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Abstract. Stripe rust caused by Puccinia striiformis f. sp. tritici, is a 
devastating wheat disease in the world. The prediction of this disease is very 
important to make control strategies. In order to figure out suitable prediction 
methods based on neural networks that could provide accurate prediction 
information with high stability, the predictions of wheat stripe rust by using 
backpropagation networks with different transfer functions, training functions 
and learning functions, radial basis networks, generalized regression networks 
(GRNNs) and probabilistic neural networks (PNNs) were conducted in this 
study. The results indicated that suitable backpropagation networks, radial basis 
networks and GRNNs could be used for the prediction of wheat stripe rust. 
Good fitting accuracy and prediction accuracy could be obtained by using 
backpropagation networks with trainlm, trainrp or trainbfg as training function. 
Radial basis networks had more power than backpropagation networks and 
GRNNs to predict wheat stripe rust. GRNNs were easier to be used than 
backpropagation networks. New methods based on neural networks were 
provided for the prediction of wheat stripe rust. 
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1 Introduction 

Wheat stripe rust caused by Puccinia striiformis f. sp. tritici, is a very important 
wheat disease in the world [1]. This disease is widely distributed in eastern and 
central Asia, western Europe and the pacific coast of North America [1], [2], [3]. The 
epidemics of this disease could also occur in Oceania, northern and eastern Africa, 
and South America [1]. In China, in terms of distribution range and destructivity, 
stripe rust is the most important among the three wheat rusts including leaf rust and 
stem rust. Stripe rust could occur in all main wheat areas and could cause severe 
losses in wheat production in China. It is critical to the national food security of 
China. The epidemics of wheat stripe rust are related to the long distance transports of 
the pathogen driven by winds. Accurate prediction of this disease is the key to make 
strategies for effective control. 

The prediction of plant disease is to estimate the prevalence of plant disease after a 
certain time using expert experience or system simulation methods based on epidemic 
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law of the disease. There have been many reports about the prediction of wheat stripe 
rust. The methods that were usually used included regression analysis [4], [5], [6], [7], 
discrimination analysis [8], [9], [10], Markov forecast method [11], principal 
component analysis [12], grey model forecast method [13], [14] and neural networks 
[15], [16], [17]. Wheat stripe rust is influenced by various factors, including the 
amount of pathogen, variety resistance and meteorological conditions. The 
relationship between wheat stripe rust and these factors is usually nonlinear. Neural 
networks have good advantages of solving the nonlinear problems. They are 
composed of interconnecting artificial neurons. They have good adaptive learning 
ability and nonlinear mapping ability. Neural networks have been successfully applied 
in various fields, including pattern recognition, image analysis and control systems. 
Although neural networks have been used for the prediction of wheat stripe rust [15], 
[16], [17], individual backpropagation network or individual function combination 
was be used in most cases. To the authors’ knowledge, there is not any report about 
the application of radial basis networks to the prediction of wheat stripe rust. 
Furthermore, the comparison between prediction performances of different neural 
networks and the comparison between prediction performances of backpropagation 
networks combined with different transfer functions, training functions and learning 
functions have not been reported yet. 

In order to select prediction methods based on neural networks with good 
prediction performance and prediction accuracy and provide disease information for 
making control strategies and taking control measures, the predictions of wheat stripe 
rust based on backpropagation networks with different transfer functions, training 
functions and learning functions, radial basis networks, and two variants of radial 
basis networks, generalized regression networks (GRNNs) and probabilistic neural 
networks (PNNs), were conducted and their prediction effects were compared in this 
study. 

2 Materials and Methods 

2.1 Materials 

The data used for analysis in this study were colleted from [18]. They consisted of the 
data of disease prevalence of wheat stripe rust and related meteorological data in 
Hanzhong in Shannxi Province during the period from 1974 to 1997. In detail, they 
included the amount of stripe rust pathogen in autumn, the amount of stripe rust 
pathogen in spring, average temperature in January, average temperature in February, 
average temperature in March, average temperature in April, average temperature in 
November, average temperature in December, precipitation in January, precipitation 
in February, precipitation in March, precipitation in April, precipitation in November, 
precipitation in December, the proportion of susceptible variety area and disease 
prevalence in adult stage of wheat. Among these factors, the amount of stripe rust 
pathogen in autumn and related data in November and December referred to the data 
in the preceding year. The fifteen influencing factors were normalized. The data set 
contained the fifteen normalized factors and disease prevalence of wheat stripe rust  
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was regarded as Data set 1. In the data set, disease prevalence of wheat stripe rust was 
divided into five classes represented by 1, 2, 3, 4 and 5, respectively. The data set was 
regarded as Data set 2 while Class 1, 2, 3, 4 and 5 were expressed as (0 0 0 0 1), (0 0 
0 1 0), (0 0 1 0 0), (0 1 0 0 0) and (1 0 0 0 0), respectively. 

In the literature [18], the amount of stripe rust pathogen in spring, the amount of 
stripe rust pathogen in autumn, the proportion of susceptible variety area, 
precipitation in April and average temperature in April were selected as the main 
factors influencing disease prevalence from the fifteen factors by using stepwise 
regression analysis. The five selected factors were normalized. The data set contained 
the five normalized factors and disease prevalence of wheat stripe rust represented by 
1, 2, 3, 4 or 5, was regarded as Data set 3. The data set was regarded as Data set 4 
while the disease prevalence of wheat stripe rust was represented by (0 0 0 0 1), (0 0 0 
1 0), (0 0 1 0 0), (0 1 0 0 0) or (1 0 0 0 0). 

2.2 Methods 

Under MATLAB environment, backpropagation networks were used to process Data 
set 2 and Data set 4, radial basis networks and GRNNs were used to process Data set 
1, Data set 2, Data set 3 and Data set 4, and PNNs were used to process Data set 1 and 
Data set 3. During data processing, disease prevalences were used as outputs and the 
other variables were used as inputs. For the data sets, the data in 1974-1993 were 
considered as the training sets and the data in 1994-1997 were considered as the 
testing sets. The prevalences of wheat stripe rust in 1974-1993 in Hanzhong in 
Shannxi Province were fitted and that in 1994-1997 were predicted. Firstly, the 
training sets were trained to acquire optimized neural networks. And then the neural 
networks were used to predict output values of the testing sets, and meanwhile the 
training sets were also fitted. The fitting and prediction results obtained were 
compared with actual disease prevalences and then fitting accuracy and prediction 
accuracy were obtained, respectively. 

One-hidden-layer backpropagation networks were constructed. Three common 
transfer functions including logsig, tansig and purelin were used in the networks. 
Since the outputs of the networks were between 0 and 1, the output layer used the log-
sigmoid transfer function (logsig). The networks used trainlm, traingd, traingdm, 
trainrp and trainbfg for training. Learngd and learngdm were used as learning 
functions. Different combinations of transfer functions, training functions and 
learning functions were recorded as BP1, BP2, BP3, … , BP30, and were shown as in 
Table 1. For Data set 2, fifteen neurons were used in the input layer and five neurons 
were used in the output layer. For Data set 4, five neurons were used in the input layer 
and five neurons were used in the output layer. Maximum number of epochs to train 
for the backpropagation networks was 5000. The neuron number in the hidden layer 
was assumed to be 1 to 20 with step size 1. 

Radial basis networks, GRNNs and PNNs were used to fit the training sets and 
predict the disease prevalences using the testing sets. Spreads of radial basis functions 
for radial basis networks, GRNNs and PNNs were assumed to be 0.1 to 2.0 with step 
size 0.1. 
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Table 1. Different combinations of transfer functions, training functions and learning functions 
for backpropagation networks 

Tag 
Transfer function 

Training function Learning function 
Hidden layer Output layer 

BP1 tansig logsig trainlm learngdm 
BP2 purelin logsig trainlm learngdm 
BP3 logsig logsig trainlm learngdm 
BP4 tansig logsig trainlm learngd 
BP5 purelin logsig trainlm learngd 
BP6 logsig logsig trainlm learngd 
BP7 tansig logsig traingd learngdm 
BP8 purelin logsig traingd learngdm 
BP9 logsig logsig traingd learngdm 

BP10 tansig logsig traingd learngd 
BP11 purelin logsig traingd learngd 
BP12 logsig logsig traingd learngd 
BP13 tansig logsig traingdm learngdm 
BP14 purelin logsig traingdm learngdm 
BP15 logsig logsig traingdm learngdm 
BP16 tansig logsig traingdm learngd 
BP17 purelin logsig traingdm learngd 
BP18 logsig logsig traingdm learngd 
BP19 tansig logsig trainrp learngdm 
BP20 purelin logsig trainrp learngdm 
BP21 logsig logsig trainrp learngdm 
BP22 tansig logsig trainrp learngd 
BP23 purelin logsig trainrp learngd 
BP24 logsig logsig trainrp learngd 
BP25 tansig logsig trainbfg learngdm 
BP26 purelin logsig trainbfg learngdm 
BP27 logsig logsig trainbfg learngdm 
BP28 tansig logsig trainbfg learngd 
BP29 purelin logsig trainbfg learngd 
BP30 logsig logsig trainbfg learngd 

3 Results and Analysis 

The data sets were processed using the methods as shown above. The results of the 
neural networks with fitting accuracy ≥75% and prediction accuracy ≥50% were 
picked out and were shown in Table 2, Table 3, Table 4, Table 5, Table 6 and Table 7, 
respectively. 
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Using the backpropagation networks, for either Data set 2 or Data set 4, the 
selected combinations with good fitting accuracy and prediction accuracy were BP1, 
BP2, BP3, BP4, BP5, BP6, BP19, BP20, BP21, BP22, BP23, BP24, BP25, BP28, 
BP29 and BP30. Among these combinations, the training functions of BP1, BP2, 
BP3, BP4, BP5 and BP6 were trainlm, that of BP19, BP20, BP21, BP22, BP23, BP24 
and BP25 were trainrp, and that of BP28, BP29 and BP30 were trainbfg. When the 
training function was traingd or traingdm, good fitting accuracy and prediction 
accuracy could not be obtained using the backpropagation networks. So it is important 
to choose suitable training function for backpropagation networks. 

As Table 2 shown, for Data set 2, the fitting accuracies were all 100% and the 
prediction accuracies were all 75% while using BP1 with the number of neurons in 
the hidden layer equal to 3 or 11, BP3 with the number of neurons in the hidden layer 
equal to 10, 12 or 17, BP6 with the number of neurons in the hidden layer equal to 16, 
BP19 with the number of neurons in the hidden layer equal to 4, BP21 with the 
number of neurons in the hidden layer equal to 5, BP24 with the number of neurons in 
the hidden layer equal to 10 or 19, and BP28 with the number of neurons in the 
hidden layer equal to 5. 

For Data set 4, the fitting results and the prediction results of the backpropagation 
networks were shown as in Table 3. Fitting accuracies were all 100% and prediction 
accuracies were all 75% while using BP4 with the number of neurons in the hidden 
layer equal to 9 and BP22 with the number of neurons in the hidden layer equal to 8 
besides the combinations as the same as those with the same number of neurons in the 
hidden layer for Data set 2. 

The results indicated that backpropagation networks could be used for the 
prediction of wheat stripe rust. When using this method, the inputs could be the data 
of all the factors obtained in the investigations or be the data of selected main factors. 
Otherwise, it would take a longer time to build suitable networks when using the data 
of all the influencing factors obtained. 

The fitting results and the prediction results of radial basis networks were shown as 
in Table 4 and Table 5. The fitting accuracies were all 100% for the selected 
networks. The results implied that radial basis networks have good adaptive learning 
ability and stable prediction ability. For Data set 1, the prediction accuracy was 75% 
when the value of spread was 0.8, 0.9, 1.0 or 1.1. For Data set 2, the prediction 
accuracies were all 50% while using the selected networks. For Data set 3, the lowest 
prediction accuracy was 50% and the highest prediction accuracy was 100%. The 
prediction accuracy was 75% when the value of spread was 0.3, 0.4, 0.5, 1.5, 1.6, 1.7, 
1.8, 1.9 or 2.0. The prediction accuracy was 100% when the value of spread was 0.6 
to 1.4. For Data set 4, the prediction accuracy was 75% when the value of spread was 
0.3, 1.2, 1.3, 1.4 or 1.5. The results indicated that radial basis networks have high 
prediction ability for the disease. In practical applications, it is better to choose the 
key influencing factors as the inputs of the networks to improve the run speed of the 
programs, prediction accuracy, and performance stability. 
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Table 2. The fitting results and the prediction results of the backpropagation networks for Data set 2 

Tag 
Number of neurons in the 

hidden layer 
Fitting 

accuracy
Prediction 
accuracy 

Tag 
Number of neurons in 

the hidden layer 
Fitting 

accuracy 
Prediction 
accuracy 

BP1 1 80% 50% BP19 4 100% 75% 

BP1 4, 5 85% 50% BP20
10, 11, 13, 15, 16, 

17, 18 
100% 50% 

BP1 6 95% 50% BP21
2, 4, 14, 15, 16, 17, 

19, 20 
95% 50% 

BP1 
8, 9, 10, 12, 13, 14, 15, 

16, 17, 18, 19, 20 
100% 50% BP21

3, 6, 7, 8, 9, 10, 11, 
12, 13, 18 

100% 50% 

BP1 7 95% 75% BP21 5 100% 75% 
BP1 3, 11 100% 75% BP22 2, 4, 5, 10, 12, 17, 18 95% 50% 

BP2 1, 2, 4, 13 85% 50% BP22
6, 7, 9, 11, 13, 14, 

15, 16, 19, 20 
100% 50% 

BP2 3 95% 50% BP22 8 100% 75% 
BP2 6 100% 50% BP23 10 90% 50% 

BP3 1, 7 85% 50% BP23
5, 7, 12, 13, 14, 15, 

17 
95% 50% 

BP3 9 90% 50% BP23
4, 6, 8, 9, 11, 16,  

18, 19, 20 
100% 50% 

BP3 3, 4, 11, 13, 16 95% 50% BP24 1 85% 50% 

BP3 
2, 5, 8, 14, 15, 18, 19,  

20 
100% 50% BP24

2, 3, 4, 9, 15, 16,  
20 

95% 50% 

BP3 10, 12, 17 100% 75% BP24
6, 8, 11, 12, 13, 14, 

17, 18 
100% 50% 

BP4 7 75% 50% BP24 10, 19 100% 75% 
BP4 3, 4, 5, 17 85% 50% BP25 15 80% 75% 

BP4 
2, 6, 8, 9, 10, 11, 16,  

18, 19, 20 
100% 50% BP25 7 85% 50% 

BP5 1 75%  50% BP25 4, 18 95% 50% 
BP5 2, 8 80% 50% BP25 9, 11, 14, 17, 20 100% 50% 
BP5 3, 5, 9 85% 50% BP28 7, 11, 19 85% 50% 
BP5 4, 20 90% 50% BP28 1 90% 75% 
BP5 6, 13, 15 95% 50% BP28 4, 15 95% 50% 
BP5 7, 10, 11, 17, 19 100% 50% BP28 12, 13, 14, 17 100% 50% 
BP6 11, 19 90% 50% BP28 5 100% 75% 
BP6 13 90% 75% BP29 5 85% 50% 
BP6 4 95% 50% BP29 10 100% 50% 

BP6 
3, 5, 6, 7, 9, 10, 12, 14, 

15, 17, 18 
100% 50% BP30 20 85% 50% 

BP6 16 100% 75% BP30 7, 13, 16 90% 50% 
BP19 2 90% 50% BP30 8 95% 50% 
BP19 3, 8, 13 95% 50% BP30 3 100% 50% 

BP19 
5, 6, 7, 9, 10, 11, 12,  

14, 15, 16, 17, 20 
100% 50%     
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Table 3. The fitting results and the prediction results of the backpropagation networks for Data set 4 

Tag 
Number of neurons in  

the  hidden layer 

Fitting 

accuracy

Prediction 

accuracy 
Tag 

Number of neurons in 

the  hidden layer 

Fitting 

accuracy 

Prediction 

accuracy 

BP1 1 80% 50% BP19 4 100% 75% 

BP1 4, 5 85% 50% BP19 
5, 6, 7, 9, 10, 11, 12, 

14, 15, 16, 17, 20 
100% 50% 

BP1 6 95% 50% BP20 
10, 11, 13, 15, 16,  

17, 18 
100% 50% 

BP1 7 95% 75% BP21 
2, 4, 14, 15, 16, 17,  

19, 20 
95% 50% 

BP1 
8, 9, 10, 12, 13, 14, 15, 

16, 17, 18, 19, 20 
100% 50% BP21 

3, 6, 7, 8, 9, 10, 11,  

12, 13, 18 
100% 50% 

BP1 3, 11 100% 75% BP21 5 100% 75% 

BP2 1, 2, 4, 13 85% 50% BP22 
2, 4, 5, 10, 12, 17,  

18 
95% 50% 

BP2 3 95% 50% BP22 
6, 7, 9, 11, 13, 14,  

15, 16, 19, 20 
100% 50% 

BP2 6 100% 50% BP22 8 100% 75% 

BP3 1, 7 85% 50% BP23 10 80% 50% 

BP3 
2, 5, 8, 14, 15, 18, 19,  

20 
100% 50% BP23 

5, 7, 12, 13, 14, 15,  

17 
95% 50% 

BP3 9 90% 50% BP23 
4, 6, 8, 9, 11, 16, 18, 

19, 20 
100% 50% 

BP3 3, 4, 11, 13, 16 95% 50% BP24 1 85% 50% 

BP3 10, 12, 17 100% 75% BP24 2, 3, 4, 9, 15, 16, 20 95% 50% 

BP4 
2, 6, 8, 10, 11, 16, 18,  

19, 20 
100% 50% BP24 

6, 8, 11, 12, 13, 14,  

17, 18 
100% 50% 

BP4 7 75% 50% BP24 10, 19 100% 75% 

BP4 3, 4, 5, 17 85% 50% BP25 15 80% 75% 

BP4 9 100% 75% BP25 7 85% 50% 

BP5 1 75% 50% BP25 4, 18 95% 50% 

BP5 2, 8 80% 50% BP25 9, 11, 14, 17, 20 100% 50% 

BP5 3, 5, 9 85% 50% BP28 7, 11, 19 85% 50% 

BP5 4, 20 90% 50% BP28 1 90% 75% 

BP5 6, 13, 15 95% 50% BP28 4, 15 95% 50% 

BP5 7, 10, 11, 17, 19 100% 50% BP28 12, 13, 14, 17 100% 50% 

BP6 11, 19 90% 50% BP28 5 100% 75% 

BP6 13 90% 75% BP29 5 85% 50% 

BP6 4 95% 50% BP29 10 100% 50% 

BP6 
3, 5, 6, 7, 8, 9, 10, 12,  

14, 15, 17, 18 
100% 50% BP30 20 85% 50% 

BP6 16 100% 75% BP30 7, 13, 16 90% 50% 

BP19 2 90% 50% BP30 8 95% 50% 

BP19 3, 8, 13 95% 50% BP30 3 100% 50% 
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The fitting results and the prediction results of GRNNs were shown as in Table 6. 
For Data set 1 including the fifteen influencing factors, the fitting accuracy was 100% 
and the prediction accuracy was 75% while the value of spread was equal to 0.3. For 
Data set 3 including the five selected factors, the fitting accuracy was 100% and the 
prediction accuracy was 75% while the value of spread was equal to 0.1 or 0.2. And 
for Data set 3, there was one exception that the fitting accuracy was only 80%, but the 
prediction accuracy was 75% while the value of spread was equal to 0.4. For Data set 
2 including the fifteen influencing factors, the fitting accuracy was 100% and the 
prediction accuracy was 50% while the value of spread was equal to 0.2, 0.3 or 0.4. 
For Data set 4 including the five selected factors, the fitting accuracy was 100% and 
the prediction accuracy was 50% only when the value of spread was 0.1. The results 
showed that GRNNs could be used as a method to predict wheat stripe rust and that 
the prediction ability when disease prevalence of wheat stripe rust was expressed as 1, 
2, 3, 4 or 5 was higher than that when disease prevalence was expressed as (0 0 0 0 1), 
(0 0 0 1 0), (0 0 1 0 0), (0 1 0 0 0) or (1 0 0 0 0). Therefore, disease prevalence could 
be expressed as 1, 2, 3, 4 or 5 when the prediction of wheat stripe rust is conducted 
using GRNNs. 

Table 4. The fitting results and the prediction results of radial basis networks for Data set 1 and 
Data set 2 

Data set Spread Fitting accuracy Prediction accuracy 
Data set 1 0.1 100% 50% 
Data set 1 0.2 100% 50% 
Data set 1 0.3 100% 50% 
Data set 1 0.4 100% 50% 
Data set 1 0.6 100% 50% 
Data set 1 0.8 100% 75% 
Data set 1 0.9 100% 75% 
Data set 1 1.0 100% 75% 
Data set 1 1.1 100% 75% 
Data set 1 1.2 100% 50% 
Data set 1 1.3 100% 50% 
Data set 1 1.4 100% 50% 
Data set 1 1.5 100% 50% 
Data set 1 1.6 100% 50% 
Data set 1 1.7 100% 50% 
Data set 1 1.8 100% 50% 
Data set 1 1.9 100% 50% 
Data set 1 2.0 100% 50% 
Data set 2 0.1 100% 50% 
Data set 2 0.2 100% 50% 
Data set 2 0.3 100% 50% 
Data set 2 0.4 100% 50% 
Data set 2 0.6 100% 50% 
Data set 2 1.9 100% 50% 
Data set 2 2.0 100% 50% 
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When PNNs were used to process the data of wheat stripe rust, the highest fitting 
accuracy was 100% and the highest prediction accuracy was 50% (as shown in Table 
7). PNNs showed relatively low prediction ability. For Data set 1, the fitting accuracy 
was 100% and the prediction accuracy was 50% when the value of spread was 0.1, 
0.2, 0.3 or 0.4. For Data set 3, the fitting accuracy was 100% and the prediction 
accuracy was 50% when the value of spread was 0.1. The fitting accuracy had a 
tendency to decrease with the value of spread increasing. 

Table 5. The fitting results and the prediction results of radial basis networks for Data set 3 and 
Data set 4 

Data set Spread 
Fitting 

accuracy 
Prediction 
accuracy 

Data set Spread 
Fitting 

accuracy 
Prediction 
accuracy 

Data set 3 0.1 100% 50% Data set 4 0.1 100% 50% 
Data set 3 0.2 100% 50% Data set 4 0.2 100% 50% 
Data set 3 0.3 100% 75% Data set 4 0.3 100% 75% 
Data set 3 0.4 100% 75% Data set 4 0.4 100% 50% 
Data set 3 0.5 100% 75% Data set 4 0.5 100% 50% 
Data set 3 0.6 100% 100% Data set 4 0.6 100% 50% 
Data set 3 0.7 100% 100% Data set 4 0.7 100% 50% 
Data set 3 0.8 100% 100% Data set 4 0.8 100% 50% 
Data set 3 0.9 100% 100% Data set 4 0.9 100% 50% 
Data set 3 1.0 100% 100% Data set 4 1.0 100% 50% 
Data set 3 1.1 100% 100% Data set 4 1.1 100% 50% 
Data set 3 1.2 100% 100% Data set 4 1.2 100% 75% 
Data set 3 1.3 100% 100% Data set 4 1.3 100% 75% 
Data set 3 1.4 100% 100% Data set 4 1.4 100% 75% 
Data set 3 1.5 100% 75% Data set 4 1.5 100%  75% 
Data set 3 1.6 100% 75% Data set 4 1.6 100%  50% 
Data set 3 1.7 100% 75% Data set 4 1.7 100% 50% 
Data set 3 1.8 100% 75% Data set 4 1.8 100% 50% 
Data set 3 1.9 100% 75% Data set 4 1.9 100% 50% 
Data set 3 2.0 100% 75% Data set 4 2.0 100% 50% 

Table 6. The fitting results and the prediction results of GRNNs 

Data set Spread Fitting accuracy Prediction accuracy 
Data set 1 0.2 100% 50% 
Data set 1 0.3 100% 75% 
Data set 1 0.4 100% 50% 
Data set 1 0.5 95% 75% 
Data set 1 0.6 95% 50% 
Data set 2 0.2 100% 50% 
Data set 2 0.3 100% 50% 
Data set 2 0.4 100% 50% 
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Table 6. (Continued) 

Data set 2 0.5 95% 50% 
Data set 2 0.6 95% 50% 
Data set 2 0.7 85% 50% 
Data set 2 0.8 85% 50% 
Data set 3 0.1 100% 75% 
Data set 3 0.2 100% 75% 
Data set 3 0.3 90% 75% 
Data set 3 0.4 80% 100% 
Data set 4 0.1 100% 50% 
Data set 4 0.2 95% 50% 
Data set 4 0.3 95% 50% 
Data set 4 0.4 80% 50% 
Data set 4 0.5 80% 50% 

Table 7. The fitting results and the prediction results of PNNs for Data set 1 and Data set 3 

Data set Spread Fitting accuracy Prediction accuracy 
Data set 1 0.1 100% 50% 
Data set 1 0.2 100% 50% 
Data set 1 0.3 100% 50% 
Data set 1 0.4 100% 50% 
Data set 1 0.5 95% 50% 
Data set 1 0.6 95% 50% 
Data set 1 0.7 85% 50% 
Data set 1 0.8 80% 50% 
Data set 3 0.1 100% 50% 
Data set 3 0.2 95% 50% 
Data set 3 0.3 95% 50% 
Data set 3 0.4 80% 50% 
Data set 3 0.5 80% 50% 

4 Conclusion and Discussion 

In this study, backpropagation networks with different transfer functions, training 
functions and learning functions, radial basis networks, GRNNs and PNNs were 
applied to predict wheat stripe rust, and comparison of prediction effects of these 
methods were also conducted. The results showed that good fitting accuracy and 
prediction accuracy could be achieved using suitable backpropagation networks, 
radial basis networks and GRNNs, and that the methods based on these three 
algorithms of neural networks could be used for the prediction of wheat stripe rust. In 
contrast, radial basis networks had more power to predict wheat stripe rust than 
backpropagation networks and GRNNs, and the programs of GRNNs were simpler 
than backpropagation networks and needed less time to run. The backpropagation 
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networks using traingd or traingdm as the training function could not fit the data of 
wheat stripe rust well and could not make accurate predictions. The studies on using 
neural networks to predict wheat stripe rust reported before mainly used 
backpropagation networks [15], [16], [17]. This study provides new approaches based 
neural networks for the prediction of this disease. 

Many studies on the prediction of wheat stripe rust have been conducted and many 
methods have been applied for the prediction of this disease. However, some kinds of 
problems such as small sample size are often met in the process of making disease 
prediction and could not be solved very well. Support vector machine (SVM), a new 
kind of machine learning method proposed by Vapnik [19], could solve these 
problems with many advantages. SVM is an algorithm based on VC dimension theory 
and structural risk minimization principle. It could solve the small sample, nonlinear 
problems, high dimension and local minimum points and other practical issues. SVMs 
are currently being used in many fields, such as text classification [20], [21], image 
recognition [22], remote sensing information analysis and processing [23], [24], 
disastrous weather forecast [25], and so on. The prediction models based on SVMs to 
predict wheat stripe rust timely and accurately could be established. 

In the studies on the prediction of wheat stripe rust, many prediction models have 
been established. However, each model generally has some certain application 
conditions. Therefore, suitable model should be selected for application according to 
the actual conditions. Prediction model system for wheat stripe rust could be built to 
collect the prediction models into one computer system through programming the 
models. It could make easier to choose suitable model. Integrated prediction model 
could be established using different models and methods according to the needs in the 
future. 

Acknowledgments. This work was supported in part by Special Fund for Agro-
scientific Research in the Public Interest (200903035). 

References 

1. Li, Z.Q., Zeng, S.M.: Wheat Rusts in China. China Agriculture Press, Beijing (2002) (in 
Chinese) 

2. Chen, X.M.: Epidemiology and Control of Stripe Rust [Puccinia striiformis f. sp. tritici] 
on Wheat. Can. J. Plant Pathol. 27, 314–337 (2005) 

3. Line, R.F.: Stripe Rust of Wheat and Barley in North America: a Retrospective Historical 
Review. Annu. Rev. Phytopathol. 40, 75–118 (2002) 

4. Zeng, S.M.: Interregional Spread of Wheat Yellow Rust in China. Acta Phytopathologica 
Sinica 18, 119–223 (1988) (in Chinese) 

5. Yang, Z.W., Shang, H.S., Pei, H.Z., Xie, Y.L.: Dinamic Forecasting of Stripe Rust of 
Winter Wheat. Scientia Agricultura Sinaca 24, 45–50 (1991) (in Chinese) 

6. Hu, X.P., Yang, Z.W., Li, Z.Q., Deng, Z.Y., Ke, C.H.: Studies on the Prediction of Wheat 
Stripe Rust Epidemics in Hanzhong District of Shaanxi Province. Acta Univ. Agric. 
Boreali-occidentalis 28, 18–21 (2000) (in Chinese) 

7. Fan, S.Q., Xie, X.S., Li, F., Yin, Q.Y., Zheng, W.Y.: Forecast Model for Prevalent Stripe 
Rust in Winter Wheat in Shanxi Province. Chinese Journal of Eco-Agriculture 15,  
113–115 (2007) (in Chinese) 



 Prediction of Wheat Stripe Rust Based on Neural Networks 515 

8. Chen, G., Wang, H.G., Ma, Z.H.: Forecasting Wheat Stripe Rust by Discrimination 
Analysis. Plant Protection 32, 24–27 (2006) (in Chinese) 

9. Chen, G., Wang, H.G., Zhang, L.D., Wang, T., Ma, Z.H.: Preliminary Research on the 
Regional Relationship of Epidemic of Puccinia striiformis in China. Chinese Agricultural 
Science Bulletin 22, 415–420 (2006) (in Chinese) 

10. Yun, X.W., Wang, H.G., Ma, Z.H.: Forecast of Wheat Stripe Rust by Upper-air Wind. 
Chinese Agricultural Science Bulletin 23(8), 358–363 (2007) (in Chinese) 

11. Qiang, Z.F.: Markov Forecast of Wheat Stripe Rust in Qinghai in 1998. Plant 
Protection 25, 19–22 (1999) (in Chinese) 

12. Yuan, L., Li, S.Q.: Application of Principal Component Analysis of Wheat Stripe Rust. 
Computer Engineering and Design 31, 459–461 (2010) (in Chinese) 

13. Pu, C.J.: On Periodic Epidemic Regular Pattern and Prediction of Wheat Stripe Rust in 
Gansu Province. Acta Phytopathologica Sinica 28, 299–302 (1998) (in Chinese) 

14. Liu, R.Y., Ma, Z.H.: The Prediction Methodology of Wheat Stripe Rust Using 
Combination Model Based on GM(1,l). Journal of Biomathematics 22, 343–347 (2007) (in 
Chinese) 

15. Hu, X.P., Yang, Z.W., Li, Z.Q., Deng, Z.Y., Ke, C.H.: Prediction of Wheat Stripe Rust in 
Hanzhong Area by BP Neural Network. Acta Agriculturae Boreali-occidentalis Sinica 9, 
28–31 (2000) (in Chinese) 

16. Zhang, J.: Research on Chaotic Characteristics of the Disaster Rate of Crops and Its GA-
BPNN Forecasting Model. Jour. of Northwest Sci-Tech Univ. of Agri. and For(Nat. Sci. 
Ed.) 34, 63–66 (2006) (in Chinese) 

17. Jin, N., Huang, W.J., Jing, Y.S., Wang, D.C., Luo, J.H.: Long-term Meteorological 
Prediction of Country Wide Wheat Stripe Rust by Genetic Neural Network. Chinese 
Journal of Agrometeorology 30, 243–247 (2009) (in Chinese) 

18. Ma, Z.H.: Plant Disease Epidemiology. Science Press, Beijing (2010) (in Chinese) 
19. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995) 
20. Bao, J., Ji, M., Feng, J.: Text Categorization Method Based on Fuzzy Support Vector 

Machine. Journal of Liaoning Technical University (Natural Science) 29, 974–977 (2010) 
(in Chinese) 

21. Liu, X.L., Ding, S.F., Zhu, H., Zhang, L.W.: Appropriateness in Applying SVMs to Text 
Classification. Computer Engineering & Science 32, 106–108 (2010) (in Chinese) 

22. Liu, S.: Image Recognition Based on SVM Information Fusion and DSP Parallel 
Realization. Computer Engineering and Applications 45, 168–170 (2009) (in Chinese) 

23. Wang, H.G., Ma, Z.H., Wang, T., Cai, C.J., An, H., Zhang, L.D.: Application of 
Hyperspectral Data to the Classification and Identification of Severity of Wheat Stripe 
Rust. Spectroscopy and Spectral Analysis 27, 1811–1814 (2007) (in Chinese) 

24. Fu, J.E., Su, Q.X., Pan, S.B., Lu, J.X.: Support Vector Machine Based Groundwater Level 
Monitoring Model by Using Remote Sensing Images. Journal of Geo-information 
Science 12, 466–472 (2010) (in Chinese) 

25. Wang, D.C., Wang, C.X., Zhu, T.Y., Qin, J.: Support Vector Machines Based Algorithm 
for the Disastrous Weather Forecast. Journal of Wuhan University of Technology 32, 121–
124 (2010) (in Chinese) 


	Prediction of Wheat Stripe Rust
Based on Neural Networks
	Introduction
	Materials and Methods
	Materials
	Methods

	Results and Analysis
	Conclusion and Discussion
	References




