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Abstract. Dermoscopy is one of the major imaging modalities used in
the diagnosis of melanoma and other pigmented skin lesions. Due to the
difficulty and subjectivity of human interpretation, automated analysis
of dermoscopy images has become an important research area. Border
detection is often the first step in this analysis. In this article, we present
an approximate lesion localization method that serves as a preprocessing
step for detecting borders in dermoscopy images. In this method, first
the black frame around the image is removed using an iterative algo-
rithm. The approximate location of the lesion is then determined using
an ensemble of thresholding algorithms. Experiments on a large set of
images demonstrate that the presented method achieves both fast and
accurate localization of lesions in dermoscopy images.

1 Introduction

Malignant melanoma, the most deadly form of skin cancer, is one of the most
rapidly increasing cancers in the world, with an estimated incidence of 62,480
and an estimated total of 8,420 deaths in the United States in 2008 alone [IJ.
Early diagnosis is particularly important since melanoma can be cured with a
simple excision if detected early.

Dermoscopy, also known as epiluminescence microscopy, has become one of
the most important tools in the diagnosis of melanoma and other pigmented skin
lesions. This non-invasive skin imaging technique involves optical magnification,
which makes subsurface structures more easily visible when compared to con-
ventional clinical images [2]. This in turn reduces screening errors and provides
greater differentiation between difficult lesions such as pigmented Spitz nevi and
small, clinically equivocal lesions [3]. However, it has also been demonstrated
that dermoscopy may actually lower the diagnostic accuracy in the hands of
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inexperienced dermatologists [4]. Therefore, in order to minimize the diagnostic
errors that result from the difficulty and subjectivity of visual interpretation,
the development of computerized image analysis techniques is of paramount im-
portance [5l6].

Automated border detection is often the first step in the automated analysis
of dermoscopy images [7I8[9]. It is crucial for the image analysis for two main
reasons. First, the border structure provides important information for accurate
diagnosis, as many clinical features, such as asymmetry, border irregularity, and
abrupt border cutoff, are calculated directly from the border. Second, the ex-
traction of other important clinical features such as atypical pigment networks,
globules, and blue-white areas, critically depends on the accuracy of border
detection.

A number of methods have been developed for preprocessing dermoscopy im-
ages. Most of these focused on the removal of artifacts such as hairs and bubbles.
Of the studies dealing with hair removal, Lee et al. [10] approached the problem
using mathematical morphology. Fleming et al. [5] applied curvilinear structure
detection with various constraints followed by gap filling. A method for bub-
ble removal was introduced in [5], where the authors utilized a morphological
top-hat operator followed by a radial search procedure.

2 Materials and Methods

2.1 Black Frame Removal

Dermoscopy images often contain black frames that are introduced during the
digitization process. These need to be removed because they might interfere with
the subsequent lesion localization procedure. In order to determine the darkness
of a pixel with (R, G, B) coordinates, the lightness component of the HSL color
space is utilized. A pixel is considered to be black if its lightness value is less than
20. Using this criterion, the image is scanned row-by-row starting from the top.
A particular row is labeled as part of the black frame if it contains 60% black
pixels. The top-to-bottom scan terminates when a row that contains less than
the threshold percentage of pixels is encountered. The same scanning procedure
is repeated for the other three main directions.

2.2 Approximate Lesion Localization

Although dermoscopy images can be quite large, the actual lesion often occupies
a relatively small area. Therefore, if we can determine the approximate location
of the lesion, the border detection algorithm can focus on this region rather than
the whole image. An accurate bounding box (the smallest axis-aligned rectan-
gular box that encloses the lesion) might be useful for various reasons: (i) it
provides an estimate of the lesion size (certain image segmentation algorithms
such as region growing and morphological flooding can use the size of the region
as a termination criterion), (ii) it might improve the border detection accuracy
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since the procedure is focused on a region that is guaranteed to contain the le-
sion, (iii) it speeds up the border detection since the procedure is performed on
a region that is often smaller than the whole image, (iv) its surrounding might
be utilized in the estimation of the background skin color, which is useful for
various operations including the elimination of spurious regions that are discov-
ered during the border detection procedure [9] and the extraction of dermoscopic
features such as blotches [11] and blue-white areas [12].

In many dermoscopic images, the lesion can be roughly separated from the
background skin using a grayscale thresholding method applied to the blue chan-
nel [7U8]. While there are a number of thresholding methods that perform well in
general, the effectiveness of a method strongly depends on the statistical char-
acteristics of the image [I3]. Fig. Ml illustrates this phenomenor]. Here, methods
[[(d)}[I(e)} and[T(g)|perform quite well. In contrast, methods[I(c)|and [T (h)|under-
estimate the optimal threshold, whereas method [L(f)| overestimates the optimal
threshold. Although method is the most popular thresholding algorithm in
the literature, for this particular image, it performs the second worst.

A possible approach to overcome this problem is to fuse the results provided
by an ensemble of thresholding algorithms. In this way, it is possible to exploit
the peculiarities of the participating thresholding algorithms synergistically, thus
arriving at more robust final decisions than is possible with a single thresholding
algorithm. We note that the goal of the fusion is not to outperform the individual
thresholding algorithms, but to obtain accuracies comparable to that of the best
thresholding algorithm independently of the image characteristics. In this study,
we used the threshold fusion method proposed by Melgani [13], which we describe
briefly in the following.

Let X = {&mn:m=0,1,....,M —1, n=0,1,...,N — 1} be the original
scalar M x N image with L possible gray levels (2, € {0,1,...,L —1}) and
Y = {ymn:m=0,1,...,M -1, n=0,1,...,N — 1} be the binary output of
the threshold fusion. Consider an ensemble of P thresholding algorithms. Let
T; and A; (i = 1,2,...,P) be the threshold value and the output binary im-
age associated with the i-th algorithm of the ensemble, respectively. Within a
Markov Random Field (MRF) framework the fusion problem can be formulated
as an energy minimization task. Accordingly, the local energy function U,,, to
be minimized for the pixel (m,n) can be written as follows:

P
Upnn = Bsp - Usp [Ymn, Y (m,n)] + Zﬂi Urr [Ymn, AF (myn)] (1)

i=1

where S is a predefined neighborhood system associated with pixel (m,n), Usp(-)
and Ujy(-) refer to the spatial and inter-image energy functions, respectively,

whereas Bgp and 3; (i = 1,2,..., P) represent the spatial and inter-image pa-
rameters, respectively. The spatial energy function can be expressed as:
Usp [Zlmna Ys(mvn)] = - Z I (Ymn, ypq) (2)

Ypg €Y S (m,n)

! The frame of this image is left intact for visualization purposes.
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Fig. 1. Comparison of various thresholding methods (7': threshold)

where I(.,.) is the indicator function defined as:

. 1 if Ymn = Ypq
I(ymnv ypq) - { 0 otherwise (3)

The inter-image energy function is defined as:

UII [ymnv Af(mv n)} = - Z ai(qu) : I [ymnv Ai(pv q)} (4)
Ai(p,q)€AT (m,n)

where a'(-) is a weight function given by:
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ai(xmn) =1—exp (=7 |Zmn — Ti) (5)

This function controls the effect of unreliable decisions at the pixel level that
can be incurred by the thresholding algorithms. At the global (image) level
decisions are weighed by the inter-image parameters 5; (i = 1,2,..., P), which
are computed as follows:

Bi =exp (= |T - Ti|) (6)

where T is the average threshold value:

1 &
T=, ; T; (7)
The MRF fusion strategy proposed in [13] is as follows:

1. Apply each thresholding algorithm of the ensemble to the image X to gen-
erate the set of thresholded images A; (i =1,2,..., P)

2. Initialize Y by minimizing for each pixel (m, n) the local energy function U,
defined in Eq. [ without the spatial energy term i.e., by setting Bsp = 0.

3. Update Y by minimizing for each pixel (m,n) the local energy function U,
defined in Eq. [ including the spatial energy term i.e., by setting Bsp # 0.

4. Repeat step 3 K4, times or until the number of different labels in Y com-
puted over the last two iterations becomes very small.

In our preliminary experiments, we observed that, besides being computation-
ally demanding, the iterative part (step 3) of the fusion algorithm makes only
marginal contribution to the quality of the results. Therefore, in this study, we
considered only the first two steps. The v parameter was set to the recommended
value of 0.1 [I3]. For computational reasons, o (Eq.[H) and 8 (Eq.[d]) values were
precalculated and the neighborhood system S was chosen as a 3 x 3 square
window.

The most important performance factor in the fusion algorithm seems to be
the choice of the thresholding algorithms. We considered six popular thresholding
algorithms to construct the ensemble: Otsu’s [14], Kapur et al’s [15], Huang &
Wang’s [16], Yen et al.’s [17] , Sahoo et al.’s [18], and Li & Tam’s [19] methods.
In order to determine the best combination, we evaluated ensembles with 3 (20
ensembles), 4 (15 ensembles), 5 (6 ensembles), and 6 (1 ensemble) methods.

Fig. 2 shows the output of two particular ensembles: Otsu-Kapur-Huang and
Huang-Yen-Sahoo-Li. Note that both ensembles contain at least one method
that either underestimates or overestimates the optimal threshold. It can be
seen that both ensembles perform equally well, which demonstrates that failures
in pathological cases might be prevented using a proper fusion strategy.

Fig. [3(a)| shows the result of the ensemble Otsu-Kapur-Huang-Sahoo. Here,
the blue bounding box encloses the dermatologist determined border (see
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(a) Otsu-Kapur- (b)  Huang-Yen-
Huang Sahoo-Li

Fig. 2. Comparison of two threshold ensembles

(a) Non-adaptive expansion P = 3 (b) Adaptive expansion G = 6

Fig. 3. Comparison of the bounding box expansion methods

Section[3)), whereas the red one encloses the binary output of the threshold fusion.
It can be seen that the red box is completely contained inside the blue box. This
was observed in many cases because the automated thresholding methods tend to
find the sharpest pigment change, whereas the dermatologists choose the outmost
detectable pigment. We experimented with two different expansion methods to
solve this problem. The first one involves expanding the automatic box by P%
in four main directions. In other words, an automatic box of size Mp x Np is
expanded by Mp - P/100 pixels in the West and East directions and Ng - P/100
pixels in the North and South directions. The second one involves incrementing
the threshold values obtained by each algorithm in the ensemble by G gray
levels. In the rest of this article, we will refer to these expansion methods as
non-adaptive and adaptive, respectively. Figs. and show the results of
these methods with the expanded box shown in green. In this particular example,
the non-adaptive method performs better in bringing the automatic box closer
to the manual one. In order to determine the optimal expansion amounts we
evaluated P € {2,4,6,8} and G € {4,6,8,10}.

3 Results and Discussion

The proposed method was tested on a set of 428 dermoscopy images obtained
from the EDRA Interactive Atlas of Dermoscopy [2] and the Keio University
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Hospital. An experienced dermatologist determined the manual borders. The
bounding box error was quantified using the following formula [20]:

_ Area(AutomaticBox © ManualBox)

°T Area(ManualBor) 100 ®)
where AutomaticBozx is the binary image obtained by filling the bounding box of
the fusion output, ManualBoz is the binary image obtained by filling the bound-
ing box of the dermatologist-determined border, & is the exclusive-OR operation,
which essentially determines the pixels for which the AutomaticBox and Manual-
Box disagree, and Area(7) denotes the number of pixels in the binary image 1.
We determined the optimal parameter combination for the presented approx-
imate bounding box computation method as follows. First, the black frame re-
moval procedure described in Section [Z.1lis performed on each image in the data
set. The lesion bounding box is then computed using the fusion method described
in Section with one of the 42 ensembles. Finally, the approximate bounding
box is expanded using either the non-adaptive method with P € {2,4,6,8} or
the adaptive method with G € {4,6,8,10}. Table [l shows various statistics
associated with the four most accurate ensembles for each expansion method.
The last two columns refer to the mean and standard deviation values, respec-

tively for the percentage image size reduction, i.e. Area(Auj?{/?Jn\z]atchox) - 100,

provided by the bounding box computation. The following observations are in
order: (i) both expansion methods reduce the mean bounding box error, (ii) the
lowest mean errors were obtained using the ensemble Otsu-Kapur-Huang-Sahoo,
(iii) the non-adaptive expansion method was more effective than the adaptive
one, (iv) the computation of the bounding box reduced the original image size
by about 260%.

The adaptive method was less effective than the non-adaptive one proba-
bly because the former often expands the approximate box by unpredictable
amounts: either too little (as in Fig. or too much depending on the shape
of the histogram and the value of the G parameter. In contrast, the latter always
expands the approximate box by an amount specified by the P parameter.

Table 1. Ensemble statistics (u: mean, o: std. dev., &;: initial box error, ¢,: expanded
box error)

Ensemble Expansion Method ., 0., pe, 0-, s Os

Otsu-Kapur-Huang-Sahoo Non-adaptive (P = 2) 10.25 8.10 7.58 8.13 268.31 185.64
Otsu-Huang-Yen-Li Non-adaptive (P = 4) 11.92 7.59 7.89 6.30 260.55 183.85
Otsu-Huang-Sahoo-Li  Non-adaptive (P = 4) 11.98 7.62 7.90 6.20 260.95 184.14
Otsu-Huang-Sahoo = Non-adaptive (P = 2) 11.14 7.17 7.91 6.71 273.84 195.69
Otsu-Kapur-Huang-Sahoo  Adaptive (G =6) 10.25 8.10 9.27 7.68 276.92 192.14
Kapur-Huang-Sahoo-Li Adaptive (G =8) 10.98 7.66 9.43 7.69 279.03 194.42
Otsu-Kapur-Huang-Sahoo  Adaptive (G =4) 10.25 8.10 9.44 7.56 279.98 194.26
Kapur-Huang-Sahoo-Li Adaptive (G =6) 10.98 7.66 9.67 7.58 282.09 196.58
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Table 2. Individual statistics (u: mean, o: std. dev., &;: initial box error, €5: expanded
box error)

‘Thresholding Method‘Expansion Method‘ Me; | Ocyp | Heg ‘ Ocy ‘ s ‘ Os ‘
Otsu Non-adaptive (P = 2)[12.05| 9.10 | 9.00 | 8.95 [275.07|199.28
Kapur Non-adaptive (P = 2)|12.87|16.86|12.68|17.56|261.95[197.94
Huang Non-adaptive (P = 2)[20.31|67.97|17.17(69.76|269.59(190.09
Yen Non-adaptive (P = 2)[14.98|27.12(15.74(27.74|255.61|250.53
Sahoo Non-adaptive (P = 2)[13.43|24.60(13.37(25.19|254.43|184.36
Li Non-adaptive (P = 2)[15.12| 9.65 [11.06| 9.07 [293.54|215.80
Otsu Non-adaptive (P = 4)[12.05] 9.10 | 9.10 | 9.14 |256.86|182.82
Kapur Non-adaptive (P = 4)[12.87|16.86|15.54(18.61|245.36|183.78
Huang Non-adaptive (P = 4)]20.31|67.97|16.83|70.69(251.99|174.44
Yen Non-adaptive (P = 4)[14.98|27.12|19.32|28.49|239.46|230.91
Sahoo Non-adaptive (P = 4)|13.43]24.60|16.43(25.98|238.32|170.38
Li Non-adaptive (P = 4)[15.12| 9.65 | 9.41 | 7.99 |273.93|198.61

(a) &; = 3.26% , e, = 1.83% (b) s =4.89% , €. =3.62%

(c) & = 14.05% , &, = 10.91% (d) e = 18.36% , e, = 13.62%

Fig. 4. Sample results (g;: initial box error, €;: expanded box error)

Table 2] shows the statistics for the individual thresholding methods. Note
that, due to space limitations, we report only the results of the non-adaptive
expansion method (as in the ensemble case, the adaptive method has inferior
performance). It can be seen that, in most configurations, the individual meth-
ods obtain significantly higher mean errors than the best ensemble methods, i.e.
the first four rows of Table[Il This is because, as explained in Section 2.2] the in-
dividual methods are more prone to catastrophic failures when given pathological
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input images. The high standard deviation values also support this explanation.
Only the performance of Otsu (with P = 2,4) and Li et al’s (with P = 4)
methods is close to the performance of the ensembles. However, as mentioned in
Section 2], the goal of fusion is not to outperform the individual thresholding
algorithms, but to obtain accuracies comparable to that of the best thresholding
algorithm independently of the image characteristics.

Fig. @ shows sample bounding box computation results obtained using the
ensemble Otsu-Kapur-Huang-Sahoo with P = 2. It can be seen that the pre-
sented method determines an accurate bounding box even for lesions with fuzzy
borders.

4 Conclusions

In this paper, an automated method for approximate lesion localization in der-
moscopy images is presented. The method is comprised of three main phases:
black frame removal, initial bounding box computation using an ensemble of
thresholding algorithms, and expansion of the initial bounding box. The execu-
tion time of the method is about 0.15 seconds for a typical image of size 768 x 512
pixels on an Intel Pentium D 2.66Ghz computer.

The presented method may not perform well on images with significant
amount of hair or bubbles since these elements alter the histogram, which in turn
results in biased threshold computations. Future work will be directed towards
testing the utility of this method in a border detection study. The implemen-
tation of the threshold fusion method will be made publicly available as part
of the Fourier image processing and analysis library, which can be downloaded
from http://sourceforge.net /projects/fourier-ipal
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