
The Anatomy of Easy Problems: A Constraint-Satisfaction Formulation*

Rina Dechter and Judea Pearl

Computer Science Department, University of California, Los Angeles

ABSTRACT

This work aims towards the automatic generation
of advice to guide the solution of difficult constraint-
satisfaction problems (CSPs). The advice is generated by
consulting relaxed, easy models which are backtrack-
free.

We identify a subset of CSPs whose syntactic and
semantic properties make them easy to solve. The syntac­
tic properties involve the structure of the constraint
graph, while the semantic properties guarantee some lo­
cal consistencies among the constraints. In particular,
problems supported by tree-like constraint graphs, and
some width-2 graphs, can be easily solved and are there­
fore chosen as the target model for the relaxation
scheme. Optimal algorithms for solving easy problems
are presented and analyzed. Finally, an efficient method
is introduced for extracting advice from easy problems
and using it to speedup the solution of hard problems.

I INTRODUCTION

A. Why study easy problems?

An important component of human problem-
solving expertise is the ability to use knowledge about
solving easy problems to guide the solution of difficult
ones. Only a few works in A I - [12], [1] - have attempt­
ed to equip machines with similar capabilities. Gaschnig
[6], Guida et.al. [7], and Pearl [11] suggested that
knowledge about easy problems could be instrumental in
the mechanical discovery of heuristics. Accordingly, it
should be possible to manipulate the representation of a
difficult problem until it is transformed into an easy one,
solve the easy problem, then use the solution to guide the
search process in the original problem.

The implementation of this scheme requires three
major steps: 1. simplification, 2. solution, 3. advice
generation. Additionally, to perform the simplification
step, we must have a simple, a-priori criterion for decid­
ing when a problem lends itself to easy solution.

*This work was supported in part by the National Science
Foundation, Grant #MCS 81-14209.

This paper uses the domain of constraint-
satisfaction tasks to examine the feasibility of these three
steps. It establishes criteria for recognizing classes of
easy problems, it provides special procedures for solving
them, and it introduces an efficient method of extracting
advice from them.

Constraint-satisfaction problems (CSP) involve the
assignment of values to variables subject to a set of con­
straints. Understanding three-dimensional drawings,
graph coloring, electronic circuit analysis, and truth
maintenance systems are examples of CSP problems.
These are normally solved by some version of backtrack
search which may require exponential search time (for
example, the graph coloring problem is known to be NP-
complete.)

In general, a problem is considered easy when its
representation permits a solution in polynomial time.
However, since we are dealing mainly with backtrack al­
gorithms, we will consider a CSP easy if it can be solved
by a backtrack-free procedure. Normally, a backtracking
algorithm instantiates variables in a predetermined order,
and for each next variable it chooses one value that is
consistent with all previous assignments. If it doesn't
find one, it backtracks to the previous variable, tries a
new assignment for it, and continues from there. The al­
gorithm stops when all variables have been assigned
values or when no new untried values are left for the
first variable. A backtrack-free search is one in which the
backtracking algorithm completes without backtracking,
thus producing a solution in time linear with the number
of variables.

Most of our discussion is based on the concept of
constraint-graphs [8] in which the nodes represent vari­
ables and the undirected arcs represent the existence of
an explicit constraint between them. Freuder [5] has
identified sufficient conditions for a constraint graph to
yield a backtrack-free CSP, and has shown, for example,
that tree-like constraint graphs can be made to satisfy
these conditions, with a small amount of processing.
Our main purpose here is to further study classes of con­
straint graphs lending themselves to backtrack-free solu­
tions and to devise efficient algorithms for solving them.
Once these classes are identified they can be chosen as

R. Dechter and J. Pearl 1067

targets for a problem simplification scheme; constraints
can be selectively deleted from the original specification
so as to transform the original problem into a backtrack-
free one. The simplified problem can then provide advice
on choices pending in the original problem. For example,
we propose to use the "number of consistent solutions in
the simplified problem" as a figure of merit to establish
priority of value assignments in the backtracking search
of the original problem. We show that this figure of mer­
it can be computed in time comparable to that of finding
a single solution to an easy problem. (For details regard­
ing the process of constraint-deletion see [2].)

B. Definitions and Nomenclature

Definition 1 ([5]): An ordered constraint graph is a con­
straint graph in which the nodes are linearly ordered to
reflect the sequence of variable assignments executed by
the backtrack search algorithm. The width of a node is
the number of arcs that leads from that node to previous
nodes, the width of an ordering is the maximum width
of all nodes, and the width of a graph is the minimum
width of all the orderings of that graph.

Figure 1 presents three possible orderings of a
constraint graph. The width of node C in the first order-
ing (from the left) is 2, while in the second ordering it is
1. The width of the first ordering is 2 while that of the
second is 1. The width of the constraint graph is, there­
fore, 1. Freuder provided an efficient algorithm for find­
ing both the width of a graph and the ordering
corresponding to this width. He further showed that a
constraint graph is a tree iff it is of width 1.

Montanari [10] and Mackworth [8] have intro­
duced two kinds of local consistencies among constraints
named arc consistency and path consistency. Their de­
finitions assume that the graph is directed, i.e., each
symmetric constraint is represented by two directed arcs.

A constraint graph is arc (path) consistent if each
of its directed arcs (paths) is arc (path) consistent.
Achieving "arc-consistency" means deleting certain values
from the domains of certain variables such that the resul­
tant graph will be arc-consistent, while still representing
the same overall set of solutions. To achieve path-
consistency, certain pairs of values that were initially al­
lowed by the local constraints should be disallowed.
Montanari and Mackworth have proposed polynomial-
time algorithms for achieving arc-consistency and path
consistency. In [9] it is shown that arc consistency can
be achieved in 0(ek3) while path consistency can be
achieved in O(n3k3). n is the number of variables, k is
the number of possible values, and e is the number of
edges.

The following theorem is due to Freuder.

Theorem 1 [5]

(a) If the constraint graph has a width 1 (i.e. the con­
straint graph is a tree) and if it is arc consistent
then it admits backtrack-free solutions.

(b) If the width of the constraint graph is 2 and it is
also path consistent then it admits backtrack-free
solutions.

The above theorem suggests that tree-like CSFS
(CSPs whose constraint graphs are trees) can be solved
by first achieving arc consistency and then instantiating
the variables in an order which makes the graph have
width 1. Since this backtrack-free instantiation takes
0(ek) steps the whole problem can be solved in 0(nk3)
and, therefore, tree-like CSP's are easy. The test for this
property is also easily verified; to check whether or not a
given graph is a tree can be done by a regular O(n2)
spanning tree algorithm.

It is important to note that a given CSP may have
several equivalent representations, in the sense of admit­
ting the same set of solutions. Yet each representation
may have a different constraint-graph, one of which may
be a tree. However, testing whether a CSP has an
equivalent tree representation and finding such a
representation might be a very difficult task.

The second part of the theorem tempts us to con­
clude that a width-2 constraint graph should admit a
Backtrack-free solution after passing through a path-

1068 R. Dechter and J. Pearl

consistency algorithm. In this case, however, the path
consistency algorithm may add arcs to the graph and in­
crease its width beyond 2. This often happens when the
algorithm deletes value-pairs from a pair of variables
that were initially related by the universal constraint
(having no connecting arc between them), and it is often
the case that passage through a path-consistency algo­
rithm renders the constraint-graph complete. It may
happen, therefore, that no advantage could be taken of
the fact that a CSP possesses a width-2 constraint graph
if it is not already path consistent. We are not even sure
whether width-2 suffices to preclude NP-completeness.

In the following section we give weaker definitions
of arc and path consistency which are also sufficient for
guaranteeing backtrack-free solutions but have two ad­
vantages over those defined by Montanari [10] and
Mackworth [8]:

1. They can be achieved more efficiently, and

2. They add fewer arcs to the constraint-graph, thus
preserving the graph width in a larger classes of
problems.

n ALGORITHMS FOR ACHIEVING
DIRECTIONAL CONSISTENCY

A. Case of Width-1

In constraint-graphs which are trees, full arc-
consistency is more than what is actually required for
enabling backtrack-free solutions. For example, if the
constraint graph in figure 2 is ordered by (V1,V2,V3,V4),
nothing is gained by making the directed arc (V^V^) con­
sistent.

To ensure backtrack-free assignment, we need only make
sure that any value assigned to variable V^ will have at
least one consistent value in Dy This can be achieved by
making only the directed arc (V1,V3) consistent, regard­
less of whether iy^V\) is consistent. We therefore see
that arc-consistency is required only w.r.t. a single direc­
tion, the one specified by the order in which the back­
track algorithm will later choose variables for instantia­
tions. This motivates the following definitions.

Definition: Given an order d on the constraint graph

R. Dechter and J. Pearl 1069

REVISE(V j.V i). To destroy the consistency of (VjVi,)
some values should be deleted from the domain of V,
during the continuation of the algorithm. However, ac­
cording to the order by which REVISE is performed
from this point on, only lower indexed variables may
have their set of values updated. Therefore, once a
directed arc is made arc-consistent its consistency will not
be violated.

The algorithm AC-3 [8] that achieves full arc-consistency
is given for reference:

The complexity of AC-3, achieving full arc-consistency,
is 0(ek3). By comparison, the directional arc-consistency
algorithm takes ek2 steps since the REVISE algorithm,
taking k2 tests, is applied to every arc exactly once. It is
also optimal, because even to verify directional arc-
consistency each arc should be inspected once, and that
takes k2 tests. Note that when the constraint graph is a
tree, the complexity of the directional arc-consistency al­
gorithm is 0(nk2).

Theorem 3:

A tree-like CSP can be solved in O(nk2) steps and this is
optimal.

proof:

Given that we know that the constraint graph is a tree,
finding an order that will render it of width-1 takes 0(n)
steps. A width-1 tree-CSP can be made d-arc-consistent
in n k2 steps, using the DAC algorithm. The backtrack-
free solution on the resultant tree is found in 0(nk).
Finding a solution to tree-like CSPs takes, therefore,
0(nk) + Oink2) + 0(n) = Oink2). This complexity is
also optimal since any algorithm for solving a tree-like
problem must examine each constraint at least once, and
each such examination may take in the worst case k2

(especially when no solution exist and the constraints
permit very few pairs of values).

Interestingly, if we apply DAC w.r.j. order d and
then DAC w.r.t. the reverse order we get a full arc-
consistency for trees. We can, therefore, achieve full

arc-consistency on trees in 0(nk2). Algorithm AC-3, on
the other hand, can be shown to have a worst case per­
formance on trees of 0(nk3). On general graphs, howev­
er, the (full) arc-consistency algorithm cannot be im­
proved, and the AC-3 algorithm is optimal (see [2]).

Returning to our primary aim of studying easy
problems, we now show how advice can be generated for
solving a difficult CSP using a relaxed tree-like approxi­
mation. Suppose that we want to solve an n variables
CSP using a backtrack procedure with V l V 2 , . . . ,Vn as
the order of instantiation. Let V1 be the variable to in­
stantiate next, with vn,v l2, . . . ,v# the possible candi­
date values. To minimize backtracking we should first try
values which arc likely to lead to a consistent solution
but, since this likelihood is not known in advance, we
may estimate it, instead, by counting the number of con­
sistent solutions that each candidate admits in some re­
laxed problem. We generate a relaxed tree-like problem
by deleting some of the explicit constraints given, then
count the number of consistent solutions containing each
of the possible k assignments, and finally use these
counts as a figure of merit for scheduling the various as­
signments. In the following we show how the counting
of consistent solutions can be imbedded within the d-
arc-consistency algorithm, DAC, on trees.

Any width-1 order, d, on a constraint tree deter­
mines a directed tree in which a parent always precedes
its children in d (arcs are directed from the parent to its
children). Let N(vjt) stands for the number of solutions
in the subtree rooted at Vj, consistent with the assign­
ment of Vj to Vj. It can be shown that N(.) satisfies the
following recurrence:

From this recurrence it is clear that the computation of
N(vu) may follow the exact same steps as in DAC; simul­
taneously with testing that a given value vjn is consistent
with each of its children nodes, we simply transfer from
each child of Vj to vjt the sum total of the counts comput­
ed for the child's values that are consistent with vjt,. The
overall value of N(vjt) will be computed later on by mul­
tiplying together the summations obtained from each of
the children. Thus, counting the number of solutions in a
tree with n variables takes 0(nk2), the same as establish­
ing directional arc-consistency.

B. CaseofWidth-2

Order information can also facilitate backtrack-
free search on width-2 problems by making path-
consistency algorithms directional.

Montanari had shown that if a network of con­
straints is consistent w.r.t. all paths of length 2 (in the
complete network) then it is path-consistent. Similarly we
will show that directional path-consistency w.r.t. length-2

1070 R. Dechter and J. Pearl

R. Dechter and J. Pearl 1071

A ring constitutes an example of a regular width-2
graph. Figure 3 shows an ordering of a ring's nodes and
the graph resulting from applying the DPC algorithm to
the ring. Both graphs are of width-2.

Theorem 5:

A regular width-2 CSP can be solved in 0(n3k3).

Proof:

Regular width-2 problem can be solved by first applying
the DPC algorithm and then performing a backtrack-free
search on the resulting graph. The first takes 0(n3*3)
steps and the second 0(ek) steps.

D

The main problem with the preceding approach is
whether a regular width-2 CSP can be recognized from
the properties of its constraint graph. One promising ap­
proach is to identify nonseparable components of the
graph and all its separation vertices [4].

definition: A connected graph G(V,E) is said to have a
separation vertex v if there exist vertices a and b, such
that all the paths connecting a and b pass through v. A
graph which has a separation vertex is called separable,
and one which has none is called nonseparable.

An 0{\E\) algorithm for finding all the nonseparable
components and the separation vertices is given in [4]. It
is also shown that the connectivity structure between the
nonseparable components and the separation vertices,
has a tree structure.

The following points can be made:

1. Given any ordered constraint graph in which the
separation vertices and the nonseparable com­
ponents are identified, the directional path-
consistency algorithm adds arcs only within each
component.

2. Let R be a graph and SR be the tree in which the
nonseparable components C1C2, . . . ,C r and the
separating vertices V1V2, • • • ,V1 are represented
by nodes. A width-1 ordering of RS dictates a
partial order on R,d3 in which each separating
vertex precede all the vertices in its children com­
ponents of SR. It can be shown that if there exist
a ds ordering on R such that each nonseparable
component is rcgular-width-2 then the total order­
ing is regular width-2.

As a corollary of these two points we conclude that a
tree of simple rings is regular width-2.

ID SUMMARY AND CONCLUSIONS

This paper examines the process of harnessing
easy problems to help in the solution of complex
constraint-satisfaction problems. Of the three main steps
involved in this process - simplification, solution, and
advice generation — we concentrated on the following:

1. The simplification part: we have devised criteria
for recognizing easy problems based on their
underlying constraint graphs. The characteristics
that meet these criteria can be used as goals for
simplifying complex problems by deleting some of
their constraints. The introduction of directional­
ity into the notions of arc and path consistency en­
able us to extend the class of recognizable easy
problems beyond trees, to include regular width-2
problems.

2. The solution part: using directionality we were
able to devise improved algorithms for solving
simplified problems and to demonstrate their op-
timality. In particular, it is shown that tree-
structured problems can be solved in O(nk2) steps,
and regular width-2 problems in 0(n3*3) steps.

3. The advice generation part: we have demonstrated
a simple method of extracting advice from easy
problems to help a backtracking algorithm decide
between pending options of value assignments.
The method involves approximating the remaining
part of a constraint-satisfaction task by a tree-
structured problem, and counting the number of
solutions consistent with each pending assignment.
These counts can be obtained efficiently and can
be used as figures of merit to rate the promise of­
fered by each option.

In experiments, fully reported in [2], we compared
the performance of a regular backtrack algorithm (RBT)
with Advised Backtrack (ABT) on a set of randomly
generated CSP problems. Initial results showed that the
quality of the advice generated on the basis of a full
spanning tree was sufficient to cut down substantially the
number of backtrackings, typically from about 50 to 0-3.
In many cases, however, the number of consistency
checks required for generating this advice made the
overall computational work higher then that of RBT. We
interpreted this result to mean that the advice generated
was too precise in the sense that further simplification
should be attempted to cut down the work spent on ad­
vice generation. For that reason we experimented with
advice generated by partially developed trees, namely,
only a limited number, /, of nodes were spanned by the
advising tree. The parameter / governs the strength of
the advice, /= l , . . . , n . Figure 4 shows the performance
of ABT as a function of / on a typical problem. The two
criteria by which performance was judged were the
number of backtrackings performed and the number of

1072 R. Dechter and J. Pearl

consistency checks i.e the number of times any two
values were tested for consistency w.r.t. some con­
straint. For comparison, the results for RBT are shown
at the point /= 1 (by triangle points). The numbers label­
ing points on the graph indicate the amount of backtrack­
ings. Typically the amount of backtracking was consider­
ably smaller in ABT then in RBT even for weak advice,
however the total work invested in full advise (using all
nodes in the tree) was not always worthwhile and a
weaker advice was sufficient. The dip in the curve
represents an optimal balance between the effort spent in
generating advice and the amount of backtracking it
saves.

Although the primary discussion in this paper has
focused on guiding the selection of values within a given
variable, the properties of tree-structured networks can
also be exploited to optimize the ordering of variables.
One such scheme, which promises unusual possibilities,
is based on the following observation: If, in the course of
a backtrack search, we remove from the constraint graph
the nodes corresponding to already instantiated variables
and find that the remaining subgraph is a tree, then the
rest of the search can be completed in linear time (e.g.,
using the DAC algorithm of Section II). Consequently,
the aim of ordering the variables should be to instantiate,
as quickly as possible, a set of variables that cut all cy­
cles in the network. Indeed, if we identify m variables
which form such a cycle-cutset, the entire CSP can be
solved in at most 0(itmnJt2) steps; we simply solve the
trees resulting from each of the km possible instantiations
of the variables in the cutset. Thus, in networks where
the ratio n/m is large, enormous savings can be realized
using simple heuristics for selecting near-minimal cycle-
cutsets.

REFERENCES

[1] Carbonell, J.G., "Learning by Analogy: Formula­
tion and Generating Plan from Past Experience*. In
Michalski, Carbonell, and Mitchell (eds.), Machine
Learning. Palo Alto, CA: Tioga Press, 1983.

[2] Dechter, R., UCLA, Los Angeles, CA, 1985. Ph.D.
thesis, in preparation.

[3] Dechter, R. and J. Pearl, "A Problem Simplification
Approach that Generates Heuristics for Constraint
Satisfaction Problems". UCLA-ENG-REP-8497,
Cognitive Systems Laboratory, Computer Science
Department, University of California, Los Angeles.
To appear in Machine Intelligence 11. 1985.

[4] Even, S., Graph Algorithms. Maryland: Computer
Science Press, 1979.

[5] Freuder, E.C., "A
Backtrack-Free Search".
(1982) 24-32.

Sufficient Condition for
Journal of the ACM 29:1

[6] Gaschnig, J., "A Problem Similarity Approach to
Devising Heuristics: First Results" In Proc. IJCAI-
79. Tokyo, Japan, August, 1979, pp. 301-307.

[7] Guida, G. and M. Somalvico, "A Method for Com­
puting Heuristics in Problem Solving". Information
Sciences 19 (1979) 251-259.

[8] Mackworth, A.K., "Consistency in Networks of Re­
lations", Artificial Intelligence 8:1 (1977) 99-118.

[9] Mackworth, A.K. and E.C. Frcuder, "The Complex­
ity of Some Polynomial Consistency Algorithms for
Constraint Satisfaction Problems". Artificial Intelli­
gence 25:1 (1985) 65-73.

[10]Montanari, U., "Networks of Constraints: Funda­
mental Properties and Applications to Picture Pro­
cessing", Information Science 7 (1974) 95-132.

[11]Pearl, J., "On the Discovery and Generation of Cer­
tain Heuristics", AI Magazine Winter/Spring (1983)
22-23.

[12]Sacerdoti, E.D., "Planning in a Hierarchy of
Abstraction Spaces", Artificial Intelligence 5:2 (1974)
115-135.

