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Abstract. Existing algorithms for rendering Bézier curves and surfaces fall into
two categories: iterative evaluation of the parametric equations (generally using
forward differencing techniques) or recursive subdivision. In the latter case, all
the algorithms rely on an arbitrary precision constant (tolerance) whose appropri-
ate choice is not clear and not linked to the geometry of the image grid. In this
paper we show that discrete geometry can be used to improve the subdivision al-
gorithm so as to avoid the need for any arbitrary value. The proposed approach
extends well and we present its application in the case of 2D and 3D Bézier curves
as well as Bézier triangle patches and tensor-product surface patches.

Keywords. Bézier curves, Bézier surfaces, De Casteljau subdivision, polygonal-
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1 Introduction

Bézier curves and patches are among the most fundamental primitives in computer
graphics and computer aided modeling. However, as they are defined by means of
mathematical equations, they are continuous objects which are not ideally suited for a
computer representation. Discrete geometry aims at providing an equivalent of these
mathematical objects in the same way as it has established formal definitions of digital
lines and planes [9]. A first step towards this goal consists in developing a discretization
algorithm of continuous Bézier curves and patches which would be consistent with ex-
isting results in discrete geometry. In this paper, we propose such an algorithm. Our ap-
proach is based on a classical De Casteljau recursive subdivision algorithm but with a
new flatness criterion based on the digital geometry of lines and planes which guaran-
tees a recursion depth close to optimal and an appropriate connectivity of the obtained
discrete curve or surface with no need for arbitrary constants. Moreover, though we re-
strict our presentation here to the case of cubic Bézier curves and patches for the sake
of clarity, it is a remarkable fact that the approach is general enough to be easily extend-
ed to higher degrees and dimensions.
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2 Discrete lines and planes

It has been shown that beyond an algorithmic description, digital lines and planes can
be given rigorous mathematical formulations. Thus a planar digital line is a subset of

, denoted  described by a diophantine equation of the following form :

(1)

where  defines the direction of the line,  defines its affine offset

while  is called arithmetical thickness. A particularly interesting subset of digital
lines consists of those verifying , which are simply denoted

:

(2)

which are called naive digital lines and have exactly the same structure as the sets drawn
by the classical Bresenham algorithm for lines [1]. The most important property of na-
ive lines is strict 8-connectivity.

 is the digitization by truncation of the ordinary euclidean line of equation

 while  is its digitization by the closest inte-

ger point.
When considered in  instead of , Equation 2 defines a continuous strip of

width (measured orthogonally to the direction of the strip)  which

can be thought of as the continuous counterpart of the naive digital line. Such a width
 corresponds to a thickness of 1 in the direction perpendicular to the main line direc-

tion.

Digital planes are defined by a similar diophantine equation and thus share similar
properties. We call digital plane the subset of  denoted  that verifies the
following equation:

 . (3)

In the same way as naive digital lines, digital planes verifying
 are called naive digital planes and are simply denoted

. Naive digital planes are 18-connected sets with no holes for 6-connectivity.
One of the most fundamental properties of digital planes is their being functional along
the main direction of their normal, i.e., if  then for each 

there exists a single  such that  belongs to the digital plane.
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In addition,  is the digitization by truncation of the ordinary euclidean plane
of equation .

Similar to euclidean lines in  which are commonly defined as the intersection of
two euclidean planes, three-dimensional digital lines can be conveniently represented
by the intersection of two particular digital planes though such a definition is not ideal

from a theoretical point of view [5]. Thus a digital line of direction  with

, denoted  is the set of points  of  ver-
ifying:

 . (4)

When considered in  instead of , Equation 4 defines a generalized continu-
ous cylinder having for intersection with the plane xOy (main plane orthogonal to the
axis Oz along which the direction of the line has its biggest coordinate) a unit square.
Thus a digital 3D line can be seen as the set of integer points contained in such a cylin-
der.

3 Digitization of cubic Bézier curves

There exists essentially two different approaches to the scan-conversion of Bézier
curves and surface patches [6]. The first one uses the parametric representation of the
curve and evaluates repetitively the equations using forward differencing. Forward dif-
ferencing is a fast and efficient technique which can be hardware accelerated. However
it suffers from two major drawbacks: first, it is a floating point algorithm subject to nu-
merical drifts due to error accumulation [2] and whose implementation requires great
care and a register width depending on the number of pixels to draw, furthermore there
is naturally no linear relation between the parameter and the coordinates of the drawn
points. Hence a regular subdivision of the parameter interval, though simple, is partic-
ularly inefficient since it can lead to many unneeded evaluations, drawing the same dis-
crete point (if the parameter interval is too small) or holes in the curve, respectively
patch, (if the parameter interval is too big). Therefore refinements such as dynamic step
size adjustment are preferred [2, 4, 10]. But even in that case there is still a need for
choosing a parameter increment and criterions for deciding when to scale that
increment [4]. Unfortunately all those criterions are based on some geometrical value
(surface of a triangle, distance between a point and a line, angle) being “small” and thus
require determining a tolerance constant which, in practice is often chosen arbitrarily
and whose relation to the sampling grid is not clear. 

The second approach uses the De Casteljau algorithm [3], a stable and efficient
method with intrinsic adaptiveness to the curve. This method consists in recursively

subdividing the control polygon  into two sub-polygons
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 and  (Figure 1) where the  are defined as weighted
sums of polygon vertices: 

 . (5)

At each step the area of a new control polygon is smaller and hence is closer to the
Bézier arc which remains invariant along the process. The recursion can be stopped
when the control polygon is close enough to the curve.  

Theorems exist that indicate when the maximum distance between the arc and the
control polygon is smaller than , based on the geometry of the sub-polygons [8, 11]
or directly based on the initial control polygon and the recursion depth [7]. All of these
results rely on the choice of an ad hoc constant e which makes them quite unsatisfying
from a theoretical point of view. In what follows we show that we can eliminate the
need for such a constant.

We denote with  the integer part of , i.e., the greatest integer smaller than
r. Similarly we denote with  the integer point of  (resp. ) whose coordinates
are the respective integer parts of the coordinates of  (resp. ). Let us con-
sider an arc of integer endpoints . We call axis of the arc, the line defined by its
two endpoints. The vector  is the direction of the arc. We also call width of the arc,
the diameter of the smallest cylinder of axis  that encompasses the whole arc.
And similarly we call width of a set of points of ,  with respect to
the direction , the diameter of the narrowest cylinder of axis  that
encompasses . This width  is given by:

(6)

where  for a subset  of  is defined as:

 . (7)

Figure 1: De Casteljau Subdivision
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Theorem 1. Let C be a planar arc of integer endpoints P, Q and of width w. If

 then the best 8-connected integer approximation of C is a na-

ive digital straight line segment of direction PQ.

Proof. Equation 2 defines a naive digital line as the set of integer points contained in
a continuous strip of the euclidean plane. The width w of this euclidean strip relates to

the arithmetic thickness of the digital line  through the relation . It be-

comes clear then, that if C verifies  then it fits within the real

boundaries of a naive digital line and hence there cannot be a better integer approxima-
tion to C than a naive digital straight line segment. n

Theorem 2. Let B be a planar cubic Bézier arc defined by its control polygon

, B can be optimally represented by a naive digital straight line seg-

ment of direction [P0P3] iff 

 (8)

where  and 

Proof. Wang’s theorem states that B lies at most  away from its

axis where  denotes the distance of point  to the axis and that this bound is op-
timal [11]. Furthermore the convex hull containment property of Bézier curves states
that  lies entirely within its control polygon [3]. Therefore the width of  is at most
3/4 of the width of its control polygon with respect to the line , the width

of the control polygon being given by . The result then

follows directly from Theorem 1. n

A control polygon verifying Theorem 2 is said to be flat and the recursive subdivi-
sion can be stopped at that level. If the control polygon does not meet the criterion of
Theorem 2 then it is subdivided into two sub-polygons according to (5). Equation 5
leaves a degree of liberty in the choice of . Optimizing this value at each recursion
step yields a digitization with the minimum number of discrete segments. Such optimi-

zation however is beyond the scope of this paper and in practice  is the usual

choice.
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Theorem 2 does not provide the complete equation of the digital line segment that
is the best approximation of the spline arc but only its direction. The affine offset 
must also be determined. The ideal value of  which yields a discretization by the clos-
est integer corresponds to the midline (axis) of the narrowest cylinder of direction

 enclosing the curve within its control polygon. In order to find an alge-
braic formulation of , we must distinguish two cases depending on whether the curve
crosses the line  or not.

1. The curve does not cross . In this case the curve lies between the line
 and a parallel at three fourths of the distance of the most distant point of

the control polygon to that line (this may be  or ). Assuming that point to be ,
 becomes:

 . (9)

2. The curve crosses . In this case the curve is enclosed in a cylinder of
direction  whose axis is midway between the points  and . Hence  be-
comes:

 . (10)

A criterion for digitizing 3D Bézier curves stems from the same principle as for 2D
Bézier curves: the De Casteljau recursion stops and the curve segment can be rendered
as a discrete line with no loss of precision when the convex hull of its control polygon
is bounded by the limits of a 3D digital line as defined in (4). Denoting

Figure 2: Discretization of a Bézier arc
A Bézier arc described by two flat control polygon  and

. The round dots are the integer points making up the
discretization of the Bézier arc. The dash-dotted lines represent the axes
defined by Equation 9 while the simple dashed lines represent the real
boundaries of the digital line segments as defined by Equation 2. 
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, ,  and assuming
, the condition writes:

 . (11)

The affine offset proposed in Equations 9 and 10 still holds, with the same restric-
tions, in this case by considering independently the projections of the control polygon
on the main planes xOz and yOz.

4 Digitization of 3D cubic Bézier surface patches

We call naive digital plane patch a non-empty 26-connected subset of a naive digital
plane P(n,g) defined as a non-empty polygon on that plane by the following set of equa-
tions:

(12)

where  and  for .
Special interesting cases of naive digital plane patches include digital quadrilaterals

 and triangles . 
3D bicubic tensor-product Bézier patches as well as Bézier triangles can be approx-

imated by naive digital plane patches as defined by Equation 12. Indeed the De Castel-
jau recursive construction is general and still applies in those cases. 

Theorem 3. Let B be a bicubic Bézier patch defined by its control net . Let

,  and  if 

(13)

then the best 26-connected integer approximation of B is a digital plane patch of normal
direction n.
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Theorem 4. Let B be a Bézier triangular patch of degree d defined by its control net

. Let ,  and  if 

(14)

then the best 26-connected integer approximation of B is a digital plane triangle of nor-
mal direction n.

Proof. Since the containment property of Bézier patches and triangles within their
control net holds, Equations 13 and 14 being verified amounts to the whole surface B
lying between the limits defined by Equation 3 for a naive digital plane of direction n.
n

The value of the affine offset g of the digital plane that represents the digitization of
B by the closest integer point is given by:

(15)

5 Connectivity issues

5.1 Connectivity of digitized Bézier curves

The construction proposed previously for discretizing a 2D Bézier arc actually builds a
continuous polygonal line (the dash-dotted line of Figure 2) whose discrete counterpart
is the discretization of the Bézier curve. Thus the overall discretization forms an 8-con-
nected path which is the most reasonable requirement for the discretization of a perfect-
ly general Bézier arc. In simple cases, if the Bézier arc does not have too important
changes in orientation, its overall discretization forms a 8-connected simple curve, i.e.,
every point of the discretization has exactly two 8-neighbors except for the endpoints
(if the curve is not closed).

In the case of 3D Bézier curves the proposed construction does not create a contin-
uous 3D polygonal 3D line since the midlines of consecutive segments may not be co-
planar. However it can be shown that the overall discretization is still 26-connected. 

Theorem 5. Let  and  be two digital 3D lines as defined in Equation 4 and let
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Proof. If  then that intersection contains at least a real point
. Since  is contained in the enclosing cylinder  of ,  contains

an integer point  such that

(16)

A similar statement holds for  which contains an integer point 
such that 

(17)

Hence  and  are at least 26-adjacent if not equal which proves the theorem. n

Each segment of 3D digital line making up the discretization of a 3D Bézier curve
is the set of points contained in a truncated square-based cylinder (as mentioned in para-
graph 2). Consecutive cylinders always have a non-void intersection since they contain
at least one common real point (the point that is common to the two consecutive Bézier
control polygons which is also part of the Bézier arc itself). Thus, thanks to Theorem 5,
26-adjacency between consecutive discrete straight line segments is guaranteed.

5.2 Connectivity of digitized Bézier surface patches

The connectivity problem becomes more intricate in the case of the digitization of Béz-
ier surface patches where discrete connectivity has to be controlled along the whole
length of the edges of patches. This involves determining the appropriate bounds of the
equations defining the discrete plane patch in Equation 12. We examine the problem in
the case of bicubic tensor product Bézier patches though the results still hold in the case
of Bézier triangles. The problem is still mostly open in this case and we only provide
directions towards formal proofs.

Let  and  be two adjacent Bézier bicubic tensor-product patches verifying
Theorem 3 and having for respective control nets  and 

such that  for  (Figure 3).
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that case  and  are adjacent and their union is a 26-connected discrete surface iff
 still has the property of functionality of the individual digital plane patches,

which amounts to say that  has everywhere a thickness of 1 in the direction Oz

and one full side of  and  is contained in their intersection  (see Figure 4).

A problem arises in the case of tensor-product surfaces which may not be planar
even though they verify Theorem 3. This results in the choice of inconsistent normal
values between adjacent patches that make it difficult to meet the previous connectivity
criterion. Such a problem does not occur with triangles, since triangular patches are al-
ways planar. Hence, one solution is to divide the tensor-product patches (which are
quadrilaterals) into two triangles and work only with discrete triangles.

2. n and n’ have different main directions. In the case where n and n’ have different
main directions the previous condition does not hold anymore and we can only guaran-
tee that  is 26-connected if  contains at least one of the sides of H or H’
and  has everywhere a thickness of at least 1 with respect to the main directions
of n or .

6 Conclusion

In this paper we have presented a method to polygonalize Bézier curves and surfaces
into discrete lines and plane patches. Unlike existing rendering algorithms that all re-
quire an arbitrary tolerance constant , our approach is entirely based on the geometry

Figure 3: Adjacent bicubic Bézier control nets

Figure 4: Union of the convex hulls of two discrete plane patches
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of the manipulated objects and theorems of discrete geometry. Moreover our termina-
tion criterion for the subdivision of Bézier curves is optimal. The criterion, though pre-
sented here in the case of cubic curves and bicubic surfaces, is general and can be
extended to Bézier curves and surfaces of higher degree. Appropriate connectivity of
Bézier curves polygonalized by our method is ensured both in 2D and 3D and we also
provide a criterion to ensure appropriate connectivity of adjacent discrete surface patch-
es in restricted cases. Further work is needed to determine a more general solution to
this connectivity problem of 3D patches.
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