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Abstract—We present a set of new batched CUDA Kkernels
for the LU factorization of a large collection of independent
problems of different size, and the subsequent triangular
solves. All kernels heavily exploit the registers of the graphics
processing unit (GPU) in order to deliver high performance for
small problems. The development of these kernels is motivated
by the need for tackling this embarrasingly-parallel scenario
in the context of block-Jacobi preconditioning that is relevant
for the iterative solution of sparse linear systems.
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[. INTRODUCTION

The development of batched routines for linear algebra
operations has received considerable interest in the past few
years because of the hardware concurrency often exceeding
the degree of parallelism present in the algorithms. At the
same time, many problems arising in astrophysics, quantum
chemistry, hydrodynamics, and hyperspectral image pro-
cessing, among others, require the application of the same
computational kernel not only to one but to a large number of
data instances. Batched routines are optimized to tackle this
embarrassingly-parallel scenario that comprises a large col-
lection of independent problems, each of small dimension.
Compared with conventional multi-threaded implementa-
tions of the Basic Linear Algebra Subprograms (BLAS) [1],
optimized for moderate- and large-scale individual problem
instances, batched routines may also exploit the parallelism
available within the computational kernel, but mainly target
the parallelism in-between the distinct data items.

With the increasing core-per-node ratio, there is an urging
demand for batched routines, that are eventually expected
to cover a significant fraction of the functionality currently
supported by dense linear algebra libraries such as BLAS
and the Linear Algebra PACKage (LAPACK) [2]. In ad-
dition, batched kernels are becoming a key ingredient for
the solution of sparse linear systems via direct multifrontal
solvers as well as for the efficient preconditioning of iterative
solvers based on Krylov subspaces.

Preconditioning via a block-Jacobi scheme is a particu-
larly simple technique that produces an effective acceleration
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of the iterative solve for some problem instances [3]. One
option to realize block-Jacobi preconditioning requires to:

1) Extract multiple small-sized diagonal blocks of the
sparse coefficient matrix of the linear system and
factorize this collection of blocks during the precon-
ditioner computation (setup).

Solve the resulting triangular systems during the pre-
conditioner application (once per step of the iterative
solve).

2)

As the diagonal blocks are all pairwise independent, precon-
ditioning via block-Jacobi naturally leads to a batched sce-
nario. Our effort in this work is oriented toward elaborating
efficient batched routines for these two steps, preconditioner
setup and preconditioner application, yielding the following
contributions:

o A variable-size batched LU factorization routine on
GPUs tuned for small problems.

« A complementary variable-size batched lower and up-
per triangular solve routine on GPUs tuned for small
sizes.

o An implicit pivoting technique that preserves the sta-
bility of the factorization without explicitly swapping
the matrix elements in memory.

« A routine for efficiently extracting the diagonal blocks
from a sparse matrix layout that ensures a good work-
load balance even for matrices with an unbalanced
nonzero distribution.

o« A complete block-Jacobi preconditioner ecosystem
based on batched LU factorization and batched trian-
gular solves that improves time-to-solution of iterative
Krylov solvers for a large set of test problems.

At this point, we note that the term “batched” has been
frequently used to refer to a large collection of small-size
problems. However, the definition of large and small are at
best blurry. Here we target a realistic case study for block-
Jacobi preconditioning, where small can be defined as the
diagonal blocks that participate in steps 1)-2) above being
in the range 4 x 4 to 32 x 32, while large refers to thousands
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or even tens of thousands of independent problems. We
consider this as scientifically relevant as the block-Jacobi
preconditioner aims at reflecting the sparsity block structure
of a finite element discretization.

Due to their small size, processing the problem instances
usually involves memory-bound operations, which can ques-
tion the utilization of discrete accelerators (with a memory
detached from that of the host memory). For the particular
case of block-Jacobi preconditioning, the use of a discrete
hardware accelerator device is justified because the Krylov
solvers require the coefficient matrix to reside in the device
memory in order to build up the Krylov subspace via the
Krylov iterations. Therefore, the cost of transferring this
matrix from the host to the accelerator is quickly amortized,
and the on-device generation of the batched block-Jacobi
preconditioner incurs no additional host-to-device commu-
nication.

The rest of the paper is structured as follows. In Section II
we review a few related works and offer a brief survey
of (batched) factorization for the solution of linear sys-
tems. In Section III we describe the implementation of our
CUDA kernels for batched LU factorization (paying special
attention to the introduction of implicit pivoting), batched
triangular system solves, and the extraction procedure. In
Section IV we assess the performance of the new batched
kernels on an NVIDIA Tesla P100 (Pascal) GPU, and in
Section V we close the paper with a discussion of remarks
and future work.

II. BACKGROUND AND RELATED WORK
A. Block-Jacobi preconditioning

For a coefficient matrix A € R™*", the block-Jacobi
method can be regarded as a straight-forward extension of its
(scalar) Jacobi counterpart. Concretely, instead of splitting
the coefficient matrix as A = L + D + U (with diagonal
D = ({a;;}), lower triangular L = ({a;; i > j})
and upper triangular U ({as; i < j})), the
block-Jacobi variant gathers the diagonal blocks of A into
D = (D1,Ds,...,Dn), D; € R™i*™i 4 =12 ... N,
with n = 3., m;. (For simplicity, hereafter we assume
that all blocks have the same size m, and n is an integer
multiple of m.) The remaining elements of A are then
partitioned into matrices L and U such that L contains the
elements below the diagonal blocks while U comprises those
above them [4]. The block-Jacobi method is well-defined
if all diagonal blocks are non-singular, and the resulting
preconditioner is expected to work effectively if the blocks
succeed in reflecting the nonzero structure of the coefficient
matrix A.

Fortunately, many linear systems exhibit some inherent
block structure, for example because they arise from a
finite element discretization of a partial differential equa-
tion (PDE), with multiple variables associated to each el-
ement [4]. The variables belonging to the same element
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usually share the same column sparsity pattern, and the
set of variables is often referred to as a supervariable.
Supervariable blocking [5] aims to identify variables sharing
the same column-nonzero-pattern, and turns this information
into a block-structure that can be used, for example, in
block-Jacobi preconditioning. Depending on the pre-defined
upper bound for the size of the diagonal blocks, multi-
ple supervariables adjacent in the coefficient matrix can
be clustered within the same diagonal block [5]. This is
particularly efficient if the supervariables accumulated into
the same Jacobi block are tightly coupled, which is the case
if the variables ordered close-by in the matrix representation
belong to elements that are nearby in the PDE mesh. Some
reordering techniques such as reverse Cuthill-McKee or
natural orderings preserve this locality [5].

Although different strategies exist to integrate a block-
Jacobi preconditioner into an iterative solver setting, in this
paper we focus on an approach that factorizes the diagonal
blocks in the preconditioner setup, and then applies the
preconditioner in terms of triangular solves. Alternatively,
it is possible to explicitly compute the block-inverse before
the iterative solution phase, and apply the preconditioner as a
matrix-vector multiplication. These two strategies primarily
differ in the workload size, and how this work is distributed
between the preconditioner setup and the preconditioner
application. Additionally, the factorization-based approach
might exhibit more favorable numerical stability as it avoids
the explicit inversion of the blocks in D.

B. Solution of linear systems via the LU factorization

The standard procedure to solve a dense linear system
D,z = b, for a square block D; of order m and vectors z, b,
each with m entries, consists of the following four steps [6]:

1) The computation of the LU factorization (with partial
pivoting) PD; = LU, where L is unit lower triangular,
U is upper triangular, P is a permutation matrix, and
all three matrices L, U, P are of the same order as D;;
the application of the permutation P to the right-hand
side b; i.e., b := Pb;

the solution of the unit lower triangular system Ly = b
for y; and

the solution of the upper triangular system Ux = y to
obtain the sought-after vector x.

2)
3)

4)

The computational cost of this four-step solution process is
2m3 + O(m?) flops (floating-point arithmetic operations),
where the dominating term §m3 comes from the factoriza-
tion step. Neglecting the pivoting process associated with
the permutation matrix P can result in the triangular factors
becoming singular and the break-down of the algorithm [6].
Partial pivoting limits the process to row exchanges only; it
is numerically stable in practice, and has become the norm
in standard implementations of the LU factorization.



C. Batched solution of small linear systems

Batched routines for small-size problems play an impor-
tant role in the context of preconditioning iterative methods
for sparse linear systems. One example is the technique of
block-Jacobi preconditioning, where the sparse coefficient
matrix is scaled with its block-inverse [3]. This type of
scaling requires the solution of a set of small linear systems
induced by the diagonal blocks in D, which can be addressed
via a factorization-based method. As argued earlier, for each
block D;, of dimension m, the cost of its LU factorization
is %mS flops, while solving the triangular block system
for a single block and right-hand side requires 2m? flops.
Alternatively, as the block-diagonal scaling is applied at
each iteration of the solver, it may pay off to explicitly
compute the block-inverse before the iteration process, at
a cost of 2m? flops (per block). With this approach, the
preconditioner application can then be cast in terms of the
matrix-vector product, with a cost of 2m? flops (per block),
but a much faster execution than a triangular block solve.

These two approaches, factorization-based and inversion-
based, differ in the computational cost, numerical stability,
and how they distribute the workload between preconditioner
setup and preconditioner application. Which strategy is pre-
ferrable depends on how often the preconditioner is applied
and the size of the distinct diagonal blocks.

In block-Jacobi preconditioning, the diagonal blocks are
typically chosen to be of small size, for example when
reflecting the block structure of a system matrix coming
from a finite element discretization. At the same time, the
number of these small blocks is typically large, which moti-
vates the use of batched routines. For GPU architectures, we
showed in [4] how to realize an inversion-based block-Jacobi
preconditioner efficiently using Gauss-Jordan elimination
(GJE). As the explicit inversion may be questionable in
terms of numerical stability, in [7] we compared this solution
with a block-Jacobi preconditioning procedure based on the
factorization of diagonal blocks. The factorization method
we used in that comparison was the Gauss-Huard (GH)
algorithm [8], which is algorithmically similar to GJE.

In this paper we extend our survey on using batched
routines for block-Jacobi preconditioning by addressing the
factorization of the diagonal blocks via the mainstream
LU factorization. From the numerical perspective, the LU
factorization (with partial pivoting) and the GH algorithm
(with column pivoting) present the same properties. How-
ever, they build upon distinct algorithms, resulting in dif-
ferent implementations, and, consequently, distinguishable
computational performance.

III. DESIGN OF CUDA KERNELS

This section describes the implementation of efficient
CUDA kernels for both batched LU factorization as well as
triangular system solves specifically tuned for small problem
sizes where the system matrix (corresponding to a diagonal
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% Input
% Output :
p = [1l:m];
for kx =1 : m

1 :m x m nonsingular matrix block Di
2
3
4 B
5| % Pivoting
6
7
8

Di overwritten by its L, U factors

[abs_ipiv, ipiv] max (abs (Di (k:m, k)));

ipiv = ipiv+k-1;
[Di(k,:), Di(ipiv,:)] = swap(Di(ipiv,:), Di(k,:));
9 [p(k), p(ipiv)] = swap (p(ipiv), p(k));
10
11 % Gauss transformation
12 d = Di(k,k); % Pivot
13 Di (k+1:m, k) = Di(k+l:m, k) / d; % SCAL
14 Di(k+1l:m,k+1:m) = Di(k+1l:m,k+1:m) .
15 - Di(k+1l:m,k) = Di(k,k+1:m); % GER
16| end

% Input
% Output :
p = zeros (1, m);
for k =1 : m

1 :m x m nonsingular matrix block Di
2
3
4 8
5| % Implicit pivoting
6
7
8
9

Di overwritten by its L, U factors

abs (D1 (:,k));
-1; % exclude pivoted rows
max (abs_vals) ;

abs_vals
abs_vals (p>0)
[abs_ipiv, ipiv]

p(ipiv) k;

10

11 % Gauss transformation

12 d = Di(ipiv,k); % Pivot

13 Di (p==0, k) = Di(p==0,k) / d; % SCAL

14 Di (p==0,k+1:m) = Di(p==0,k+1:m) .

15 - Di(p==0,k) * Di(ipiv,k+1l:m); %
GER

16| end

17|% Combined row swaps

18| p(p) = 1:m; % Invert the permutation

19| Di = Di(p,:);

Figure 1. Loop-body of the basic LU factorization in Matlab notation

using explicit and implicit partial pivoting (top and bottom, respectively).

block in block-Jacobi preconditioning) contains at most
32 x 32 elements. This is consistent with the batched im-
plementation of GH in [7], which is also designed for small
problems of the type arising in block-Jacobi preconditioning.

A. Batched LU factorization (GETRF)

A simplified MATLAB routine for the (right-looking) LU
factorization of a square block Di is shown in Figure 1
(top). This algorithmic variant lies in the foundations of our
batched CUDA kernel for this factorization that we discuss
next.

Recent GPU architectures from NVIDIA feature a large
amount of registers per thread, which makes it possible to
assign problems of size up to 32 x 32 to a single warp. Each
thread then stores one row of the system matrix Di into the
local registers, while warp shuffle instructions allow access
to elements from other rows (e.g., when performing the
updates in lines 13—15). Using this technique, it is possible
to read the system matrix only once, and perform the whole
factorization process in the registers, avoiding the latency
of memory and caches, as well as additional load and store
instructions.

A complementary optimization, also important, addresses
the pivoting procedure ensuring the practical stability of the



LU factorization. Even though the selection of the pivot
row ipiv (lines 6-7) in step k of the factorization can
be realized efficiently using a parallel reduction, the actual
exchange of rows k and ipiv (lines 8-9) on a GPU is
costly, as it involves only the two threads holding these
rows, while the remaining threads stay idle. To tackle this
issue, in [4] and [7] we proposed an implicit pivoting
procedure for GJE and GH, which avoids the explicit row
swaps and combines them into a single, easily parallelizable
permutation, which is performed after the main loop. This
technique can also be applied to LU by observing the
following:

e During step k of the factorization, the operation per-
formed on each row of the matrix (lines 13—15) depends
only on the elements in this row and the pivot row
ipiv (which was exchanged with row k when using
standard, explicit pivoting as in Figure 1).

o The type of operation to perform on each row can be
derived without knowing its position in the matrix: if
the row has already been pivoted, then no operation is
required (in Figure 1 such row was exchanged with one
of the first k rows); otherwise the k-th element of the
row has to be scaled (line 13), and an AXPY needs to
be performed on the trailing vector (lines 14-15).

These observations turn the implicit pivoting procedure for
LU even more efficient than its counterpart applied in GH,
as the operations performed by each thread do not depend
on the previously selected pivot rows. Conversely, for GH a
list of their indices has to be replicated in each thread [7].
As an illustration, the bottom factorization code in Figure 1
shows the implicit pivoting approach in the LU factorization.
A final optimization can be made by combining the row
swap with the off-load of L and U to main memory, hereby
eliminating all inter-thread communication induced by row
swaps. In addition to writing the triangular factors, the
pivoting information also has to be stored in main memory
for the subsequent triangular solves.

B. Batched triangular system solves (TRSV)

Unlike the LU factorization, the triangular system solves
offer only a limited amount of data reuse. Each element
of the triangular factors is needed only once, so explicitly
keeping this value in registers does not offer any advantage.
In contrast, the right-hand side vector b, which is overwritten
with the solution vector, is reused. Hence, reading and
distributing this vector across the registers of the threads
in the warp (one element per thread) is beneficial.

The permutation b := Pb coming from pivoting is
performed while reading b into the registers: Each element
is stored to the registers of the correct threads. This step
is followed by a unit lower triangular solve, and finally an
upper triangular solve. As these operations are similar, we
will for brevity only discuss the lower triangular solve (the
solution of Ly = b(= Pb)) in detail. Different strategies
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1{% Input : m x m matrix L, rhs vector b

2|% Output : Vector b overwritten by the solution y
3% of Ly = b

4| for k = 2 : m

5 b(k) = b(k) - L(k,1:k-1) * b(l:k-1); % DOT

6| end

1|% Input : m x m matrix L, rhs vector b

2|% Output : Vector b overwritten by the solution y
3% of Ly = b

4| for k = 1 : m-1

5 b(k+l:m) = b(k+l:m) - L(k+1l:m,k) * b(k); % AXPY
6| end

Figure 2. Loop-body of the “lazy” and “eager” algorithmic variants (top

and bottom, respectively) for the solution of a unit lower triangular system
in Matlab notation.

exist for realizing the triangular solve: the “lazy” variant
(code in Figure 2, top) relies on an inner (DOT) to compute
the final value of y; at step k, while the “eager” one
(code in Figure 2, bottom) leverages an AXPY to update the
trailing vector ¥x41.m-. In this case, the latter variant is more
convenient, as the parallelization of AXPY is straightforward,
while the DOT product requires a reduction. The memory
accesses to the system matrix are also different: the “lazy”
variant reads one row per step, while the “eager” one reads
one column. Therefore, assuming standard column-major
storage, the “eager” variant also has the benefit of coalesced
memory access.

C. Block-Jacobi preconditioning using batched LU

Using batched factorization routines for block-Jacobi pre-
conditioning requires the extraction of the diagonal blocks
from the sparse system matrix. This is a non-trivial step as
accessing a (dense) diagonal block embedded in a sparse
data structure (such as those typically used for storing the
system matrix, e.g., CSR [3]) can be quite elaborate. Further-
more, exploiting the fine-grained parallelism provided by the
GPU hardware in the extraction step makes this operation
challenging for problems with an unbalanced sparsity pat-
tern: Assigning the parallel resources to the distinct rows will
inevitably result in severe work imbalance for problems with
a very unbalanced nonzero distribution, like for example
those arising in circuit simulation. Additionally, accessing
the distinct rows in the row-major-based CSR layout in
parallel results in non-coalescent data access. In [4] we
proposed a strategy to overcome the latter drawback while
simultaneously diminishing the effects of the former one
by means of an intermediate step that stores the diagonal
blocks in shared memory. Although we refrain from showing
a comparison between the standard approach and the shared-
memory-based strategy in the experimental section, we recall
the central ideas of this shared memory extraction for
convenience:

Instead of assigning the distinct threads within the warp
to the distinct rows corresponding to the diagonal block, all
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Figure 3. Illustration of the memory requests for the shared memory
extraction. The elements part of the diagonal block are colored in light
orange, the elements that have already been extracted in light blue. We
assume warps of 4 threads, and visualize the data read by the distinct
threads at each iteration with dashed cells. If an element part of the diagonal
block is currently accessed (dark orange) it is extracted and stored in
the correct location in shared memory (dark orange also in the shared
memory). We only show the accesses to the vector storing the col-indices
of the CSR matrix structure [3]; the access to the actual values induces far
less overhead, as these memory locations are accessed only if a location
belonging to a diagonal block is found. In that case, the access pattern is
equivalent to the one used for col-indices.

threads of the warp collaborate to process each row. The
threads accessing an element that is part of the diagonal
block extract the respective value and store it into shared
memory. This allows for coalescent access to the elements
stored in CSR format, and avoids the load imbalance up to
a level where load imbalance only occurs between threads
of the same warp. After extracting the elements that are part
of the diagonal block, they are copied into registers of the
thread that will handle the respective row in the factorization
process. Figure 3 visualizes this diagonal block extraction
strategy [4].

IV. NUMERICAL EXPERIMENTS

In this section we evaluate the performance of the batched
LU factorization and triangular solve kernels tuned for
small-size problems by benchmarking them against alter-
native kernels offering similar functionality. Concretely, our
experimental analysis includes the following kernels:

o Small-size LU: The batched LU factorization and tri-
angular solve kernels developed as part of this work.
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o Gauss-Huard: The batched factorization and triangular
solve kernels based on GH [7].

o Gauss-Huard-T: The factorization in this routine is
identical to the GH kernels, except in that the triangular
systems are stored in a transpose access-friendly mode
to accelerate the triangular solves [7].

e cuBLAS LU: The batched LU factorization and tri-
angular solve kernels available in NVIDIA’s cuBLAS
package (version 8.0).

We point out that the first three implementations are part
of the same software stack, the kernel implementations are
similar in design, and received the same level of tuning.
cuBLAS is a vendor implementation, optimized specifically
for the targeted architecture, but its source is not available.
As variable block size is not supported by the batched
kernels in cuBLAS, the experiments involving them were
conducted using fixed block size for the entire batch. This
ensures a fair comparison and credible conclusions.

In addition to the evaluation of the LU factorization and
triangular solve kernels, we assess the effectiveness of the
computed preconditioner integrated into the iterative IDR(4)
solver for sparse linear systems [3].

A. Hardware and software framework

We employed an NVIDIA Tesla P100 GPU with full
double precision support in the experimentation together
with NVIDIA’s GPU compilers that are shipped with the
CUDA toolkit 8.0. Except for the GETRF and GETRS' rou-
tines taken from NVIDIA’s cuBLAS library [9], all kernels
were designed to be integrated into the MAGMA-sparse
library [10]. MAGMA-sparse was also leveraged to provide
a testing environment, the block-pattern generation, and the
sparse solvers. Since the complete algorithm is executed on
the GPU, the details of the CPU are not relevant.

B. Performance of batched factorization routines

Figure 4 compares the performance of the four batched
factorization routines in terms of GFLOPS (billions of flops
per second). The left-hand side plots in the figure report
the performance for a batch of matrices of size 16 x 16.
The reference implementation for batched LU-based GETRF
taken from NVIDIA’s cuBLAS library achieves about 110
GFLOPS in single precision (top row). In comparison, the
small-size LU, Gauss-Huard and Gauss-Huard-T all achieve
about 130 GFLOPS for this case. In double precision (bot-
tom row), the performance of the small-size LU is about
35% lower than that of the GH-based factorization routines,
with the latter delivering about 100 GFLOPS. The scenario
is different when the problem dimension is 32 x 32 (plots in
the right-hand side of Figure 4): The performance of Gauss-
Huard-T is then about 5% below that of Gauss-Huard, and

'Routine GETRS applies the sequence of permutations computed by the
LU factorization routine to the right-hand side vector, followed by two
triangular solves (TRSV).
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Figure 4. Performance of batched factorization routines depending on the batch size.
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Figure 5. Performance of batched factorization routines depending on the size of the matrices. The batch size is fixed to 40,000 systems.

the small-size LU outperforms both routines by a significant
margin, achieving up to 600 GFLOPS in single precision and
350 GFLOPS in double precision. The cuBLAS counterpart
providing the same functionality is 3.5x slower, delivering
about 100 GFLOPS only. The explanation for this block-
size-dependent behavior is an implementation detail, which
will be corrected as part of future work. Concretely, for
block size k < 32, both the small-size LU and GH routines
operate with a matrix of size 32 x 32, padding the input
with zeros, but performing only the first k steps of the

96

factorization. This benefits GH, since it implements a “lazy”
factorization, while the “eager” (right-looking) algorithmic
variant selected for the LU factorization performs more flops
than its GH counterpart for block size k < 32. By optimizing
the algorithms specifically for smaller block sizes, we expect
to observe the same behavior as that obtained for block
size 32.

Figure 5 reports the performance as a function of the
problem size. The results indicate that the non-coalescent
writes in Gauss-Huard-T play a significant role only for



problems of dimension larger than 16 x 16. For single
precision, this also corresponds to the threshold from which
the small-size LU starts to outperform the GH-type factor-
izations. In double precision, the small-size LU is slower
than the GH-based factorizations for problems smaller than
23 x 23. The size-dependent results for cuBLAS LU reveal
the system-specific optimizations: local performance peaks
can be identified for sizes 8, 16, and 29 in single precision
arithmetic, and for dimensions 8 and 20 in double precision
arithmetic. Although we do not tune for specific sizes by
handling multiple problems per warp, the small-size LU
outperforms the cuBLAS LU for almost all sizes.

C. Performance of batched triangular solves

We next employ the same notation in order to distin-
guish the different batched implementations of the triangular
solves that complement the factorization routines. On the
left-hand side plot in Figure 6, we assess the performance of
the triangular solves for a batch of matrices with size 16 x 16.
Unlike the factorization step, the performance for both GH
variants and the small-size LU are almost identical in single-
as well as double precision arithmetic (44 GFLOPS and 37
GFLOPS, respectively).

For problems of size 32 x 32 (right-hand side plots in Fig-
ure 6), the more expensive Gauss-Huard-T factorization pays
off by accelerating the triangular solve from 47 GFLOPS
(for Gauss-Huard) to 80+ GFLOPS when using single
precision. In double precision the triangular solves of Gauss-
Huard-T are also about twice faster (70 GFLOPS) than those
associated with the Gauss-Huard kernel (35 GFLOPS). The
small-size LU achieves 90+ GFLOPS in single precision
and close to 80 GFLOPS in double precision. This implies
speed-up factors of 4.5x and 4x over cuBLAS, respectively.

Figure 7 analyzes the performance depending on the
problem size. Conversely to the factorization step, the non-
coalescent reads in the Gauss-Huard triangular solves harm
the performance for problems larger than 16 x 16. For Gauss-
Huard-T, the price of non-coalescent access was payed in the
factorization step. As a result, the Gauss-Huard-T triangular
solves remain competitive with the small-size LU triangular
solves. As in the factorization step, NVIDIA’s GETRS seems
to be optimized for problem of dimension smaller than
16; nonetheless, this option achieves only a fraction of the
performance of our small-size LU for all dimensions.

D. Analysis of block-Jacobi preconditioning

In this section we assess the efficiency of batched fac-
torization routines in the context of block-Jacobi precon-
ditioning. For this purpose we enhance an IDR(4) Krylov
solver (taken from the MAGMA-sparse open source soft-
ware package [11]) with a block-Jacobi preconditioner that
is generated via batched factorization routines based on
LU or GH, and applied in terms of triangular solves. The
diagonal block structure is generated via the supervariable
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blocking routines available in MAGMA-sparse, and we
only vary the upper bound for the size of the diagonal
blocks. (At this point, we note that we do not include
the cuBLAS batched LU in this comparison as it does not
support variable problem size, which is needed for block-
Jacobi preconditioning based on supervariable blocking.)
We perform our tests using a set of 48 selected matrices
from the SuiteSparse matrix collection [12] (see the column
labeled as “Matrix in Table I, and http://www.cise.ufl.edu/
research/sparse/matrices). The test problems are listed along
with some key characteristics in Table I, and all carry some
inherent block structure that makes them attractive targets for
block-Jacobi preconditioning. We initialize the right-hand
side vector with all its entries set to one, start the iterative
solver with an initial guess of zero, and stop once the relative
residual norm is decreased by six orders of magnitude. We
allow for up to 10,000 iterations.

Although both the LU-based and GH-based factorizations
present the same practical stability [13], we acknowledge
the possibility of rounding effects. At this point, we note
that rounding errors can have significant effect on the
convergence rate of the Krylov solver, and a more accurate
factorization (preconditioner setup) does not inevitably result
in faster convergence of the preconditioned iterative solver.
Figure 8 displays the convergence difference of IDR(4)
depending on whether the block-Jacobi preconditioner is
based on LU or GH. The x-axis of the histogram reflects
the iteration overhead, while the y-axis shows the number
of test cases for which LU provided a “better” preconditioner
(bars left of center) or GH did (bars right of center). For all
block sizes, the majority of the problems is located in the
center, corresponding to those problem instances where both
methods resulted in the same iteration count. Furthermore,
the histogram exposes a remarkable level of symmetry,
suggesting that, although rounding effects do occur, none
of the factorization strategies is generally superior.

In addition to the convergence rate (iteration count), we
are also interested in comparing the practical performance
of the two factorization strategies, in terms of execution
time, in a block-Jacobi setting. In Figure 9 we compare the
total execution time (preconditioner setup time + iterative
solver runtime) of the IDR(4) solver using a block-Jacobi
preconditioner based on either LU, GH, or GH-T. For
this experiment, we use an upper bound of 32 for the
supervariable agglomeration. In most cases, the performance
differences between the three options are negligible. Only
due to rounding-error, and derived iteration count differ-
ences, one of the methods becomes superior. The differences
between GH and GH-T come from the faster preconditioner
generation combined with a potentially faster application of
the latter. The matrices are ordered in the x-axis according
to the total execution time of the solver and can be identified
by the corresponding index in Table I (see column labelled
as “ID”). The four missing cases correspond to matrices for
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Figure 7. Performance of batched triangular solve routines depending on the size of the matrices. The batch size is fixed to 40,000 systems.

which the solver did not attain convergence. V. CONCLUDING REMARKS AND FUTURE WORK

We have presented variable-size batched CUDA kernels

for the solution of linear systems via the LU factorization

To close this section, Table I lists all test matrices along  that are optimized for small-size problems and outperform

with the convergence behavior and execution time when existing counterparts offering the same functionality by a

using different upper bounds for the Jacobi blocks in an large margin. This performance is achieved by extensive

IDR(4) solver preconditioned with the small-size LU-based  use of the GPU registers, and the integration of an implicit

block-Jacobi. The results suggest that larger block sizes pivoting technique that preserves numerical stability while

typically improve the solver convergence with respect to removing the costly data movements due to the row ex-
both iteration count and time-to-solution. changes.
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The size of the distinct diagonal blocks is adapted to the system matrix
via supervariable blocking with 32 as upper bound. The matrix indices
correspond to the values in the column labeled as “ID” in Table I.

Combined with an efficient strategy for the extraction of
the diagonal blocks from a sparse data structure, we have
presented an ecosystem of a factorization-based block-Jacobi
preconditioner that succeeds in reducing the time-to-solution
of the iterative IDR(4) Krylov method for a large range of
problems.

Future work will address the development of a Cholesky-
based variant for symmetric positive definite problems and
the optimization of the batched kernels for any problem size.
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