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Abstract

Deep learning approaches for Visual-Inertial Odometry

(VIO) have proven successful, but they rarely focus on in-

corporating robust fusion strategies for dealing with imper-

fect input sensory data. We propose a novel end-to-end se-

lective sensor fusion framework for monocular VIO, which

fuses monocular images and inertial measurements in or-

der to estimate the trajectory whilst improving robustness

to real-life issues, such as missing and corrupted data or

bad sensor synchronization. In particular, we propose two

fusion modalities based on different masking strategies: de-

terministic soft fusion and stochastic hard fusion, and we

compare with previously proposed direct fusion baselines.

During testing, the network is able to selectively process

the features of the available sensor modalities and produce

a trajectory at scale. We present a thorough investigation on

the performances on three public autonomous driving, Mi-

cro Aerial Vehicle (MAV) and hand-held VIO datasets. The

results demonstrate the effectiveness of the fusion strate-

gies, which offer better performances compared to direct

fusion, particularly in presence of corrupted data. In ad-

dition, we study the interpretability of the fusion networks

by visualising the masking layers in different scenarios and

with varying data corruption, revealing interesting corre-

lations between the fusion networks and imperfect sensory

input data.

1. Introduction

Humans are able to perceive their self-motion through

space via multimodal perceptions. Optical flow (visual

cues) and vestibular signals (inertial motion sense) are the

two most sensitive cues for determining self-motion [9].

In the fields of computer vision and robotics, integrating

visual and inertial information in the form of Visual-Inertial

Odometry (VIO) is a well researched topic [17, 20, 19, 11,

29], as it enables ubiquitous mobility for mobile agents by

providing robust and accurate pose information. Moreover,

cameras and inertial sensors are relatively low-cost, power-

efficient and widely found in ground robots, smartphones,

and unmanned aerial vehicles (UAVs). Existing VIO ap-

proaches generally follow a standard pipeline that involves

fine-tuning of both feature detection and tracking, and of the

sensor fusion strategy. These models rely on handcrafted

features, and fuse the information based on filtering [20] or

nonlinear optimization [19, 11, 29]. However, naively us-

ing all features before fusion will lead to unreliable state

estimation, as incorrect feature extraction or matching crip-

ples the entire system. Real issues which can and do occur

include camera occlusion or operation in low-light condi-

tions [40], excess noise or drift within the inertial sensor

[26], time-synchronization between the two streams or spa-

tial misalignment [21].

Recent studies on applying deep neural networks

(DNNs) to solving visual-inertial odometry [30] or visual

odometry [18, 7] showed competitive performance in terms

of both accuracy and robustness. Although DNNs excel at

extracting high-level features representative of egomotion,

these learning-based methods are not explicitly modelling

the sources of degradation in real-world usages. With-

out considering possible sensor errors, all features are di-

rectly fed into other modules for further pose regression in

[4, 7, 18], or simply concatenated as in [30]. These factors

can possibly cause troubles to the accuracy and safety of

VIO systems, when the input data are corrupted or missing.

For this reason, we present a generic framework that

models feature selection for robust sensor fusion. The se-

lection process is conditioned on the measurement relia-

bility and the dynamics of both egomotion and environ-

ment. Two alternative feature weighting strategies are pre-

sented: soft fusion, implemented in a deterministic fashion;

and hard fusion, which introduces stochastic noise and in-

tuitively learns to keep the most relevant feature represen-

tations, while discarding useless or misleading information.

Both architectures are trained in an end-to-end fashion.

By explicitly modelling the selection process, we are

able to demonstrate the strong correlation between the

selected features and the environmental/measurement dy-

namics by visualizing the sensor fusion masks, as illus-
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Figure 1: Visualization of the learned hard and soft fusion masks under different conditions (left: normal data; middle and

right: corrupted data). The number (hard) or weights (soft) of selected features in the visual and inertial sides can reflect the

self-motion dynamics (increasing importance of inertial features during turning), and data corruption conditions.

trated in Figure 1. Our results show that features extracted

from different modalities (i.e., vision and inertial motion)

are complementary in various conditions: the inertial fea-

tures contribute more in presence of fast rotation, while vi-

sual features are preferred during large translations (Fig-

ure 6). Thus, the selective sensor fusion provides insight

into the underlying strengths of each sensor modality. We

also demonstrate how incorporating selective sensor fusion

makes VIO robust to data corruption typically encountered

in real-world scenarios.

The main contributions of this work are as follows:

• We present a generic framework to learn selective sen-

sor fusion enabling more robust and accurate ego-

motion estimation in real world scenarios.

• Our selective sensor fusion masks can be visualized

and interpreted, providing deeper insight into the rela-

tive strengths of each stream, and guiding further sys-

tem design.

• We create challenging datasets on top of current public

VIO datasets by considering seven different sources of

sensor degradation, and conduct a new and complete

study on the accuracy and robustness of deep sensor

fusion in presence of corrupted data.

2. Neural VIO Models with Selective Fusion

In this section, we introduce the end-to-end architecture

for neural visual-inertial odometry, which is the foundation

for our proposed framework. Figure 2(top) shows a modular

overview of the architecture, consisting of visual and iner-

tial encoders, feature fusion, temporal modelling and pose

regression. Our model takes in a sequence of raw images

and IMU measurements, and generates their corresponding

pose transformation. With the exception of our novel fea-

ture fusion, the pipeline can be any generic deep VIO tech-

nique. In the Feature Fusion component we propose two

different selection mechanisms (soft and hard) and compare

them with direct (i.e. a uniform/unweighted mask) fusion,

as shown in Figure 2(bottom).

2.1. Feature Encoder

Visual Feature Encoder The Visual Encoder extracts a la-

tent representation from a set of two consecutive monocular

images xV . Ideally, we want the Visual Encoder fvision to

learn geometrically meaningful features rather than features

related with appearance or context. For this reason, instead

of using a PoseNet model [18], as commonly found in other

DL-based VO approaches [43, 42, 41], we use FlowNetSim-

ple [10] as our feature encoder. Flownet provides features

that are suited for optical flow prediction. The network con-

sists of nine convolutional layers. The size of the receptive

fields gradually reduces from 7×7 to 5×5 and finally 3×3,

with stride two for the first six. Each layer is followed by

a ReLU nonlinearity except for the last one, and we use the

features from the last convolutional layer aV as our visual

feature:

aV = fvision(xV ). (1)
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Figure 2: An overview of our neural visual-inertial odometry architecture with proposed selective sensor fusion, consisting

of visual and inertial encoders, feature fusion, temporal modelling and pose regression. In the feature fusion component, we

compare our proposed soft and hard selective sensor fusion strategies with direct fusion.

Inertial Feature Encoder: Inertial data streams have a

strong temporal component, and are generally available at

higher frequency (∼100 Hz) than images (∼10 Hz). In-

spired by IONet [6], we use a two-layer Bi-directional

LSTM with 128 hidden states as the Inertial Feature En-

coder finertial. As shown in Figure 2, a window of inertial

measurements xI between each two images is fed to the

inertial feature encoder in order to extract the dimensional

feature vector aI :

aI = finertial(xI). (2)

2.2. Fusion Function

We now combine the high-level features produced by the

two encoders from raw data sequences, with a fusion func-

tion g that combines information from the visual aV and

inertial aI channels to extract the useful combined feature

z for future pose regression task:

z = g(aV ,aI). (3)

There are several different ways to implement this fusion

function. The current approach is to directly concatenate

the two features together into one feature space (we call this

method direct fusion gdirect). However, in order to learn a ro-

bust sensor fusion model, we propose two fusion schemes

– deterministic soft fusion gsoft and stochastic hard fusion

ghard, which explicitly model the feature selection process

according to the current environment dynamics and the re-

liability of the data input. Our selective fusion mechanisms

re-weights the concatenated inertial-visual features, guided

by the concatenated features themselves. The fusion net-

work is another deep neural network and is end-to-end train-

able. Details will be discussed in Section 3.

2.3. Temporal Modelling and Pose Regression

The fundamental tenet of ego-motion estimation requires

modeling temporal dependencies to derive accurate pose re-

gression. Hence, a recurrent neural network (a two-layer

Bi-directional LSTM) takes in input the combined feature

representation zt at time step t and its previous hidden states

ht−1 and models the dynamics and connections between a

sequence of features. After the recurrent network, a fully-

connected layer serves as the pose regressor, mapping the

features to a pose transformation yt, representing the mo-

tion transformation over a time window.

yt = RNN(zt,ht−1) (4)

3. Selective Sensor Fusion

Intuitively, the features from each modality offer dif-

ferent strengths for the task of regressing pose transfor-

mations. This is particularly true in the case of visual-

inertial odometry (VIO), where the monocular visual in-

put is capable of estimating the appearance and geometry

of a 3D scene, but is unable to determine the metric scale

[11]. Moreover, changes in illumination, textureless areas

and motion blur can lead to bad data association. Mean-

while, inertial data is interoceptive/egocentric and generally

environment-agnostic, and can still be reliable when visual

tracking fails [6]. However, measurements from low-cost

MEMS inertial sensors are corrupted by inevitable noise

and bias, which leads to higher long-term drift than a well-

functioning visual-odometry chain.

Our perspective is that simply considering all features

as though they are correct, without any consideration of

degradation, is unwise and will lead to unrecoverable er-
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rors. In this section, we propose two different selective sen-

sor fusion schemes for explicitly learning the feature selec-

tion process: soft (deterministic) fusion, and hard (stochas-

tic) fusion, as illustrated in Figure 3. In addition, we also

present a straightforward sensor fusion scheme – direct fu-

sion – as a baseline model for comparison.

3.1. Direct Fusion

A straightforward approach for implementing sensor fu-

sion in a VIO framework consists in the use of Multi-Layer

Perceptrons (MLPs) to combine the features from the visual

and inertial channels. Ideally, the system learns to perform

feature selection and prediction in an end-to-end fashion.

Hence, direct fusion is modelled as:

gdirect(aV ,aI) = [aV ;aI ] (5)

where [aV ;aI ] denotes an MLP function that concatenates

aV and aI .

3.2. Soft Fusion (Deterministic)

We now propose a soft fusion scheme that explicitly and

deterministically models feature selection. Similar to the

widely applied attention mechanism [33, 39, 14], this func-

tion re-weights each feature by conditioning on both the vi-

sual and inertial channels, which allows the feature selec-

tion process to be jointly trained with other modules. The

function is deterministic and differentiable.

Here, a pair of continuous masks sV and sI is intro-

duced to implement soft selection of the extracted feature

representations, before these features are passed to tempo-

ral modelling and pose regression:

sV = SigmoidV ([aV ;aI ]) (6)

sI = SigmoidI([aV ;aI ]) (7)

where sV and sI are the masks applied to visual features

and inertial features respectively, and which are determin-

istically parameterised by the neural networks, conditioned

on both the visual aV and inertial features aI . The sig-

moid function makes sure that each of the features will be

re-weighted in the range [0, 1].
Then, the visual and inertial features are element-wise

multiplied with their corresponding soft masks as the new

re-weighted vectors. The selective soft fusion function is

modelled as

gsoft(aV ,aI) = [aV ⊙ sV ;aI ⊙ sI ]. (8)

3.3. Hard Fusion (Stochastic)

In addition to the soft fusion introduced above, we pro-

pose a variant of the fusion scheme – hard fusion. Instead

of re-weighting each feature by a continuous value, hard

fusion learns a stochastic function that generates a binary
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Figure 3: An illustration of our proposed soft (determinis-

tic) and hard (stochastic) feature selection process.

mask that either propagates the feature or blocks it. This

mechanism can be viewed as a switcher for each component

of the feature map, which is stochastic neural implemented

by a parameterised Bernoulli distributions.

However, the stochastic layer cannot be trained di-

rectly by back-propagation, as gradients will not propagate

through discrete latent variables. To tackle this, the REIN-

FORCE algorithm [38, 24] is generally used to construct

the gradient estimator. In our case, we employ a more

lightweight method – Gumbel-Softmax resampling [16, 22]

to infer the stochastic layer, so that the hard fusion can be

trained in an end-to-end fashion as well.

Instead of learning masks deterministically from fea-

tures, hard masks sV and sI are re-sampled from a

Bernoulli distribution, parameterised by α, which is condi-

tioned on features but with the addition of stochastic noise:

sV ∼ p(sV |aV ,aI) = Bernoulli(αV ) (9)

sI ∼ p(sI |aV ,aI) = Bernoulli(αI). (10)

Similar to soft fusion, features are element-wise multiplied

with their corresponding hard masks as the new reweighted

vectors. The stochastic hard fusion function is modelled as

ghard(aV ,aI) = [aV ⊙ sV ;aI ⊙ sI ]. (11)

Figure 3 (b) shows the detailed workflow of proposed

Gumbel-Softmax resampling based hard fusion. A pair of

probability variables αV and αI is conditioned on the con-

catenated visual and inertial feature vectors [aV;aI]:

αV = SigmoidV ([aV;aI]) (12)

αI = SigmoidI([aV;aI]), (13)

where the probability variables are n-dimensional vectors

α = [π1, ..., πn], representing the probability of each fea-
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ture at location n to be selected or not. Sigmoid function

enables each vector to be re-weighted in the range [0, 1].
The Gumbel-max trick [23] allows efficiently to draw

samples s from a categorical distribution given the class

probabilities πi and a random variable ǫi, and then the one-

hot encoding performs ”binarization” of the category:

s = one hot(argmax
i

[ǫi + log πi]). (14)

This is due to the fact that for any B ⊆ [1, ..., n] [13]:

argmax
i

[ǫi + log πi] ∼
πi∑
i∈B πi

(15)

It could be viewed as a process of adding independent Gum-

bel perturbations ǫi to the discrete probability variable. In

practice, the random variable ǫi is sampled from a Gumbel

distribution, which is a continuous distribution on the sim-

plex that can approximate categorical samples:

ǫ = − log(− log(u)), u ∼ Uniform(0, 1). (16)

In Equation 14 the argmax operation is not differentiable,

so Softmax function is instead used as an approximate:

hi =
exp((log(πi) + ǫi)/τ)∑n

i=1
exp((log(πj) + ǫj)/τ)

, i = 1, ..., n, (17)

where τ > 0 is the temperature that modulates the re-

sampling process.

3.4. Discussions on Neural and classical VIOs

Basically, soft fusion gently re-weights each feature in

a deterministic way, while hard fusion directly blocks fea-

tures according to the environment and its reliability. In

general, soft fusion is a simple extension of direct fusion

that is good for dealing with the uncertainties in the input

sensory data. By comparison, the inference in hard fusion

is more difficult, but it offers a more intuitive representation.

The stochasticity gives the VIO system better generalisation

ability and higher tolerance to imperfect sensory data. The

stochastic mask of hard fusion acts as an inductive bias, sep-

arating the feature selection process from prediction, which

can also be easily interpreted by corresponding to uncer-

tainties of the input sensory data.

Filtering methods update their belief based on the past

state and current observations of visual and inertial modal-

ities [25, 20, 15, 2]. ”Learning” within these methods is

usually constrained to gain and covariances [1]. This is a

deterministic process, and noise parameters are hand-tuned

beforehand. Deep leaning methods are instead fully learned

from data and the hidden recurrent state only contains in-

formation relevant to the regressor. Our approach models

the feature selection process explicitly with the use of soft

and hard masks. Loosely, the proposed soft mask can be

viewed as similar to tuning the gain and covariance matrix

in classical filtering methods, but based on the latent data

representation instead.
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Figure 4: Estimated trajectories on the KITTI dataset. Top

row: dataset with vision degradation (10% occlussion, 10%

blur, and 10% missing data); bottom row: data with all

degradation (5% for each). Here, GT, VO, VIO, Soft and

Hard mean the ground truth, neural vision-only model, neu-

ral visual inertial models with direct, soft, and hard fusion.

4. Experiments

We evaluate our proposed approaches on three well-

known datasets: the KITTI Odometry dataset for au-

tonomous driving [12], the EuRoC dataset for micro aerial

vehicle [5], and the PennCOSYVIO dataset for hand-held

devices [28]. A demonstration video and other details can

be found at our project website 1.

4.1. Experimental Setup and Baselines

The architecture was implemented with PyTorch and

trained on a NVIDIA Titan X GPU.

We chose the neural vision-only model and the neural

visual-inertial model with direct fusion as our baselines,

termed Vision-Only (DeepVO) and VIO-Direct (VINet)

respectively in our experiments. The neural vision-only

model uses the visual encoder, temporal modelling and pose

regression as in our proposed framework in Figure 2. Neu-

ral visual inertial model with direct fusion uses the same

framework as in our proposed selective fusion except the

feature fusion component. All of the networks including

baselines were trained with a batch size of 8 using the

Adam optimizer, with a learning rate lr = 1e−4. The

hyper-parameters inside the networks were identical for a

fair comparison.

1https://changhaoc.github.io/selective sensor fusion/
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Table 1: Effectiveness of different sensor fusion strategies in presence of different kinds of sensor data corruption. For each

case we report absolute translational error (m) and rotational error (degrees).

Vision Degradation IMU Degradation Sensor Degradation

Model Occlusion Blur Missing Noise and bias Missing Spatial Temporal

Vision Only 0.117,0.148 0.117,0.153 0.213,0.456 0.116,0.136 0.116,0.136 0.116,0.136 0.116,0.136

VIO Direct 0.116,0.110 0.117,0.107 0.191,0.155 0.118,0.115 0.118,0.163 0.119,0.137 0.120,0.111

VIO Soft 0.116,0.105 0.119,0.104 0.198,0.149 0.119, 0.105 0.118,0.129 0.119,0.128 0.119,0.108

VIO Hard 0.112,0.126 0.114,0.110 0.187,0.159 0.114,0.120 0.115,0.140 0.111,0.146 0.113,0.133

4.2. Datasets

KITTI Odometry dataset [12] We used Sequences 00,

01, 02, 04, 06, 08, 09 for training and tested the network

on Sequences 05, 07, and 10, excluding sequence 03 as

the corresponding raw file is unavailable. The images and

ground-truth provided by GPS are collected at 10 Hz, while

the IMU data is at 100 Hz.

EuRoC Micro Aerial Vehicle dataset [5] It contains

tightly synchronized video streams from a Micro Aerial

Vehicle (MAV), carrying a stereo camera and an IMU,

and is composed by 11 flight trajectories in two environ-

ments, exhibiting complex motion. We used Sequence

MH 04 difficult for testing, and left the other sequences for

training. We downsampled the images and IMUs to 10 Hz

and 100 Hz respectively.

PennCOSYVIO dataset [28] It is composed by four se-

quences where the user is carrying multiple visual and iner-

tial sensors rigidly attached. We used Sequences bs, as and

bf for training, and af for testing. The images and IMUs

were downsampled to 10 Hz and 100 Hz respectively.

4.3. Data Degradation

In order to provide an extensive study of the effects of

sensor data degradation and to evaluate the performances

of the proposed approach, we generate three categories of

degraded datasets, by adding various types of noise and oc-

clusion to the original data, as described in the following

subsections.

4.3.1 Vision Degradation

Occlusions: we overlay a mask of dimensions 128×128

pixels on top of the sample images, at random locations for

each sample. Occlusions can happen due to dust or dirt on

the sensor or stationary objects close to the sensor [37].

Blur+noise: we apply Gaussian blur with σ=15 pixels to

the input images, with additional salt-and-pepper noise.

Motion blur and noise can happen when the camera or the

light condition changes substantially [8].

Missing data: we randomly remove 10% of the input im-

ages. This can occur when packets are dropped from the

bus due to excess load or temporary sensor disconnection.

It can also occur if we pass through an area of very poor

illumination e.g. a tunnel or underpass.

4.3.2 IMU Degradation

Noise+bias: on top of the already noisy sensor data we

add additive white noise to the accelerometer data and a

fixed bias on the gyroscope data. This can occur due to

increased sensor temperature and mechanical shocks, caus-

ing inevitable thermo-mechanical white noise and random

walking noise [26].

Missing data: we randomly remove windows of inertial

samples between two consecutive random visual frames.

This can occur when the IMU measuring is unstable or

packets are dropped from the bus.

4.3.3 Cross-Sensor Degradation

Spatial misalignment: we randomly alter the relative ro-

tation between the camera and the IMU, compared to the

initial extrinsic calibration. This can occur due to axis mis-

alignment and the incorrect sensor calibration [20]. We uni-

formly model up to 10 degrees of misalignment .

Temporal misalignment: we apply a time shift between

windows of input images and windows of inertial measure-

ments. This can happen due to relative drifts in clocks be-

tween independent sensor subsystems [21].

4.4. Detailed Investigation on Robustness to Data
Corruption

Table 1 shows the relative performance of the pro-

posed data fusion strategies, compared with the baselines.

In particular, we compare with a DeepVO [36] (Vision-

Only) implementation, and finally with an implementation

of VINet [30] (VIO Direct), which uses a naı̈ve fusion strat-

egy by concatenating visual and inertial features. Figure

4 shows a visual comparison of the resulting test trajecto-

ries in presence of visual and combined degradations. In

the vision degraded set the input images are randomly de-

graded by adding occlusion, blurring+noise and removing

images, with 10% probability for each degradation. In the

full degradation set, images and IMU sequences from the

dataset are corrupted by all seven degradations with a proba-

bility of 5% each. As a metric, we always report the average

absolute error on relative translation and rotation estimates
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Table 2: Results on autonomous driving scenario [12].

Normal Data Vision Degradation All Degradation

Vision Only 0.116,0.136 0.177,0.355 0.142,0.281

VIO Direct 0.116,0.106 0.175,0.164 0.148,0.139

VIO Soft 0.118,0.098 0.173,0.150 0.152,0.134

VIO Hard 0.112,0.110 0.172,0.151 0.145,0.150

Table 3: Results on UAV scenario [5].

Normal Data Vision Degradation All Degradation

Vision Only 0.00976,0.0867 0.0222,0.268 0.0190,0.213

VIO Direct 0.00765,0.0540 0.0181,0.0696 0.0162,0.0935

VIO Soft 0.00848,0.0564 0.0170,0.0533 0.0152,0.0860

VIO Hard 0.00795,0.0589 0.0177,0.0565 0.0157,0.0823

Table 4: Results on handheld scenario [28].

Normal Data Vision Degradation All Degradation

Vision Only 0.0379,1.755 0.0446,1.849 0.0414,1.875

VIO Direct 0.0377,1.350 0.0396, 1.223 0.0407,1.353

VIO Soft 0.0381,1.252 0.0399,1.166 0.0405,1.296

VIO Hard 0.0387,1.296 0.0410,1.206 0.0400,1.232

over the trajectory, in order to avoid the shortcomings of ap-

proaches using global reference frames to compute errors.

Some interesting behaviours emerge from Table 1.

Firstly, as expected, both the proposed fusion approaches

outperform VO and the baseline VIO fusion approaches

when subject to degradation. Our intuition is that the vi-

sual features are likely to be local and discrete, and as such,

erroneous regions can be blanked out, which would bene-

fit the fusion network when it is predominantly relying on

vision. Conversely, inertial data is continuous and thus a

more gradual reweighting as performed by the soft fusion

approach would preserve these features better. As inertial

data is more important for rotation, this could explain this

observation. More interestingly, the soft fusion always im-

proves the angle component estimation, while the hard fu-

sion always improves the translation component estimation.

Table 5: Comparison with classical methods

Normal data Full visual degr. Occl.+blur Full sensor degr.

KITTI 0.116,0.044 Fail 2.4755,0.0726 Fail

EuRoC 0.0283,0.0402 0.0540,0.0591 0.0198,0.0400 Fail

4.5. Results on autonomous driving, UAV scenario
and hand­held scenario

Table 2 shows the aggregate results on the KITTI dataset

in presence of normal data, all combined visual degradation

and all combined visual+inertial degradation. In particular,

we compare with two deep approaches: DeepVO (Vision-

Only) and an implementation of VINet (VIO Direct). We

can see the same fusion behavior as in Table 1.

Table 3 reports the error results on EuRoC. Similar to

KITTI, the soft fusion strategy consistently improves the

angle estimation, while the hard fusion always improves the

translation estimation. Interestingly, in the hand-held sce-
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Figure 5: A comparison of visual and inertial features se-

lection rate in seven data degradation scenarios.

nario (Table 4) there is less marked difference between the

different fusion strategies regarding the translation compo-

nent. This can be due to the small size of the dataset and the

nature of motion, leading the network to slightly overfit on

linear translations. However, hard fusion still improves both

errors in presence of both visual and inertial degradation.

This could be ascribed to the direct fusion method overfit-

ting on visual data, while a few transitions from outdoor to

indoor introduce illumination changes and occlusion.

4.6. Comparison with Classical VIOs

For KITTI, due to the lack of time synchronization be-

tween IMUs and images, both OKVIS [19] and VINS-

Mono [29] cannot work. We instead provide results from

an implementation of MSCKF [15] 2. For EuRoC MAV we

compare with OKVIS [19] 3.

As shown in Table 5, on KITTI, MSCKF fails with

full degradation due to the missing images; on EuRoc

OKVIS handles missing images instead but both baselines

fail with full sensor degradation due to the temporal mis-

alignment. Learning-based methods reach comparable po-

sition/translation errors, but the orientation error is always

lower for traditional methods. Because DNNs shine at ex-

tracting features and regressing translation from raw im-

ages, while IMUs improve filtering methods to get better

orientation results on normal data. Interestingly, the per-

formance of learning-based fusion strategies degrade grace-

fully in the presence of corrupted data, while filtering meth-

ods fail abruptly with the presence of large sensor noise and

misalignment issues.

4.7. Interpretation of Selective Fusion

Incorporating hard mask into our framework enables us

to quantitatively and qualitatively interpret the fusion pro-

cess. Firstly, we analyse the contribution of each individual

modality in different scenarios. Since hard fusion blocks

2The code can be found at: https://uk.mathworks.com/matlabcentral/

fileexchange/43218-visual-inertial-odometry
3The code can be found at: https://github.com/ethz-asl/okvis
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Figure 6: Correlations between the number of iner-

tial/visual features and amount of rotation/translation.

some features according to their reliability, in order to in-

terpret the “feature selection” mechanism we simply com-

pare the ratio of the non-blocked features for each modality.

Figure 5 shows that visual features dominate compared with

inertial features in most scenarios. Non-blocked visual fea-

tures are more than 60%, underlining the importance of this

modality. We see no obvious change when facing small vi-

sual degradation, such as image blur, because the FlowNet

extractor can deal with such disturbances. However, when

the visual degradation becomes stronger the role of inertial

features becomes significant. Notably, the two modalities

contribute equally in presence of occlusion. Inertial features

dominate with missing images by more than 90%.

In Figure 6 we analyze the correlation between amount

of linear and angular velocity and the selected features.

These results also show how the belief on inertial features

is stronger in presence of large rotations, e.g. turning,

while visual features are more reliable with increasing lin-

ear translations. It is interesting to see that at low transla-

tional velocity (0.5m / 0.1s) only 50% to 60% visual fea-

tures are activated, while at high speed (1.5m / 0.1s) 60 %

to 75 % visual features are used.

5. Related Work

Visual Inertial Odometry Traditionally, visual-inertial

approaches can be roughly segmented into three different

classes according to their information fusion methods: fil-

tering approaches [17], fixed-lag smoothers [19] and full

smoothing methods [11]. In classical VIO models, their fea-

tures are handcrafted, as OKVIS [19] presented a keyframe-

based approach that jointly optimizes visual feature repro-

jections and inertial error terms. Semi-direct [32] and di-

rect [34] methods have been proposed in an effort to move

towards feature-less approaches, removing the feature ex-

traction pipeline for increased speed. Recent VINet [30]

used neural network to learn visual-inertial navigation, but

only fused two modalities in a naive concatenation way. We

provide a generic framework for deep features fusion, and

outperformed the direct fusion in different scenarios.

Deep Neural Networks for Localization Recent data-

driven approaches to visual odometry have gained a lot of

attention. The advantage of learned methods is their poten-

tial robustness to lack of features, dynamic lightning con-

ditions, motion blur, accurate camera calibration, which are

hard to model by hard [31]. Posenet [18] used Convolu-

tional Neural Networks (CNNs) for 6-DoF pose regression

from monocular images. The combination of CNNs and

Long-Short Term Memory (LSTM) networks was reported

in [7, 36], showing comparable results to traditional meth-

ods. Several approaches [43, 41, 42] used the view synthe-

sis as unsupervisory signal to train and estimate both ego-

motion and depth. Other DL-based methods can be found

on learning representations for dense visual SLAM [3], gen-

eral map [4], global pose [27], deep Localization and seg-

mentation [35]. We study the contribution of multimodal

data to robust deep localization in degraded scenarios.

Multimodal Sensor fusion and Attention Our pro-

posed selective sensor fusion is related with the attention

mechanisms, widely applied in neural machine translation

[33], image caption generation [39], and video descrip-

tion [14]. Limited by the fixed-length vector in embed-

ding space, these attention mechanisms compute a focus

map to help the decoder, when generating a sequence of

words. This is different from our design intention that the

features selection works to fuse multimodal sensor fusion

for visual inertial odometry, and cope with more complex

error resources, and self-motion dynamics.

6. Conclusion

In this work, we presented a novel study of end-to-end

sensor fusion for visual-inertial navigation. Two feature se-

lection strategies are proposed: deterministic soft fusion, in

which a soft mask is learned from the concatenated visual

and inertial features, and a stochastic hard fusion, in which

Gumbel-softmax resampling is used to learn a stochastic bi-

nary mask. Based on the extensive experiments, we also

provided insightful interpretations of selective sensor fusion

and investigate the influence of different modalities under

different degradation and self-motion circumstances.
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