21] [23] [24] [25] [27] [29] [30] [31] [32]
[36] [37] [38] [39] [40] [44] [59]

[22] [52] [53] [54] [56] [58]

Unified memory
access
Hybrid memory
access
Cache

[26] [34] [39] [44]
[20] [36] [37] [39] [44] [51]

TABLE 3. Evaluated outcome.

performance’ | 10 21] [22] [23] [24] [25] [30] [32] [33] [36]
speed-up [38] [42] [46] [51] [52] [54] [55] [56] [58]
energy/

power [20] [22] [34] [45] [51] [54] [55] [56] [58]
ooy | 1241 1271 1341 [37) 411 1441

memory

utilisation/ [20] [52] [53] [59]

traffic

Manage cache/scratchpad }
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Honogeneous } NUMA ]
Multi pattern
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FIGURE 13. Memory management in HPC taxonomy.

V. MEMORY MANAGEMENT TECHNIQUES

IN CLOUD COMPUTING

The growth of the scientific workflows and of the datasets
and the complexity of computational multi-parametric mod-
els is pushing us to use the Cloud solutions. This requires
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MM adaptation for the efficient use of the novel workload
characteristics and resources. In contrast to the traditional
HPC architectures, the main resources provided by clouds are
VMs and storage areas. To perform an HPC application in the
Cloud, the execution of each task has to be scheduled to an
appropriate VMs.

Surveyed studies have a combination of different objec-
tives and used on various stage of resource management.
The brief overview of the survived memory management
techniques is presented in Figure 14.

| Applicationq || Applicationy | Applicationy,

VM | Local Memory VM | Local Memory

iy

Migration

Controller | | VM Scheduler|

Resource allocation |

Memory 3
VM allocation : Prediction Memory
Placement T Hypervisor Module Manager
— = s Shared
Pﬁgﬁ;gn | | Cache Module | Memor
Storage | P I N 1

FIGURE 14. Brief overview of the memory optimisation points in cloud.

A. SCHEDULING
Generally, scheduling is a decision-making process that
allows to distribute available resources among a number
of tasks by determining the order of execution. Scheduling
is a NP-complete problem, even for the simple scenarios.
Moreover scheduling in Cloud architectures is a bit more
complicated due to the heterogeneity of VMs and negative
impact of the transfers of the huge data between VMs.
Recent studies on scheduling in the Cloud were anal-
ysed from the MM techniques point of view. In [60] data
distribution and task distribution are defined as depen-
dent problems, and they are analysed together for efficient
scheduling. Data communication requirements between VMs
and storage nodes in addition to the computing and memory
resource demands are taken into account in the scheduling
approach proposed in [61]. Layers of the data communi-
cation requirements is presented in Figure 15. Scheduling
interdependent tasks and intermediate data within a system
with four level cache/memory hierarchies introduced in [62]
aims to optimise performance and energy consumption. The
scheduling approach introduced in [63] uses profiles which
are created on the machine learning models based on the
workflow profiling information along with resources that
were used during execution, such as CPU, memory, a number
of compute nodes, input file size. Virtual resources schedul-
ing techniques described in [64] use an energy consumption
model to perform VMs migration from the overloaded hosts
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FIGURE 16. Ant colony optimisation in scheduling.

to other hosts with lower resource utilisation or to idled hosts.
The responsibility of the scheduler in the VMs migration
is also evident in the approach presented in [65]. Predic-
tion model instructions are used to decide whether migra-
tion is needed, and the destination is determined using an
improved ant colony algorithm. A multi-objective optimisa-
tion scheduling method (PBACO) proposed in [66] is also
based on the ant colony algorithm. A resource cost model
includes two parts of the CPU and the memory, such as
the base cost and the cost associated with the transmis-
sion. The proposed approach achieves the multi-objective
optimisation for the optimal span, deadline, resource utili-
sation and user costs. This work focuses on two types of
resources, CPU and disk I/O bandwidth, but the approach
allows to scale the number of resources. The ant colony opti-
misation method, along with VM dynamic forecast schedul-
ing, was also used in [67]. Ant colony optimisation with
slave ants for scheduling tasks in cloud computing environ-
ments described in [68] aims at maximising the utilisation
of cloud servers. The proposed approach uses stored infor-
mation about CPU utilisation and memory usage provided
by the resource manager. Diversification and reinforcement
strategies with slave ants allow avoiding long paths whose
pheromones are wrongly accumulated by leading ants. Here,
to evaluate the pheromone level, solutions generated by the
first fit decreasing (FFD) algorithm are presented as the func-
tion of the memory loss of the particular solution. A general
scheme of the ant colony optimisation in cloud scheduling
is shown in Figure 16. Scheduling for Distributed Stream
Processing Systems (DSPS) in [69] was considered as two
interdependent parts, namely threads and resources allocation
and mapping threads to resources. The allocation part is in
charge of identifying the number of threads per task and
the number of resource slots allocated. The mapping part
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aims at assigning these task to the specific resource slots and
to meet the requirements. A dynamic resource scheduling
model based on the Max Min Fuzzy Inference is designed
in [70] for executing different types of cloud user requests.
Reference [71] shows that task scheduling heuristic with the
memory consumption balancing has a positive effect on the
number of machines required to complete a multi-frontal
solver at a given time. They propose the task agglomeration
heuristics where the amount of memory required to perform
a given subtree of the element partition tree is estimated.
If this falls below a defined threshold, then the subtree is
agglomerated into a single task. The aim of a task scheduling
policy based on the memory accesses distribution in the
time proposed in [72] is to prevent performance degrada-
tion. This approach uses per-task memory access monitor-
ing for memory access classification in order to schedule
a latency-sensitive task before bandwidth-sensitive tasks.
A genetic-based optimisation algorithm presented in [73]
uses a genetic-based algorithm for the task-core schedul-
ing along with Phase-change memory (PCM) configuration.
Aiming at green cloud computing, this approach provides a
PCM configuration that balanced the PCM memory perfor-
mance as well as the efficiency.

Scheduling has been traditionally considered as an
NP-complete optimisation problem with the execution time
as a single objective of interest. The complexity of the current
heterogeneous cloud systems, brought additional objectives,
such as energy consumption, operational costs, throughput,
makespan, fault tolerance, reliability, security, predictability,
elasticity. The challenge is that these objectives are often in
conflict with each other, requiring new complex algorithms
to obtain an optimal solution with regards to all conflicting
objectives. Heuristic and metaheuristic algorithms for task
scheduling in Cloud reduce the solution search space, con-
sequently, significantly improve efficiency. However, these
algorithms are time-consuming and, in some cases, return
local optimum solution due to imbalance between local and
global search. For instance, the common used ACO algo-
rithms still have the slow convergence speed and are easy to
fall into local optimum value. Besides, the quality of schedul-
ing produced by these algorithms still tightly depends on the
problem size and the number of objectives to be optimised.
Therefore, it is necessary to further and deeply study and
improve heuristic and metaheuristic algorithms along with
algorithms inspired by nature with better optimisation perfor-
mance. The majority of the scheduling algorithms focused on
the scheduling problem of jobs/tasks, but ignore the deploy-
ment of input data. However, the management of memory
resources and data movement are becoming more critical,
as the applications are becoming data-intensive. The schedul-
ing algorithms with data placement strategy will improve the
data locality.

B. RESOURCE AND USER ALLOCATION
The complexity of provisioning algorithms for homogeneous
resource allocation is already high and the computational
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time is long [74]. Further considerations on deeply hetero-
geneous resources add additional dimensions to the compu-
tation, which will significantly increase the complexity.

The stage of resources allocation in [64] is considered to
be responsible for allocating VMs to the hosts represented
as three dimensional cuboid with CPU, network bandwidth
and memory capacity of the host as axes. Heuristics based
on multi-dimensional vector bin packing problem for vir-
tual resource allocation was proposed. The allocation model
that deals with dispatching a new task to a VM, and with
allocating appropriate resources for the task is described
in [65]. Authors proposed to use the improved ant colony
algorithm to allocate running VM to those hosts that have
a large capacity of resources while running on low opera-
tional power. This approach allows to shut down redundant
hosts, thereby reducing energy consumption and improving
resource utilisation. In this study, two types of resources, CPU
and disk I/O bandwidth, were considered. However, it has
been illustrated that the number of resources can be increased.
In article [69] efficient resources allocation and mapping for
DSPSs over nodes or VMs of commodity clusters or Clouds
is addressed. For simplicity, the analysis, that is limited to
CPU and memory resources, can be scaled. The main idea is
to preferably map the full available slot for a bundle of tasks,
rather than allocate a single resource for each task. For all
partial bundle of unmapped tasks, the best-fit slot is selected,
such as the one whose sum of available CPUs and memory
is the smallest, albeit sufficient, to satisfy resource requests.
The resource provisioning through Markov Decision model
proposed in [70] only assigns the value as zero or one with
respect to the availability of resources and requirements
of resources. The input variables are the resource require-
ments (i.e. bandwidth, memory and CPU) and the resource
availability of VMs, respectively. The schedules algorithm
selects particular resources that are allocated to the cloud
users from the corresponding VM based on fuzzy theory
that was mentioned above. Resources allocation algorithm
presented in [75] starts by partitioning the workflow into
several task groups. Then the resource allocation step divides
VMs between determined partitions such that the resul-
tant allocation is envy-free Pareto-efficient by employing a
weighted version of the max-min fairness allocation policy.
The approach proposed in [76] is a three-stage methodology
that utilises a fully connected Neural Network to classify a
given application, calculates the performance-cost sensitiv-
ity of application and solves a bounded knapsack problem
using dynamic programming and finding a configuration that
maximises the performance per cost ratio. An autonomic
resource controller with a coordination technique based on
the fuzzy control approach is presented in [77]. The con-
troller dynamically adjusts the right amount of CPU and
memory required to meet the response time using the esti-
mated coefficient that determines the degree of influence
of CPU, memory, or both on the application performance
change. An approach described in [78] aims at increasing
the efficiency of memory utilisation through an efficient user
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allocation mechanism. The profile-oriented clustering algo-
rithm (POCA) positioned users with similar profiles into the
same application servers to share and save memory space by
reusing the application programs.

The goal of resources provisioning is to use the mini-
mum number of physical machines (PMs) to house a set of
given VMs. Classical bin-packing algorithms for resource
provisioning were modified to apply in the cloud environ-
ment to deal with the multi-dimensional resources (such as
CPU, memory), the different bin sizes (to represent the het-
erogeneity) and multi-objective optimisation functions (such
as energy, utilisation, reliability). Particularly, optimising all
resources at the same time may result in exceeding a rea-
sonable time for solving resource provisioning. Only for
memory allocation, there can be considered such objectives
as memory usage per instance (average and variances) and
on the hypervisor (average, variances, the variance of situated
virtual instances and their intersections). Several studies pro-
pose heuristics to address the pure optimisation problem for
the integrated model of the considered resources. Most of the
proposed algorithms allow finding the optimal resource allo-
cation on the fly, which does not guarantee the performance
and efficiency of the cloud in the long-term period. Recent
studies use machine learning algorithms to provide efficient
resources allocation for a long-term period by predicting
future resource utilisation or classifying memory behaviour.
The general scheme of the use of the classification is shown

in Figure 17.
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Applications

Classify user profile | |Classify application

[ Memory ]
intensity

[ Memory reuse]

FIGURE 17. Usage of the classification in the memory provisioning.

C. MEMORY ALLOCATION

Some studies focus on the memory allocation problem as a
separate part of resource allocation to highlight the memory
allocation challenges. Appropriately to the memory requests
behaviour, memory allocation in Cloud can be divided on
the online and offline memory allocation. When the memory
requests are known in advance, the memory allocation strat-
egy can be configured optimally before computation. When
memory requests arrive randomly, online memory allocation
strategies are used. The well-known offline resource allo-
cation solver is a problem of packing bins, where a finite
number of objects of different volumes must be packed into a
finite number of bins of fixed capacity. However, both offline
and online memory allocations in Cloud require the optimal
heuristic algorithms to effective manage the memory in an
acceptable time.
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In order to manage memory heterogeneity in virtualised
systems and to address max-min fairness across multiple
resources, HeteroOS [79] uses extended Dominant Resource
Fairness (DRF) algorithm. However, FastMem capacity is
small, so that, according to this algorithm, most VMs always
have SlowMem as the dominant resource. To deal with this
limitation, weights for calculating the dominant memory,
shown in Figure 18(a), were proposed to use. The main algo-
rithm supporting Cost-Aware Heterogeneous Cloud Memory
Model [80] is Dynamic Data Allocation Advance Algo-
rithm that uses genetic programming to determine the data
allocations on the memories. This approach focuses on a set
of critical factors affecting the performance of cloud memory,
such as communication costs, operating costs for moving
data, energy performance and time constraints. Two heuris-
tic algorithms of allocating memory for VMs are proposed
in [81]. This approach, shown in Figure 18(b), provides the
strategy to select the memory ranks for reducing the number
of ranks occupied by VM and for minimising the global
rank set for all VMs. An algorithm presented in [82] divides
the memory into multiple zones, shown in Figure 18(c),
where a subgroup of relative request sizes compete in reverse
order. In addition to this algorithm, [83] proposes a cloud
computing service that provides a continuous memory size.
A mathematical and an approximation model for different
request size distributions, traffic intensities, memory sizes,
and granularity values allow calculating optimal quantised
sizes.

D. MEMORY AGGREGATION AND DISAGGREGATION
Modern system architectures aim to improve resource iso-
lation approach, allowing servers to share their resources
through the memory hierarchy. An extension for the hyper-
visor to share the memory capacity of the nodes across
the computing infrastructure called Globally Visible Tmem
(GV-Tmem) was proposed in [84]. A software architecture
allows to aggregate memory across nodes using Xen’s Tran-
scendent Memory (Tmem) [85]. The general scheme oh the
memory aggregation is shown in Figure 19. This mecha-
nism improves the utilisation of the node’s memory but also
increases pressure on it, especially if the VMs have varying
demands for memory.

Due to an increase of in-memory data processing, to per-
form memory-intensive workloads cloud solutions have to
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have nodes with large memory. The efficiency of this kind
of nodes may be much lower with respect to common hosts
in terms of cost and power. However, memory disaggrega-
tion allows more memory than locally supported becomes
available since more servers are being used for distributed
memory. Reference [86] proposes an integrated hypervisor-
based design for disaggregated memory. Instead of relying on
the regular swap system designed for slow disks, the disaggre-
gated memory support is directly added to the memory man-
agement in the Kernel-based Virtual Machine hypervisor. The
general scheme oh the memory disaggregation is presented
in Figure 19. The memory disaggregation can provide a cost-
effective way to scale memory capacity while increasing
the flexibility of resource allocation and energy efficiency
for cloud providers. However, depending on the distribution
of fast direct and slow indirect memory, application perfor-
mance can vary significantly. This unpredictability caused by
performance mismatch could potentially prevent the usage of
disaggregated memory on cloud systems.

E. MEMORY PAGES MANAGEMENT

In virtualised systems, during the VM boot, the boot manager
initialises a guest-VM’s memory and adds the VM pages
under the control of the OS allocator [87]. Often a situation
arises when one virtual machine has free memory, while
other virtual machines do not have enough memory. The
workload of several VM applications changes over time,
so memory requirements may suddenly decrease or increase
dramatically. However, even if hypervisors have a large num-
ber of free memory pages, they cannot reallocate memory to
a guest who needs urgent memory to use. When the mem-
ory requirements are less than the amount of free memory,
the guest will necessarily start the guest paging mechanism,
which will lead to a decrease in performance, an imbalance in
memory usage caused by a waste of resources. Hypervisors
typically already support dynamic allocation of a processor
pool between different VM. Therefore, many existing studies
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focus on exploring how to dynamically adjust memory allo-
cation to meet the changing demand of a VM.

The polymorphic memory management proposed in [72]
performs a periodic procedure of hardware-assisted page
monitoring, followed by OS intervention for migration and
partitioning. The key assumption here is that the page access
pattern during one period is similar to the next pattern during
the next period. HeteroOS [79] extends the boot allocator to
initialise a NUMA node and its related data structures for
each memory type. In order to achieve smart memory place-
ment and reduce page migrations, several extensions to the
OS allocators were implemented. For instance, the extension
allows to use just one partition zone for FastMem nodes and
to use only the HeteroOS page allocator for FastMem pages
to avoid other general-purpose allocation by the default OS
allocators. Reference [88] proposed three memory manage-
ment policies and a combination of ballooning and swap-
ping intended for working virtual memory. The policies are
handled by using guard functions of transition in stochastic
reward net (SRN) hierarchical model of memory virtuali-
sation. Memory availability with failure related behaviour
is modelled and analysed as an upper-level model. The
lower-level model captures the performance of the system,
especially several memory utilisation measures. Coordinate
memory deduplication and partition (CMDP) approach intro-
duced in [89] aims at reducing memory requirement and
interference simultaneously. CMDP allows mapping hyper-
visor, VMs and applications running on VMs onto different
memory banks, thus eliminating interference. Due to pages
that belonged to the memory banks of VMs, especially pages
with the same access behaviour, more likely have the same
content, the page comparisons in the proposed behaviour-
based memory deduplication approach are restricted into the
same classification to reduce the overhead of futile compar-
ison. In order to adjust memory size, a quick approximation
algorithm was proposed in [90], in contrast to the brute force
search. This algorithm recursively for all VMs reduces the
memory allocation of one VM, increases the memory allo-
cation of other VM respectively and calculates the total page
misses until the total page misses reach a local minimum.

Balloon driver [91] is a widely used approach to enable
memory resource overcommitment. However, the ballooning
driver does not move memory fast enough to satisfy the mem-
ory requirement, since VM memory swapping could be trig-
gered while the balloon driver is moving the memory across
guest VMs. Another challenge is the double paging prob-
lem, which is caused by the inefficient swapping activities
between the guest OSs and the host OS. The unnecessary disk
I/O caused by double paging problem could seriously affect
the performance of guest VMs.

F. SHARED MEMORY

Recent development has been dedicated to improving com-
munication efficiency between VMs using shared-memory
channels. Shared memory is used in cloud solutions to reduce
the overhead of data access and to increase resource sharing
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between different VMs or between VMs and a host. Several
techniques have been proposed that differ in terms of where
and how the shared-memory channel is established. Host allo-
cated dynamic shared memory is presented in Figure 21(a).
The dynamically managed shared memory regions allow
each VM to access the shared memory based on its work-
load requirements. In [92], a dynamic shared memory man-
agement framework was presented. The proposed approach
allows multiple VMs to access shared memory resources
in accordance with their demands dynamically, thereby
improving VM communication efficiency and VM memory
swapping efficiency. A general scheme of the VM communi-
cation via shared memory swapping is shown in Figure 21(b).
A mechanism that allows VMs distributed on different phys-
ical hosts to share their local memory was presented in [93].
Naplus was implemented in a dual-host system as a soft-
ware DSM between VMs by multiplexing the Nahanni [94]
device in each host. A general scheme of the inter-domain
communication via shared memory is shown in Figure 21(c).
It manages the local and remote memory accesses via a
simplified lazy consistency memory model.

The performance of the shared-memory mechanism for the
VM communication depends on a number of factors, such
as an implementation layer in the software stack. The imple-
mentation layer impacts on the programming transparency,
hypervisor transparency and performance [95]. Implement-
ing shared-memory for VM communication at the libraries
and system calls layer leads to the need for application mod-
ifications. The shared-memory implementation above trans-
port layer will result in missing some critical TCP/IP features,
such as reliability. Finally, the shared-memory implemen-
tation below the IP layer provides high transparency and
reliability but may incur high overhead.

G. CACHE
To address the storage bottleneck and to improve VM per-
formance for cloud computing systems, the host-side flash
caching was suggested to use. Recent studies have focused on
solutions for reducing the capacity and endurance limitations
of the flash caching systems. A general scheme of the cache
organisation in Cloud is shown in Figure 22.

CloudCache [96] is an on-demand cache management
solution to meet VM cache demands and minimise cache
wear-out. To capture the data with a good temporal locality,
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it employs a new cache demand model, Reuse Working
Set (RWS), which is defined as a set of separate (address)
data blocks that the workload reused at least N times in
a period of time. In [97] host-side SSD caching solution
Centaur was presented. This research is mainly focused on
the cache partitioning as the key mechanism that eliminates
cache wastage. Centaur implements dynamically partitioned
per-VM caches with per-partition local replacement to pro-
vide lower cache miss rate, better performance isolation and
performance control for VM workloads. Partitioning employs
online miss rate curves (MRC) construction combined with
periodic partitioning and data movement to allocate cache
space to individual workloads efficiently. The approach pre-
sented in [98] consists in sampling the workload and in run-
ning them in separate sample caches with different workload
classifiers (thresholds) to find the optimal threshold. Based
on the estimation of the latency over a lifetime vs threshold
curve, the optimal threshold could be selected. A Three-
level I/O Cache Architecture (TICA), which aims to improve
the performance and power consumption of SSD-based I/O
caching while having minimal impact on the endurance,
was presented in [99]. TICA employs Read-Optimised
SSD (RO-SSD), Write-Optimised SSD (WO-SSD), and
DRAM as three levels of cache memory. To balance per-
formance and endurance, a state-machine model that selects
one of the existing policies, such as Endurance-Friendly
(TICA-EF) for optimising endurance and Write to Endurance
Disk (TICA-WED) for improving performance, was
implemented.

Effective caching schemes should not focus only on esti-
mating the VMs cache size, but also take into account other
critical parameters, such as the write policy, the request type,
and the workload reuse, which significantly affects the per-
formance and endurance of the SSD cache. Intelligent data
prefetching based on access patterns can hide the latencies
of the disk access and data transfer by moving the data to
DRAM before it is requested. However, the effectiveness of
such prefetching strongly depends on the ability to recognise
data access patterns and identify corresponding data to be
prefetched.
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H. PREDICTION

It is typical for cloud environment meeting unexpected loads,
which may lead to overload and performance degradation.
The accurate prediction of the future workload enables the
cloud providers to provide effective resource management,
including memory allocation.

In [65] a prediction model based on fractal mathematics
was used for predicting the usage of CPU and disk I/O
bandwidth load. Moreover, there are studies with memory
utilisation prediction. In [67] an algorithm to predict the
memory usage on the PMs to prevent overloading of PMs was
used. Autoregression to predict the memory consumption per
VM is used when the actual memory consumption in a PM
exceeds the preset percentage. The moving average-based
resource requirement forecasting algorithm presented in [70]
is used for the forecast of resource requirement including
bandwidth, memory and CPU. The advantage of using this
prediction model is to reduce the total waiting time between
the forecasting value (resource required) and the actual
value (resource availability), thus improving the resource
scheduling efficiency. Predictors in [90] are used to estimate
the amount of memory available for reclaiming without a
notable performance drop, and additional memory required
for reducing the VM paging penalty. The memory growth
predictors were implemented in two ways: the OS statistics
based and the LRU-based ones. CloudCache proposed in [96]
uses classic exponential smoothing and double exponential
smoothing methods to predict the cache demand of the next
time window. In [100] Gaussian process regression (GPR)
is employed as a probability framework. How the prediction
works depends on the monitoring statistics which reflect the
historical utilisation of the cluster facilities. The memory
and CPU utilisation prediction results are presented. The
prediction tool proposed in [101] relies on a combination of
machine learning methods, such as Support Vector Machines
(SVMs) with Linear and Radial Basis Function (RBF) ker-
nels, Random Forests, Multilayer Perceptrons (MLPs), and k
Nearest Neighbors (kNN), to make predictions of job mem-
ory usage. A wide range of features collected by the proposed
tool is stored in a separate embedded database. The label used
in machine learning methods is the maximum memory used
discretisation on bins of size 512MiB. Experiments based
on job traces from two production environments show that
there is no single machine learning method that produces the
best predictions. The proposed tool chooses the most promis-
ing ones at a given time. The approach presented in [102]
considers both statistical models and the hint extracted from
the application to accurately predict when the memory will
error out. Multiple fitting models (e.g. polynomial, expo-
nential) along with applications’ own traits extracted from
profiling a small portion of execution are considered as
inputs. They are also employed to construct a higher-level
of the model that is used in migration decision making.
Pacer’s techniques [103] uses analytic models for progress
predictions. The prediction of the migration time includes an
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evaluation of the total number of dirty pages/blocks during
migration that is not known before the migration completes.
Memory dirty rate prediction is based on the analysis of
the snapshot of the dirty bitmap of memory pages. This
leads to a large tracking overhead, so instead of continuous
monitoring, a sample-based algorithm was proposed. Utilisa-
tion prediction-aware best fit decreasing approach described
in [104] uses a k-nearest neighbour regression-based model
for the prediction of the future utilisation of resources, includ-
ing both CPU and memory.

Summarising the aforementioned forecasting methods,
it can be noted that the memory prediction is essential in
managing cloud resources and can be considered for sev-
eral objectives. The taxonomy of the memory prediction
objectives is presented in Figure 23. An accurate predic-
tion of VM memory requests is still a challenging problem,
especially in a changing environment. Because the hyper-
visor lacks the knowledge of VM memory access pattern,
the virtualisation context makes the prediction even harder.
Besides, access patterns can change at runtime, the workflow
may include third-party libraries where the access pattern
is unknown to the user, and the resources may be shared
between multiple application workflows. Therefore, the cur-
rent trend in the resource management is to use machine
learning approaches for more accurate and long-term work-
load prediction with an attempt to avoid the enormous perfor-

mance overhead.

migration time ]

cache ]

memory error ]

demand per job

demand per VM

FIGURE 23. Memory prediction taxonomy in cloud.

I. VM PLACEMENT

Recent research investigates algorithms for allocating VMs
to PMs in clouds by addressing distinct problems, such as
energy efficiency or the tradeoff between reaching service-
level agreements and costs.

The VM placement solution presented in [72] tries to
guarantee a certain level of memory access performance to
each VM, especially under heavy contention among VMs.
To place guest VM with different memory access latencies,
the hypervisor uses a proposed heuristic equation that mea-
sures data access latency, because the hardware Performance
Monitoring Units (PMU) cannot directly control the exact
value. An approach that changes the VM-oriented placement
to Type-oriented VM placement is presented in [105]. As it
was noticed, the cloud platform provides limited types of
VMs in the actual environment. Thus, the complexity of the
Type-oriented VM placement problem does not increase with
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the size of the data centre. In order to fully utilise servers’
resource, the mechanism places VMs to servers according
to the patterns which result in high resource utilisation. The
Krill Herd (KH) algorithm for solving optimal VM alloca-
tion problem is presented in [106]. This algorithm uses a
fitness function which has two main factors: utilisation rate,
including primary memory utilisation and Quality of Expe-
rience (QoE). Three major actions used to place the time-
dependent position of individual VM were adapted to the KH
terminology. Movement induced by other krill individuals
is analogous to the effect of one VM on others; Foraging
motion is analogous to the effect on the VM caused by the
maximum QoE in the solution; and Random diffusion is
analogous to the random VM placement. The most appro-
priate location for VM placement is selected based on the
Lagrangian model. The number of VMs that can be accom-
modated on a physical host is discussed in [107]. Capacity
management is responsible for the availability of the required
computational resources to allow cloud providers to function
efficiently. To avoid low resource utilisation, physical servers
are frequently utilised at 80% or more. According to the
proposed approach based on the “N+1" model, if there is
an unexpected failure, then the failed host machine’s load will
be managed by the additional host. Several utilisation policies
to ensure comprehensive capacity that is adequate to hold the
dynamic workload, while maintaining the performance level,
were proposed. Cloud Virtual machine Automatic Memory
Procurement (CloudVAMP) introduced in [108] is a memory
oversubscription framework that can be integrated into an
on-premises Cloud Management Platform. This framework
automatically controls the VMs and dynamically adjusts the
allocated memory to adapt to the current memory require-
ments of running applications. CloudVAMP allows using
currently unused memory from the deployed VMs that leads
to the temporary oversubscription on the memory resources.
The oversubscription, along with the usage of live migra-
tion, increases VM-per-host consolidation ratio with reduced
impact on running applications. Reference [109] suggested
combining the VM selection and VM placement in a sin-
gle optimisation algorithm. The problem statement considers
software components that are deployed in VMs, which in
turn are deployed in PMs. The size of a component encodes
its resource requirements along with multiple resource types
as an n-dimensional vector, e.g., 2-dimensional if CPU and
memory are considered. Utilisation prediction-aware best fit
decreasing approach proposed in [104] assigns a VM to a host
according to current and future resource requirements.
Available memory often limits the number of VMs sup-
ported by a host. Users tend to overestimate their VM mem-
ory requirements using the worst-case scenarios that may
only be required for short periods. In addition, Cloud
Providers typically offer only a few predetermined VM sizes.
Consequently, the technique of over-committing VMs, where
more resources are allocated than physically exist, has
become common practice. While this approach may make
better use of resources, it can also lead to a dramatic loss in
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performance and a risk of SLA violations. The efficiency of
the VM placement is determined by packing efficiency and
speed that have a negative correlation between them. Besides,
current methods rarely take into account the stability of
VM placement to improve efficiency. As shown in Figure 24,
due to the variation of the memory needs and variable nature
of the access patterns, current optimal VMs placement may
not be suitable for future workloads. The state-of-the-art
metaheuristics and greedy heuristics for solving placement
problem along with workload prediction allow solving this
problem.

Requests

VM,

memory | |y, VM

memo memory

1

Host Host .

VM, N

memory VM, AVMi_ |\ | Host

memory ! |memory
! (RS NN
0 T memory
Memory Memory . ¢¢¢¢
Memory
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J. VM MIGRATION

Emphasis on memory is also present in works related to
VM migration. A general scheme of the VM migration
is shown in Figure 25. Along with the problems with
overloading and underloading PM detection where the mem-
ory utilisation rate can be considered, some approaches for
the migrating VM selection analyse the memory similarity.
By using the content similarity among the memory of VMs,
the time and the network traffic during VM migration can be
reduced.

To minimise the amount of transferred memory data,
research presented in [110] is based on Memory Buddies,
a memory sharing-aware placement system for VM. Content
similarity checking method with O(1) time complexity is
used to evaluate the page sharing potential between VMs.
In [64] algorithm for selecting new hosts for the VMs to be
migrated is the same with the VM placement strategy. Multi-
dimensional overload detection of nodes is used for detecting
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the overload nodes. It analyses the weight and current use
of the CPU, memory, and network bandwidth. The approach
presented in [100] selects the node to be migrated as the node
with the lowest CPU and memory utilisation. The node with
the highest estimation of utilisation and the blocking rate,
which is evaluated based on the queuing theory, is determined
by the power management component as the destination for
VM migration. In the resource-aware VM migration tech-
nique proposed in [111] migration controller maintains the
cluster table with all servers clustered into eight clusters based
on the CPU, memory utilisation, and job arrival rate. The
overloaded servers are identified using preference value. The
VMs from the server with high preference values are migrated
to the destination server using a resource-aware virtual
machine migration technique. In traditional VM migrations,
the whole data used to be transferred from source host to the
destination host. In [112], a technique that reduces data to be
sent back to the source host was proposed. According to the
reusable memory approach, the memory image on the source
host is not deleted after migration. Once the VM migrates
back to the original host, only processed data and not the
whole data are sent back to the source host. In order to
reduce the size of memory image that is stored on the source
host, unnecessary data are deleted according to a proba-
bility factor. To handle cache overload situations, Cloud-
Cache [96] provides a live VM migration with its cached data
to meet the cache demands of the VMs. The approach pre-
sented in [102] assumes the application is migrated between
different VMs without physical data movements aiming at
reducing the overall monetary cost in face of memory deple-
tion. Introducing swap for highly memory-intensive appli-
cation on a memory-restrained instance was recognised as
the cause of the significant application slowdown and, con-
sequently, of the absence of lower per-hour prices. Based
on the lightweight prediction methodology of the memory
usage, application migrates only when the predicted mem-
ory usage exceeds the physical allocation. It migrates to the
least expensive instance type that has a memory capacity
larger than the current running instance. This protocol is
optimistic and it shows that doubling the memory capacity
could satisfy the application’s memory requirement. Pacer’s
techniques [103] are based on lightweight runtime system and
workload measurements, analytic models for progress predic-
tions, and online adaptation to achieve user-defined migration
objectives. The progress prediction is used to realise the
best-effort migration time control and to coordinated migra-
tion of VMs. Utilisation prediction-aware best fit decreasing
approach presented in [104] allows to migrate VMs from
physical hosts that are currently overloaded or predicted to
become overloaded in the near future.

The live migration advantage is that the system is not
turned off; consequently, there is no downtime. Nevertheless,
live migration is time-consuming and challenging to perform.
On the other hand, offline migration has an advantage in
speed, but the host has to be turned off during migration.
Whenever a VM is prepared to move from one host to another,
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its current state is stored in the source host for future transfer
and use on the target host. In order to reduce migration time
and network overhead, resent studies are focused on reduc-
ing the memory image size and cache migration policies.
However, the memory migration cost, in many cases, exceeds
the gain received from the migration.

Surveyed research on MM in Cloud was summarised with
respect to the evaluated outcome in Table 4 and the previously
mentioned techniques in Table 5.

TABLE 4. Evaluated outcome.

[60] [61] [62] [63] [64] [65] [66] [68] [70]

[711 [72] [73] [75] [76] [79] [80] [84] [86] [89]
[90] [92] [93] [99] [102] [103] [105] [111]

[61] [63] [64] [65] [66] [67] [69] [71] [73]

[751 [771 [81] [82] [88] [90] [92] [96] [97] [100]
[105] [106] [107] [108] [112]

makespan/
waiting time

resource
utilisation

g‘;ivrfry’ [62] [64] [65] [72] [81] [99] [100] [104] [109] [110]
cost [617 [63] [66] [75] [76] [82] [83] [102] [106] [109]

VI. OPEN PROBLEMS

Memory management systems have been a topic of interest in
the HPC and Cloud Computing domain for the last decade.
The variety of served workloads causes the difference in
memory optimisation techniques in HPC and Clouds envi-
ronments. While for HPC the most inherent target scenario is
a batch execution of a specific high-performance application
with input data of the same size but different content, for
Cloud Computing the workload has a higher level of vari-
ability and performance goes along with economic efficiency.
In this regard, it is quite reasonable that memory optimisation
techniques are different in:

Attention: HPC pays attention particularly to acceleration
due to the hardware modernisation of memory device
and cache. In Clouds, on the other hand, the emphasis
is placed on optimising resource provisioning and
scheduling.

Using statistical information: Research related to the HPC
domain is aimed at investigating the memory access
patterns of the application. For Cloud Computing,
instead, analysis and prediction of the work-
load or resource utilisation are typical.

Memory migration: Memory migration in HPC is becoming
increasingly important due to memory heterogeneity
and memory locality. Memory migration in Clouds,
in additional to the memory locality, takes into
account the memory similarity in order to reduce the
amount of transfer. However, since memory migration
is a relatively expensive operation, it always requires
a cost estimate.

Cache: In addition to improving traditional cache manage-
ment in HPC, a hybrid memory, that is, a memory
that can be configured as a cache or as a fat memory
depending on the requirements, acquire value. Cloud
cache research mostly regards the per-VM caches
partitioning.

VOLUME 7, 2019



A. Pupykina, G. Agosta: Survey of Memory Management Techniques for HPC and Cloud Computing

IEEE Access

TABLE 5. Survey of memory management in cloud.

[60] hybrid evolutionary algorithm
[61] greedy heuristic
[62] b-level based algorithm, task and data
co-scheduling, b-level task stealing
[63] kNN as the model learning algorithm for profiling
[64] multi-dimensional power-aware
scheduling [65] improved ant colony algorithm
& [66] multi-objective optimisation based on the ant colony
[67] ant colony optimisation & VM dynamic forecast
68] adaptations of diversification and reinforcement
strategies with slave ants
[69] model-based allocation
[70] max min fuzzy inference
[71] agglomeration
[72] task scheduling policy based on the
memory accesses diffusing through time
[73] genetic-based algorithm
[64] multi-dimensional vector bin packing problem
[65] improved ant colony algorithm
resource and [9] slot aware mapping
. [70] markov decision model
user allocation - - - —
[75] weighted version of the max-min fairness
allocation policy
76] fully connected Neural Network and dynamic
programming to solve a bounded knapsack problem
[77] fuzzy control
[78] profile-oriented clustering algorithm
extended Dominant resource fairness for addressing
memory 79 amin faimess across multiple resources
: max-min fairness across multiple resources
allocation - —
[80] genetic programming
[81] reducing the number of ranks occupied by VM &
minimising the global rank set for all VMs
[82] sequential fits and zoning
[83] continuous (any) memory request size
aggregated and [84] monitoring based distributing global memory capacity
disaggregated [86] heuristic algorithms based on the approximation
memory algorithm
[72] page access pattern
MEMmOrY pages [79] OS extension
mana ey nfe xi [88] stochastic reward net
& [89] coordinate memory deduplication
[90] automatic memory resizing
shared memor [92] host side dynamic shared memory mechanism
y 93] lock-based protocol to enable the DSM model
) between VMs on different PMs
[96] reuse working set demand model
cache [97] online miss rate curves construction combined with
periodic partitioning and data movement
[98] adaptive method based on the workload sampling
[99] adaptive tree-level I/0 cache architecture
[65] fractal mathematics
[67] auto regression
[70] moving average
prediction [90] OS statistics based and the LRU-based
[96] classic and double exponential smoothing methods
[100]  gaussian process regression method
SVM, random forests, multilayer perceptrons,
[101] K .
nearest neighbours
[102]  multiple fitting models (polynomial, exponential)
sampling-based analysis of the dirty
[103] .
bitmap of memory pages
[104]  k-nearest neighbour regression based model
[72] VM placement policy considering NUMA
architecture of target memory hierarchy
[104]  utilisation prediction-aware best fit decreasing
VM placement [105]  pattern based placement
[106]  krill herd optimisation
[I07]  capacity management based on N+1 model
[I08]  memory oversubscription
combining VM selection and VM placement
[to91 .. L .
in a single optimisation algorithm
[64] multi-dimensional host overloading detection
[96] live VM migration with cache balancing
[I00]  queuing theory
VM migration forthcoming out of memory determines
[102] ) -
based on meta-models
[103]  best-effort migration time control
[104] utilisation prediction-aware best fit decreasing

[110]

memory buddies

(111

cluster table

112

advanced memory reusing
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Memory hardware. At the hardware level, the traditional
memory enhancement methods focus on increasing the mem-
ory clock frequency or storage bus bandwidth. These tech-
niques are approaching their physical limits [113]. The
emerging 2.5D/3D stack memory technology gives new
opportunities to break the memory wall. In particular, it is
expected that the hybrid memory cube and the high band-
width memory will be widely used in future HPC systems.
Along with the new hardware, it is necessary to develop
modern software support to address memory management
challenges and complexities.

Resources provisioning and scheduling. Nowadays, most
schedulers do not consider either NUMA architecture or gen-
eral memory binding. The degree of memory participation in
the provisioning and scheduling techniques can be divided
in the following groups: memory utilisation: memory, CPU,
etc. are considered as separate resources, the solver of the bin
packing problem is applied for all resources independently;
memory power model: a set of power models for CPU,
memory, etc. takes into account resource specifications, then
all power models are integrated to provide optimal or near-
optimal solutions. memory-processor interaction: memory
is described not only by the hardware characteristics but
also by the interaction with the processor or set of pro-
cessors or accelerators to execute a specific application.
Most of the surveyed approaches use the first or second
method.

Memory access patterns. MM analyses the memory access
behaviour and uses the information obtained for the thread-
and memory mapping to increase performance. It can
be either offline (precompiled) or online (runtime). This
approach is suggested for HPC because of the prevail-
ing workload uniformity. However, this approach can be
used to analyse the memory-intensive scientific workload in
Clouds.

Workload prediction. Instead of analysing each application
in Clouds, it is common to predict the workload or future
resource utilisation. This approach helps to arrange VMs on
physical nodes in an effective and/or energy-aware way. As in
the case of memory access patterns, it can be extended to the
HPC domain by taking into account the trade-off between
prediction accuracy and computational complexity.

Memory migration. Despite the fact that migration is
widely used in both HPC and Cloud environments, due to
the high cost of migration, research in this area pays great
attention to assessing the need for migration, choosing a des-
tination for the transferred data and increasing the migration
speed.

VII. CONCLUSION

The world is becoming aware of the need to reduce energy
consumption. Power consumption and energy efficiency are
crucial aspects in the design of new HPC solutions. Nowa-
days, it is obvious that power consumption will strongly
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limit future exascale supercomputers. To this end, in recent
years, special attention has been paid to Green Computing,
which generally aims at using energy in a beneficially and
efficiently. Since the memory system is one of the most
energy-hungry parts in the modern computing environment,
in both HPC traditional systems and in Cloud solutions,
it is necessary to pay attention to energy-efficient memory
management. A naive reduction in energy consumption does
not always lead to energy efficiency due to a corresponding
increase in the execution time. Therefore, research studies
on energy efficiency often focus more on achieving com-
petitive performance. Increased performance, especially for
memory-intensive HPC workload, is associated with effi-
cient usage of the different memory types, as well as with a
reduction of data transfers within the memory hierarchy and
nodes.

Memory management software requires additional support
for new hardware technologies, such as HBM, NVM, RRAM,
SSD. In addition to hardware improvements, new policy fea-
tures can be applied to memory. The implementation of new
policy features will provide access to a wide range of future
hardware capabilities, such as bandwidth and latency explicit
control, sharing for inter-process, inter-node and accelerator
communication, persistence and encryption. Platforms with
heterogeneous memory hardware with a wide number of
memory system policies applied to that hardware generate
an enormous solution search space for resource management
techniques. Each level of the application software stack may
have different memory properties requirements. To deal with
the increasing complexity, it is crucial to find a way to con-
solidate some of the properties common for clients, leaving
only some unique properties to the client.

This paper provides an in-depth survey of the most recent
state-of-art memory management techniques for HPC and
Cloud Computing. Here, we put together resource manage-
ment techniques that take into account memory optimisation
problem. Even though recent memory optimisation research
covers both hardware and software support aspects, most
studies evaluate the results in terms of power consumption
and/or speed.
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