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Abstract—We present a set of new batched CUDA kernels
for the LU factorization of a large collection of independent
problems of different size, and the subsequent triangular
solves. All kernels heavily exploit the registers of the graphics
processing unit (GPU) in order to deliver high performance for
small problems. The development of these kernels is motivated
by the need for tackling this embarrasingly-parallel scenario
in the context of block-Jacobi preconditioning that is relevant
for the iterative solution of sparse linear systems.
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I. INTRODUCTION

The development of batched routines for linear algebra

operations has received considerable interest in the past few

years because of the hardware concurrency often exceeding

the degree of parallelism present in the algorithms. At the

same time, many problems arising in astrophysics, quantum

chemistry, hydrodynamics, and hyperspectral image pro-

cessing, among others, require the application of the same

computational kernel not only to one but to a large number of

data instances. Batched routines are optimized to tackle this

embarrassingly-parallel scenario that comprises a large col-

lection of independent problems, each of small dimension.

Compared with conventional multi-threaded implementa-

tions of the Basic Linear Algebra Subprograms (BLAS) [1],

optimized for moderate- and large-scale individual problem

instances, batched routines may also exploit the parallelism

available within the computational kernel, but mainly target

the parallelism in-between the distinct data items.

With the increasing core-per-node ratio, there is an urging

demand for batched routines, that are eventually expected

to cover a significant fraction of the functionality currently

supported by dense linear algebra libraries such as BLAS

and the Linear Algebra PACKage (LAPACK) [2]. In ad-

dition, batched kernels are becoming a key ingredient for

the solution of sparse linear systems via direct multifrontal

solvers as well as for the efficient preconditioning of iterative

solvers based on Krylov subspaces.

Preconditioning via a block-Jacobi scheme is a particu-

larly simple technique that produces an effective acceleration

of the iterative solve for some problem instances [3]. One

option to realize block-Jacobi preconditioning requires to:

1) Extract multiple small-sized diagonal blocks of the

sparse coefficient matrix of the linear system and

factorize this collection of blocks during the precon-

ditioner computation (setup).

2) Solve the resulting triangular systems during the pre-

conditioner application (once per step of the iterative

solve).

As the diagonal blocks are all pairwise independent, precon-

ditioning via block-Jacobi naturally leads to a batched sce-

nario. Our effort in this work is oriented toward elaborating

efficient batched routines for these two steps, preconditioner

setup and preconditioner application, yielding the following

contributions:

• A variable-size batched LU factorization routine on

GPUs tuned for small problems.

• A complementary variable-size batched lower and up-

per triangular solve routine on GPUs tuned for small

sizes.

• An implicit pivoting technique that preserves the sta-

bility of the factorization without explicitly swapping

the matrix elements in memory.

• A routine for efficiently extracting the diagonal blocks

from a sparse matrix layout that ensures a good work-

load balance even for matrices with an unbalanced

nonzero distribution.

• A complete block-Jacobi preconditioner ecosystem

based on batched LU factorization and batched trian-

gular solves that improves time-to-solution of iterative

Krylov solvers for a large set of test problems.

At this point, we note that the term “batched” has been

frequently used to refer to a large collection of small-size

problems. However, the definition of large and small are at

best blurry. Here we target a realistic case study for block-

Jacobi preconditioning, where small can be defined as the

diagonal blocks that participate in steps 1)–2) above being

in the range 4×4 to 32×32, while large refers to thousands
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or even tens of thousands of independent problems. We

consider this as scientifically relevant as the block-Jacobi

preconditioner aims at reflecting the sparsity block structure

of a finite element discretization.

Due to their small size, processing the problem instances

usually involves memory-bound operations, which can ques-

tion the utilization of discrete accelerators (with a memory

detached from that of the host memory). For the particular

case of block-Jacobi preconditioning, the use of a discrete

hardware accelerator device is justified because the Krylov

solvers require the coefficient matrix to reside in the device

memory in order to build up the Krylov subspace via the

Krylov iterations. Therefore, the cost of transferring this

matrix from the host to the accelerator is quickly amortized,

and the on-device generation of the batched block-Jacobi

preconditioner incurs no additional host-to-device commu-

nication.

The rest of the paper is structured as follows. In Section II

we review a few related works and offer a brief survey

of (batched) factorization for the solution of linear sys-

tems. In Section III we describe the implementation of our

CUDA kernels for batched LU factorization (paying special

attention to the introduction of implicit pivoting), batched

triangular system solves, and the extraction procedure. In

Section IV we assess the performance of the new batched

kernels on an NVIDIA Tesla P100 (Pascal) GPU, and in

Section V we close the paper with a discussion of remarks

and future work.

II. BACKGROUND AND RELATED WORK

A. Block-Jacobi preconditioning

For a coefficient matrix A ∈ R
n×n, the block-Jacobi

method can be regarded as a straight-forward extension of its

(scalar) Jacobi counterpart. Concretely, instead of splitting

the coefficient matrix as A = L + D + U (with diagonal

D = ({aii}), lower triangular L = ({aij : i > j})
and upper triangular U = ({aij : i < j})), the

block-Jacobi variant gathers the diagonal blocks of A into

D = (D1, D2, . . . , DN ), Di ∈ R
mi×mi , i = 1, 2, . . . , N ,

with n =
∑N

i=1 mi. (For simplicity, hereafter we assume

that all blocks have the same size m, and n is an integer

multiple of m.) The remaining elements of A are then

partitioned into matrices L and U such that L contains the

elements below the diagonal blocks while U comprises those

above them [4]. The block-Jacobi method is well-defined

if all diagonal blocks are non-singular, and the resulting

preconditioner is expected to work effectively if the blocks

succeed in reflecting the nonzero structure of the coefficient

matrix A.

Fortunately, many linear systems exhibit some inherent

block structure, for example because they arise from a

finite element discretization of a partial differential equa-

tion (PDE), with multiple variables associated to each el-

ement [4]. The variables belonging to the same element

usually share the same column sparsity pattern, and the

set of variables is often referred to as a supervariable.

Supervariable blocking [5] aims to identify variables sharing

the same column-nonzero-pattern, and turns this information

into a block-structure that can be used, for example, in

block-Jacobi preconditioning. Depending on the pre-defined

upper bound for the size of the diagonal blocks, multi-

ple supervariables adjacent in the coefficient matrix can

be clustered within the same diagonal block [5]. This is

particularly efficient if the supervariables accumulated into

the same Jacobi block are tightly coupled, which is the case

if the variables ordered close-by in the matrix representation

belong to elements that are nearby in the PDE mesh. Some

reordering techniques such as reverse Cuthill-McKee or

natural orderings preserve this locality [5].

Although different strategies exist to integrate a block-

Jacobi preconditioner into an iterative solver setting, in this

paper we focus on an approach that factorizes the diagonal

blocks in the preconditioner setup, and then applies the

preconditioner in terms of triangular solves. Alternatively,

it is possible to explicitly compute the block-inverse before

the iterative solution phase, and apply the preconditioner as a

matrix-vector multiplication. These two strategies primarily

differ in the workload size, and how this work is distributed

between the preconditioner setup and the preconditioner

application. Additionally, the factorization-based approach

might exhibit more favorable numerical stability as it avoids

the explicit inversion of the blocks in D.

B. Solution of linear systems via the LU factorization

The standard procedure to solve a dense linear system

Dix = b, for a square block Di of order m and vectors x, b,
each with m entries, consists of the following four steps [6]:

1) The computation of the LU factorization (with partial

pivoting) PDi = LU , where L is unit lower triangular,

U is upper triangular, P is a permutation matrix, and

all three matrices L,U, P are of the same order as Di;

2) the application of the permutation P to the right-hand

side b; i.e., b := Pb;
3) the solution of the unit lower triangular system Ly = b

for y; and

4) the solution of the upper triangular system Ux = y to

obtain the sought-after vector x.

The computational cost of this four-step solution process is
2
3m

3 + O(m2) flops (floating-point arithmetic operations),

where the dominating term 2
3m

3 comes from the factoriza-

tion step. Neglecting the pivoting process associated with

the permutation matrix P can result in the triangular factors

becoming singular and the break-down of the algorithm [6].

Partial pivoting limits the process to row exchanges only; it

is numerically stable in practice, and has become the norm

in standard implementations of the LU factorization.
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C. Batched solution of small linear systems

Batched routines for small-size problems play an impor-

tant role in the context of preconditioning iterative methods

for sparse linear systems. One example is the technique of

block-Jacobi preconditioning, where the sparse coefficient

matrix is scaled with its block-inverse [3]. This type of

scaling requires the solution of a set of small linear systems

induced by the diagonal blocks in D, which can be addressed

via a factorization-based method. As argued earlier, for each

block Di, of dimension m, the cost of its LU factorization

is 2
3m

3 flops, while solving the triangular block system

for a single block and right-hand side requires 2m2 flops.

Alternatively, as the block-diagonal scaling is applied at

each iteration of the solver, it may pay off to explicitly

compute the block-inverse before the iteration process, at

a cost of 2m3 flops (per block). With this approach, the

preconditioner application can then be cast in terms of the

matrix-vector product, with a cost of 2m2 flops (per block),

but a much faster execution than a triangular block solve.

These two approaches, factorization-based and inversion-

based, differ in the computational cost, numerical stability,

and how they distribute the workload between preconditioner

setup and preconditioner application. Which strategy is pre-

ferrable depends on how often the preconditioner is applied

and the size of the distinct diagonal blocks.

In block-Jacobi preconditioning, the diagonal blocks are

typically chosen to be of small size, for example when

reflecting the block structure of a system matrix coming

from a finite element discretization. At the same time, the

number of these small blocks is typically large, which moti-

vates the use of batched routines. For GPU architectures, we

showed in [4] how to realize an inversion-based block-Jacobi

preconditioner efficiently using Gauss-Jordan elimination

(GJE). As the explicit inversion may be questionable in

terms of numerical stability, in [7] we compared this solution

with a block-Jacobi preconditioning procedure based on the

factorization of diagonal blocks. The factorization method

we used in that comparison was the Gauss-Huard (GH)

algorithm [8], which is algorithmically similar to GJE.

In this paper we extend our survey on using batched

routines for block-Jacobi preconditioning by addressing the

factorization of the diagonal blocks via the mainstream

LU factorization. From the numerical perspective, the LU

factorization (with partial pivoting) and the GH algorithm

(with column pivoting) present the same properties. How-

ever, they build upon distinct algorithms, resulting in dif-

ferent implementations, and, consequently, distinguishable

computational performance.

III. DESIGN OF CUDA KERNELS

This section describes the implementation of efficient

CUDA kernels for both batched LU factorization as well as

triangular system solves specifically tuned for small problem

sizes where the system matrix (corresponding to a diagonal

1 % Inpu t : m x m nons ingu lar mat r i x b lock Di
2 % Output : Di o v e r w r i t t e n by i t s L , U f a c t o r s
3 p = [1:m];
4 f o r k = 1 : m
5 % Pivo t i ng
6 [abs_ipiv, ipiv] = max(abs(Di(k:m,k)));
7 ipiv = ipiv+k-1;
8 [Di(k,:), Di(ipiv,:)] = swap(Di(ipiv,:), Di(k,:));
9 [p(k), p(ipiv)] = swap(p(ipiv), p(k));

10
11 % Gauss t rans fo rma t i on
12 d = Di(k,k); % Pivo t
13 Di(k+1:m,k) = Di(k+1:m,k) / d; % SCAL
14 Di(k+1:m,k+1:m) = Di(k+1:m,k+1:m) ...
15 - Di(k+1:m,k) * Di(k,k+1:m); % GER
16 end

1 % Inpu t : m x m nons ingu lar mat r i x b lock Di
2 % Output : Di o v e r w r i t t e n by i t s L , U f a c t o r s
3 p = z e r o s(1, m);
4 f o r k = 1 : m
5 % I m p l i c i t p i v o t i n g
6 abs_vals = abs(Di(:,k));
7 abs_vals(p>0) = -1; % exclude p ivo ted rows
8 [abs_ipiv, ipiv] = max(abs_vals);
9 p(ipiv) = k;

10
11 % Gauss t rans fo rma t i on
12 d = Di(ipiv,k); % Pivo t
13 Di(p==0,k) = Di(p==0,k) / d; % SCAL
14 Di(p==0,k+1:m) = Di(p==0,k+1:m) ...
15 - Di(p==0,k) * Di(ipiv,k+1:m); %

GER
16 end
17 % Combined row swaps
18 p(p) = 1:m; % I n v e r t the permutat ion
19 Di = Di(p,:);

Figure 1. Loop-body of the basic LU factorization in Matlab notation
using explicit and implicit partial pivoting (top and bottom, respectively).

block in block-Jacobi preconditioning) contains at most

32 × 32 elements. This is consistent with the batched im-

plementation of GH in [7], which is also designed for small

problems of the type arising in block-Jacobi preconditioning.

A. Batched LU factorization (GETRF)

A simplified MATLAB routine for the (right-looking) LU

factorization of a square block Di is shown in Figure 1

(top). This algorithmic variant lies in the foundations of our

batched CUDA kernel for this factorization that we discuss

next.

Recent GPU architectures from NVIDIA feature a large

amount of registers per thread, which makes it possible to

assign problems of size up to 32×32 to a single warp. Each

thread then stores one row of the system matrix Di into the

local registers, while warp shuffle instructions allow access

to elements from other rows (e.g., when performing the

updates in lines 13–15). Using this technique, it is possible

to read the system matrix only once, and perform the whole

factorization process in the registers, avoiding the latency

of memory and caches, as well as additional load and store

instructions.

A complementary optimization, also important, addresses

the pivoting procedure ensuring the practical stability of the
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LU factorization. Even though the selection of the pivot

row ipiv (lines 6–7) in step k of the factorization can

be realized efficiently using a parallel reduction, the actual

exchange of rows k and ipiv (lines 8–9) on a GPU is

costly, as it involves only the two threads holding these

rows, while the remaining threads stay idle. To tackle this

issue, in [4] and [7] we proposed an implicit pivoting

procedure for GJE and GH, which avoids the explicit row

swaps and combines them into a single, easily parallelizable

permutation, which is performed after the main loop. This

technique can also be applied to LU by observing the

following:

• During step k of the factorization, the operation per-

formed on each row of the matrix (lines 13–15) depends

only on the elements in this row and the pivot row

ipiv (which was exchanged with row k when using

standard, explicit pivoting as in Figure 1).

• The type of operation to perform on each row can be

derived without knowing its position in the matrix: if

the row has already been pivoted, then no operation is

required (in Figure 1 such row was exchanged with one

of the first k rows); otherwise the k-th element of the

row has to be scaled (line 13), and an AXPY needs to

be performed on the trailing vector (lines 14–15).

These observations turn the implicit pivoting procedure for

LU even more efficient than its counterpart applied in GH,

as the operations performed by each thread do not depend

on the previously selected pivot rows. Conversely, for GH a

list of their indices has to be replicated in each thread [7].

As an illustration, the bottom factorization code in Figure 1

shows the implicit pivoting approach in the LU factorization.

A final optimization can be made by combining the row

swap with the off-load of L and U to main memory, hereby

eliminating all inter-thread communication induced by row

swaps. In addition to writing the triangular factors, the

pivoting information also has to be stored in main memory

for the subsequent triangular solves.

B. Batched triangular system solves (TRSV)

Unlike the LU factorization, the triangular system solves

offer only a limited amount of data reuse. Each element

of the triangular factors is needed only once, so explicitly

keeping this value in registers does not offer any advantage.

In contrast, the right-hand side vector b, which is overwritten

with the solution vector, is reused. Hence, reading and

distributing this vector across the registers of the threads

in the warp (one element per thread) is beneficial.

The permutation b := Pb coming from pivoting is

performed while reading b into the registers: Each element

is stored to the registers of the correct threads. This step

is followed by a unit lower triangular solve, and finally an

upper triangular solve. As these operations are similar, we

will for brevity only discuss the lower triangular solve (the

solution of Ly = b(= Pb)) in detail. Different strategies

1 % Inpu t : m x m mat r i x L , rhs vec to r b
2 % Output : Vector b o v e r w r i t t e n by the s o l u t i o n y
3 % of Ly = b
4 f o r k = 2 : m
5 b(k) = b(k) - L(k,1:k-1) * b(1:k-1); % DOT
6 end

1 % Inpu t : m x m mat r i x L , rhs vec to r b
2 % Output : Vector b o v e r w r i t t e n by the s o l u t i o n y
3 % of Ly = b
4 f o r k = 1 : m-1
5 b(k+1:m) = b(k+1:m) - L(k+1:m,k) * b(k); % AXPY
6 end

Figure 2. Loop-body of the “lazy” and “eager” algorithmic variants (top
and bottom, respectively) for the solution of a unit lower triangular system
in Matlab notation.

exist for realizing the triangular solve: the “lazy” variant

(code in Figure 2, top) relies on an inner (DOT) to compute

the final value of yk at step k, while the “eager” one

(code in Figure 2, bottom) leverages an AXPY to update the

trailing vector yk+1:m. In this case, the latter variant is more

convenient, as the parallelization of AXPY is straightforward,

while the DOT product requires a reduction. The memory

accesses to the system matrix are also different: the “lazy”

variant reads one row per step, while the “eager” one reads

one column. Therefore, assuming standard column-major

storage, the “eager” variant also has the benefit of coalesced

memory access.

C. Block-Jacobi preconditioning using batched LU

Using batched factorization routines for block-Jacobi pre-

conditioning requires the extraction of the diagonal blocks

from the sparse system matrix. This is a non-trivial step as

accessing a (dense) diagonal block embedded in a sparse

data structure (such as those typically used for storing the

system matrix, e.g., CSR [3]) can be quite elaborate. Further-

more, exploiting the fine-grained parallelism provided by the

GPU hardware in the extraction step makes this operation

challenging for problems with an unbalanced sparsity pat-

tern: Assigning the parallel resources to the distinct rows will

inevitably result in severe work imbalance for problems with

a very unbalanced nonzero distribution, like for example

those arising in circuit simulation. Additionally, accessing

the distinct rows in the row-major-based CSR layout in

parallel results in non-coalescent data access. In [4] we

proposed a strategy to overcome the latter drawback while

simultaneously diminishing the effects of the former one

by means of an intermediate step that stores the diagonal

blocks in shared memory. Although we refrain from showing

a comparison between the standard approach and the shared-

memory-based strategy in the experimental section, we recall

the central ideas of this shared memory extraction for

convenience:

Instead of assigning the distinct threads within the warp

to the distinct rows corresponding to the diagonal block, all
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Figure 3. Illustration of the memory requests for the shared memory
extraction. The elements part of the diagonal block are colored in light
orange, the elements that have already been extracted in light blue. We
assume warps of 4 threads, and visualize the data read by the distinct
threads at each iteration with dashed cells. If an element part of the diagonal
block is currently accessed (dark orange) it is extracted and stored in
the correct location in shared memory (dark orange also in the shared
memory). We only show the accesses to the vector storing the col-indices
of the CSR matrix structure [3]; the access to the actual values induces far
less overhead, as these memory locations are accessed only if a location
belonging to a diagonal block is found. In that case, the access pattern is
equivalent to the one used for col-indices.

threads of the warp collaborate to process each row. The

threads accessing an element that is part of the diagonal

block extract the respective value and store it into shared

memory. This allows for coalescent access to the elements

stored in CSR format, and avoids the load imbalance up to

a level where load imbalance only occurs between threads

of the same warp. After extracting the elements that are part

of the diagonal block, they are copied into registers of the

thread that will handle the respective row in the factorization

process. Figure 3 visualizes this diagonal block extraction

strategy [4].

IV. NUMERICAL EXPERIMENTS

In this section we evaluate the performance of the batched

LU factorization and triangular solve kernels tuned for

small-size problems by benchmarking them against alter-

native kernels offering similar functionality. Concretely, our

experimental analysis includes the following kernels:

• Small-size LU: The batched LU factorization and tri-

angular solve kernels developed as part of this work.

• Gauss-Huard: The batched factorization and triangular

solve kernels based on GH [7].

• Gauss-Huard-T: The factorization in this routine is

identical to the GH kernels, except in that the triangular

systems are stored in a transpose access-friendly mode

to accelerate the triangular solves [7].

• cuBLAS LU: The batched LU factorization and tri-

angular solve kernels available in NVIDIA’s cuBLAS

package (version 8.0).

We point out that the first three implementations are part

of the same software stack, the kernel implementations are

similar in design, and received the same level of tuning.

cuBLAS is a vendor implementation, optimized specifically

for the targeted architecture, but its source is not available.

As variable block size is not supported by the batched

kernels in cuBLAS, the experiments involving them were

conducted using fixed block size for the entire batch. This

ensures a fair comparison and credible conclusions.

In addition to the evaluation of the LU factorization and

triangular solve kernels, we assess the effectiveness of the

computed preconditioner integrated into the iterative IDR(4)

solver for sparse linear systems [3].

A. Hardware and software framework

We employed an NVIDIA Tesla P100 GPU with full

double precision support in the experimentation together

with NVIDIA’s GPU compilers that are shipped with the

CUDA toolkit 8.0. Except for the GETRF and GETRS1 rou-

tines taken from NVIDIA’s cuBLAS library [9], all kernels

were designed to be integrated into the MAGMA-sparse

library [10]. MAGMA-sparse was also leveraged to provide

a testing environment, the block-pattern generation, and the

sparse solvers. Since the complete algorithm is executed on

the GPU, the details of the CPU are not relevant.

B. Performance of batched factorization routines

Figure 4 compares the performance of the four batched

factorization routines in terms of GFLOPS (billions of flops

per second). The left-hand side plots in the figure report

the performance for a batch of matrices of size 16 × 16.

The reference implementation for batched LU-based GETRF

taken from NVIDIA’s cuBLAS library achieves about 110

GFLOPS in single precision (top row). In comparison, the

small-size LU, Gauss-Huard and Gauss-Huard-T all achieve

about 130 GFLOPS for this case. In double precision (bot-

tom row), the performance of the small-size LU is about

35% lower than that of the GH-based factorization routines,

with the latter delivering about 100 GFLOPS. The scenario

is different when the problem dimension is 32×32 (plots in

the right-hand side of Figure 4): The performance of Gauss-

Huard-T is then about 5% below that of Gauss-Huard, and

1Routine GETRS applies the sequence of permutations computed by the
LU factorization routine to the right-hand side vector, followed by two
triangular solves (TRSV).
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Figure 4. Performance of batched factorization routines depending on the batch size.
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Figure 5. Performance of batched factorization routines depending on the size of the matrices. The batch size is fixed to 40,000 systems.

the small-size LU outperforms both routines by a significant

margin, achieving up to 600 GFLOPS in single precision and

350 GFLOPS in double precision. The cuBLAS counterpart

providing the same functionality is 3.5× slower, delivering

about 100 GFLOPS only. The explanation for this block-

size-dependent behavior is an implementation detail, which

will be corrected as part of future work. Concretely, for

block size k < 32, both the small-size LU and GH routines

operate with a matrix of size 32 × 32, padding the input

with zeros, but performing only the first k steps of the

factorization. This benefits GH, since it implements a “lazy”

factorization, while the “eager” (right-looking) algorithmic

variant selected for the LU factorization performs more flops

than its GH counterpart for block size k < 32. By optimizing

the algorithms specifically for smaller block sizes, we expect

to observe the same behavior as that obtained for block

size 32.

Figure 5 reports the performance as a function of the

problem size. The results indicate that the non-coalescent

writes in Gauss-Huard-T play a significant role only for
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problems of dimension larger than 16 × 16. For single

precision, this also corresponds to the threshold from which

the small-size LU starts to outperform the GH-type factor-

izations. In double precision, the small-size LU is slower

than the GH-based factorizations for problems smaller than

23× 23. The size-dependent results for cuBLAS LU reveal

the system-specific optimizations: local performance peaks

can be identified for sizes 8, 16, and 29 in single precision

arithmetic, and for dimensions 8 and 20 in double precision

arithmetic. Although we do not tune for specific sizes by

handling multiple problems per warp, the small-size LU

outperforms the cuBLAS LU for almost all sizes.

C. Performance of batched triangular solves

We next employ the same notation in order to distin-

guish the different batched implementations of the triangular

solves that complement the factorization routines. On the

left-hand side plot in Figure 6, we assess the performance of

the triangular solves for a batch of matrices with size 16×16.

Unlike the factorization step, the performance for both GH

variants and the small-size LU are almost identical in single-

as well as double precision arithmetic (44 GFLOPS and 37

GFLOPS, respectively).

For problems of size 32×32 (right-hand side plots in Fig-

ure 6), the more expensive Gauss-Huard-T factorization pays

off by accelerating the triangular solve from 47 GFLOPS

(for Gauss-Huard) to 80+ GFLOPS when using single

precision. In double precision the triangular solves of Gauss-

Huard-T are also about twice faster (70 GFLOPS) than those

associated with the Gauss-Huard kernel (35 GFLOPS). The

small-size LU achieves 90+ GFLOPS in single precision

and close to 80 GFLOPS in double precision. This implies

speed-up factors of 4.5× and 4× over cuBLAS, respectively.

Figure 7 analyzes the performance depending on the

problem size. Conversely to the factorization step, the non-

coalescent reads in the Gauss-Huard triangular solves harm

the performance for problems larger than 16×16. For Gauss-

Huard-T, the price of non-coalescent access was payed in the

factorization step. As a result, the Gauss-Huard-T triangular

solves remain competitive with the small-size LU triangular

solves. As in the factorization step, NVIDIA’s GETRS seems

to be optimized for problem of dimension smaller than

16; nonetheless, this option achieves only a fraction of the

performance of our small-size LU for all dimensions.

D. Analysis of block-Jacobi preconditioning

In this section we assess the efficiency of batched fac-

torization routines in the context of block-Jacobi precon-

ditioning. For this purpose we enhance an IDR(4) Krylov

solver (taken from the MAGMA-sparse open source soft-

ware package [11]) with a block-Jacobi preconditioner that

is generated via batched factorization routines based on

LU or GH, and applied in terms of triangular solves. The

diagonal block structure is generated via the supervariable

blocking routines available in MAGMA-sparse, and we

only vary the upper bound for the size of the diagonal

blocks. (At this point, we note that we do not include

the cuBLAS batched LU in this comparison as it does not

support variable problem size, which is needed for block-

Jacobi preconditioning based on supervariable blocking.)

We perform our tests using a set of 48 selected matrices

from the SuiteSparse matrix collection [12] (see the column

labeled as “Matrix in Table I, and http://www.cise.ufl.edu/

research/sparse/matrices). The test problems are listed along

with some key characteristics in Table I, and all carry some

inherent block structure that makes them attractive targets for

block-Jacobi preconditioning. We initialize the right-hand

side vector with all its entries set to one, start the iterative

solver with an initial guess of zero, and stop once the relative

residual norm is decreased by six orders of magnitude. We

allow for up to 10,000 iterations.

Although both the LU-based and GH-based factorizations

present the same practical stability [13], we acknowledge

the possibility of rounding effects. At this point, we note

that rounding errors can have significant effect on the

convergence rate of the Krylov solver, and a more accurate

factorization (preconditioner setup) does not inevitably result

in faster convergence of the preconditioned iterative solver.

Figure 8 displays the convergence difference of IDR(4)

depending on whether the block-Jacobi preconditioner is

based on LU or GH. The x-axis of the histogram reflects

the iteration overhead, while the y-axis shows the number

of test cases for which LU provided a “better” preconditioner

(bars left of center) or GH did (bars right of center). For all

block sizes, the majority of the problems is located in the

center, corresponding to those problem instances where both

methods resulted in the same iteration count. Furthermore,

the histogram exposes a remarkable level of symmetry,

suggesting that, although rounding effects do occur, none

of the factorization strategies is generally superior.

In addition to the convergence rate (iteration count), we

are also interested in comparing the practical performance

of the two factorization strategies, in terms of execution

time, in a block-Jacobi setting. In Figure 9 we compare the

total execution time (preconditioner setup time + iterative

solver runtime) of the IDR(4) solver using a block-Jacobi

preconditioner based on either LU, GH, or GH-T. For

this experiment, we use an upper bound of 32 for the

supervariable agglomeration. In most cases, the performance

differences between the three options are negligible. Only

due to rounding-error, and derived iteration count differ-

ences, one of the methods becomes superior. The differences

between GH and GH-T come from the faster preconditioner

generation combined with a potentially faster application of

the latter. The matrices are ordered in the x-axis according

to the total execution time of the solver and can be identified

by the corresponding index in Table I (see column labelled

as “ID”). The four missing cases correspond to matrices for

9797



Block size 16 Block size 32

single precision

0 0.5 1 1.5 2 2.5 3 3.5 4
Batch size ×104

0

5

10

15

20

25

30

35

40

45
G

F
LO

P
S

Small-Size LU
Gauss-Huard
Gauss-Huard-T
cuBLAS LU

0 0.5 1 1.5 2 2.5 3 3.5 4
Batch size ×104

0

20

40

60

80

100

G
F

LO
P

S

Small-Size LU
Gauss-Huard
Gauss-Huard-T
cuBLAS LU

double precision

0 0.5 1 1.5 2 2.5 3 3.5 4
Batch size ×104

0

5

10

15

20

25

30

35

40

G
F

LO
P

S

Small-Size LU
Gauss-Huard
Gauss-Huard-T
cuBLAS LU

0 0.5 1 1.5 2 2.5 3 3.5 4
Batch size ×104

0

10

20

30

40

50

60

70

80

G
F

LO
P

S

Small-Size LU
Gauss-Huard
Gauss-Huard-T
cuBLAS LU

Figure 6. Performance of batched triangular solve routines depending on the batch size.
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Figure 7. Performance of batched triangular solve routines depending on the size of the matrices. The batch size is fixed to 40,000 systems.

which the solver did not attain convergence.

To close this section, Table I lists all test matrices along

with the convergence behavior and execution time when

using different upper bounds for the Jacobi blocks in an

IDR(4) solver preconditioned with the small-size LU-based

block-Jacobi. The results suggest that larger block sizes

typically improve the solver convergence with respect to

both iteration count and time-to-solution.

V. CONCLUDING REMARKS AND FUTURE WORK

We have presented variable-size batched CUDA kernels

for the solution of linear systems via the LU factorization

that are optimized for small-size problems and outperform

existing counterparts offering the same functionality by a

large margin. This performance is achieved by extensive

use of the GPU registers, and the integration of an implicit

pivoting technique that preserves numerical stability while

removing the costly data movements due to the row ex-

changes.
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block-Jacobi preconditioning based on either LU or GH factorization.
The size of the distinct diagonal blocks is adapted to the system matrix
via supervariable blocking with 32 as upper bound. The matrix indices
correspond to the values in the column labeled as “ID” in Table I.

Combined with an efficient strategy for the extraction of

the diagonal blocks from a sparse data structure, we have

presented an ecosystem of a factorization-based block-Jacobi

preconditioner that succeeds in reducing the time-to-solution

of the iterative IDR(4) Krylov method for a large range of

problems.

Future work will address the development of a Cholesky-

based variant for symmetric positive definite problems and

the optimization of the batched kernels for any problem size.
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