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Abstract
Protein-protein interactions regulate many essential biological processes and

play an important role in health and disease. The process of experimentally charac-
terizing protein residues that contribute the most to protein-protein interaction affin-
ity and specificity is laborious. Thus, developing models that accurately characterize
hotspots at protein-protein interfaces provides important information about how to
inhibit therapeutically relevant protein-protein interactions. During the course of the
ICERM WiSDM workshop 2017, we combined the KFC2a protein-protein interac-
tion hotspot prediction features with Rosetta scoring function terms and interface
filter metrics. A 2-way and 3-way forward selection strategy was employed to train
support vector machine classifiers, as was a reverse feature elimination strategy.
From these results, we identified subsets of KFC2a and Rosetta combined features
that show improved performance over KFC2a features alone.
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1 Introduction

Protein-protein interactions play a crucial role in biochemical processes. Modula-
tion of protein-protein interactions bears enormous potential for therapeutic drug
development. Thus, accurate predictive models of protein-protein interactions will
not only enhance our understanding of the molecular basis of protein recognition
and specificity but further provide and inform efforts to modulate protein-protein
interactions. Certain hotspot residues at protein-protein interfaces contribute more
binding energy to the interaction than others. An alanine mutagenesis hotspot in
a protein-protein interface is an amino acid for which the change in binding en-
ergy upon mutation to alanine exceeds 2 kcal/mol. That is, the change in energy
upon binding (∆Gbind) is increased by at least 2 kcal/mol (∆∆Gbind > 2 kcal/mol).
hotspots are known to contribute significantly to the energetics of protein-protein in-
teraction [7, 22, 40]. hotspot analysis has both a long history as well as many recent
contributions [1, 2, 4–8, 11, 12, 14–19, 21–25, 28, 29, 33–37, 40, 42, 45–51, 53–
57]. Early work on analysis of protein structures in relation to mutagenesis effects
established the structural and chemical properties of amino acid residues that signif-
icantly alter binding free energy when mutated to alanine [7, 21, 22]. More recent
work has begun to characterize hotspot regions, chemical alignment of interfaces,
and structural evolution of hotspots [12, 50, 51].

The KFC and KFC2 models for predicting binding interface hotspots [13, 14, 59]
have become a gold standard for hotspot prediction. The KFC2 model identifies
about 80% of known hotspots [59]. An important recent study of antibody design
found the KFC2 model largely in sync with experimental predictions [52]. KFC2 is
available via a public web server [14] and has been accessed nearly 80,000 times.
The original KFC model examined geometric and biochemical features of a protein-
protein interface and used decision trees to develop an accurate predictive model.
The KFC2 model pursued a similar line of approach, using support vector machines
to train the model and introducing new features that have stronger predictive value
than the original ones. In particular, the introduction of interface plasticity measures
has significantly improved our ability to distinguish hotspots from non-hotspots.

Rosetta is a molecular modeling and design software suite that has been used
for a variety of tasks ranging from protein structure prediction [41] to de novo pro-
tein design [26, 30] and protein-protein interface design [9]. Rosetta-based energy
calculations [3] have been previously used to create a model for predicting protein-
protein interface hotspots [28]. In this work, we will add features from Rosetta to
those of KFC2 and train an improved model for protein-protein hotspot prediction.
We will combine strategies for feature selection with support vector machine learn-
ing in order to achieve an optimal model.
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Fig. 1 Demonstration of SVM classification with linear (left), polynomial (middle), and RBF
(right) kernels. The yellow and blue dots correspond to data points simulated from two multi-
variate normal distributions, i.e. two classes. The solid and dashed lines are the contours of the
SVM decision function with levels 0 (solid curve) and ±0.5 (dashed curves).

2 Background on SVM

Support vector machine (SVM) is a widely adopted binary classifier in recent years
due to its efficiency and accuracy [10, 39]. As a supervised classification algorithm,
SVM uses labeled training data to build a model and infers the two categories of the
testing data. The two categories correspond to hotspot or non-hotspot in our case.
In SVM, each data point is represented using a d-dimensional vector of descrip-
tors/features and a label that denotes the class (hotspot, non-hotspot). Given labeled
training data, SVM identifies a separating hyperplane in the high-dimensional fea-
ture space, with each side of the hyperplane corresponding to one (predicted) class.
This hyperplane can be used to classify testing data for which the class is unknown.
In practice, there are multiple valid hyperplanes that separate the training data. The
hyperplane that SVM selects maximizes the distance between the hyperplane and
the nearest data point to each side of the hyperplane.

The SVM classifier can be linear or nonlinear, depending on the choice of ker-
nel; see the documentation for SVM from scikit-learn [43] for more details.
Figure 1 gives an example showing SVM classifiers which use linear, polynomial,
and (Gaussian) Radial Basis Function (RBF) kernels, respectively. We choose to
use the RBF kernel for our data due to its utility in obtaining the best models for
this application. There are two parameters controlling the SVM classifier, C which
controls the margin between support vectors and the separating hyperplane, and γ ,
which controls the shape of the RBF kernel.

For our training runs, we tabulated performance based on a five-fold cross-
validation. Each C and γ combination is checked using cross-validation, and the
combination that leads to the best cross-validation accuracy is selected. See Section
4 for a more detailed description of the SVM implementation and parameter tuning
for the hotspot data set.

In the hotspot classification problem, the proportion of hotspots is much smaller
than the proportion of non-hotspots. This problem is typically referred to as classifi-
cation for highly unbalanced data. In this case, the decision function is more driven
by the more prevalent class (non-hotspots) instead of the other (hotspots). In order
to avoid this issue, we adopt the “class-weighted” SVM: assigning higher misclas-
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sification penalties to the instances in the rare class and vice versa in the training
data so that the decision boundary is almost equally influenced by the two classes.
We use the SVC function in scikit-learn [43] to implement this.

In interpreting the results of SVM feature selection and parameterization, it is
important to understand any resulting model represents a good choice rather than
the best choice. However, we will see some patterns emerge in feature selection if
we build a range of models using different parameters.

3 Data Sets and Features

The original KFC and KFC2 data sets are described in [13, 14, 59]. For this work,
we used a newer expanded data set of alanine mutagenesis hotspots, available from
the SKEMPI database [38]. Note that SKEMPI distributes a set of cleaned and
renumbered protein structure files that align with their database entries, on which
our feature calculations were performed. All KFC2 features were calculated on the
structure for the complex, and Rosetta features used relaxed structures and in silico
mutants.

Structures of the SKEMPI data set of mutant empirical interactions were relaxed
in the latest Rosetta full-atom forcefield, REF15, while being constrained to input
atomic coordinates [3]. A computational model was generated for each described
interface mutation in the SKEMPI dataset by first replacing the native residue with
an Alanine residue and performing local side chain minimization within 8 Å of the
mutated residue. All wild-type and mutant structures were scored with the REF15
Rosetta energy function in addition to seven Rosetta filter terms pertaining to inter-
face characteristics [32]: number of residues participating in the interface, ∆∆Gbind
of binding, Larence and Colman interface shape complementarity [31], side chain
carbon-carbon contact counts, and a count of the buried unsatisfied hydrogen bond
donors and accceptors at the interface. A full description of features is given in
Table 1.

We created a custom data set by combining the KFC2a data set with these Rosetta
features. Each row in the data set refers to an individual mutation and is labeled as
a hotspot or non-hotspot residue based on the empirically determined change in
binding free energy [38].

4 Feature Selection Strategy and Implementation

The presence of redundant and irrelevant features makes careful feature selection es-
sential, especially for high-dimensional data [58]. We implement a wrapper method
for feature selection, i.e. the features we select optimize the performance of an SVM
classifier. As opposed to filter methods, where feature selection is independent of
the learning algorithm, wrapper methods treat the learning algorithm as a black box
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KFC2a Features Description
hydrophobicity Fauchere and Pliska Hydrophobicity Index of Residue
DELTA TOT the buried solvent accessible surface area of an amino acid within the protein-protein interface
CORE RIM indicates a residue’s position at the protein-protein interface, at the rim or core of the interface
POS PER rank order of CORE RIM values
ROTS total number of side chain rotatable single bonds
PLAST4 measure the potential for local deformations within the protein interface, with 4Å cutoff
PLAST5 measure the potential for local deformations within the protein interface, with 5Å cutoff
FADE Point10 number of interface grid points in the range 9-10 Angstrom, as calculated by FADE
Rosetta Feature Description
buns3 number of buried unsatisfied h-bond donors and acceptors at the protein-protein interface
ddg Rosetta binding energy of the protein-protein interaction
dslf fa13 energy of disulfide bridges
fa atr attractive energy between two atoms on different residues separated by a distance d
a dun probability that a chosen rotamer is native-like given backbone φ ,ψ angles
fa elec energy of interaction between two nonbonded charged atoms separated by a distance d
fa intra rep repulsive energy between two atoms on the same residue separated by a distance d
fa intra sol xover4 Gaussian exclusion implicit solvation energy between protein atoms in the same residue
fa rep repulsive energy between two atoms on different residues separated by a distance d
fa sol Gaussian exclusion implicit solvation energy between protein atoms in different residues
hbond bb sc energy of backbone–side-chain hydrogen bonds
hbond lr bb energy of long-range hydrogen bonds
hbond sc energy of side-chain–side-chain hydrogen bonds
hbond sr bb energy of short-range hydrogen bonds
interface buried sasa buried solvent accessible surface area at the protein-protein interface
interface contact count of sidechain carbon-carbon contacts at the protein-protein interface
interface sc Larence and Colman shape complementarity at the protein-protein interface
interface sc int area buried solvent accessible surface area as computed for the Larence and Colman shape
lk ball wtd orientation-dependent solvation of polar atoms assuming ideal water geometry
omega backbone-dependent penalty for cis and trans ω dihedrals
p aa pp probability of amino acid identity given backbone φ ,ψ angles
pro close penalty for an open proline ring and proline ω bonding energy
rama prepro probability of backbone φ ,ψ angles given the amino acid type
ref reference energies for amino acid types
yhh planarity sinusoidal penalty for nonplanar tyrosine χ3 dihedral angle

Table 1 Descriptions of individual KFC2a and Rosetta features used in this study.

that outputs a performance metric associated with a given set of features, which is
then optimized by adjusting the training parameters. This is a simple and powerful
approach for feature selection [20].

More specifically, our goal is to select the set of features that optimizes the cross-
validated F1-score of a Gaussian kernel SVM model. The F1-score is a performance
metric for a binary classifier, and is defined as:

F1 =
2 ·precision · recall
precision+ recall

.

Here, recall is the true positive rate, and precision is the percentage of predicted
hotspots that are true hotspots [44]. The F1-score is generally considered to be a
more useful measure of performance than overall accuracy, especially when the
negative class occurs more frequently than the positive class. To avoid over fitting,
we optimize the F1-score using a five-fold cross-validation procedure. Such a val-
idation procedure is intended to mimic the performance on independent test data,
by successively eliminating subsets of the data, training on the remainder, and test-
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ing on the withheld data. By iterating through folds of withheld data, an unbiased
prediction can be made for each data point in the entire data set.

Although we seek the set of features giving us the global optimum of the cross-
validated F1-score, it is computationally intractable to search the space of all possi-
ble subsets. Assuming we start with d features, there are 2d possible subsets, giving
a complexity exponential in the number of feature combinations [27]. Even if we re-
strict our search to feature subsets of cardinality k � d, a brute force search would
require that we train O(dk) models. For this reason, a greedy algorithm is introduced
that selects the highest performing feature and then sequentially grows the feature
set; this process is called forward selection. This reduces the complexity to O(kd),
though it is easy to construct examples where the feature set obtained is not opti-
mal [20]. In this work we implement an approach which leverages the efficiency
of forward selection while reducing the optimization error incurred by the greedy
algorithm. We employ a semi-greedy algorithm which at each iteration adds in op-
timal pairs of features, giving complexity O(kd2). We also compare with the result
of adding in optimal triples of features, which has complexity O(kd3). We will refer
to the models obtained from forward selection with pairs and triples as Model 1 and
Model 2 respectively.

Our SVMs were trained with a custom Python script using the scikit-learn
library [43]. The features were scaled using the scikit-learn preprocessing to
have zero mean and unit variance. For every model evaluation, a randomized grid
search using a Gaussian RBF kernel and balanced class-weights, distributed to run
eight jobs in parallel, was performed to find ideal estimates for the parameters C
and γ . For each parameter combination (C,γ) in the random grid, the F1-score was
estimated using five-fold cross-validation.

Our feature 2-way and 3-way forward selection strategies are not deterministic
due to the computational challenges of fine-grained parameter search, so we ran
these parameter searches five times to look for trends among the features discovered,
rather than relying on a single run. We also ran Recursive Feature Elimination Cross
Validation (RFECV), a reverse selection algorithm for use with linear SVMs for
various values of the penalty parameter, C. We then trained non-linear classification
models using the feature classes identified from the RFECV analysis.

5 Results and Discussion

5.1 Pairwise Relationships Among Features

First, let’s look at the correlation matrix of features (Figure 2), which are individ-
ually described in Table 1. There are two groups of highly correlated features used
for KFC2a. The first group (DELTA TOT, CORE RIM and POS PER) are all re-
lated in some way to solvent accessibility, and the second group consists of two
plasticity features calculated at different distance thresholds (4Å vs. 5Å). Some
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(mostly weaker) internal correlations exist for Rosetta features. Between KFC2a
and Rosetta, the non-trivial correlations were related to buried surface (KFC2a
CORE RIM vs. Rosetta interface buried sasa and interface sc int area) and hy-
drophobicity (KFC2a hydrophobicity vs. Rosetta ref).
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hydrophobicity 1.00 -0.21 0.07 -0.20 0.20 0.00 0.03 0.04 -0.03 0.01 0.39 0.13 -0.44 -0.19 0.18 -0.02 0.55 -0.18 -0.23 0.05 -0.38 -0.17 -0.16 -0.06 0.16 0.06 0.18 0.00 -0.01 -0.78 -0.06

DELTA_TOT -0.21 1.00 -0.48 0.96 -0.39 0.20 0.12 -0.34 0.03 -0.14 -0.31 -0.03 -0.11 -0.10 -0.08 0.04 0.13 -0.17 -0.13 0.09 0.35 0.33 0.27 0.12 -0.06 -0.06 0.04 0.02 0.07 0.21 0.19

CORE_RIM 0.07 -0.48 1.00 -0.51 0.15 -0.24 -0.24 0.02 -0.03 0.04 0.29 -0.10 0.08 -0.10 -0.12 -0.06 -0.11 0.04 0.03 -0.60 -0.38 -0.26 -0.53 -0.09 0.02 -0.09 -0.09 0.06 -0.09 -0.08 -0.09

POS_PER -0.20 0.96 -0.51 1.00 -0.38 0.19 0.11 -0.39 0.03 -0.14 -0.30 -0.01 -0.11 -0.13 -0.05 0.03 0.15 -0.17 -0.14 0.11 0.35 0.33 0.28 0.12 -0.05 -0.07 0.04 0.00 0.06 0.19 0.18

ROTS 0.20 -0.39 0.15 -0.38 1.00 -0.39 -0.29 0.16 -0.11 -0.09 0.54 -0.23 0.20 -0.05 -0.12 -0.05 -0.25 0.04 0.28 -0.06 -0.35 -0.08 -0.31 -0.20 0.03 -0.10 -0.13 -0.19 -0.16 -0.08 -0.16

PLAST4 0.00 0.20 -0.24 0.19 -0.39 1.00 0.81 -0.03 0.11 0.14 -0.31 0.17 -0.13 0.05 0.17 0.08 0.18 -0.04 -0.14 0.18 0.23 0.06 0.20 0.08 -0.01 0.22 0.19 0.13 0.23 -0.09 0.08

PLAST5 0.03 0.12 -0.24 0.11 -0.29 0.81 1.00 0.00 0.08 0.20 -0.26 0.19 -0.11 0.04 0.14 0.11 0.16 -0.05 -0.11 0.18 0.22 0.04 0.18 0.08 0.00 0.28 0.21 0.14 0.25 -0.11 0.05

FADE_Point10 0.04 -0.34 0.02 -0.39 0.16 -0.03 0.00 1.00 -0.01 0.11 0.13 -0.01 0.15 0.09 0.03 0.03 -0.13 0.17 0.13 0.06 -0.15 -0.13 -0.10 -0.05 0.07 0.03 -0.06 0.06 -0.01 -0.07 -0.19

buns3 -0.03 0.03 -0.03 0.03 -0.11 0.11 0.08 -0.01 1.00 0.15 -0.18 0.03 0.10 0.05 -0.03 0.07 0.03 0.17 0.12 0.12 0.13 -0.18 0.26 0.29 -0.12 0.03 0.09 0.05 0.05 0.06 -0.03

ddg 0.01 -0.14 0.04 -0.14 -0.09 0.14 0.20 0.11 0.15 1.00 -0.10 0.09 0.04 0.04 0.03 0.32 0.02 0.18 0.06 0.08 0.05 -0.21 0.00 0.02 -0.08 0.26 0.04 0.10 0.01 -0.03 -0.05

fa_atr 0.39 -0.31 0.29 -0.30 0.54 -0.31 -0.26 0.13 -0.18 -0.10 1.00 -0.32 0.19 -0.22 -0.18 -0.06 -0.33 0.10 0.16 -0.19 -0.56 -0.25 -0.44 -0.21 0.11 -0.12 -0.09 -0.04 -0.15 -0.31 -0.13

fa_dun 0.13 -0.03 -0.10 -0.01 -0.23 0.17 0.19 -0.01 0.03 0.09 -0.32 1.00 -0.31 0.15 0.40 0.11 0.37 -0.15 -0.22 0.13 0.15 -0.02 0.21 0.07 0.02 0.11 0.14 0.10 0.09 -0.24 -0.03

fa_elec -0.44 -0.11 0.08 -0.11 0.20 -0.13 -0.11 0.15 0.10 0.04 0.19 -0.31 1.00 0.08 -0.21 0.07 -0.76 0.41 0.56 -0.10 -0.04 -0.15 -0.09 0.01 -0.32 -0.07 -0.15 -0.07 -0.05 0.43 -0.18

fa_intra_rep -0.19 -0.10 -0.10 -0.13 -0.05 0.05 0.04 0.09 0.05 0.04 -0.22 0.15 0.08 1.00 0.20 0.24 -0.08 0.13 0.08 0.11 0.04 -0.05 0.16 0.08 0.00 0.01 -0.07 -0.04 0.00 0.24 0.07

fa_intra_sol_xover4 0.18 -0.08 -0.12 -0.05 -0.12 0.17 0.14 0.03 -0.03 0.03 -0.18 0.40 -0.21 0.20 1.00 0.04 0.34 -0.01 -0.18 0.03 0.02 -0.10 0.11 -0.01 -0.01 0.09 0.07 0.11 0.06 -0.24 0.00

fa_rep -0.02 0.04 -0.06 0.03 -0.05 0.08 0.11 0.03 0.07 0.32 -0.06 0.11 0.07 0.24 0.04 1.00 0.03 0.03 0.10 0.00 0.01 -0.05 -0.02 0.03 -0.03 0.10 0.00 0.02 0.02 -0.02 -0.10

fa_sol 0.55 0.13 -0.11 0.15 -0.25 0.18 0.16 -0.13 0.03 0.02 -0.33 0.37 -0.76 -0.08 0.34 0.03 1.00 -0.35 -0.44 0.13 0.01 0.05 0.18 0.04 0.16 0.12 0.20 0.05 0.07 -0.49 0.10

hbond_bb_sc -0.18 -0.17 0.04 -0.17 0.04 -0.04 -0.05 0.17 0.17 0.18 0.10 -0.15 0.41 0.13 -0.01 0.03 -0.35 1.00 0.12 0.00 0.00 -0.26 -0.03 0.05 -0.19 0.01 -0.03 -0.01 0.00 0.20 -0.27

hbond_sc -0.23 -0.13 0.03 -0.14 0.28 -0.14 -0.11 0.13 0.12 0.06 0.16 -0.22 0.56 0.08 -0.18 0.10 -0.44 0.12 1.00 0.04 -0.04 -0.13 -0.02 -0.03 -0.33 -0.02 -0.11 -0.12 -0.04 0.23 -0.20

interface_buried_sasa 0.05 0.09 -0.60 0.11 -0.06 0.18 0.18 0.06 0.12 0.08 -0.19 0.13 -0.10 0.11 0.03 0.00 0.13 0.00 0.04 1.00 0.21 -0.06 0.62 0.13 -0.07 0.12 0.13 -0.04 0.09 0.05 0.06

interface_contact -0.38 0.35 -0.38 0.35 -0.35 0.23 0.22 -0.15 0.13 0.05 -0.56 0.15 -0.04 0.04 0.02 0.01 0.01 0.00 -0.04 0.21 1.00 0.35 0.36 0.21 -0.11 0.09 0.01 -0.04 0.11 0.27 0.07

interface_sc -0.17 0.33 -0.26 0.33 -0.08 0.06 0.04 -0.13 -0.18 -0.21 -0.25 -0.02 -0.15 -0.05 -0.10 -0.05 0.05 -0.26 -0.13 -0.06 0.35 1.00 -0.19 0.01 0.21 -0.03 -0.03 0.01 0.03 0.11 0.13

interface_sc_int_area -0.16 0.27 -0.53 0.28 -0.31 0.20 0.18 -0.10 0.26 0.00 -0.44 0.21 -0.09 0.16 0.11 -0.02 0.18 -0.03 -0.02 0.62 0.36 -0.19 1.00 0.24 -0.14 0.10 0.15 -0.01 0.11 0.15 0.12

interface_unsat_hbond2 -0.06 0.12 -0.09 0.12 -0.20 0.08 0.08 -0.05 0.29 0.02 -0.21 0.07 0.01 0.08 -0.01 0.03 0.04 0.05 -0.03 0.13 0.21 0.01 0.24 1.00 -0.06 0.04 0.08 0.00 0.08 0.04 -0.01

lk_ball_wtd 0.16 -0.06 0.02 -0.05 0.03 -0.01 0.00 0.07 -0.12 -0.08 0.11 0.02 -0.32 0.00 -0.01 -0.03 0.16 -0.19 -0.33 -0.07 -0.11 0.21 -0.14 -0.06 1.00 -0.07 0.04 0.07 -0.01 -0.16 0.01

omega 0.06 -0.06 -0.09 -0.07 -0.10 0.22 0.28 0.03 0.03 0.26 -0.12 0.11 -0.07 0.01 0.09 0.10 0.12 0.01 -0.02 0.12 0.09 -0.03 0.10 0.04 -0.07 1.00 0.25 -0.02 0.11 -0.13 0.08

p_aa_pp 0.18 0.04 -0.09 0.04 -0.13 0.19 0.21 -0.06 0.09 0.04 -0.09 0.14 -0.15 -0.07 0.07 0.00 0.20 -0.03 -0.11 0.13 0.01 -0.03 0.15 0.08 0.04 0.25 1.00 0.08 0.63 -0.21 0.04

pro_close 0.00 0.02 0.06 0.00 -0.19 0.13 0.14 0.06 0.05 0.10 -0.04 0.10 -0.07 -0.04 0.11 0.02 0.05 -0.01 -0.12 -0.04 -0.04 0.01 -0.01 0.00 0.07 -0.02 0.08 1.00 0.10 -0.02 0.02

rama_prepro -0.01 0.07 -0.09 0.06 -0.16 0.23 0.25 -0.01 0.05 0.01 -0.15 0.09 -0.05 0.00 0.06 0.02 0.07 0.00 -0.04 0.09 0.11 0.03 0.11 0.08 -0.01 0.11 0.63 0.10 1.00 -0.09 0.02

ref -0.78 0.21 -0.08 0.19 -0.08 -0.09 -0.11 -0.07 0.06 -0.03 -0.31 -0.24 0.43 0.24 -0.24 -0.02 -0.49 0.20 0.23 0.05 0.27 0.11 0.15 0.04 -0.16 -0.13 -0.21 -0.02 -0.09 1.00 0.02

yhh_planarity -0.06 0.19 -0.09 0.18 -0.16 0.08 0.05 -0.19 -0.03 -0.05 -0.13 -0.03 -0.18 0.07 0.00 -0.10 0.10 -0.27 -0.20 0.06 0.07 0.13 0.12 -0.01 0.01 0.08 0.04 0.02 0.02 0.02 1.00

Fig. 2 Pairwise correlation scores between features, with significant correlations shown in dark
orange or blue.

5.2 Recursive Feature Elimination

In addition to our forward selection strategies, we looked at results from the Re-
cursive Feature Elimination Cross Validation method. These models are somewhat
easier to analyze, as they are linear models based only on the classification penalty
parameter, C. Because it is hard to draw conclusions from a single run of the RFE
method, we varied the value of C, and otherwise used the same SVM training pa-
rameters applied in the 2-way and 3-way feature selection strategies.

In Table 2, the feature rank for each feature is shown for varied values of C.
Notice that the number of features required increases as the penalty for incorrect
classification increases, which could lead to a more precise model, but also to over-
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C 1 1.25 1.5 1.75 2 3 5 10 25
hydrophobicity 1 1 1 1 1 1 1 1 1
DELTA TOT 1 1 1 1 1 1 1 1 1
CORE RIM 1 1 12 11 1 1 1 1 1
POS PER 1 1 1 1 1 1 1 1 1
ROTS 1 1 1 1 1 1 1 1 1
PLAST4 1 1 10 9 1 1 1 1 1
PLAST5 7 8 20 19 4 4 2 4 3
FADE Point10 1 1 1 1 1 1 1 1 1
buns3 1 1 7 6 1 1 1 1 1
ddg 1 1 2 1 1 1 1 1 1
fa atr 8 9 21 20 5 5 3 2 2
fa dun 1 1 5 4 1 1 1 1 1
fa elec 2 3 15 14 1 1 1 1 1
fa intra rep 3 4 16 15 1 1 1 1 1
fa intra sol xover4 1 1 3 2 1 1 1 1 1
fa rep 9 10 22 21 6 6 4 3 4
fa sol 1 1 1 1 1 1 1 1 1
hbond bb sc 1 1 6 5 1 1 1 1 1
hbond sc 1 1 8 7 1 1 1 1 1
interface buried sasa 1 2 14 13 1 1 1 1 1
interface contact 1 1 1 1 1 1 1 1 1
interface sc 1 1 1 1 1 1 1 1 1
interface sc int area 1 1 1 1 1 1 1 1 1
interface unsat hbond2 1 1 9 8 1 1 1 1 1
lk ball wtd 5 6 18 17 2 2 1 1 1
omega 1 1 13 12 1 1 1 1 1
p aa pp 1 1 1 1 1 1 1 1 1
pro close 1 1 4 3 1 1 1 1 1
rama prepro 4 5 17 16 1 1 1 1 1
ref 6 7 19 18 3 3 1 1 1
yhh planarity 1 1 11 10 1 1 1 1 1

Table 2 Feature rankings returned from RFECV for each of the 31 features we considered, when
examined for various values of C between 1.0 and 25.0. The features are grouped into three sets:
disfavored features shown in strikeout text, lowC features in regular text, and features in the highC
but not the lowC group in bold. The lowC group contains only those features that are top-ranked
for all C values. The highC group includes everything except the disfavored features.

fitting. Some features such as hydrophobicity appear as a top-ranked feature for
every choice of C, and we will call this feature group lowC, meaning they can per-
form well for low values of C. In this case, 7/8 KFC2a features and 16/23 Rosetta
features are selected. Other features such as fa rep are not highly chosen in any
model, and we will refer to such examples as the disfavored feature group. For high
C values, the RFECV method selects all but a few of the features, and this highC
group contains everything but the disfavored features. In Table 2, the lowC features
are those in plain text, and the highC features include those in plain and bold text.
The features with strikeout text are those in the disfavored group.

Using the lowC and highC feature groups, we performed non-linear SVM train-
ing using C values in the preferred range (0.5 to 2 for lowC; 5 to 25 for highC).
We also examined the KFC2a, Rosetta and all features using an exhaustive C and γ

parameter search, using the entire C parameter range (0.5 to 25) and finer sampling.
These results are shown in Table 3, and we see that the lowC and highC groups
return the highest ROC AUC scores when compared with other feature groups. The
highC feature group returns the best result overall, with the lowC model performing
worse on the positive (hotspot) class. The highC feature group performs similarly
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Fig. 3 The figure shows ROC AUC scores for models trained on lowC features (top left) and
highC features (top right), as a function of C and γ . The C values for lowC vary linearly along the
y-axis from 0.5 to 25.0, with 300 samples, and the γ values vary logarithmically along the x-axis
from 0.00001 to 0.1, with 100 samples. In addition, models trained on all features (bottom left),
Rosetta features (bottom middle) and KFC features (bottom right) are shown. The highC feature
combination leads to the best chance of finding a high scoring model.

to KFC2a features and to the group of all on the positive class (TP+FN) and gives
improved predictions on the negative class (TN+FP). The lowC feature group per-
forms similarly to Rosetta features on the negative class, doing somewhat better on
the positive class. In Figure 3, we see the results of exhaustive parameter search
using non-linear SVMs with radial basis functions on the different feature groups.

Further examining Table 3, both the lowC and highC feature groups outperform
groups consisting of KFC2a features, Rosetta features and all (KFC2a+Rosetta) fea-
tures. The lowC group performs well on the negative class (TN+FP), while the
highC group performs well on the positive class (TP+FN). When comparing the
lowC to highC group, the former results in higher precision models and an accuracy
similar to the Rosetta feature group, and the latter in higher recall models and speci-
ficity similar to KFC2a features or all features combined. The set of all features vs.
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KFC2a features performs about the same when examined with regard to F1 score
and ROC AUC. However, the groups lowC and highC, made by combining KFC2a
and Rosetta features, demonstrate improvements in both F1 score and ROC AUC
over other feature groups.

N C gamma TP TN FP FN Ac Pr Re Sp F1 AUC
KFC2a 8 0.8277591973244147 0.03593813663804629000 104 328 150 36 0.699 0.409 0.743 0.686 0.528 0.7882
Rosetta 23 1.7290969899665551 0.00319926713779738460 90 362 116 50 0.731 0.437 0.643 0.757 0.520 0.7657
all 31 0.6638795986622074 0.00183073828029536980 102 334 144 38 0.706 0.415 0.729 0.699 0.528 0.7991
lowC* 10 0.6010101010101010 0.00265608778294668680 95 359 119 45 0.735 0.444 0.679 0.751 0.537 0.7990
lowC 10 0.5819397993311037 0.00265608778294668680 93 358 120 47 0.730 0.437 0.664 0.749 0.527 0.7990
highC* 23 5.6060606060606060 0.00031257158496882353 105 338 140 35 0.717 0.429 0.750 0.707 0.545 0.8031
highC 23 0.5000000000000000 0.00319926713779738460 102 336 142 38 0.709 0.418 0.729 0.7029 0.531 0.8060

Table 3 The table shows optimized C and γ values, the size (N) of each feature group, and confu-
sion matrix entries for cross-validated performance at the optimal C and γ values for that feature
group. In addition, the Accuracy (Ac), Precision (Pr), Recall (Re), Specificity (Sp), F1-score (F1)
and ROC AUC are given. The default search range is C=(0.5,25) with 300 linear divisions and
γ=(10−5,10−1) with 100 logarithmic divisions; the lowC* and highC* results restrict the C-range
from 0.5 to 2.0 for lowC* and from 2.0 to 25.0 for highC*. We see from the results that all fea-
tures are better than simply KFC2a or Rosetta features; however, both the lowC and highC feature
groups offer an improvement over all features.

5.3 2-way and 3-way Forward Selection of Features

Forward feature selection was performed by adding features in groups of 2 or 3
(2-way or 3-way, respectively) and then selecting the group that best maximizes
performance. When doing the forward feature selection, random sampling was used
to optimize C and γ values. Costly searches such as those shown in Figure 3 are
not feasible as part of search strategies, but the large regions of good scores suggest
random sampling can identify good solutions. To avoid drawing conclusions from
a single run of a stochastic method, we ran our forward feature selection five times.
In order to compare results with the highC and lowC groups previously discussed,
we ran the algorithm with these restricted C ranges, in addition to unconstrained
random sampling.

It is important to remind the reader of several points about the search algorithm:
the parameter search is coarse-grained, random, and based on F1 scores that are
not cross-validated. These properties allow the search to run efficiently, but the
optimized scores are not directly comparable to cross-validated F1 scores for the
trained models described previously. Full parameter searches with cross-validation
were conducted with parameters identified using forward selection, in order to com-
pare performance directly with the other strategies, as will be demonstrated below.
The Supplementary Materials include the non-cross-validated F1 scores and pairs
of features chosen for 2-way feature addition.
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For 2-way forward selection, the two features identified in the first iteration, for
each of the five runs, were the KFC2a CORE RIM and POS PER features. Rosetta’s
interface contact score was consistently chosen in second ranked initial pairs, as
shown in Table 4.

Pair Rank non-CV F1 Feature 1 Feature 2
1 0.53112 CORE RIM POS PER
2 0.52944 DELTA TOT interface contact
3 0.52840 CORE RIM interface contact

Table 4 For a single run, at the first iteration, the top three results highlight alternative combina-
tions of features that can perform well.

From the second iteration on, we take the best previous result (in this case
CORE RIM and POS PER) and search for two additional features to add. KFC2a
ROTS is a consistent choice in the second iteration, along with Rosetta omega. At
the third iteration, Rosetta’s fa sol was commonly chosen. Subsequent iterations
sample a wide range of KFC2a and Rosetta terms, using them to improve the F1
score. Table 5 shows the feature selection process for four iterations of five runs of
the algorithm with C sampled between 2 and 25.

Feature Group Feature Group 1 Feature Group 2 Feature Group 3 Feature Group 4
Run 1 CORE RIM POS PER ROTS omega fa sol fa elec hbond sc rama prepro
Run 2 CORE RIM POS PER ROTS ref fa sol rama prepro lk ball wtd rama prepro
Run 3 CORE RIM POS PER ROTS omega fa sol hbond sc fa elec lk ball wtd
Run 4 CORE RIM POS PER ROTS omega interface sc int area hbond sc hbond sc lk ball wtd
Run 5 CORE RIM POS PER ROTS omega fa sol DELTA TOT fa elec fa intra sol xover4

Table 5 Each group of columns shows the two features added to the model at each iteration, across
five runs. As significant improvement in non-cross validated F1 score is observed in iterations 1-2.
Around iterations 3-4, the models tend to plateau in performance.

Looking back to Table 2, we see that the KFC2a features POS PER and ROTS
are part of the highC group, and CORE RIM is in the lowC group. Rosetta’s fa sol
is in the highC group and omega in the lowC group. By the fourth iteration, for-
ward selection has converged. Features like rama prepro and lk ball wtd, which
were eliminated by reverse selection, begin to appear as selected features but do not
offer significant improvements to the model based on F1 scores (see Supplementary
Materials.) At this point, feature selection becomes noisy, with many combinations
of features offering insignificant improvements to the non-CV F1 score.

The fact that KFC2a features related to core vs rim position of a residue (CORE RIM,
POS PER) were selected first is a good sign, as core-rim is well known to impact the
likelihood of a hotspot. The choice of KFC2a ROTS is not surprising, as it likely re-
flects some entropic penalty in desolvating long side chains. The choice of Rosetta’s
omega is curious, reflecting backbone ω angles. However, we see that omega is
somewhat correlated to the KFC2a plasticity features, suggesting a correlation for
which the cause and effect may be more complex. An unusual omega angle in the
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Fig. 4 The figure shows ROC AUC scores for models trained on a progression of features identified
using 2-way forward selection.

mutated structure generated by Rosetta may reflect significant reorganization of the
local structure, which is implicitly measured by KFC2a using the plasticity features.

In order to compare the forward selection to reverse feature elimination, we
trained models using the same parameter search applied to other examples, as dis-
played in Figure 3. The final ROC AUC for the 8-feature model corresponding to
Run 5 of Table 5 was 0.8099, thus exceeding both the lowC and highC feature
groups.

The progression of performance is shown in Table 6, after training the models
using cross-validated scoring. In Figure 4, the results of a full parameter search are
displayed, using the same bounds used to generate the results of Figure 3. Each
iteration increases the zone in which high performing solutions can be obtained.
Curiously, the favorable parameter region (high γ) that emerges is nearly opposite
to that arising from the parameter searches shown in Figure 3. When γ is high,
the model is localized, and only nearby points influence the prediction at a given
instance, whereas when γ is small, many points influence the prediction at a single
point.

N C gamma TP TN FP FN Ac Pr Re Sp F1 AUC
2-way 2 0.5819397993311037 0.0015199110829529348 109 317 161 31 0.689 0.404 0.779 0.663 0.532 0.7706
2-way 4 5.0066889632107030 0.0359381366380462900 117 321 157 23 0.709 0.427 0.836 0.672 0.565 0.7957
2-way 6 4.5969899665551840 0.0475081016210279800 109 336 142 31 0.720 0.434 0.779 0.703 0.558 0.8034
2-way 8 2.5484949832775920 0.0830217568131975300 114 344 134 26 0.741 0.460 0.814 0.720 0.588 0.8099

Table 6 The table repeats the analysis of Table 3 using the results of 2-way forward selection.
Results are shown after selecting 2 features, 4 features, 6 features and 8 features. A 5-fold cross
validation was used to generate the predictions.

In addition to forward selection adding two features at a time, we performed
3-way forward selection, which showed a very similar progression in selecting fea-
tures as the 2-way forward selection (Table 7). The 3-way selection showed more
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variation in initial selection. While CORE RIM, POS PER and ROTS was cho-
sen as a good combination, the top combination combined POS PER with two
Rosetta features, interface sc and interface sc int area. Using these three to seed the
next iteration, the next three features chosen were DELTA TOT, ROTS and omega,
again largely following the preferences of the 2-way search. At the third iteration,
buns3, fa elec and interface contact were added. The progression of features se-
lected across five runs of the 3-way forward selection restricting C between 2 and
25 are shown in Table 7. The training results and metrics for the 3-way feature se-
lection were fairly comparable to those observed for the 2-way forward selection,
hence we omit these details for brevity.

Feature Group Feature Group 1 Feature Group 2 Feature Group 3
Run 1 POS PER interface sc interface sc int area ROTS DELTA TOT omega buns3 fa elec interface contact
Run 2 POS PER interface sc interface sc int area ROTS hbond sc omega interface unsat hbond2 fa dun hydrophobicity
Run 3 POS PER interface sc interface sc int area ROTS DELTA TOT omega interface unsat hbond2 fa dun ref
Run 4 POS PER interface sc interface sc int area ROTS interface unsat hbond2 omega buns3 fa elec hbond sc
Run 5 POS PER interface sc interface sc int area ROTS DELTA TOT omega buns3 fa elec interface contact

Table 7 Each group of columns shows the three features added to the model at each iteration,
across 5 runs.

5.4 Conclusions

We examined two different strategies for feature selection on a data set for alanine
mutagenesis hotspots. The features combined those of a popular hotspot model,
KFC2a, and a widely used molecular modeling suite, Rosetta. Recursive feature
elimination to define the highC group removed very few features from the combined
data set, primarily features that were either redundant or uninformative. The lowC
group further reduced the set of features, generally achieving better specificity in
prediction than the highC group but lower recall/sensitivity.

An alternate strategy applied forward 2-way and 3-way selection with a random
search for optimal C and γ parameters. These methods converged after just a few it-
erations, producing a small number of features with significant information content
for answering the classification question. The random parameter search was remark-
ably consistent at finding the top parameter group, CORE RIM and POS PER, both
of which relate to the “buriedness” of an amino acid within the interface.

The overall preferences for 3-way search versus 2-way search are very similar,
but some of the top choices changed. In particular, some Rosetta features that were
overshadowed by the dominant choice of CORE RIM and POS PER were more
prominent in the 3-way search. For example, the CORE RIM feature, no longer
chosen in the initial iteration of 3-way forward selection, is somewhat correlated
with both interface sc and interface sc int area, which were chosen instead. This
shows the value of considering 3-way forward selection in addition to 2-way selec-
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tion; in particular, the 3-way selection allowed the first iteration to choose a slightly
more accurate combination to cover core-rim effects using three terms.

While showing overall consistency in feature selection, the results also demon-
strate that many feature combinations can lead to comparable models. There is not
a clearly “right” combination, and the results do not allow us to rank order the im-
portance of any individual feature.
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