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Abstract

Facial expression recognition (FER) is a challenging

task due to different expressions under arbitrary poses.

Most conventional approaches either perform face frontal-

ization on a non-frontal facial image or learn separate clas-

sifiers for each pose. Different from existing methods, in

this paper, we propose an end-to-end deep learning model

by exploiting different poses and expressions jointly for si-

multaneous facial image synthesis and pose-invariant facial

expression recognition. The proposed model is based on

generative adversarial network (GAN) and enjoys several

merits. First, the encoder-decoder structure of the genera-

tor can learn a generative and discriminative identity repre-

sentation for face images. Second, the identity representa-

tion is explicitly disentangled from both expression and pose

variations through the expression and pose codes. Third,

our model can automatically generate face images with d-

ifferent expressions under arbitrary poses to enlarge and

enrich the training set for FER. Quantitative and qualita-

tive evaluations on both controlled and in-the-wild datasets

demonstrate that the proposed algorithm performs favor-

ably against state-of-the-art methods.

1. Introduction

Facial expression recognition (FER) is one of the most

important tasks in computer vision which plays a crucial

role in numerous applications in psychology, medicine, se-

curity, digital entertainment, and driver monitoring, to name

a few [41, 5, 14, 6, 3]. The main challenge of the FER is

to account for large appearance changes of human faces.

Despite of significant progress in recent years, it remains a

difficult task for developing robust algorithms to recognize

facial expression in scenarios with challenging factors such

as pose variations, unconstrained facial expressions, illumi-

nation changes, and insufficient training data.

The facial expression recognition aims to analyze and

classify a given facial image into several emotion types,
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Figure 1. Facial expression recognition is a challenging task due

to different expressions under arbitrary poses.

such as, angry, disgust, fear, happy, sad and surprise [9]. To

achieve this goal, numerous algorithms of FER [28, 21, 27]

have been proposed in the literatures during the past sev-

eral years. Among the existing methods, most of them are

based on frontal or nearly frontal view facial images and

the non-frontal or the in-the-wild facial expression recogni-

tion problem is largely unexplored. In contrast to the frontal

FER, expression recognition from non-frontal facial images

is challenging because it needs to deal with the issues of

face occlusions, accurate non-frontal face alignment, and

accurate non-frontal facial points location as shown in Fig-

ure 1. As a result, only a small part of algorithms among

the proposed various methods address this challenging is-

sue [62, 10, 58]. Different from the existing methods, we

focus on the pose-invariant FER, which is to perform FER

by identifying or authorizing individuals’ expressions with

facial images captured under arbitrary poses. Therefore, it

is more challenging and more applicable in real scenarios.

However, it is not easy to perform the pose-invariant

FER as shown in Figure 1. The main challenge here is to

perform decoupling of the rigid facial changes due to the

head-pose and non-rigid facial changes due to the expres-

sion, as they are non-linearly coupled in 2D images [66].

In details, the rigid rotation of the head results in self-

occlusion, which means there is loss of information for fa-

cial expression recognition. Besides, the shape of facial

texture is warped nonlinearly along with the pose change,

which causes serious confusion with the inter-personal tex-

ture difference. This calls for a joint analysis of head-pose
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Table 1. The details of existing benchmarks for pose-invariant FER

including the number of pose, expression, and training samples.

Dataset Pose Expression Training Samples

SFEW - 7 700

Multi-PIE 5 6 7,655

BU-3DFE 35 6 21,000

and facial expressions. Nonetheless, this remains a signif-

icant research challenge, mainly due to the large variation

in appearance of facial expressions in different poses and

difficulty in decoupling these two sources of variation. In

order to deal with the above issues, the traditional methods

usually have three distinct perspectives: (1) Extract pose-

robust features as facial expression representations and em-

ploy conventional classifiers for recognition. (2) Perfor-

m pose normalization before conducting the pose-invariant

FER. (3) Learn multiple classifiers for each specific poses.

The success of these approaches can be attributed in good

part to the quality of the feature representation used as in-

put to the classifier. Most methods are conducted on classi-

cal hand-crafted visual features, such as local binary pattern

(LBP) [64], histograms of oriented gradients (HOG) [11],

and scaled-invariant feature transform (SIFT) [46], which

have the limited representation power and may not handle

the challenge of nonlinear facial texture warping caused by

pose variation well [2, 8].

Recently, deep networks have been successfully applied

on a wide range of visual tasks, such as image classification

[24], object detection [11], segmentation [34], and pose es-

timation [33]. Inspired by the success of deep networks, an

intuitive idea is to learn semantic features for the FER vi-

a deep learning. However, deep models need to be trained

with enough labeled data [23]. Thus, the first step in creat-

ing any such image classification system is gathering suffi-

cient annotated data where each image is labeled with the

correct category. For the pose-invariant FER, the publicly

available datasets typically contain a very limited number

of labeled samples. As shown in Table 1, there are three

standard benchmarks. The Static Facial Expressions in the

wild (SFEW) dataset [7] contains only 700 images (includ-

ing both training and testing) while the Multi-PIE [13] has

7,655 images (5 poses and 6 expressions).

In this case, a common solution is to employ deep net-

works pre-trained on the ImageNet [39] and do fine tuning

to further improve the feature representation power. As a

result, the networks are trained separately from the FER,

and the extracted features hardly benefit from the end-to-

end training. End-to-end training of deep architectures is

generally preferable to training individual components sep-

arately. The reason is that in this manner the free parameter-

s in all components can co-adapt and cooperate to achieve

a single objective. The other solution is to generate train-

ing data automatically. It is almost impossible to manually

label training data because our goal is to perform the FER

with arbitrary poses. In recent times, GAN-based approach-

es have been successfully used to generate impressively re-

alistic faces [26, 20], house-numbers [60], bedrooms [35]

and a variety of other image categories [15, 65] through a

two-player game between a generator G and discriminator

D. This inspires us to resort to the GAN to enlarge and en-

rich the training set. Despite many promising developments

[59, 20, 29], image synthesis remains the main objective of

GAN, which cannot be straightforwardly applied to facial

expression recognition task.

Inspired by the above discussions, on the one hand, we

design a GAN-based structure to generate facial images

with different expressions and poses. On the other hand, we

embed a classifier into the network to facilitate the image

synthesis and conduct facial expression recognition. To dis-

entangle the attributes (expression, pose) from the identity

representation, we construct the G with an encoder-decoder

structure, which serves as a facial image changer. The input

to the encoder Genc is a face image of any expression and

pose, the output of the decoder Gdec is a synthetic facial im-

age at a target expression and pose, and the learnt identity

representation bridges Genc and Gdec. Besides, we intro-

duce two discriminators (Datt and Di) into the generative

adversarial network. The Datt is used to disentangle the

pose, expression and identity from a facial image in a latent

space to change the attributes (pose and expression) but re-

tain the identity. To smooth the pose and expression trans-

formation, the Di is adopted to control the distribution of

identity features. With an additional classifier Cexp, it can

strive for the generated facial image to have the same ex-

pression as the input real facial image, which has two effects

on G: (1) The generated facial image looks more like the in-

put subject in terms of expression. (2) The learnt representa-

tion is more generative to synthesize an identity-preserving

facial image but with different expressions and poses, and

the generated facial images can facilitate the FER in turn.

The major contributions of this work can be summarized

as follows. (1) We propose an end-to-end learning mod-

el by exploiting different poses and expressions jointly for

simultaneous facial image synthesis and pose-invariant fa-

cial expression recognition. (2) The identity representation

learning is explicitly disentangled from both expression and

pose variations through the expression and pose codes in G

and D. As a result, the proposed model can automatically

generate facial images with an arbitrary expression under an

arbitrary pose. (3) The proposed model achieves state-of-

the-art facial expression recognition performance on Multi-

PIE [13], BU-3DFE [51], and SFEW [7] datasets.

2. Related Work
In this section, we mainly discuss methods that are relat-

ed to facial expression recognition and generative adversar-

ial network.

Facial Expression Recognition. Extensive efforts have

been devoted to recognizing facial expressions [30, 5, 54,
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61, 3]. Most of existing methods on the FER study the ex-

pressions of six basic emotions including happiness, sad-

ness, surprise, fear, anger and disgust because of their

marked reference representation in our affective lives and

the availability of the relevant training and test data [53].

Generally, the learning system mainly includes two stages,

i.e., feature extraction and expression recognition. In the

first stage, features are extracted from facial images to

characterize facial appearance/geometry changes caused by

activation of a target expression. According to whether

the features are extracted by manually designed descrip-

tors or by deep learning methods, they can be grouped in-

to engineered features [10, 62, 40] and learning-based fea-

tures [14, 18, 21, 27]. For the engineered features, it can be

further divided into texture-based local features, geometry-

based global features, and hybrid features. The texture-

based features mainly include SIFT [62], HOG [11], His-

tograms of LBP [64], Haar features [45], and Gabor wavelet

coefficients [49]. The geometry-based global features are

mainly based on the landmark points around eyes, mouth,

and noses [37, 38]. And the hybrid features usually refer

to the features by combining two or more of the engineered

features [10]. The learning-based features are based on deep

neutral networks [27, 36]. Not surprisingly, almost all of

them use some form of unsupervised pre-training/learning

to initialize their models. It is mainly because the scarcity of

labeled data prevent the authors from training a complete-

ly supervised model due to the overfitting problem. The

most direct and effective solution to this problem is manu-

ally labeling more data. However, it may be infeasible for

the FER with arbitrary poses. After feature extraction, in

the next stage (expression classification), the extracted fea-

tures are fed into a supervised classifier, e.g., Support Vector

Machines (SVMs) [16], softmax [18], and logistic regres-

sion [36], to train a facial expression recognizer for a target

expression. Different from existing methods, we use a vari-

ation of GAN to automatically generate facial images with

different expressions and poses. Furthermore, our classifier

is trained with the GAN in an end-to-end framework.

Generative Adversarial Network. In [12], Goodfellow et

al. introduce the Generative Adversarial Network (GAN).

They train generative models through an objective function

that implements a minimax two-player game between a dis-

criminator D - a function aiming to tell apart real from fake

input data - and a generator G - a function that is optimized

to generate input data (from noise) that ’fools’ the discrim-

inator. And through this game, the generator and discrim-

inator can both improve themselves. Concretely, D and G

play the game with a value function V (D,G):

min
G

max
D

V (D,G) =Ex∼pd(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]
(1)

The two parts, G and D, are trained alternatively. One of the

biggest issues of GAN is that the training process is unsta-

ble, and the generated images are often noisy and incompre-

hensible. The CGAN [31] is an extension of the GAN [12],

where G and D receive an additional variable y as input.

The objective function of CGAN can be rewritten as:

min
G

max
D

V (D,G) = Ex,y∼pd(x,y)[logD(x, y)]+

Ez∼pz(z),y∼py(y)[log(1−D(G(z, y), y))]
(2)

This model allows the generator output to be controlled by

y. Besides, during the last three years, several approach-

es [4, 65, 55, 25, 29] have been proposed to improve the

original GAN from different perspectives. For example,

the DCGAN [35] adopts deconvolutional and convolution-

al neural networks to implement G and D, respectively. It

also provides empirical instructions on how to build a sta-

ble GAN, e.g., replacing the pooling by strides convolution

and using batch normalization. More recent methods focus

on incorporating constraints on the input data of generator

or leveraging side information for better synthesis. For ex-

ample, Mirza and Osindero [31] feed the class label to both

G and D to generate images conditioned on the class label.

Springenberg [44] and Luan et al. [50] generalize GAN to

learn a discriminative classifier where D is trained to not

only distinguish between real and fake, but also classify the

images. Different from the methods [31, 44], our model

can explicitly disentangle the identity representation learn-

ing from both expression and pose variations by using their

codes. Compared to [50], which generates images only re-

stricted by a discriminator, we introduce another discrim-

inator and a content-similarity loss to make the generated

facial images look like the inputs.

3. Proposed Method

In this section, we first give a brief overview of the pro-

posed network for simultaneous facial image synthesis and

pose-invariant FER. We then describe the learning process

and show the difference with existing models.

3.1. Joint Pose and Expression Modeling for FER

We propose an end-to-end learning model by exploit-

ing different poses and expressions jointly for simultaneous

facial image synthesis and pose-invariant facial expression

recognition. The architecture of our model is shown in Fig-

ure 2, which incorporates a generator, two discriminators,

and a classifier. Before passing an image into our model, we

first perform face detection using a lib face detection algo-

rithm with 68 landmarks [52]. After the preprocessing, we

feed the facial images into an encoder-decoder structured

generator G to learn an identity representation. Specifical-

ly, Genc learns a mapping from the input image to the iden-

tity feature representation f(x). The representation is then

concatenated with the expression and pose codes e and p to
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Figure 2. The overall architecture of the proposed model, which incorporates a generator G, two discriminators Datt and Di, and a classifier

Cexp. Conditioned by the expression and pose codes e and p, the proposed model can generate facial images with different expressions

under arbitrary poses to enlarge and enrich the training set for the FER task.

feed to Gdec for face changing. Through the minimax two-

player game between the generator G and the discriminator

D, we can get the new labeled facial images with different

poses and expressions by adding the corresponding label-

s to the decoder’s input. Here, we use a two-discriminator

structure including Datt and Di. The Datt is to learn dis-

entangling representations, and the other Di is to improve

the quality of the generated images. After the facial image

synthesis, a classifier Cexp is then used to perform our FER

task. We adopt a deep modeling approach for the classifier,

which guarantees that, at each layer, the features become

increasingly invariant to nuisance factors while maintaining

discriminative information with respect to the task of facial

expression recognition.

3.2. Learning

Given a facial image x with label y = {ye, yp}, where

ye represents the label for expression and yp for pose, the

objectives of our learning problem are threefold: (1) Syn-

thesize a facial image x̂ with the corresponding expression

and pose labels specified by the expression and pose codes

e and p. (2) Train a pose-invariant FER classifier with the

generated images x̂ and the input x. (3) Retain the identity

representation with a content-similarity loss. Next we will

introduce them in details.

Generator G and Discriminator Datt. The discriminator

Datt is to distinguish between ’fake’ images x̂ produced by

the generator G, and ’real’ images from the input images

x. We denote the distribution of the training data as Pd(x).
Conditioned by the expression and pose label y, it can help

the generater G learn the disentangling representation from

the facial images to change the poses and expressions but

retain the identity, which is useful for our FER task, be-

cause when we generate new facial images, we just want to

modify the facial expression or pose of the input x but with-

out compromising the person’s identity. The discriminator

on attributes disentangling, Datt, and G with condition y

(expression and pose) can be trained by:

min
G

max
Datt

Ex,y∼pd(x,y)[logDatt(x, y)]+

Ex,y∼pd(x,y)[log(1−Datt(G(x, y), y)].
(3)

Generator G and Discriminator Di. The discriminator

Di imposes the uniform distribution on the identity repre-

sentation f(x), which can help to smooth the pose and ex-

pression transformation. Here, the f(x) is the identity rep-

resentation from Genc. Assuming the Prior(f) is a prior

distribution, and f∗ ∼ Prior(f) denotes the random sam-

pling process from Prior(f). A min-max objective func-

tion can be used to train the G and Di:

min
G

max
Di

Ef∗
∼ prior(f)[logDi(f

∗)]+

Ex∼pd(x)[log(1−Di(Genc(x)))].
(4)

Classifier Cexp. The classifier Cexp is a task-specific loss.

In the case of generation, it can be used to penalize the gen-

erator loss, which is helpful for improving the performance

of the original generator G. And in the case of classifica-

tion, it tries to classify the expression. We use a typical

softmax cross-entropy loss for the classifier:

Lc(G,C) = Ex,ye [− ye logC(G(x), ye)

− ye logC(x, ye)].
(5)
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Content-similarity loss. The content-similarity loss at-

tempts to ensure the output face sharing the expression,

pose, and identity representation with the input facial image

x (during training). Therefore, the input and output faces

are expected to be similar as expressed in (6), where L(:, :)
denotes the ℓ1 norm.

Lcon(G) = L(x−G(x, ye, yp)). (6)

The Objective Function. Finally, the objective function is

defined as in (7) by considering the above factors.

min
G,C

max
Di,Datt

αLcon(G) + βTV (G(f(x), y)) + Lc(G,C)

+ Ex,y∼pd(x,y)[logDatt(x, y)]

+ Ex,y∼pd(x,y)[log(1−Datt(G(x, y))].

+ Ef∗
∼ prior(f)[logDi(f

∗)]

+ Ex∼pd(x)[log(1−Di(Genc(x)))],

(7)

where TV (�) denotes the total variation which is effective

in removing the ghosting artifacts. The coefficients α and

β balance the smoothness and high resolution. Sequential-

ly updating the network by (3), (4), (5) and (6), we could

finally learn the pose-invariant FER model.

3.3. Discussion

In this section, we show the differences of the proposed

model with three most relevant GAN models including Ad-

versarial Autoencoder (AAE) [29], disentangled representa-

tion learning-GAN (DR-GAN) [50], and conditional adver-

sarial autoencoder (CAAE) [59]. (1) In the AAE [29], G is

the encoder of an autoencoder. The AAE has two objectives

in order to turn an autoencoder into a generative model:

the autoencoder reconstructs the input image, and the latent

vector generated by the encoder matches an arbitrary prior

distribution by training D. Different from AAE, our method

can explicitly disentangle the identity representation learn-

ing from both expression and pose variations by using their

codes. (2) The DR-GAN [50] generalizes GAN to learn

a discriminative classifier where D is trained to not only

distinguish between real and fake images, but also classify

real images into K classes. It is a variational autoencoder-

based method mainly for disentangled representation learn-

ing for face recognition task. Different from the DR-GAN,

the proposed model is mainly for generating more labeled

facial images to train a deep network classifier for FER, be-

cause the training samples is the main bottleneck in facial

expression recognition. Furthermore, we disentangle both

the expression and pose from the facial images, and intro-

duce a separated classifier for expression recognition. (3)

The CAAE [59] extends adversarial autoencoder (AAE) to

generate face images with different ages. Different from

this method, our model embeds a classifier in the network

and can strive for the generated facial image to have the

same expression as the input real facial image.

4. Experimental Results

In this section, we show experimental results of our mod-

el for facial images synthesis and pose-invariant facial ex-

pression recognition. For the former task, we show quali-

tative results of the generated facial images under different

poses and expressions. For the latter one, we quantitatively

evaluate the expression recognition performance using the

generated and original facial images.

4.1. Datasets

To demonstrate the effectiveness of the proposed mod-

el, we conduct extensive experiments on three standard

datasets including (1) Multi-PIE [13]: the public multi-pose

facial expression dataset, (2) BU-3DFE [51]: the 3D facial

expression dataset, and (3) SFEW [7]: the static facial ex-

pressions in the wild dataset. The details are as follows.

Multi-PIE: The Multi-PIE is for evaluating facial expres-

sion recognition under pose and illumination variations in

the controlled setting. Following the setting in [10], we use

images of 270 subjects depicting acted facial expressions

of Neutral (NE), Disgust (DI), Surprise (SU), Smile (SM),

Scream(SC), and Squint (SQ), captured at five pan angles

−30◦, −15◦, 0◦, 15◦ and 30◦, resulted in 1531 images per

pose. Consequently, we have 1, 531 × 5 = 7, 655 facial

images in total for our experiments. We perform five-fold

subject independent cross-validation on the Multi-PIE. As

a result, the training dataset comprises 6, 124 facial images

whereas the testing one comprises 1, 531 facial images. We

train the classifier using both the generated and original im-

ages, whose total number is 6124 × 5 × 6+6124=189,844.

BU-3DFE: The BU-3DFE is a 3D facial expression dataset

having 100 subjects with 3D models and facial images. It

contains images depicting seven facial expressions Anger

(AN), Disgust (DI), Fear (FE), Happiness (HA), Sadness

(SA), Surprise (SU) and Neutral (NE). With the exception

of the neutral expression, each of the six prototypic expres-

sions includes four levels of intensity. Following the set-

ting in [46, 47, 48, 17], we render 2D facial images from

the 3D models at the fourth level of intensity, six univer-

sal facial expressions (AN, DI, FE, HA, SA, SU), and 35
poses including 7 pan angles (0◦,±15◦,±30◦,±45◦), and

5 tilt angles (0◦,±15◦,±30◦)). Consequently, we have

100 × 6 × 35 × 1 = 21, 000 face images in total for our

experiments. We randomly divide the 100 subjects into a

training set with 80 subjects and a testing one with 20 sub-

jects, such that there are no overlaps between the training

subjects and the testing subjects. As a result, the training

set comprises 16, 800 facial images whereas the testing one
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(a) Accuracy for each expression. (b) Accuracy for each pose.

Figure 3. Overall performance on the Multi-PIE dataset.

comprises 4, 200 facial images.

SFEW: The SFEW is a dataset in the wild with 95 subjects.

It consists of 700 images (346 images in Set 1, 354 images

in Set 2) extracted from movies covering unconstrained fa-

cial expressions, varied head poses, changed illumination,

large age range, different face resolutions, occlusions, and

varied focus. The images are labeled with Anger (AN), Dis-

gust (DI), Fear (FE), Happiness (HA), Sadness (SA), Sur-

prise (SU) and Neutral (NE). We use this dataset for cross-

dataset experiments. We train the model on the BU-3DFE,

and test it on the SFEW. Specifically, we generate facial im-

ages with different poses and expressions on Set 1. Thus,

we totally have 346+346×7×35 = 85, 116 training sam-

ples. Then we use these images to train a classifier with the

same structure used on the Multi-PIE and BU-3DFE.

4.2. Implementation Details

We construct the network according to Figure 2. We first

use the lib face detection algorithm with 68 landmarks [52]

to crop out the faces, and resize them as 224 × 224. The

image intensities are then linearly scaled to the range of [-

1,1]. To stabilize the training process, we design the net-

work architectures of G, Datt, and Di based on the tech-

niques in the CAAE [59]. Specifically, G is a convolutional

neural network without batch normalization, and includes

Genc and Gdec that are bridged by the disentangled iden-

tity representation f(x), which is the fully connected lay-

er output in the network. Then f(x) is concatenated with

the expression code e and pose code p, which is a one-hot

vector with the target expression ye and pose yp being 1.

A series of fractionally-strided convolutions (FConv) [35]

transforms the concatenated vector into a synthetic image

x̂ = G(x, ye, yp), which is the same size as the x. Dimg and

Df is trained to optimize the object functions (3) and (4).

In the discriminators Dimg and Df , the batch normalization

is applied after each convolution layer. We adopt the VGG-

Net-19 network [43] as the classifier Cexp. And it is trained

by using the generated images x̂ and the original images x

to optimize the objective function (5). The model is im-

plemented by using TensorFlow [1] and is trained with the

ADAM optimizer [22], which is used with a learning rate of

0.0002 and momentum 0.5. All weights are initialized from

(a) On the Multi-PIE dataset. (b) On the BU-3DFE dataset.

Figure 4. The average confusion matrix. The average recognition

rate is 91.80% and 81.20%, respectively.

a zero-centered normal distribution with a standard devia-

tion of 0.02. The details of our architecture are included in

the supplementary material.

4.3. Quantitative Results

4.3.1 Experiments on the Multi-PIE Dataset

The overall performances over each facial expression and

each pose are shown in Figure 3(a) and Figure 3(b). The

average FER accuracy is 91.80% showed in the last bar

in Figure3(b). A closer look at the figure reveals that, a-

mong the six expressions, there are four expressions (SC,

SM, SU, and NE) with higher accuracy over 91.5%. The

detailed performance of our model is provided in the confu-

sion matrix in Figure 4(a), from which we can see that two

of the most likely to be confused expressions are disgust and

squint. This confusion may be due to these two expressions

having similar muscle deformation around eyes.

We then evaluate our method by comparing its perfor-

mance with the current state-of-the-art methods reported

in [10] including kNN, LDA, LPP, D-GPLVM, GPLRF,

GMLDA, GMLPP, MvDA, and DS-GPLVM. The detailed

results across all views are summarized in Table 2. The

mean FER accuracy is reported in the last column. The re-

sults clearly show that our method outperforms all existing

methods with a 15.65% to 1.2% improvement in terms of

FER accuracy. Note that all other models cannot achieve

good performances in the frontal view. However, our model

can significantly improve the performance attained by the

generated images with arbitrary poses and expressions.

We also compare our method with the models trained by

different number of generated images. Given the original

N images, we can obtain 5 × 6 ×N generated images. To

evaluate the effect of the training data size, we randomly

choose 0×N, 1×N, 5×N, 10×N, 15×N, 20×N im-

ages from the generated facial images during each training

epoch, and then incorporate them with the original images

to train the classifier, where 0×N means that the classifier

is trained only using the original images. Specifically, we

denote them as 0N, 1N, 5N, 10N, 15N, 20N . The overal-

l performance with different training samples is shown in

Figure 5. It is clear that our model achieves the best recog-
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Table 2. Comparison of state-of-the-art methods on the Multi-PIE

dataset. The highest accuracy for each pose is highlighted in bold.

Methods
Poses

Average
-30 -15 0 15 30

kNN 80.88 81.74 68.36 75.03 74.78 76.15

LDA 92.52 94.37 77.21 87.07 87.47 87.72

LPP 92.42 94.56 77.33 87.06 87.68 87.81

D-GPLVM 91.65 93.51 78.70 85.96 86.04 87.17

GPLRF 91.65 93.77 77.59 85.66 86.01 86.93

GMLDA 90.47 94.18 76.60 86.64 85.72 86.72

GMLPP 91.86 94.13 78.16 87.22 87.36 87.74

MvDA 92.49 94.22 77.51 87.10 87.89 87.84

DS-GPLVM 93.55 96.96 82.42 89.97 90.11 90.60

Ours 90.97 94.72 89.11 93.09 91.30 91.80

Figure 5. Effect of the number of training samples.

nition results. Besides, we can also find out that the average

accuracy of the FER can be improved with the increase of

the number of training samples, which further indicates the

necessity of generating more labeled training samples.

4.3.2 Experiments on the BU-3DFE Dataset

The results are shown in Table 3. The rightmost colum-

n represents the average recognition error rates for differ-

ent views (a total of 35 views), the bottom row represents

the average recognition error rates for different facial ex-

pressions (a total of six universal facial expressions), and

the bottom-right corner cell represents the average overal-

l recognition error rate. The results show that our method

achieves the average recognition accuracy of 81.20%. Fur-

thermore, among the six expressions, surprise and happi-

ness are easier to be recognized with accuracy over 89%.

This is most likely due to the fact that the muscle deforma-

tions of both expressions are relatively large compared with

others. Moreover, fear is the most difficult expression to

be recognized, with the lowest at 67.30%, followed by sad-

ness. In Figure 4(b), we show the confusion matrix for fa-

cial expression recognition by using our method. One could

interpret that a contributing factor to the poor performance

of fear is its confusion with happiness. This coincides with

the finding of Moore and Bowden in [32], where the authors

point out that the confusion is due to the expressions of fear

and happiness having similar muscle deformation around

the mouth. In addition, another two expressions likely to

be confused are sadness and anger. These two expressions

have the least amount of facial movement and thus are dif-

ficult to distinguish.

Table 3. Results on the BU-3DFE dataset in terms of the recogni-

tion rates (%). The leftmost column indicates different views (pan

and tilt angles x, y in degrees), and the top row indicates different

facial expressions. The highest accuracy is highlighted in bold.

Pose / Exp. SU SA HA FE DI AN Ave.

−45,−30 90.48 66.67 90.48 61.90 85.71 71.43 77.78

−45,−15 100 80.95 95.24 66.67 85.71 76.19 84.13

−45,+0 100 80.96 90.00 76.19 76.19 76.19 83.25

−45,+15 90.48 80.95 90.48 85.71 90.48 76.19 85.71

−45,+30 89.48 70.00 87.50 80.95 90.48 71.43 81.64

−30,−30 100 76.19 95.24 61.90 90.00 76.19 83.25

−30,−15 85.71 76.19 95.24 71.43 90.48 76.19 82.54

−30,+0 85.71 85.71 90.48 85.71 90.48 80.95 86.51

−30,+15 100 80.95 90.48 76.19 90.48 71.43 84.92

−30,+30 85.00 66.67 85.00 76.19 90.48 61.90 77.54

−15,−30 90.00 76.19 90.48 66.67 80.00 80.95 80.71

−15,−15 85.00 80.95 95.24 61.90 80.95 76.19 80.04

−15,+0 80.95 80.95 95.24 71.43 80.95 80.95 81.75

−15,+15 90.00 76.19 90.48 71.43 90.48 85.71 84.05

−15,+30 90.48 71.43 85.71 76.19 90.48 80.95 82.54

+0,−30 89.47 76.19 71.43 57.14 80.95 57.14 72.06

+0,−15 90.48 75.00 90.48 57.14 85.71 85.71 80.75

+0,+0 90.48 76.19 90.48 66.67 76.19 85.71 80.95

+0,+15 100 80.00 85.71 85.71 85.71 90.00 87.86

+0,+30 89.47 68.42 82.35 70.00 90.00 85.71 80.99

+15,−30 90.00 71.43 85.71 66.67 85.71 80.95 80.08

+15,−15 90.00 71.43 90.00 57.14 76.19 85.71 78.41

+15,+0 90.48 76.19 95.24 66.67 76.19 85.71 81.75

+15,+15 100 76.19 95.00 61.90 90.48 76.19 83.29

+15,+30 95.00 80.95 85.71 66.67 95.00 80.95 84.05

+30,−30 85.00 71.43 76.19 52.38 85.00 90.48 76.75

+30,−15 90.48 71.43 90.00 52.38 80.95 85.71 78.49

+30,+0 90.48 76.19 90.48 57.14 85.71 80.95 80.16

+30,+15 100 80.95 95.24 61.90 85.71 85.71 84.92

+30,+30 95.00 80.00 95.00 66.67 85.71 76.19 83.10

+45,−30 90.00 66.67 90.48 52.38 90.48 57.14 74.52

+45,−15 90.48 71.43 95.24 52.38 90.48 80.95 80.16

+45,+0 85.71 76.19 95.24 66.67 85.71 61.90 78.57

+45,+15 90.00 61.90 90.48 76.19 90.48 76.19 80.87

+45,+30 82.35 65.00 83.33 71.42 80.95 80.00 77.18

Average 91.18 75.00 89.82 67.30 85.89 78.04 81.20

We then compare our method with eight previously pub-

lished methods in literatures [63, 32, 62, 58, 46, 47, 48, 17].

Specifically, the methods [63, 32, 62, 58] conduct the FER

on a relatively small set of discrete poses containing 5 pan

angles. The algorithms [46, 47, 48, 17] use the facial im-

ages with 35 poses to train their model, which are the same

as ours. Expect [58], all of other methods train their model-

s with engineered features, such as LBP [32, 62, 17], SIFT

[62, 46, 47, 48], and geometry features (83 landmark points)

[63]. In [58], the SIFT feature is used as the input of DNN

to learn features. Here, the model is trained separately for

each step. Different from this method, ours is an end-to-end

learning model. The accuracy of each model is shown in Ta-

ble 4. The average FER accuracy is reported in the last col-

umn of the table. We can see that our model achieves the av-

erage recognition accuracy of 81.20%. A closer look at this

table reveals that although the methods in [63, 32, 62, 58]

are trained/tested on a small set of discrete poses contain-

ing only the pan rotation, our method is also competitive to

the results achieved by these methods with a 1.1% to 15.2%

improvement on the FER accuracy. Moreover, compared

with the methods [46, 47, 48, 17], the proposed model also

achieves the best accuracy (2.56% to 5.9% higher than oth-

ers). This may attribute to the feature learning, which can
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Table 4. Comparison of the average recognition accuracy with

state-of-the-art methods for the FER on the BU-3DFE dataset.

Methods
Poses

Ave.
tilt pan total

Zheng et al. 2009 [63] - (0◦,+90◦) 5 78.3

Moore and Bowden 2011[32] - (0◦,+90◦) 5 71.1

Zheng 2014 [62] - (0◦,+90◦) 5 66.0

Zheng 2014 [62] - (0◦,+90◦) 5 78.9

Zhang et al. 2016 [58] - (0◦,+90◦) 5 80.1

Tang et al. 2010 [46] (−30◦,+30◦) (−45◦,+45◦) 35 75.3

Tariq et al. 2013 [47] (−30◦,+30◦) (−45◦,+45◦) 35 76.34

Tariq et al. 2014 [48] (−30◦,+30◦) (−45◦,+45◦) 35 76.60

Jampour et al. 2015 [17] (−30◦,+30◦) (−45◦,+45◦) 35 78.64

Ours (−30◦,+30◦) (−45◦,+45◦) 35 81.20

better deal with the nonlinear facial texture warping caused

by pose and individual difference.

4.3.3 Experiments on the SFEW Dataset

We finally evaluate our method on a more challenging

database SFEW, in which the facial expressions are spon-

taneously displayed in real-world environment. As train-

ing samples in this dataset are insufficient, we adopt cross

dataset experiments. Specially, we first train the generated

model on the BU-3DFE dataset with 35 poses and 7 expres-

sions (AN, DI, FE, HA, SA, SU, NE). Then we generate the

corresponding facial images for the images in Set 1 in the

SFEW dataset. Finally, we train the classification model on

the generated and original images, and test it on Set 2.

We compare our method with five previously published

methods [7, 19, 42, 10], which include the baseline obtained

by the dataset creators, and four other state-of-the-art meth-

ods. The detailed results over each expression obtained

from different methods are shown Table 5. The average

FER accuracy is reported in the last column of the table.

The difficulty of the task is further evidenced by the results

in this table, where we observe a significant drop in accu-

racy of all methods. Overall, our method outperforms all

existing methods with a 1.88% to 7.68% improvement in

terms of the FER accuracy. This may attribute to the gener-

ated facial images, which can help learn discriminative fea-

tures to better deal with the nonlinear facial texture warping

caused by poses and individual difference.

4.4. Qualitative Results

The qualitative results of our model are illustrated in Fig-

ure 6. We randomly select a facial image from the test set,

which is shown in the pink rectangle. The generated fa-

cial images with different expressions (each column) and

poses (each row) are shown in the orange rectangle. And

the images in the green rectangle are the ground truth. By

comparing the generated images with the ground truth, it

is clear that the personality has been preserved by the pro-

posed model, and the attributes (expression and pose) have

been jointly modeled in the identity representation as shown

in the red rectangles. Due to limited space, more qualitative

results are reported in the supplementary material.

Table 5. Comparison of the average recognition accuracy (%)

with state-of-the-art methods on the SFEW dataset. The highest

accuracy for each expression is highlighted in bold.

Method / Emotion Angry Disgust Fear Happy Neutral Sad Surprise Average

Baseline 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90

MvDA 23.21 17.65 27.27 40.35 27.00 10.10 13.19 22.70

GMLDA 23.21 17.65 29.29 21.93 25.00 11.11 10.99 19.99

GMLPP 16.07 21.18 27.27 39.47 20.00 19.19 16.48 22.80

DS-GPLVM 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70

Ours 30.91 21.95 19.61 50.85 19.23 28.00 15.52 26.58

Figure 6. Example results of the generated facial images with dif-

ferent poses and expressions via the proposed model.

5. Conclusion
In this paper, we present an end-to-end learning model

for simultaneous facial images synthesis and pose-invariant

facial expression recognition. By disentangling the at-

tributes (expression and pose) from the facial image, we can

generate facial images with arbitrary expressions and poses

to help train the deep neutral classification model. Experi-

ments on three standard datasets demonstrate the effective-

ness of our model. In the future, we will take other aspects

in images into consideration for facial image synthesis, such

as illumination, occlusion [56, 57]. The proposed model is

general and can be applied to other classification tasks, such

as face recognition, image classification, and audio event

recognition, which we leave as future work.
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