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Abstract

Novel methods for the sequencing of single-cell DNA offer tremendous opportunities. However, many techniques are still in their infancy
and a major obstacle is given by sample contamination with foreign DNA. In this contribution, we present a pipeline that allows for fast,
automated detection of contaminated samples by the use of modern machine learning methods. First, a vectorial representation of the genomic
data is obtained using oligonucleotide signatures. Using non-linear subspace projections, data is transformed to be suitable for automatic
clustering. This allows for the detection of one vs. more genomes (clusters) in a sample. As clustering is an ill-posed problem, the pipeline
relies on a thorough choice of all involved methods and parameters. We give an overview of the problem and evaluate techniques suitable for
this task.

I. Introduction

Todays next-generation sequencing technologies enable the
analysis of large amounts of genetic information. A number
of exciting data sources are given by single-cell sequencing
(SCS). Named Method of the Year 2013 [1], it will be beneficial
in many domains of research, most notably medicine and the
analysis of disease pathways. Often, on a single cell level, the
pathology of complex diseases is very heterogeneous [8]. In
different types of cancer, for example, arises the question why
certain neighboring cells are malignant while others are not.
SCS is able to identify such differences in a high resolution,
enabling the analysis of underlying causes and dynamics in
great detail, which in turn can be the groundwork for specific
treatment.

However, existing SCS technologies are still in their in-
fancy and in order to gain tools with economic relevance, a
number of problems need to be resolved. A major poten-
tial for development can be seen in DNA isolation. In SCS,
samples are taken using patch pipettes or nanotubes. These
methods come with the disadvantage that also foreign DNA
such as from within the sample (viruses, bacteriophages),
or from the laboratory environment can easily be captured
[6]. Much effort has been invested in engineering devices for
cell isolation and amplification steps that minimize the con-
tamination caused by the surrounding sequencing setup [6].
Still, such measures only decrease the probability for contam-
ination and remaining foreign DNA is detected by tedious
manual screening. Additionally, the fast growing amount
of data makes this step consuming a lot of time. Therefore,
there is a strong need for data analysis techniques that can aid
automatic post-sequencing contamination detection. Some
species can be detected using supervised methods (i.e. based
on sequence similarity to known taxa from databases) and
fast classification tools exist [2, 31, 21].

The majority of species is unknown [22] and thus can-
not be detected by such methods. Hence, an, taxonomy-free
analysis is required [20]. Here, one particularly promising
line of research relies on modern techniques from machine
learning, specifically clustering techniques based on kl-mer
frequencies that already found early applications in metage-
nomic binning [17]. From the perspective of computational
intelligence, contamination detection in SCS is very similar to
metagenomic binning. Both metagenomic and SCS samples
can be represented as a set of high-dimensional data points
using oligonucleotide frequencies. Binning and also contami-
nation detection then correspond to the problem to reliably
detect clusters in a high dimensional data space.

In this context, quite a few challenges arise: To circumvent
negative side effects in such high dimensional spaces and to
enable human expert inspection, it is crucial to use appropri-
ate subspace embeddings to transform the data into an easily
visualizable representation, i.e. two or three dimensions. An-
other challenge consists in the automatic determination of
the number of clusters and its cluster validity, a deep and
crucial question in the context of clustering [28, 14]. In con-
trast to metagenomics, in SCS one is concerned with much
less genomes in a given sample, significantly reducing the
complexity of the problem. Also, contamination detection
in SCS corresponds to the problem to discriminate between
one or more clusters (genomes). This distinction is impor-
tant since it heavily reduces the set of applicable clustering
methods: The majority of methods for estimating the number
of clusters rely on cluster-specific measures such as internal
validity measures [18]. Since they are not defined for only one
cluster, a distinctive null model for unimodal data is required.

In this contribution, we give and overview on the the-
oretical foundations and methodological considerations of
an automated contamination detection pipeline. First, we
will discuss the suitability of a particular non-linear dimen-
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Figure 1: Contamination detection pipeline.

sion reduction method. Then, the main focus will be put
on evaluating clustering methods and discussing their suit-
ability with respect to different criteria. The outcome of all
involved methods depend on a number of parameters. Here,
we will suggest strategies for choosing an optimal parameter
set. Finally, we show how the inclusion of other, possibly su-
pervised, methods can improve detection accuracy, resulting
in a pipeline that can detect contamination with high rate.

II. Methods

A contamination detection tool will utilize a number of sub-
sequent steps which are outlined in Figure 1. Starting with
raw reads from the sequencing process, they are assembled
into longer oligonucleotides. Using kl-mer frequencies, a
high-dimensional vectorial representation is obtained. Af-
ter dimensionality reduction, it is the task of evaluating the
number of clusters, specifically determining whether there
is one or more cluster, resulting in a final decision for con-
tamination. In the following, we will briefly describe the
involved methods for frequency computation, dimensionality
reduction, and clustering.

I. Vectorial representation

It is common practice to transfer sequential DNA data into
vectors by using signatures of small chunks of DNA [24]. A
window of width w is fixed and subsequently shifted over the
sequence with step ∆w. For each shift, the underlying kl-mers
frequencies are evaluated. This results in one 4kl -dimensional
data point per shift, accounting for the 4 nucleotide bases.
Exemplary, taking kl = 4 would result in 256 dimensions,
however by accounting for reverse complements, it can be
reduced to 136 dimensions.

The choice of window parameters has big influence on
the resulting representation. Here, choosing a large window
width, capturing genome-specific, rather than gene-specific
information will result in less noise [19]. However, a small
number of data points is disadvantageous for clustering, such
that is has to be taken care to choose w not too large. Using

a given number of data points, it is possible to estimate the
window width and fixed window step accordingly. The de-
fault choice of kl = 4 (tetramer frequencies) usually is robust
[19].

II. Dimensionality Reduction

The analysis of high-dimensional data is often problematic
due to the curse of dimensionality [12]. Hence, it is crucial to
reduce the dimension while keeping desired properties such
as cluster structure.

We employ Barnes-Hut SNE (BH-SNE) [26] as a central
method in order to reduce dimensionality in a nonlinear way.
It is based on t-distributed stochastic neighborhood embed-
ding [27] which aims to minimize the difference between two
distributions of pairwise probabilities in the high and lower
dimensional space. Considering N data points, high dimen-
sional probabilities are defined as pij = (pi|j + pj|i) / (2N)
where

pj|i =
exp

(
−||~xi − ~xj||2/2σ2

i
)

∑l 6=i exp
(
−||~xi − ~xl ||2/2σ2

i
)

can be interpreted as the probability that ~xi would pick ~xj
as its neighbor under the assumption that it was picked
from a Gaussian distribution centered at ~xi. The parameter
σi for each data point is automatically determined using a
hyper-parameter called perplexity that is usually insensitive.
Probabilities in Rd are modeled by

qij =

(
1 + ||~yi − ~yj||2

)−1

∑m 6=l (1 + || ~ym − ~yl ||2)
−1

Using the long tailed student-t distribution instead of the
Gaussian has the advantage that it allows to avoid the crowd-
ing problem in low dimensional spaces, leaving more space
for distant pairs of points. The Kullback-Leibler divergence
between pij and qij is used to minimize the difference between
both probability distributions by numerical optimization.

The original t-SNE method has the major drawback of a
quadratic computational runtime and memory complexity,
making it unsuitable for larger data sets such as genomes.
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Barnes-Hut SNE overcomes this deficiency by approximating
the similarities between input points, effectively reducing its
runtime complexity to linearithmic time while using only
linear memory.

BH-SNE has shown to work well for various kinds of data,
including genomes [17, 10]. As it puts a particular focus on
clusters, in this respect, it is superior to other, possibly linear
methods such as PCA. As qualitatively shown in Figure 2,
BH-SNE generates clusters which are more compact and sepa-
rated. A quantitative analysis of the suitability of BH-SNE for
clustering DNA sequences can be found in [19]. Clustering
algorithms can certainly take advantage of this property.

Figure 2: Comparison of dimension reduction using PCA (left) and BH-
SNE (right) of a contaminated single-cell sample.

III. Clustering

The goal of clustering is to find a grouping of a given set
of data points that is optimal with respect to different objec-
tives. As the notion of a cluster is ill-posed, many different
clustering algorithms aim for different objectives [9]. Most
techniques depend on a parameter, which is the number of
clusters k. In some fields, including genome clustering, k is
unknown and has to be estimated. A special case is given
by SCS contamination detection where the determination of
the actual number of clusters is secondary. Here, one is not
necessarily interested in a specific grouping, rather in the
distinction between k = 1 (no structure, clean sample) and
k > 1 (clusters, contaminated sample). For this task, a large
subset of k-estimation procedures falls out of focus since they
operate on cluster-specific characteristics, only defined for
k > 1. The case k = 1 requires an appropriate null model to
which the data is compared to in order to be able to detect
no structure [25]. In the following, we will review techniques
suitable for this task.

We propose a set of differentation criteria for clustering
algorithms with respect to the suitability in a contamination
detection tool:

• Parameter complexity: As it is difficult to optimize pa-
rameters of a given method, even more for researchers
from external domains, i.e. biology, the number of
parameters should be low. All parameters should be
either robust to changes, or easily controllable, possibly
through custom hyper-parameters.

• Interpretability of results: Having no absolute truth in
clustering, it is desirable for a method to deliver results
which are interpretable, possibly including measures of
confidence, i.e. p-values.

• Existence of an optimal labeling: The method should be
able to provide a grouping for the optimal number of
clusters, making it possible to tag all contaminant parts
in a given sample.

• Computational complexity: Even single-cell genomes
can be very large and samples plenty. For interactive
data investigation, methods with long runtime are not
desirable.

Given these criteria, we will give an overview of relevant
methods and discuss pros and contras. In the following,
method parameters are given as Px where the subscript x
denotes the actual parameter.

III.1 Gap statistic

A very frequently applied method for estimating the number
of clusters is the Gap Statistic [25]. It considers the difference
of the within-cluster dispersion compared to its expected
value under a given reference null distribution which is taken
to be uniform, aligned at the principal components of the data.
k is taken according to the largest gap between those mea-
sures which are estimated using PB repetitions. It is found by
locating either an elbow or the maximum in the gap curve for
a given range k ∈ {1, . . . , PPkmax

}. However, the elbow might
not be pronounced enough or the maximum is surrounded
by a noisy plateau, sometimes resulting in wrong estimations.
Even though, the method is statistically well founded, it does
not provide any interpretable significance of the result.

III.2 Sub-sampling stability

The Model Explorer algorithm (ME) and related methods [4, 30]
determine k by looking at the stability of clusterings for
k ∈ {2, . . . , Pkmax} with respect to random sub-sampling of
the data. Here, a random subset with fixed ratio Pr is drawn
from the data. The number of clusters is chosen as the largest
k for which a clustering is stable. Here, stable is defined as the
average similarity (over PB repetitions) between sub-samples
being above a fixed threshold Pt0 . If no given clustering is
stable, k = 1 is assumed. However, this threshold is arbitrary
and often depends on the data. Additionally, such methods
tend to find stable solutions even on random data [32].

III.3 Model Order Selection by Randomized Maps

Model Order Selection by Randomized Maps (MOSRAM) [5] can
be seen as a variation of the previous Model Explorer algo-
rithm. Instead of sub-sampling, it uses PB random projections
of the data and introduces an additional statistical test for
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the difference of k-clusterings. A set of significant cluster
numbers is selected according to p-values of the test using
a significance level Pα. The method still includes the same,
fixed similarity threshold Pt0 as the basis of the test statistic.
The random projections take an additional parameter Pε that
determines the target dimension. However, in this context,
it does not make sense to apply random projections to data
which already has been reduced in dimension, however it is
worth to note, that the statistical test can also be applied to
the Model Explorer algorithm.

III.4 Ensemble k-means clustering

The Multi-K algorithm [16] randomly samples ki from a given
distribution such as uniformly from ki ∈ PK = {1, . . . , Pkmax}.
It then applies the k-means algorithm PB times using different
ki in order to build a graph G in which edge weights between
points of the same cluster are increased in every iteration. In
the following, all edge weights are decreased PB times, in each
iteration counting the number of connected components of
G. The optimal number of clusters is taken as the k occurring
most often throughout all iterations.

III.5 Prediction-based resampling

In Clest [7], using a fixed ratio Pr, the data is split into training
set Lb and test set Tb multiple times b ∈ {1, . . . , B}. In each
iteration, a linear classifier PC is trained using Lb and tested
on Tb. At the same time, Tb is also clustered and both the
classification and clustering results are compared using an
internal cluster validity index. The same procedure is done
for a number B0 of simulated reference null data sets. For
each k ∈ {2, . . . , Pkmax}, original and reference performances
are compared, resulting in a set of p-values pk. The number
of clusters is estimated as k for which pk is significant (using
a level Pα) and has the largest statistical power.

III.6 Dip-means

Using the Dip Statistic [11], Dip-means [15] is based on a sig-
nificance test for multimodality. It starts by considering the
whole data set as one cluster and tests against the null hy-
pothesis that the cluster is unimodal. The test is applied to
each data points distance distribution w.r.t. to all other points
within the cluster. If a certain percentage Pv of points has
significant evidence against unimodality (using a significance
level Pα), the cluster is split into two distinct clusters using
a clustering algorithm such as k-means. On each resulting
cluster, the procedure is performed recursively until no clus-
ter is multimodal anymore. The parameter Pα in combination
with Pv can be used to control the number of false positives,
detected by the method.

III.7 Number of connected components

Spectral clustering can be used to estimate the number of
clusters using the eigengap heuristic [29]. However, this
heuristic relies on a pronounced elbow in the distribution of
eigenvalues that is not distinct enough in most real world
data sets, making its identification difficult. Additionally,
the construction of the underlying graph heavily influences
the result. As BH-SNE (subsection II) often produces very
pronounced clusters, we found that counting the number of
connected components (CC) of a Pkn -mutual-nearest-neighbor
graph is often sufficient. This way, counting the number of
eigenvalues λ = 1 of the normalized graph Laplacian results
in the number of clusters as long as they are compact and
separated. Tarjans algorithm can be used to estimate this
number much faster than using eigendecomposition.

Most of the presented methods deliver an optimal labeling
that corresponds to the optimal number of clusters. Only ME,
MOSRAM and Clest do not provide such. It is possible to do
a posterior labeling. However, it is in no connection to the
estimation method, possibly delivering confusing results.

The runtime complexity of all methods is either quadratic
or better. For some, it depends most on the number of refer-
ence data sets PB and the underlying clustering algorithm. It
is worth to note, that CC can determine k in linear time and
using Dip-means, it is possible to detect contamination early
in the algorithm by only testing for multimodality on the one
cluster containing all data.

III. Preliminary Results

I. Methods

Early tests on real single-cell data indicate that most methods
work reasonably well. However, we found that stability based
methods tend to fail to recognize no structure in the data, i.e.
non-contaminated samples. This is due to the fact that even
in such data, clusterings can appear stable [32], hence we
discard these algorithms (Model Explorer, MOSRAM) as suit-
able candidates. The Gap Statistic also often fails to discover
non-structured data. Here, the gap curve shows spurious
elbows, even when there is only one cluster in the data. Also,
in Clest, the number of parameters seems to lead to unstable
results. Although it does work in the majority of cases, its
p-values on which basis the decision for k is made, are often
very near to the significance level, making it very sensitive.
Additionally, included parameters are difficult to tune for end
users. In Multi-K, even in the presence of more clusters, k = 1
cluster is detected too often, resulting in a number of false
negatives. This is due to the fact that, in the underlying graph
G, positive edge weights between members of different clus-
ters might persist for a long time, favoring a single connected
component. Estimating the number of connected components
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of a Pkn -mutual-nearest-neighbor graph gives correct results
in the majority of cases. Here, Pkn might be interpreted as the
minimum number of data points in a cluster, thus is easily
interpretable. However, this does hold only for well separated
and compact clusters where the largest distance to a nearest
neighbor of the same cluster is smaller than the distance to
the nearest point in the most nearby cluster. Overlapping
or nearby clusters pose a problem for all of the presented
methods and are difficult to distinguish from being one. Here,
dip-means is standing out as it is also able to discover also
overlapping clusters. As long as the structure is significantly
multimodal, it is able to detect such.

All of the presented methods work fairly well for estimat-
ing the number of clusters for k > 1. However, only two
methods, counting the number of connected components and
dip-means, stand out in their ability to properly differentiate
between k = 1 and k > 1 without too many false detections.
Their parameters are few and easily interpretable, making
them good candidates for being applied in single-cell con-
tamination detection pipeline. Still, a thorough evaluation
of its behavior for this task is required and methods might
be modified and combined with other, possibly supervised
methods.

II. Results on annotated data

In order to evaluate the performance of our pipeline, we
use simulated single-cell data. The main advantages over
using real data from the laboratory is given by a fully correct
ground truth and ease of controlling the level of phyloge-
netic relatedness of included genomes. Here, we expect that
quantifying contamination in samples containing remotely
related genomes results in a higher detection rate than in sam-
ples with very closely related genomes, i.e. from the same
species. We employ mdasim [23] to simulate multiple dis-
placement amplification from a given reference sample that is
either clean or contaminated. To simulate the subsequent se-
quencing process, we use ART [13] to generate reads. Finally,
contigs are assembled by SPAdes [3]. In our observations we
found no difference between using the simulated data and
real-world samples, both in data quality and detection rates.

Our pipeline reliably detects most contaminated samples
with high confidence. Here, easily traceable contamination
(i.e. the contaminant is only remotely related) can be de-
tected by counting the number of connected components of
a nearest-neighbor graph, as usually, in such cases clusters
are very well pronounced. This step can detect most contam-
ination very fast (linear in the number of graph nodes and
edges) and further analysis may be skipped.

In uncertain cases (i.e. the contaminant is very closely
related), the neighborhood graph might not contain sepa-
rately connected components anymore. Here, dip-means is
employed to test for multimodality of the data. Again, even

closely related species can be separated with this approach.
Two example are given by Figure 4 and Figure 5. The sam-
ples contain two species from the same family and genus
respectively. Even though the two graph components are con-
nected by a small bridge, contamination can still be detected
by finding a significant multimodality of pairwise distances
(p = 0). In contrast, Figure 3 depicts a clean sample. Ideally,
the neighborhood graph contains only one connected compo-
nent and the distribution of pairwise distances is unimodal
(p = 0.12), indicating no contamination.

III. Summary & ongoing work

Preliminary results are very promising and we plan a more
thorough evaluation including many samples with differ-
ent phylogenetic relatedness. Early observations show that
our pipeline can discriminate genomes from the same family
and even genus. Because all involved method parameters
are determined by the system, our pipeline allows for fully
automated batch processing. Still, it allows for interactive
inspection by experts and provides p-values as confidence.
Furthermore, we plan to include various meta data sources
such as from the sequencing or assembly process to improve
detection accuracy even more.
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Figure 3: Cluster analysis of a clean sample. Left: t-SNE representation. Center: 9-nearest-neighbor graph. Right: distribution of pairwise distances.

Figure 4: Cluster analysis of a contaminated sample containing two genomes from the same family (Streptococcaceae). Left: t-SNE representation.
Center: 9-nearest-neighbor graph. Right: distribution of pairwise distances.

Figure 5: Cluster analysis of a contaminated sample containing two genomes from the same genus (Streptococcus). Left: t-SNE representation. Center:
9-nearest-neighbor graph. Right: distribution of pairwise distances.
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