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Enabling Data Exchange in Two-Agent Interactive
Systems under Privacy Constraints

E. Veronica Belmega, Member, IEEE, Lalitha Sankar, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—It is advantageous for collecting agents in intercon-
nected systems to exchange information (e.g., functions of their
measurements) in order to improve their local processing (e.g.,
state estimation) because of the typically correlated nature of
the data in such systems. However, privacy concerns may limit
or prevent this exchange leading to a tradeoff between state
estimation fidelity and privacy (referred to as competitive privacy).
This paper focuses on a two-agent interactive setting and uses a
communication protocol in which each agent is capable of sharing
a compressed function of its data. The objective of this paper
is to study centralized and decentralized mechanisms that can
enable and sustain non-zero data exchanges among the agents.
A centralized mechanism determines the data sharing policies
that optimize a network-wide objective function combining the
fidelities and leakages at both agents. Using common-goal games
and best-response analysis, the optimal policies are derived
analytically and allow a distributed implementation. In contrast,
in the decentralized setting, repeated discounted games are shown
to naturally enable data exchange (without any central control
or economic incentives) resulting from the power to renege on
a mutual data exchange agreement. For both approaches, it is
shown that non-zero data exchanges can be sustained for specific
fidelity ranges even when privacy is a limiting factor. This paper
makes a first contribution to understanding how data exchange
among distributed agents can be enabled under privacy concerns
and the resulting tradeoffs in terms of leakage vs. estimation
errors.

Index Terms—competitive privacy, distributed state estimation,
non-cooperative games, discounted repeated games

I. INTRODUCTION

In many distributed systems, data collection and distributed
processing are essential for system-wide reliable operations
and control. Examples include critical infrastructures such as
the electric power system and water management system, as
well as the emerging distributed electronic medical record
(EMR) system. In all these systems, while the operations
are distributed, the data collected at the various agents are
correlated and need to be shared for better local computation
and estimation. For example, in the electric power system,
data collection and processing are performed at various entities
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(e.g., utility companies, systems operators, etc.) that are spread
out geographically. The interconnectedness of the network,
requires that these distributed entities share data amongst
themselves to ensure precise estimation and control, and in
turn, system stability and reliability. Despite its importance,
data sharing in the electric power system is often limited
- sometimes with catastrophic consequences [2] - because
of competitive interests or security/privacy concerns of the
agents.

Although preserving the integrity of telemetry data in such
distributed systems is important, this work does not deal with
this security problem; rather, the focus is on the problem
of enabling data exchange between legitimate agents while
ensuring that some aspects of the data (identified as private)
are revealed minimally. For example, in distributed cloud-
based computing systems (e.g., EMR) as well as in the electric
power system, computations have to be done locally and
require sharing of public data by the different agents while
ensuring that specific data, deemed as private (e.g., personally
identifiable information about patients, state information about
nodes internal to an agent’s region in the electric power
system, etc.), is not revealed. We henceforth refer to this
problem as competitive privacy as in [3]. While one could
envision a variety of distributed computations, in this paper,
we formalize the problem theoretically as a distributed state
estimation problem with privacy constraints. Specifically, we
use game-theoretic tools to understand incentives needed to
enable non-zero data sharing.

The notion of privacy is predominantly associated with
the problem of ensuring that personal data about individuals,
stored in a variety of databases or cloud servers, is not
revealed. Quantifying the privacy of released data has captured
considerable attention from the computer science and infor-
mation theory research communities leading to two different
rigorous frameworks: differential privacy introduced by Dwork
et al. [4], [5]; and information-theoretic privacy developed in
[6]. The first framework focuses on worst-case guarantees and
ignores the statistics of the data, while the latter focuses on
average guarantees and is cognizant of the input data statistics;
their appropriateness depends on the application at hand. In
the information era, however, privacy restrictions also appear
in data exchange contexts as detailed above; such a competitive
privacy setting was first studied via an information-theoretic
framework in [3]. A detailed tutorial on various contexts in
which privacy problems are encountered can be found in [7].

For distributed state estimation problems via data exchange,
an information-theoretic competitive privacy framework holds
the following advantages: (a) it takes into account the statis-
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tical nature of the measurements and underlying state (e.g.,
complex voltage measurements in the grid that are often
assumed to be Gaussian distributed); (b) it combines both
compression and privacy in one analysis by developing rate
and privacy optimal data sharing protocols; and (c) it quanti-
fies privacy over all possible sequence of measurements and
system states.

The competitive privacy information-theoretic framework
introduced in [3] studies information exchange among two
interconnected agents whose privacy concerns limit such data
sharing, and thus, impacts the fidelity of the state estimate
computed by the agents. The authors proposed a distributed
source coding model to quantify the information-theoretic
tradeoff between estimate fidelity (distortion via mean-square
error), privacy (information leakage), and communication rate
(data sharing rate). Every achievable distortion-leakage tuple at
both agents represents a vector of opposing quantities. This is
so because achieving minimum distortion for one agent implies
maximum leakage for the other; similarly, minimum leakage
for one agent implies maximum distortion for the other. A
pertinent question follows: how to choose such a tradeoff in
practice?

The objective of this work is to address this question via
mechanisms that can enable and sustain specific distortion-
leakage tuples in both centralized (a unique decision-maker)
and decentralized (each agent has its own individual agenda)
settings. Game theory is a mathematical toolbox for studying
interactions among strategic agents and has established its
value in a wide-variety of fields including wireless commu-
nications [8], [9]. While often applied in the non-cooperative
and decentralized context, even in centralized settings, game
theory can be valuable when devising efficient and distributed
algorithms to compute the solution; in fact, these tools can
be very useful for solving difficult, non-convex problems that
arise in multi-agent models with multiple performance criteria
(such as leakage vs. fidelity) as we present in the sequel.

Our first approach assumes a central controller that imposes
the data sharing choices of the two agents (e.g., when electric
utility companies share their data with a central systems
operator). The network-wide objective function captures both
the overall leakage of information and the total distortion
of the estimates of the two agents via their weighted sum.
To circumvent the non-convexity of this objective function,
we exploit the parallel between distributed optimization prob-
lems and potential games [10]. The Nash equilibria of the
resulting common-goal game are the intersection points of
the best-response functions which turn out to be piece-wise
affine. Moreover, using game theoretic tools we provide a
distributed algorithm - the iterative best-response algorithm
- that converges to an optimal solution. Our results show that
the central controller can smoothly manipulate the distortion-
leakage tradeoff between two extremes: both users share their
data fully (minimum distortion - maximum leakage) or not at
all (maximum distortion - minimum leakage). Specifically, not
all information-theoretic tuples can arise as outcomes, but only
the optimizers of the network-wide objective function.

If there is no central controller (e.g., when agents are two
systems operators that need to share data to monitor large parts

of the electric grid), each agent chooses its own data sharing
strategy to optimize its individual distortion-leakage tradeoff.
In [11], we showed that data sharing decreases the distortion of
the agent receiving data while the sharing agent only increases
its leakage. Thus, when the interaction takes place only once
(i.e., one-shot interaction), rational agents have no incentive
to share data. Economic incentives overcome this issue [11]
and all distortion-leakage tuples can be achieved assuming that
agents are paid (by a common moderator) for their information
leakage.

In the second part of this paper, we show that pricing is
not the only mechanism enabling cooperation. If the agents
interact repeatedly over an indeterminate period, tit-for-tat
type of strategies (i.e., an agent shares its data as long as the
other agent does the same) turn out to be stable outcomes of
the new game. We show that a whole sub-region of distortion-
leakage tuples (in between the aforementioned extremes) is
achieved without the need for a central authority; effectively,
the agents build trust by exchanging data in the long term.

Preliminary results regarding the repeated interaction have
been presented in [1]. We provide here a complete analysis
and detailed proofs. Moreover, in this current version, we:
(i) introduce different discount factors to model individual
preferences for present vs. future rewards; (ii) give closed-
form bounds on the discount factors; and (iii) illustrate further
results.

The paper is organized as follows. In Section II, we
introduce the system model and an overview of the most
relevant information and game-theoretic concepts and prior
results. The common goal non-cooperative game and its Nash
equilibria are analyzed in Section III as a simpler alternative to
a non-convex centralized problem. In Section IV in which we
examine the repeated games framework and study its solutions
and achievable distortion-leakage pairs. Numerical results that
illustrate the analysis are also provided. We conclude in
Section V.

II. SYSTEM MODEL

We consider a network composed of physically intercon-
nected nodes as illustrated in Figure 1. We focus only on a
pair of such nodes - called agents - which are capable of
communicating and sharing some of their collected data.
Each agent observes a sequence of n measurements from
which it estimates a set of system parameters, henceforth
referred to as states. The measurements at each agent are also
affected by the states of the other agent. For the sake of sim-
plicity, we consider a linear approximation model (e.g., model
of voltages in the electric power network [12]). Denoting the
state and measurement vectors at agent j ∈ {1, 2} as Xn

j and
Y nj , respectively, the linear model is:

Y1,k = X1,k + α1X2,k + Z1,k

Y2,k = α2X1,k +X2,k + Z2,k,
(1)

where α1, α2 are positive parameters. The kth states, X1,k and
X2,k, for all k, are assumed to be independent and identically
distributed (i.i.d.) zero-mean unit-variance Gaussian random
variables and the additive zero-mean Gaussian noise variables,
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Fig. 1. Network of physically interconnected nodes. We focus on two com-
municating nodes/agents and exploit the possibility of exchanging information about
their local measurements. These measurements depend on both agents’ states (i.e.,
Y n
j = hj(X

n
1 , X

n
2 )) as made explicit in (1).

Z1,k and Z2,k, are assumed to be independent of the agent
states and of fixed variances σ2

1 and σ2
2 , respectively.

This model is relevant to direct current (DC) state estimation
problems in which the agents (e.g., system operators or energy
management entities) need to share their local measurements
(e.g., power flow and injections at specific locations) to
estimate with high fidelity their local states (e.g., complex
voltages).

Agent j can improve the fidelity of its state estimate if
the other agent i 6= j decides to share some information
regarding its measurements - say fj (Y ni ). At the same time,
the amount of information agent i wishes to leak about its
state is constrained (in the competitive privacy framework of
[3]). These conflicting aspects are measured by information-
theoretic concepts: the desired fidelity and privacy amount to
meeting a distortion (mean-square error) and an information
leakage constraint, respectively:

E

[
1

n

n∑
k=1

(
Xj,k − X̂j,k

)2]
≤ Dj , and (2a)

1

n
I(Xn

j ; fi(Y
n
j ), Y ni ) ≤ Lj , (2b)

where Dj represents the distortion of estimate X̂n
j - which

depends on the other agent’s sharing policy, fj(Y ni ) - from the
actual state Xn

j , and Lj is the maximum information leakage.
The mutual information in (2b) measures the average leakage
of information per sample about the private state Xn

j of agent
j to the other agent. The other agent can infer information
about Xn

j from two sources: (i) its own measurements Y ni
(1); and (ii) the data shared by agent j, i.e., fi

(
Y nj
)
.

Sankar et al. [3] determined the entire region of achievable
(D1, L1, D2, L2) tuples. The authors devised a particular
coding scheme - based on quantization and binning techniques

- that satisfies the distortion constraints Di and achieves
the minimal leakage Lj constraint (for both agents). We
summarize the resulting achievable distortion-leakage (DL)
region in the following theorem.

Theorem 1. [3] The distortion-leakage tradeoff for a two-
agent competitive privacy problem (described above) is char-
acterized by the set of all distortion pairs (D1, D2) ∈
[Dmin,1, Dmax,1)×[Dmin,2, Dmax,2) and the information leak-
age functions, Li(Dj), ∀i, j ∈ {1, 2}, i 6= j, defined by

Li(Dj) =


1
2
log
(

m2
i

m2
iDmin,i+n

2
i (Dj−Dmin,j)

)
, if Dj < Dmax,j

1
2
log
(

Vj

Vj−αj

)
, otherwise

(3)
with the following parameters:

Vj = 1 + α2
j + σ2

j ,

E = α1 + α2,

nj =
Vi − αiE
V1V2 − E2

,

mj =
αjVi − E
V1V2 − E2

,

Dmin,j = 1− (α2
iVj + Vi − 2αiE)

(V1V2 − E2)
,

Dmax,j = 1− 1

Vj
.

The four dimensional distortion-leakage tuples
(D1, L1, D2, L2) can be fully characterized by all distortion
pairs (D1, D2) and the corresponding leakage values L1(D2)
and L2(D1) (via the one-to-one bijective functions above).

The maximal and minimal distortions, denoted by Dmax,j

and Dmin,j , represent the extreme cases in which the other
agent i either sends no information or fully discloses its
measurements. If Dj < Dmax,j , the distortion constraint is
non-trivial and agent i has to leak information about its own
state. The leakage is increasing with Dj . If Dj ≥ Dmax,j , the
distortion constraint is trivial, and agent i does not have to
send any data. Its minimum leakage is not zero because agent
j can still infer some private data (on agent i state) from its
measurements Y nj .

Notice that the region contains asymmetric tuples in terms
of data sharing. This results from the opposing distortion and
leakage components that cannot be optimal simultaneously:
minimum distortion at one agent corresponds to maximum
leakage at the other, and minimum leakage of one agent
corresponds to maximum distortion at the other. From this
region (which is four dimensional) alone, it is not clear how to
choose such a tradeoff tuple. In this paper, the main objective is
to study different mechanisms that explain how specific tuples
may arise in centralized and decentralized settings.

III. CENTRALIZED SOLUTION VIA COMMON GOAL GAMES

Our first approach is focused on centralized networks in
which a central controller (e.g., in the electric power grid or
cloud-computing systems) dictates the data-sharing policies
of the two agents. The controller wishes to minimize both
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the overall estimation fidelity and the information leakage.
But, as discussed in the previous section, the two objectives
are opposing and they cannot be optimized simultaneously; a
network-wide compromise has to be made.

In multi-objective optimization problems, scalarization via
the weighted sum of the different objectives is a common
technique that provides good tradeoff tuples by solving a
simpler scalar problem instead. In some cases (such as convex
optimization problems), the tuples obtained by tuning the
weights among the objectives are all optimal tradeoffs [13].

The network-wide objective function that captures the trade-
off between overall estimation fidelity and leakage - by their
weighted sum - can be written as follows:

usys(D1, D2) = −
2∑
j=1

Lj(Di) +
q

2
log

 2∑
j=1

Dj

/
2∑
j=1

Dj

 ,

where the leakage of information Lj(Di) is given in (2b) and
q = ŵ/w̃ > 0 is the ratio of the weighting factors between
the two terms.

For homogeneity reasons, the second term in the above
equation should relate to logarithmic information measures.
We propose to balance the information leakage (in bits/sample)
with the overall shared information (also in bits/sample) which
is inversely proportional to the distortion [14, Chap. 10]; as
the distortions decrease, the information revealed per sample
(or communication rate) increases.

The problem reduces to finding the distortion pairs (D1, D2)
- characterizing the data-sharing policies of both users - that
maximize the objective function (5). One can easily check that
this function is not always concave on its domain. By using
a distributed approach to find the solution, we can overcome
this obstacle. Assume each agent controls its own data-sharing
policy which impacts directly on the distortion at the other
agent. The control parameter (or action) of agent j is denoted
by aj = Di. The agents choices are driven by the same
common goal, i.e., the network-wide objective function.

We further exploit the parallel between distributed opti-
mization and potential games which has several advantages:
(i) it allows solution of a non-convex problem in a simpler
manner; (ii) it leads to an iterative and distributed procedure
that converges to a locally optimal tradeoff tuple; and (iii) the
central controller can manipulate this outcome by tuning a
scalar parameter alone. The partial shift of intelligence, from
the centralized controller towards the agents, paves the way
to developing scalable data-sharing policies in more complex
networks (with larger numbers of communicating agents).

We model the common goal game by Gsys =
(P, {Aj}j∈P , usys) in which P , {1, 2} designates the set
of players (the two agents); and Aj is the set of actions
that agent j can take. The payoff function of both players,
usys : A1 ×A2 → R, is given by

usys(a1, a2) = −
2∑
j=1

Lj(aj) +
q

2
log

 2∑
j=1

Dj

/
2∑
j=1

aj

 .

The utility function can be re-written using Theorem 1 as

usys(a1, a2) =
1

2
log

(
(γ1a1 + δ1)(γ2a2 + δ2)

(a1 + a2)q

)
+ C0, (5)

where γj = (nj/mj)
2, δj = Dmin,j − γjDmin,i, and C0 =

q/2 log(D1 + D2). Without loss of generality, the additive
constant C0 and the multiplicative positive constant 1/2 in
the payoff function can be ignored in the following analysis
of the Nash Equilibrium (NE) [15].

The non-cooperative game Gsys falls into a special class
called potential games [10] that have many interesting prop-
erties. Their particularity lies in the existence of a global
function - called the potential function - that captures the
players’ incentives to change their actions. In our case, the
network-wide objective (5) represents precisely the potential
function of the game. Monderer et al. [10] proved that every
potential game has at least one NE solution1. Also, every local
maximizer of the potential is an NE of the game. However,
since the potential function is not concave [17], the game
may have other NE points (e.g., certain saddle points of the
potential function).

To completely characterize the set of all NEs, we study the
best-response correspondence defined by:

BRj : Ai → Aj
s.t. BRj(ai) = arg supbj usys(bj , ai),

BR : A1 ×A2 → A1 ×A2

s.t. BR(a1, a2) = (BR1(a2)×BR2(a1)).

The best-response (BR) of agent j to an action ai played
by the other agent i - denoted by BRj(ai) - is the optimal
choice (payoff maximizing one) of agent j given the action of
the other player. The best-response correspondence, BR(·, ·),
represents the concatenation of both agents’ BRs. The optimal
action of agent j for fixed choices of the other agents might
not be a singleton, hence the correspondence definition (a set-
valued function).

Nash [18] showed that the fixed points of the BR corre-
spondence are the NEs. In our case, the BR functions reduce
to simply piecewise affine functions. Thus, the game Gsys
can be described as a Cournot duopoly interaction [16] in
which the set of NE points is completely characterized by
intersection points of the best-response functions BR1(·) and
BR2(·) [19]. Using game theoretic tools, we reduce the non-
convex optimization problem to the analysis of intersection
points of piecewise affine functions.

We further investigate a refined stability property of NEs,
namely, their asymptotic stability [16]. This property is impor-
tant when the game has multiple NEs. In such cases it seems
a priori impossible to predict which particular NE will be
the actual outcome. Nevertheless, if the players update their
choices using the best-response dynamics - i.e., the agents
sequentially choose their best-response actions to previously

1Nash equilibrium represents the natural solution concept in non-
cooperative games [16] defined as a profile of actions (one action for each
agent) that is stable to unilateral deviations. Intuitively, if the players are at an
NE, no player has any incentive to deviate and switch its action unilaterally
(otherwise, the deviator decreases its payoff value).
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observed plays by the others [8] - the outcome of a Cournot
duopoly can be predicted exactly, depending on the initial
point. To be precise, the asymptotically stable NEs will be the
attractors of these dynamics whereas the other NEs will not
be observed generically (except when the initial point happens
to be one of these NEs). For a more detailed discussion on
Cournot duopoly the reader is referred to [16] or [19].

To compute the BRs, we analyze the first-order partial
derivatives of the potential function. We distinguish different
behaviors depending on the emphasis on either the leakage of
information (q ≤ 1) or estimation fidelity (q > 1).

A. Emphasis on the fidelity of state estimation (q > 1)
By developing the first-order partial derivatives of the po-

tential function, the best-responses become

BRj(ai) =

 Fj(ai), if Dmin,i < Fj(ai) ≤ Di,
Di, if Fj(ai) > Di,
Dmin,i otherwise,

(6)

where Fj(ai) = ai/(q − 1) − qδj/((q − 1)γj) is an affine
function of ai with parameters γj = (nj/mj)

2 and δj =
Dmin,j − γjDmin,i. The intersection point of the two affine
functions F1(·) and F2(·) is a∗1 = q

1−(q−1)2

(
δ1
γ1

(q − 1) + δ2
γ2

)
a∗2 = q

1−(q−1)2

(
δ2
γ2

(q − 1) + δ1
γ1

)
.

(7)

The NE can be completely characterized by the intersec-
tion points of the two BR functions in the profile set, i.e.,
∆ , [Dmin,2, D2] × [Dmin,1, D1]. Noticing that the BRs are
piecewise affine functions, the following result is obtained.

Theorem 2. The game Gsys has generically a unique or three
NEs assuming the central controller puts an emphasis on the
overall state estimation fidelity, i.e., q > 1. In very specific
cases (on the system parameters), the game may have an
infinite number of NEs (when the affine functions Fj(·) are
identical) or two NEs (when the intersection point (7) lies on
the border of ∆).

Intuitively, if the network parameters α1 and α2 are ran-
domly drawn from a continuous distribution, the probability
of having infinitely many or two NEs is zero. In general,
depending on the relative slopes of the two BRs, the game
has a unique NE (given by (7) provided it lies in ∆) or three
NEs (one is (7) and the other two lie on the border of ∆).
The details of the proof are given in Appendix A. In this case,
the NEs of the common goal game are either network-wide
optimal or saddle points of the central controller’s objective
function (also the potential function of the game). However,
only the NEs that are optimizers of this objective function
are asymptotically stable and can be observed as outcomes of
best-response dynamics/algorithms.

B. Emphasis on the overall leakage of information (q ≤ 1)
As opposed to the previous case, the BR of agent j is a

piecewise constant function given as follows:

BRj(ai) =

{
Di, if C

[q=1]
i or C[q<1]

i

Dmin,i otherwise,
(8)

with the following conditions

C
[q=1]
i : q = 1 and ai >

δi
γi
,

C
[q<1]
i : q < 1 and Fj(ai) > Di or(
Dmin,i < Fj(ai) ≤ Di and usys(Dmin,i, ai) ≤ usys(Di, ai)

)
,

where Fj(ai) is defined in (6). The intersection points of such
functions switching between the two extremes can only lie on
the corner points of ∆.

Theorem 3. The game Gsys has either a unique or two
NEs assuming the central controller puts an emphasis on the
leakage of information (q ≤ 1). The NEs lie on the four
corners of ∆, depending on the system parameters.

When the game has two NEs, they are always given by
the two symmetric extreme corners (Dmin,2, Dmin,1) (both
users fully disclose their measurements) and (D2, D1) (no
cooperation). Otherwise, either of the four corners can be the
outcome of the game, depending on the system parameters.
Also, all NEs are asymptotically stable in this case. The proof
is omitted as it is tedious and follows simply by analyzing the
intersection of piecewise constant functions. In this case, the
central controller cannot smoothly manipulate the outcome by
tuning q ∈ [0, 1] and only extreme distortion-leakage pairs are
achieved. In the remainder of this section, we focus only on
the case q > 1, in which the controller puts an emphasis on
the estimation fidelity.

C. Numerical results

We assume the target distortions to be equal to the maximum
distortions Dj = Dmax,j , j ∈ {1, 2}. First, we consider the
case in which a unique NE exists and q > 2. Fig. 2 illustrates
the water-levels of the potential function and the BRs in ∆
for the scenario α1 = 0.5, α2 = 0.6 and σ2

1 = σ2
2 = 0.1.

The NE is the intersection point (aNE
1 , aNE2 ) = (a∗1, a

∗
2) =

(0.2559, 0.2542) and is asymptotically stable. Using a best-
response iteration, the two agents converge always - from any
initial point - to the optimal point. If a small perturbation
occurs, using the same iterative BR dynamics, the agents will
return to this point.

The case in which the game has three NEs is illus-
trated in Fig. 3 for the scenario α = 1, α2 = 10,
σ2
1 = σ2

2 = 0.1 and q = 1.2. The solutions are
(aNE

1 , aNE
2 ) ∈

{
(Dmin,2, Dmin,1), (D2, D1), (a∗1, a

∗
2)
}
≡

{(0.1107, 0.0023), (0.9901, 0.5238), (0.2031, 0.1906)}.
Analyzing the plot of the BR functions, we can observe

that the intersection point (a∗1, a
∗
2) is not asymptotically stable:

Assume that a small perturbation moves the agents away
from this point. By iterating the best responses, the agents
get further away and converge to one of the other NEs. The
initial perturbation determines which of the two NEs that are
asymptotically stable will be chosen.

Fig. 4 illustrates the NEs depending on the parameter q ∈
[0, 100] tuned by the central controller. Both scenarios of Fig.
2 and 3 are considered.

By choosing small values of q, the central controller prefers
large distortions and small leakage tuples; privacy is enforced



6

in the network. Larger values of q result in opposite tuples
(small distortions and large leakage tuples); cooperation is
enabled among selfish agents. In the case of three NEs, the
discontinuity at q = 1 can be explained by the change in the
BR functions; if q > 1 they are continuous and piecewise
affine; if q ≤ 1 they are discontinuous Heaviside-type of
functions (as seen in Sec. III-B).

We also remark that not all information-theoretic distortion-
leakage tuples are achieved at the NE. Only the local maxi-
mizers or saddle points of the overall network-wide payoff
function are NEs and these tradeoff tuples depend on the
system parameters. To achieve different tuples at the NE, other
objective functions have to be considered (e.g., the sum of
agents’ individual payoff functions in (9)).

Fig. 2. Water-levels of the potential (top) and BRs (bottom) as functions of
(a1, a2) ∈ (Dmin,2, D2] × (Dmin,1, D1]. The potential has a unique maximum
equal to (a∗1 , a

∗
2) which is the asymptotically stable NE.

IV. DISCOUNTED REPEATED GAMES

In distributed networks, the need for continual monitoring
makes repeated interactions among agents inevitable; e.g.,
the control of the electric power network depends on the
state estimation performed periodically by distributed entities
that interact with each other over and over. Such a repeated
interaction may build trust among agents leading to sustained
information exchange.

Fig. 3. Water-levels of the potential (top) and BRs (bottom) as functions of
(a1, a2) ∈ (Dmin,2, D2] × (Dmin,1, D1]. The potential has two local maxima
(Dmin,2, Dmin,1), (D2, D1) and one saddle point (a∗1 , a

∗
2). The saddle point is a

NE not asymptotically stable whereas the other two are asymptotically stable NE.

As opposed to the previous section, we do not assume the
presence of a central controller. Rather, we exploit the repe-
tition aspect to achieve distortion-leakage tuples beyond the
no-data sharing case naturally without economic incentives.

One-shot game and pricing: We start with a brief
overview of the non-cooperative game introduced in [11].
Consider the tuple G = (P, {Aj}j∈P , {uj}j∈P), where the
set of players and their action sets are identical to the game
described in Sec. III. The difference lies in the individual
payoff functions: uj , ∀j ∈ P , the j-th of which measures
the satisfaction of agent j and depends on agent j’s own
action choice but also on the others’ choices. As opposed to
the common-goal game, each agent cares only about its own
leakage of information and state estimation fidelity. Thus, the
payoff function of agent j, uj : Aj ×Ai → R, is given by

uj(aj , ai) = −Lj(aj) +
qj
2

log

(
Dj

ai

)
. (9)

The second term represents the information rate of the data
received from the other agent depending on ai = Dj , i.e.,
the distortion of agent j. The weight qj = ŵj/w̃j is the ratio
between the emphasis on leakage vs. state estimation fidelity
of agent j.
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Fig. 4. Achievable distortion pairs at the NE obtained by tuning q ∈ [0, 100] for
the scenarios of Fig. 2 and Fig. 3. Not all distortions pairs can be achieved at the NE
of the common-goal game. The distortion pairs that are achieved are the points which
correspond to either the local maxima or saddle points of the system-wide objective
function.

Maximizing the utility in (9) with respect to (w.r.t.) aj is
equivalent to minimizing only the first term: the leakage of
information. Indeed, the second term is a result of the data
shared by the other agent i, and hence, not in control of agent
j. The game simplifies into two simple decoupled optimization
problems; each agent chooses to stay silent (minimizing its
leakage of information). The only rational outcome is the
maximum distortion - minimum leakage extreme for both
agents.

Remark 1. The one-shot game G is somewhat similar to
the classical prisoners’ dilemma [16] (which is a discrete
game as opposed to our continuous game): each agent has
a strictly dominant strategy2 which is that of not sharing any
data (beyond the minimum requirement).

In [11], we show that any tuple in the information-theoretic
region is achievable provided the agents are appropriately
rewarded via pricing. The modified payoff functions that

2A strictly dominant strategy is an action that is the best choice of an agent
independent from the others’ choices.

include such pricing are, for j ∈ P ,

ũj(aj , ai) = uj(aj , ai) +
pj
2

log

(
Di

aj

)
. (10)

The drawback of such a pricing technique - which rewards
an agent proportionality to its data sharing rate - is the
implicit presence of a mediator (central controller or self-
regulating market) which can manipulate the outcome by
tuning the prices pj > 0. In the following, we show that
repetition enables cooperation among selfish agents - without
any centralized interference.

We assume that the agents interact with each other multiple
times under the same conditions, i.e., they play the same non-
cooperative game G repeatedly. The total number of rounds is
denoted by T ≥ 1. Two cases are distinguished in function of
the available knowledge of T : (i) perfect knowledge of T -
both agents know in advance when their interaction ends; and
(ii) imperfect or statistical knowledge of T - the agents do not
know the precise ending of their interaction.

In both cases, we study the possibility of enabling and
sustaining cooperation by allowing the agents to make only
credible commitments, i.e., commitments on which they have
incentives to follow through. The equilibrium concept we
investigate here is a refinement of the Nash equilibrium, i.e.,
subgame perfect equilibrium, defined in the sequel.

A. Strategies, Payoffs and Subgame Perfect Equilibria

We introduce some useful notation and definitions. These
tools are necessary for a clear understanding of the solutions
arising in repeated games.

We assume that the game G described above is played
several times. Repeated games differ from one-shot games
by allowing players to observe the history of the game and
condition their current play on past actions. The history at the
end of stage t ≥ 1 is denoted by h(t+1) = (a(1), . . . , a(t)),
where a(τ) = (a

(τ)
1 , a

(τ)
2 ) represents the agents’ play or action

profile at stage τ . The set of all possible histories at the end
of stage t is denoted by H(t+1) such that H(1) denotes the
void set. We can now formally define a repeated game.

Definition 1. A repeated game is a sequence
of non-cooperative games given by the tuple
G(T )
R = (P, {Sj}j∈P , {vj}j∈P , T ), where P , {1, 2} is

the set of players (the two agents); Sj is the strategy set of
agent j; and vj is the payoff function which measures the
satisfaction of agent j for any strategy profile.

As opposed to the one-shot game, we have to make a clear
distinction between an action - the choice of an agent at a
specific moment (or stage of the game) - and a strategy that
describes the agents’ behavior for the whole duration of the
game. A strategy of an agent is a contingent plan devising its
play at each stage t and for any possible history h(t); more
precisely it is defined as follows.

Definition 2. A pure strategy for player j, sj , is a sequence
of causal functions {s(t)j }1≤t≤T such that s(t)j : H(t) →
[Dmin,i, Di], and s(t)j

(
h(t)
)

= a
(t)
j ∈ [Dmin,i, Di].
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The set of strategies, denoted by Sj , is the set of all possible
sequences of functions given in Definition 2, such that, at
each stage of the game, every possible history of play h(t)

is mapped into a specific action in Aj to be chosen at this
stage.

In repeated games, the agents wish to maximize their
averaged payoffs over the entire game horizon. We assume
that agents discount future payoffs: present payoffs are more
important than future promises.

Definition 3. The discounted payoff function of player j given
a joint strategy s = (s1, s2) is given by

vj(s) = (1− ρj)
T∑
t=1

ρt−1j uj(a
(t)), (11)

where a(t) is the action profile induced by the joint strategy
s, uj(·) is the payoff function in (9), and ρj ∈ (0, 1) is the
discount factor of player j.

The Nash equilibrium concept for repeated games is defined
similarly to that for one-shot games (any strategy profile that
is stable to unilateral deviations). Some Nash equilibria of
repeated games may rely on empty threats [16] of suboptimal
play at histories that are not expected to occur (under the
players’ rationality assumption). Thus, we focus on a subset of
Nash equilibria that allow players to make only commitments
that they have incentives to follow through on: the subgame
perfect equilibria.

Before defining this concept, we have to define subgames.
Given any history h(t) ∈ H(t), the game from stage t onwards,
is a subgame denoted by GR(h(t)). The final history for this
subgame is denoted by h(T+1) = (h(t), a(t), . . . , a(T )). The
strategies and payoffs are functions of the possible histories
consistent with h(t). Any strategy profile s of the whole
game induces a strategy s|h(t) on any subgame GR(h(t)) such
that for all j, sj |h(t) is the restriction of sj to the histories
consistent with h(t).

Definition 4. A subgame perfect equilibrium, s∗ = (s∗1, s
∗
2), is

a strategy profile (in a repeated game with observed history)
such that, for any stage and any history h(t) ∈ H(t), the
restriction s∗|h(t) is a Nash equilibrium for the subgame
GR(h(t)).

This equilibrium concept is a refinement of the NE because
it is required to be an NE in every possible subgame aside from
the entire history game. We analyze this solution concept for
two different cases depending on the available knowledge of
the end stage: perfect knowledge and imperfect or statistical
knowledge of T .

B. Perfect knowledge of end stage

We assume first that the agents know in advance the value
of T , i.e., when the game ends precisely. We show that data-
sharing beyond the minimum requirement cannot be enabled
in this case. This result follows as a corollary to Theorem 4.1
in [16, Chapter 4.2-4.3], i.e., the one-stage-deviation principle
applied to the repeated prisoners’ dilemma:

Proposition 1. Assuming the agents know perfectly the value
of T , the discounted repeated game G(T )

R has a unique
subgame perfect equilibrium s∗ described by “no data sharing
beyond the minimum requirement ” at each stage of the game
and for both agents:

s
(t),∗
j = Di, ∀t ∈ {1, . . . , T},∀j ∈ P. (12)

The proof is omitted as it follows similarly to the repeated
prisoners’ dilemma (using an extension of the backward in-
duction principle to dominance solvable games [16]). The key
element is the strict dominance principle: a rational player
will never choose an action that is strictly dominated. The
same result remains true if the discounted payoffs are replaced
with average payoffs, vj(s) = 1

T

∑T
t=1 uj(a

(t)). Moreover,
this result extends to a general class called dynamic games in
which the system parameters (α(t)

1 , α(t)
2 , σ(t)

1 , σ(t)
2 ) may vary

at every stage of the game. The same reasoning holds since,
at any stage of the game, the action corresponding to “no
data sharing beyond the minimum requirement” is the strictly
dominating one.

The only distortion-leakage tuple that can be achieved is the
maximum distortion-minimum leakage one - similar to the one-
shot game. The main reason why cooperation is not sustainable
is that agents know precisely when their interaction ends. Next,
we consider that the agents interact over an indeterminate
period (they are unsure of the precise ending).

C. Imperfect knowledge of end stage

We now assume that the players do not know the value of
T (the end stage). The discount factor ρj can be interpreted
as the agent’s belief (or probability) that the interaction goes
on (see [20] and references therein). The probability that the
game stops at stage t is then (1 − ρj)ρt−1j . The discounted
payoff (11) represents an expected or average utility. Thus,
we assume that agent j know ρj which models its belief on
the interaction continuing or not, at every stage (the probability
that the game goes on).

The strategy of playing the one-shot NE at every stage is a
subgame perfect equilibrium in this case as well.

Theorem 4. Assuming imperfect knowledge of the end stage
and that Dmin,j > 0 for all j ∈ P , in the discounted repeated
game G(ρ)R = (P, {Sj}j∈P , {vj}j∈P), the strategy “do not
share any information beyond the minimum requirement” at
each stage of the game and for both agents is a subgame
perfect equilibrium, i.e.

s
(t),∗
j = Di, ∀t ≥ 1,∀j ∈ P. (13)

The details of the proof are reported in Appendix B. Unlike
the case of perfect knowledge of T , we show that this is not
the only possible outcome and other distortion-leakage pairs
can be achieved.

Inspired from the repeated prisoners’ dilemma, our ob-
jective is to show that non-zero exchange of information
can be sustainable. Consider the action profiles (D∗2 , D

∗
1) ∈

[Dmin,2, D2)×[Dmin,1, D1) which perform strictly better than
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Fig. 5. The set of all payoff pairs. The low-left corner is the one-shot Nash equilibrium.
The darker area is the subset of payoff pairs strictly better than the one-shot NE q1 =

q2 = 5.

the one-shot NE for both agents:{
u1(D∗2 , D

∗
1) > u1(D2, D1)

u2(D∗1 , D
∗
2) > u2(D1, D2).

(14)

Such tuples may be expected to represent long term contracts
or agreements between rational agents. Other tuples will never
be acceptable: By not sharing any data, an agent is guaranteed
at least the one-shot NE payoff value. In the game theoretic
literature, these utility pairs are also known as individually
rational payoffs [21].

These payoffs can be visualised in Fig. 5 for the scenario
α1 = 0.9, α2 = 0.5, σ2

1 = σ2
2 = 0.1, Dj = Dmin,j +

0.5(Dmax,j − Dmin,j), q1 = q2 = 5. The plotted area
represents the set of all payoff pairs. The four corner points
represent the four extremes: (D2, D1) (the low-left corner: the
one-shot NE), (Dmin,2, D1) (the upper-left corner: the most
advantageous for agent 2 - it shares nothing while agent 1
fully discloses its data), (D2, Dmin,1) (the low-right corner:
the most advantageous for agent 1) and (Dmin,2, Dmin,1) (the
upper-right corner: both agents fully disclose their data, maxi-
mizing their leakage). The darker area (in black) represents the
subset of pairs satisfying (14). The lighter area (in magenta)
represents the payoff pairs rejected by one or both rational
players.
To gain more insight into these achievable agreement points,
we write explicitly the payoff functions expressions in (9):{

uj(Di, Dj) = −Lj(Di)

uj(D
∗
i , D

∗
j ) = −Lj(D∗i ) +

qj
2 log

(
Dj

D∗
j

)
.

(15)

Data-sharing beyond the minimal requirement has two op-
posing effects: i) the leakage terms increase (Lj(Di) <
Lj(D

∗
i ), ∀ D∗i < Di); and ii) the estimation fidelity terms

increase (log(Dj/D
∗
j ) > 0, ∀ D∗j < Dj). Thus, the pairs

(D∗2 , D
∗
1) represent the tuples that result in an increase in the

state estimation fidelity that overcomes the loss caused by the
leakage for both agents.

Intuitively, the greater the emphasis on the state estimation
terms, the larger the region of achievable agreement points is.

We also observe that the achievable distortion pairs satisfying
the conditions in (14) must be relatively symmetric distortion
pairs. Otherwise said, both agents have to share their data for
the agreement to be acceptable to both parties.

Unlike the one-shot game or the determined horizon re-
peated game (the agents have perfect knowledge of T ), the
commitment of sharing data resulting in any distortion pair
(D∗2 , D

∗
1) is sustainable under some conditions on the discount

factor. If the probability of the game stopping is small enough,
then the commitment of playing (D∗2 , D

∗
1) is credible and,

thus, sustainable to rational agents.

Theorem 5. Assuming imperfect knowledge of the end stage in
the discounted repeated game GR = (P, {Sj}j∈P , {vj}j∈P)

and for any agreement profile (D∗2 , D
∗
1) ∈ [Dmin,2, D2) ×

[Dmin,1, D1) that meets the conditions (14), if the discount
factors are bounded as follows:

1 > ρj >
2[Lj(D

∗
i )− Lj(Di)]

qj log
(
Dj/D∗j

) , (16)

and Dmin,j > 0 for all j ∈ P , then the following strategy is a
subgame perfect equilibrium: For all j, “agent j shares data
at the agreement point D∗i in the first stage and continues to
share data at this agreement point if and as long as the other
player i shares data at the agreement point D∗j . If any player
has ever defected from the agreement point, then the players
do not cooperate beyond the minimum requirement from this
stage on.”

A detailed proof is given in Appendix C. This result assesses
that both agents can achieve better distortion levels than the
one-shot NE naturally, without the interference of a central
authority or economic incentives. The optimal strategy is a
tit-for-tat type of policy: Each agent fulfils its part of the
agreement and shares data if and as long as the other party
does the same. The threat point or punishment mechanism
that guarantees the sustainability of such agreements is fully
decentralized and involves stopping all data exchanges from
the moment one of the agents defects.

Any distortion pair (D∗i , D
∗
j ) in (14) is achievable in the

long term, provided the discount factors are large enough.
The lower bound in (16) depends on the agents’ emphasis
on leakage vs. fidelity. Larger emphasis on the leakage of
information (qj ≤ 1) implies larger discount factors. Thus,
smaller ending probability (or a longer expected interaction) is
needed to sustain data sharing when agents are more sensitive
to privacy concerns. This lower bound also depends on the
specific agreement pair (D∗2 , D

∗
1). It is again a compromise:

Smaller distortion agreements imply larger leakages of infor-
mation, thus, larger discount factors.

In conclusion, the minimum expected length of the in-
teraction needed to sustain an agreement depends on the
agents’ tradeoffs between the leakage of information and state
estimation fidelity resulting from their data exchange.

Theorem 5 may be extended to the case in which the
parameters change at each stage of the game. However, the
conditions on the discount factor would be much stricter.
A different approach should be investigated in such general



10

dynamic games. This issue falls outside the scope of the
present work and is left for future investigation.

D. Numerical results

We focus on the scenario α1 = 0.9, α2 = 0.5, σ2
1 = σ2

2 =
0.1 and Dj = Dmax,j for j ∈ P . The minimum and maximum
distortions are Dmin,1 = 0.3088, D1 = 0.3926, Dmin,2 =
0.2183 and D2 = 0.2388. For simplicity, we assume that both
agents have the same belief on the end stage of the game, i.e.,
ρ1 = ρ2 = ρ.

If the agents put an emphasis on leakage (e.g., q1 = q2 = 1,
q1 = 1, q2 = 2, or q1 = 2, q2 = 1), there is no distortion
pair (D∗2 , D

∗
1) that strictly improves both players’ payoffs

compared to the one-shot NE (D2, D1). This means that the
improvement in an agent’s estimation fidelity from the data
shared by the other agent is overcome by the loss of privacy
incurred by the agreement point.

If the agents put more emphasis on their estimation fideli-
ties, the region of agreements (D∗2 , D

∗
1) becomes non-trivial.

Figure 6 illustrates this region in the cases: i) q1 = 2, q2 = 2;
ii) q1 = 1, q2 = 5; and iii) q1 = 5, q2 = 5. The colored regions
represent all the possible agreements sustainable in the long
term, whereas the white regions represent the distortion points
that cannot be achieved. In each of these figures, the upper-
right corner represents the minimum cooperation requirement
(D2, D1).

Very asymmetric distortion pairs (the upper-left and lower-
right regions) are not achievable in the long term; a rational
user will only agree to fulfil equitable data-sharing agreements.
In other words, either both players share information at a non-
trivial rate or neither of them does. The higher the emphasis on
state estimation fidelity, the larger the agreement region and
lower the distortion levels achieved: The minimal distortion
pair (Dmin,2, Dmin,1) is only sustainable in the third case
(q1 = q2 = 5) when the emphasis on the estimation fidelity is
high enough for both agents.

We can observe a symmetry regarding the values of ρ
needed to sustain a given agreement pair. The fairer or more
symmetric distortion pairs require a shorter expected game
duration to be sustainable. The most unfair distortion pairs (the
border points on the region of sustainable agreements) require
the longest expected game duration; close to one probability
of the game continuing. Beyond these edges, the difference
between what an agent shares and what it receives in return
is unacceptable, even in a long term interaction.

V. CONCLUSION AND FUTURE WORK

Data sharing among physically interconnected nodes/agents
of a network improves their local state estimation. When
privacy also plays a role, enabling non-zero data exchange
often requires incentives.

In a centralized setting, we have shown that the central
controller can manipulate the data sharing policies of the
agents by tuning a single parameter - depending on the em-
phasis between leakage vs. estimation fidelity. A whole range
of outcomes can be chosen in between two extremes: both
agents fully disclose their measurements (minimum distortion

- maximum leakage), and both agents stay silent (maximum
distortion - minimum leakage).

If the network lacks a central controller and the agents are
driven only by their individual agendas, we have proven that
non-zero data sharing cannot be an outcome. Rational agents
cannot trust each other in sharing data when the interaction
takes place only once or in a finite number of rounds. However,
if the agents interact repeatedly in the long term - over an
undetermined number of rounds - then a whole region of
outcomes is achieved depending on the agents’ emphasis on
leakage vs. state estimation fidelity. There is a symmetry
in this achievable region as rational agents agree only on
tit-for-tat data sharing policies. This result, i.e., long term
repetition enables data exchange, follows from the underlying
assumption that agents can perfectly observe the past plays
(the history of the game) and condition their present choices
on these observations. In practice, this implies important
signalling among the agents which is an interesting topic for
future work.

This work is a step towards understanding incentive mech-
anisms needed to enable data sharing between two distributed
agents that otherwise would not cooperate because of privacy
concerns. One possible generalization of this work is to find
incentive mechanisms for the case of three or more connected
agents. The primary limiting reason restricting this gener-
alization is the lack of an information-theoretically optimal
distortion-leakage data sharing protocol. The problem is still
under investigation and the main challenges include finding
a data sharing protocol that (a) allows an arbitrary ordering
of the agents’ communications; and (b) takes into account all
prior communications at any agent in order to generate data
to be shared with all other agents in the next round. These
challenges lead to a combinatorial explosion in the number
of possible data sharing schemes. However, it is possible to
consider simple sharing schemes that are analogous to the two-
user case (such as pairwise interactions) and develop incentive
mechanisms for such schemes.

More generally, this work can also be tailored to specific
applications, such as data sharing between local entities in
the electric grid, to determine the appropriate incentive mech-
anism. On the one hand, data sharing between utilities is
often monitored by central coordinating agencies (systems
operators), and thus, the framework of common-goal games
can be appropriate. On the other hand, data sharing between
wide-area balancing authorities can be studied by tailoring the
repeated games framework.

In conclusion, tools from classical and distributed optimiza-
tion jointly with game theoretic tools are useful in a variety of
distributed data sharing applications. This work illustrates one
such application of distributed state estimation with privacy
constraints. However, the incentive mechanisms developed
here (for both centralized and decentralized networks) have
a wide range of applications.
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Fig. 6. The subset of all possible pairs (D∗
2 , D

∗
1 ) that are achieved and the minimal

discount factor ρ needed to sustain them in the long-term interaction for the cases: i)
q1 = 2, q2 = 2; ii) q1 = 1, q2 = 5; and iii) q1 = 5, q2 = 5.

APPENDIX A
PROOF OF THEOREM 2

Before providing the proof, we start by fully characterizing
the set of NEs. Three cases are distinguished depending on
the q parameter that determines the relative slopes of the BR
functions.

1) If q > 2, then there is a unique and asymptotically stable
NE. If the intersection point of the affine functions F1(·)

and F2(·) denoted by (a∗1, a
∗
2) with a∗1 = q

1−(q−1)2

(
δ1
γ1

(q − 1) + δ2
γ2

)
a∗2 = q

1−(q−1)2

(
δ2
γ2

(q − 1) + δ1
γ1

)
.

(17)

lies in the interior of ∆, then it is the NE of the game.
Otherwise, the NE lies on the border of ∆.

2) If q = 2, then we have two different situations. If the
condition δ1/γ1+δ2/γ2 6= 0 holds, then there is a unique
and asymptotically stable NE lying on the border of ∆.
If on the contrary δ1/γ1 + δ2/γ2 = 0, then Fi(aj) ≡
F−1j (aj). In this case, if this affine function intersects
∆ non-trivially, then the game has an infinite number
of NEs which are not asymptotically stable. Otherwise,
the unique NE lies on the border and is asymptotically
stable.

3) If q < 2, then there are two or three different NEs pro-
vided that the intersection point in (7) lies in the interior
or on the border of ∆: this intersection point is the only
asymptotically unstable equilibrium. The other one or
two NEs lie on the corners of ∆, (Dmin,2, Dmin,1) and
(D2, D1)). Otherwise, there is a unique NE which lies
on the border of ∆ and is asymptotically stable.

Intuitively, the scalar threshold equal to 2 for the parameter
q comes from the relative order among the two slopes of the
BR functions. If q = 2, then the two slopes are identical and
equal to one. In any other case, the slopes of the two curves
are different in the same axis system â1Oa2 (since one of the
two curves would have to be inverted). The relative slopes of
the two curves greatly influence their intersection points and,
thus, the set of NEs.

The proof follows an approach similar to that in [19] for the
power allocation game over non-overlapping frequency bands
in the interference relay channel and assuming a zero-delay
scalar amplify-and-forward relaying protocol. We investigate
the NEs of the game Gsys when q > 1 and their asymptotic
stability. A necessary and sufficient condition that guarantees
the asymptotic stability of a certain NE, say (aNE

1 , aNE
2 ), is

related to the relative slopes of the BRs [16]:∣∣∣∣∂BR1

∂a2
(a2)

∂BR2

∂a1
(a1)

∣∣∣∣ < 1 (18)

for all (a1, a2) in an open neighbourhood of (aNE
1 , aNE

2 ).
The analysis of NE is based on the analysis of intersection

points of the two BR functions in (6).
First, we analyze all the possible cases in which the inter-

section points between the affine functions F1(·) and F2(·) are
outside the interval ∆ or on the two corners: (Dmin,2, D1) or
(D2, Dmin,1). In these cases, the NE is unique and it lies on
the border of ∆. These cases correspond to: (i) F1(D1) ≤
Dmin,2 or F2(Dmin,2) ≥ D1, (ii) F1(Dmin,1) ≥ D2 or
F2(D2) ≤ Dmin,1 and the corresponding analysis will not
be reported here as it is tedious and similar to the following
more interesting one. The more interesting case is when
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F1(Dmin,1) < D2, F1(D1) > Dmin,2, F2(Dmin,2) < D1 and
F2(D2) > Dmin,1. This means that, if the curves F1(·) and
F2(·) intersect, the intersection point or points lie in ∆ and are
NEs of the game under study. We have again three sub-cases:

a) If q = 2: then the two functions F1(·) and F−12 (·)
have the same slope (equal to one) and thus they are parallel.
• If δ1/γ1 = −δ2/γ2, then the two functions are the same.

All the points on these curves that intersect ∆ are NEs of
the game. Therefore, we have an infinite number of NEs.
The asymptotic stability condition is not met because∣∣∣∣∂BR1

∂a2
(a2)

∂BR2

∂a1
(a1)

∣∣∣∣ = 1,

for all these NEs.
• If δ1/γ1 6= −δ2/γ2, then the two BR function intersect

on the border of ∆ in a unique asymptotically stable point
for which ∣∣∣∣∂BR1

∂a2
(a2)

∂BR2

∂a1
(a1)

∣∣∣∣ = 0.

b) If q > 2: then the NE is unique and a detailed
discussion follows depending on the signs of the follow-
ing inequalities: F1(Dmin,1) Q Dmin,2, F1(D1) Q D2,
F2(Dmin,2) Q Dmin,1 and F2(D2) Q D1 and also on the
relative positions of the intersection points between the two
Fj(·) functions and the border of ∆. We will detail only one
of these cases.
If F1(Dmin,1) ≥ Dmin,2, F1(D1) ≤ D2, F2(Dmin,2) ≥
Dmin,1 and F2(D2) ≤ D1, then the two BR functions coincide
on ∆ with the two functions Fj(·). The unique NE is given
by the intersection point (a∗1, a

∗
2) of F1(·) and F2(·) such that

a∗1 = q
1−(q−1)2

(
δ1
γ1

(q − 1) + δ2
γ2

)
a∗2 = q

1−(q−1)2

(
δ2
γ2

(q − 1) + δ1
γ1

)
.

(19)

It is easy to see that∣∣∣∣∂BR1

∂a2
(a2)

∂BR2

∂a1
(a1)

∣∣∣∣ < 1

and, thus, the NE is asymptotically stable.
c) If q < 2: then the discussion follows similarly depend-

ing on the signs of the following inequalities: F1(Dmin,1) Q
Dmin,2, F1(D1) Q D2, F2(Dmin,2) Q Dmin,1 and F2(D2) Q
D1 and also on the relative intersection points between the
Fj(·) functions with the border of ∆.

APPENDIX B
PROOF OF THEOREM 4

The backward induction argument is no longer valid since
agents do not know which stage is the final one. Instead,
we apply the one-stage-deviation principle for discounted
repeated games that are uniformly bounded in each stage [16].
This principle states that a strategy profile s∗ = (s∗1, s

∗
2) is

subgame perfect if and only if there is no player j and strategy
ŝj that agrees with s∗j except at a single stage τ and history
h(τ), and such that ŝj |h(τ) is a better response than s∗j |h(τ)

in the subgame G(ρ)R (h(τ)).

First, we have to check the uniform boundedness condition
on the stage payoffs. Indeed, we can show that the stage
payoffs in (9) are bounded as follows:

|uj(a(t)j , a
(t)
i )| ≤ Lj(a

(t)
j ) +

qj
2 log

(
Dj/a

(t)
i

)
≤ (1 + qj)

1
2 log (1/Dmin,j) .

Given that Dmin,j < 1, under the mild assumptions that
Dmin,j > 0 and that qj is finite, the stage payoffs are
uniformly bounded.

Second, we have to check whether unilateral deviation in
a single stage from the strategy in (13) can be profitable.
If not, then the strategy is a subgame perfect equilibrium.
Assume that player j deviates at time τ and history h(τ) by
choosing ŝ

(τ)
j (h(τ)) = D̂i ∈ (Dmin,i, Di) at stage τ . From

then on, this strategy conforms to s∗, i.e., ŝ(t)j ≡ s
∗,(t)
j , for

all t > τ . This means that the leakage of information of
player j will increase at stage τ and therefore its payoff will
decrease: uj(D̂i, Dj) < uj(Di, Dj). This implies directly
that vj(ŝj |h(τ), s∗i |h(τ)) < vj(s

∗
j |h(τ), s∗i |h(τ)). Therefore, no

agent has any interest in deviating at any single stage and the
plan defined in (13) represents a subgame perfect equilibrium.

As opposed to the case in which the perfect knowledge of
T is available, the discounted payoffs play a crucial role in
the one-stage-deviation principle and, thus, this proof is not
readily applicable in the case in which a uniform average of
the stage-payoffs is considered. Also, similarly to the case of
perfect knowledge of T , this result extends to a general class
of dynamic games in which the system parameters change at
every stage of the game.

APPENDIX C
PROOF OF THEOREM 5

We use the one-stage deviation principle similarly to the
proof of Theorem 4. Assume that no agent deviates in any
subgame from the agreement point. In this case, the discounted
long-term payoff of player j is equal to uj(D∗i , D

∗
j ), i.e., the

instantaneous payoff achieved at the agreement point. If a
player j deviates at stage τ by choosing ŝ

(τ)
j = Di > D∗i

and then onwards conforms to the strategy by choosing Di,
its discounted payoff is

(1− ρj)
τ−2∑
t=0

ρtjuj(D
∗
i , D

∗
j ) + (1− ρj)ρτ−1j uj(Di, D

∗
j )+

(1− ρj)ρτj
+∞∑
t=0

ρtuj(Di, Dj) = uj(D
∗
i , D

∗
j ) −

ρτ−1j

[
uj(D

∗
i , D

∗
j )− uj(Di, D

∗
j ) +

ρj
(
uj(Di, D

∗
j )− uj(Di, Dj)

)]
.

(20)
Notice that uj(Di, D

∗
j ) − uj(D∗i , D∗j ) > 0 (by sharing more

information, the leakage term for player j increases and its
payoff decreases), and uj(Di, D

∗
j )−uj(Di, Dj) > 0 (from the

previous observation and condition (14)) for any Di > D∗i .
Under the following sufficient condition on the discount factor:

1 > ρj > max
Di∈(D∗

i ,Di]

{
uj(Di, D

∗
j )− uj(D∗i , D∗j )

uj(Di, D∗j )− uj(Di, Dj)

}
, (21)
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this discounted payoff for the deviator in (20) is less than the
payoff of no deviation uj(D∗i , D

∗
j ).

Now, let us assume that a deviation has occurred. At stage τ
and for any history h(τ) after this deviation, if player j were to
deviate from the prescribed strategy and choose ŝ(τ)j = Di <

Di and then conform from this stage onwards, its leakage term
would increase and its payoff in stage τ would be strictly less
than if it had not deviated. Thus, no player has any incentive
to deviate at any single stage of the game and for any history
of play and the strategy described in this theorem is a subgame
perfect equilibrium for the discounted repeated game in which
the end stage of the game is not known.

To complete the proof, we have to show that the sufficient
condition in (21) is equivalent to the one in (16). First, from
(3) we observe that the leakage function Lj(Di) is strictly
decreasing with Di (the smaller distortion at agent i the bigger
the leakage term), and, thus, we have dLj

dDi
< 0. Second, by

replacing the payoff functions expressions in (9) we have

uj(Di, D
∗
j )− uj(D∗i , D∗j )

uj(Di, D∗j )− uj(Di, Dj)
=

[Lj(D
∗
i )− Lj(Di)]

[Lj(Di)− Lj(Di)] +
qj
2 log

(
Dj/D∗j

) .
We compute the derivative of the right-side term w.r.t. Di

and obtain
d

dDi

Lj(D
∗
i )− Lj(Di)

Lj(Di)− Lj(Di) +
qj
2 log

(
Dj

D∗
j

) =

−
Lj(Di)− Lj(D∗i ) +

qj
2 log

(
Dj

D∗
j

)
[
Lj(Di)− Lj(Di)] +

qj
2 log

(
Dj

D∗
j

)]2 (dLj
dDi

)
. (22)

From the fact that dLj

dDi
< 0, equations (14) and (15), we obtain

that the derivative in (22) is strictly positive, and, thus

max
Di∈(D∗

i ,Di]

{
uj(Di, D

∗
j )− uj(D∗i , D∗j )

uj(Di, D∗j )− uj(Di, Dj)

}
=

2
Lj(D

∗
i )− Lj(Di)

qj log
(
Dj

D∗
j

) .
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