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ABSTRACT 

This work aims towards the automatic generation 
of advice to guide the solution of difficult constraint-
satisfaction problems (CSPs). The advice is generated by 
consulting relaxed, easy models which are backtrack-
free. 

We identify a subset of CSPs whose syntactic and 
semantic properties make them easy to solve. The syntac­
tic properties involve the structure of the constraint 
graph, while the semantic properties guarantee some lo­
cal consistencies among the constraints. In particular, 
problems supported by tree-like constraint graphs, and 
some width-2 graphs, can be easily solved and are there­
fore chosen as the target model for the relaxation 
scheme. Optimal algorithms for solving easy problems 
are presented and analyzed. Finally, an efficient method 
is introduced for extracting advice from easy problems 
and using it to speedup the solution of hard problems. 

I INTRODUCTION 

A. Why study easy problems? 

An important component of human problem-
solving expertise is the ability to use knowledge about 
solving easy problems to guide the solution of difficult 
ones. Only a few works in A I - [12], [ 1 ] - have attempt­
ed to equip machines with similar capabilities. Gaschnig 
[6], Guida et.al. [7], and Pearl [11] suggested that 
knowledge about easy problems could be instrumental in 
the mechanical discovery of heuristics. Accordingly, it 
should be possible to manipulate the representation of a 
difficult problem until it is transformed into an easy one, 
solve the easy problem, then use the solution to guide the 
search process in the original problem. 

The implementation of this scheme requires three 
major steps: 1. simplification, 2. solution, 3. advice 
generation. Additionally, to perform the simplification 
step, we must have a simple, a-priori criterion for decid­
ing when a problem lends itself to easy solution. 

*This work was supported in part by the National Science 
Foundation, Grant #MCS 81-14209. 

This paper uses the domain of constraint-
satisfaction tasks to examine the feasibility of these three 
steps. It establishes criteria for recognizing classes of 
easy problems, it provides special procedures for solving 
them, and it introduces an efficient method of extracting 
advice from them. 

Constraint-satisfaction problems (CSP) involve the 
assignment of values to variables subject to a set of con­
straints. Understanding three-dimensional drawings, 
graph coloring, electronic circuit analysis, and truth 
maintenance systems are examples of CSP problems. 
These are normally solved by some version of backtrack 
search which may require exponential search time (for 
example, the graph coloring problem is known to be NP-
complete.) 

In general, a problem is considered easy when its 
representation permits a solution in polynomial time. 
However, since we are dealing mainly with backtrack al­
gorithms, we will consider a CSP easy if it can be solved 
by a backtrack-free procedure. Normally, a backtracking 
algorithm instantiates variables in a predetermined order, 
and for each next variable it chooses one value that is 
consistent with all previous assignments. If it doesn't 
find one, it backtracks to the previous variable, tries a 
new assignment for it, and continues from there. The al­
gorithm stops when all variables have been assigned 
values or when no new untried values are left for the 
first variable. A backtrack-free search is one in which the 
backtracking algorithm completes without backtracking, 
thus producing a solution in time linear with the number 
of variables. 

Most of our discussion is based on the concept of 
constraint-graphs [8] in which the nodes represent vari­
ables and the undirected arcs represent the existence of 
an explicit constraint between them. Freuder [5] has 
identified sufficient conditions for a constraint graph to 
yield a backtrack-free CSP, and has shown, for example, 
that tree-like constraint graphs can be made to satisfy 
these conditions, with a small amount of processing. 
Our main purpose here is to further study classes of con­
straint graphs lending themselves to backtrack-free solu­
tions and to devise efficient algorithms for solving them. 
Once these classes are identified they can be chosen as 
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targets for a problem simplification scheme; constraints 
can be selectively deleted from the original specification 
so as to transform the original problem into a backtrack-
free one. The simplified problem can then provide advice 
on choices pending in the original problem. For example, 
we propose to use the "number of consistent solutions in 
the simplified problem" as a figure of merit to establish 
priority of value assignments in the backtracking search 
of the original problem. We show that this figure of mer­
it can be computed in time comparable to that of finding 
a single solution to an easy problem. (For details regard­
ing the process of constraint-deletion see [2].) 

B. Definitions and Nomenclature 

Definition 1 ([5]): An ordered constraint graph is a con­
straint graph in which the nodes are linearly ordered to 
reflect the sequence of variable assignments executed by 
the backtrack search algorithm. The width of a node is 
the number of arcs that leads from that node to previous 
nodes, the width of an ordering is the maximum width 
of all nodes, and the width of a graph is the minimum 
width of all the orderings of that graph. 

Figure 1 presents three possible orderings of a 
constraint graph. The width of node C in the first order-
ing (from the left) is 2, while in the second ordering it is 
1. The width of the first ordering is 2 while that of the 
second is 1. The width of the constraint graph is, there­
fore, 1. Freuder provided an efficient algorithm for find­
ing both the width of a graph and the ordering 
corresponding to this width. He further showed that a 
constraint graph is a tree iff it is of width 1. 

Montanari [10] and Mackworth [8] have intro­
duced two kinds of local consistencies among constraints 
named arc consistency and path consistency. Their de­
finitions assume that the graph is directed, i.e., each 
symmetric constraint is represented by two directed arcs. 

A constraint graph is arc (path) consistent if each 
of its directed arcs (paths) is arc (path) consistent. 
Achieving "arc-consistency" means deleting certain values 
from the domains of certain variables such that the resul­
tant graph will be arc-consistent, while still representing 
the same overall set of solutions. To achieve path-
consistency, certain pairs of values that were initially al­
lowed by the local constraints should be disallowed. 
Montanari and Mackworth have proposed polynomial-
time algorithms for achieving arc-consistency and path 
consistency. In [9] it is shown that arc consistency can 
be achieved in 0(ek3) while path consistency can be 
achieved in O(n3k3). n is the number of variables, k is 
the number of possible values, and e is the number of 
edges. 

The following theorem is due to Freuder. 

Theorem 1 [5] 

(a) If the constraint graph has a width 1 (i.e. the con­
straint graph is a tree) and if it is arc consistent 
then it admits backtrack-free solutions. 

(b) If the width of the constraint graph is 2 and it is 
also path consistent then it admits backtrack-free 
solutions. 

The above theorem suggests that tree-like CSFS 
(CSPs whose constraint graphs are trees) can be solved 
by first achieving arc consistency and then instantiating 
the variables in an order which makes the graph have 
width 1. Since this backtrack-free instantiation takes 
0(ek) steps the whole problem can be solved in 0(nk3) 
and, therefore, tree-like CSP's are easy. The test for this 
property is also easily verified; to check whether or not a 
given graph is a tree can be done by a regular O(n2) 
spanning tree algorithm. 

It is important to note that a given CSP may have 
several equivalent representations, in the sense of admit­
ting the same set of solutions. Yet each representation 
may have a different constraint-graph, one of which may 
be a tree. However, testing whether a CSP has an 
equivalent tree representation and finding such a 
representation might be a very difficult task. 

The second part of the theorem tempts us to con­
clude that a width-2 constraint graph should admit a 
Backtrack-free solution after passing through a path-
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consistency algorithm. In this case, however, the path 
consistency algorithm may add arcs to the graph and in­
crease its width beyond 2. This often happens when the 
algorithm deletes value-pairs from a pair of variables 
that were initially related by the universal constraint 
(having no connecting arc between them), and it is often 
the case that passage through a path-consistency algo­
rithm renders the constraint-graph complete. It may 
happen, therefore, that no advantage could be taken of 
the fact that a CSP possesses a width-2 constraint graph 
if it is not already path consistent. We are not even sure 
whether width-2 suffices to preclude NP-completeness. 

In the following section we give weaker definitions 
of arc and path consistency which are also sufficient for 
guaranteeing backtrack-free solutions but have two ad­
vantages over those defined by Montanari [10] and 
Mackworth [8]: 

1. They can be achieved more efficiently, and 

2. They add fewer arcs to the constraint-graph, thus 
preserving the graph width in a larger classes of 
problems. 

n ALGORITHMS FOR ACHIEVING 
DIRECTIONAL CONSISTENCY 

A. Case of Width-1 

In constraint-graphs which are trees, full arc-
consistency is more than what is actually required for 
enabling backtrack-free solutions. For example, if the 
constraint graph in figure 2 is ordered by (V1,V2,V3,V4), 
nothing is gained by making the directed arc (V^V^) con­
sistent. 

To ensure backtrack-free assignment, we need only make 
sure that any value assigned to variable V^ will have at 
least one consistent value in Dy This can be achieved by 
making only the directed arc (V1,V3) consistent, regard­
less of whether iy^V\) is consistent. We therefore see 
that arc-consistency is required only w.r.t. a single direc­
tion, the one specified by the order in which the back­
track algorithm will later choose variables for instantia­
tions. This motivates the following definitions. 

Definition: Given an order d on the constraint graph 
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REVISE(V j.V i). To destroy the consistency of (VjVi,) 
some values should be deleted from the domain of V, 
during the continuation of the algorithm. However, ac­
cording to the order by which REVISE is performed 
from this point on, only lower indexed variables may 
have their set of values updated. Therefore, once a 
directed arc is made arc-consistent its consistency will not 
be violated. 

The algorithm AC-3 [8] that achieves full arc-consistency 
is given for reference: 

The complexity of AC-3, achieving full arc-consistency, 
is 0(ek3). By comparison, the directional arc-consistency 
algorithm takes ek2 steps since the REVISE algorithm, 
taking k2 tests, is applied to every arc exactly once. It is 
also optimal, because even to verify directional arc-
consistency each arc should be inspected once, and that 
takes k2 tests. Note that when the constraint graph is a 
tree, the complexity of the directional arc-consistency al­
gorithm is 0(nk2). 

Theorem 3: 

A tree-like CSP can be solved in O(nk2) steps and this is 
optimal. 

proof: 

Given that we know that the constraint graph is a tree, 
finding an order that will render it of width-1 takes 0(n) 
steps. A width-1 tree-CSP can be made d-arc-consistent 
in n k2 steps, using the DAC algorithm. The backtrack-
free solution on the resultant tree is found in 0(nk). 
Finding a solution to tree-like CSPs takes, therefore, 
0(nk) + Oink2) + 0(n) = Oink2). This complexity is 
also optimal since any algorithm for solving a tree-like 
problem must examine each constraint at least once, and 
each such examination may take in the worst case k2 

(especially when no solution exist and the constraints 
permit very few pairs of values). 

Interestingly, if we apply DAC w.r.j. order d and 
then DAC w.r.t. the reverse order we get a full arc-
consistency for trees. We can, therefore, achieve full 

arc-consistency on trees in 0(nk2). Algorithm AC-3, on 
the other hand, can be shown to have a worst case per­
formance on trees of 0(nk3). On general graphs, howev­
er, the (full) arc-consistency algorithm cannot be im­
proved, and the AC-3 algorithm is optimal (see [2]). 

Returning to our primary aim of studying easy 
problems, we now show how advice can be generated for 
solving a difficult CSP using a relaxed tree-like approxi­
mation. Suppose that we want to solve an n variables 
CSP using a backtrack procedure with V l V 2 , . . . ,Vn as 
the order of instantiation. Let V1 be the variable to in­
stantiate next, with vn,v l2, . . . ,v# the possible candi­
date values. To minimize backtracking we should first try 
values which arc likely to lead to a consistent solution 
but, since this likelihood is not known in advance, we 
may estimate it, instead, by counting the number of con­
sistent solutions that each candidate admits in some re­
laxed problem. We generate a relaxed tree-like problem 
by deleting some of the explicit constraints given, then 
count the number of consistent solutions containing each 
of the possible k assignments, and finally use these 
counts as a figure of merit for scheduling the various as­
signments. In the following we show how the counting 
of consistent solutions can be imbedded within the d-
arc-consistency algorithm, DAC, on trees. 

Any width-1 order, d, on a constraint tree deter­
mines a directed tree in which a parent always precedes 
its children in d (arcs are directed from the parent to its 
children). Let N(vjt) stands for the number of solutions 
in the subtree rooted at Vj, consistent with the assign­
ment of Vj to Vj. It can be shown that N(.) satisfies the 
following recurrence: 

From this recurrence it is clear that the computation of 
N(vu) may follow the exact same steps as in DAC; simul­
taneously with testing that a given value vjn is consistent 
with each of its children nodes, we simply transfer from 
each child of Vj to vjt the sum total of the counts comput­
ed for the child's values that are consistent with vjt,. The 
overall value of N(vjt) will be computed later on by mul­
tiplying together the summations obtained from each of 
the children. Thus, counting the number of solutions in a 
tree with n variables takes 0(nk2), the same as establish­
ing directional arc-consistency. 

B. CaseofWidth-2 

Order information can also facilitate backtrack-
free search on width-2 problems by making path-
consistency algorithms directional. 

Montanari had shown that if a network of con­
straints is consistent w.r.t. all paths of length 2 (in the 
complete network) then it is path-consistent. Similarly we 
will show that directional path-consistency w.r.t. length-2 
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A ring constitutes an example of a regular width-2 
graph. Figure 3 shows an ordering of a ring's nodes and 
the graph resulting from applying the DPC algorithm to 
the ring. Both graphs are of width-2. 

Theorem 5: 

A regular width-2 CSP can be solved in 0(n3k3). 

Proof: 

Regular width-2 problem can be solved by first applying 
the DPC algorithm and then performing a backtrack-free 
search on the resulting graph. The first takes 0(n3*3) 
steps and the second 0(ek) steps. 

D 

The main problem with the preceding approach is 
whether a regular width-2 CSP can be recognized from 
the properties of its constraint graph. One promising ap­
proach is to identify nonseparable components of the 
graph and all its separation vertices [4]. 

definition: A connected graph G(V,E) is said to have a 
separation vertex v if there exist vertices a and b, such 
that all the paths connecting a and b pass through v. A 
graph which has a separation vertex is called separable, 
and one which has none is called nonseparable. 

An 0{\E\) algorithm for finding all the nonseparable 
components and the separation vertices is given in [4]. It 
is also shown that the connectivity structure between the 
nonseparable components and the separation vertices, 
has a tree structure. 

The following points can be made: 

1. Given any ordered constraint graph in which the 
separation vertices and the nonseparable com­
ponents are identified, the directional path-
consistency algorithm adds arcs only within each 
component. 

2. Let R be a graph and SR be the tree in which the 
nonseparable components C1C2, . . . ,C r and the 
separating vertices V1V2, • • • ,V1 are represented 
by nodes. A width-1 ordering of RS dictates a 
partial order on R,d3 in which each separating 
vertex precede all the vertices in its children com­
ponents of SR. It can be shown that if there exist 
a ds ordering on R such that each nonseparable 
component is rcgular-width-2 then the total order­
ing is regular width-2. 

As a corollary of these two points we conclude that a 
tree of simple rings is regular width-2. 

ID SUMMARY AND CONCLUSIONS 

This paper examines the process of harnessing 
easy problems to help in the solution of complex 
constraint-satisfaction problems. Of the three main steps 
involved in this process - simplification, solution, and 
advice generation — we concentrated on the following: 

1. The simplification part: we have devised criteria 
for recognizing easy problems based on their 
underlying constraint graphs. The characteristics 
that meet these criteria can be used as goals for 
simplifying complex problems by deleting some of 
their constraints. The introduction of directional­
ity into the notions of arc and path consistency en­
able us to extend the class of recognizable easy 
problems beyond trees, to include regular width-2 
problems. 

2. The solution part: using directionality we were 
able to devise improved algorithms for solving 
simplified problems and to demonstrate their op-
timality. In particular, it is shown that tree-
structured problems can be solved in O(nk2) steps, 
and regular width-2 problems in 0(n3*3) steps. 

3. The advice generation part: we have demonstrated 
a simple method of extracting advice from easy 
problems to help a backtracking algorithm decide 
between pending options of value assignments. 
The method involves approximating the remaining 
part of a constraint-satisfaction task by a tree-
structured problem, and counting the number of 
solutions consistent with each pending assignment. 
These counts can be obtained efficiently and can 
be used as figures of merit to rate the promise of­
fered by each option. 

In experiments, fully reported in [2], we compared 
the performance of a regular backtrack algorithm (RBT) 
with Advised Backtrack (ABT) on a set of randomly 
generated CSP problems. Initial results showed that the 
quality of the advice generated on the basis of a full 
spanning tree was sufficient to cut down substantially the 
number of backtrackings, typically from about 50 to 0-3. 
In many cases, however, the number of consistency 
checks required for generating this advice made the 
overall computational work higher then that of RBT. We 
interpreted this result to mean that the advice generated 
was too precise in the sense that further simplification 
should be attempted to cut down the work spent on ad­
vice generation. For that reason we experimented with 
advice generated by partially developed trees, namely, 
only a limited number, /, of nodes were spanned by the 
advising tree. The parameter / governs the strength of 
the advice, /= l , . . . , n . Figure 4 shows the performance 
of ABT as a function of / on a typical problem. The two 
criteria by which performance was judged were the 
number of backtrackings performed and the number of 
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consistency checks i.e the number of times any two 
values were tested for consistency w.r.t. some con­
straint. For comparison, the results for RBT are shown 
at the point /= 1 (by triangle points). The numbers label­
ing points on the graph indicate the amount of backtrack­
ings. Typically the amount of backtracking was consider­
ably smaller in ABT then in RBT even for weak advice, 
however the total work invested in full advise (using all 
nodes in the tree) was not always worthwhile and a 
weaker advice was sufficient. The dip in the curve 
represents an optimal balance between the effort spent in 
generating advice and the amount of backtracking it 
saves. 

Although the primary discussion in this paper has 
focused on guiding the selection of values within a given 
variable, the properties of tree-structured networks can 
also be exploited to optimize the ordering of variables. 
One such scheme, which promises unusual possibilities, 
is based on the following observation: If, in the course of 
a backtrack search, we remove from the constraint graph 
the nodes corresponding to already instantiated variables 
and find that the remaining subgraph is a tree, then the 
rest of the search can be completed in linear time (e.g., 
using the DAC algorithm of Section II). Consequently, 
the aim of ordering the variables should be to instantiate, 
as quickly as possible, a set of variables that cut all cy­
cles in the network. Indeed, if we identify m variables 
which form such a cycle-cutset, the entire CSP can be 
solved in at most 0(itmnJt2) steps; we simply solve the 
trees resulting from each of the km possible instantiations 
of the variables in the cutset. Thus, in networks where 
the ratio n/m is large, enormous savings can be realized 
using simple heuristics for selecting near-minimal cycle-
cutsets. 
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