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ABSTRACT 
Only a small percentage of the genome sequence is involved in regulation of gene expression, but 
to biochemically identify this portion is expensive and laborious. In species like maize, with 
diverse intergenic regions and lots of repetitive elements, this is an especially challenging problem. 
While regulatory regions are rare, they do have characteristic chromatin contexts and sequence 
organization (the grammar) with which they can be identified. We developed a computational 
framework to exploit this sequence arrangement. The models learn to classify regulatory regions 
based on sequence features - k-mers. To do this, we borrowed two approaches from the field of 
natural language processing: (1) “bag-of-words” which is commonly used for differentially 
weighting key words in tasks like sentiment analyses, and (2) a vector-space model using 
word2vec (vector-k-mers), that captures semantic and linguistic relationships between words. We 
built “bag-of-k-mers” and “vector-k-mers” models that distinguish between regulatory and non-
regulatory regions with an accuracy above 90%. Our “bag-of-k-mers” achieved higher overall 
accuracy, while the “vector-k-mers” models were more useful in highlighting key groups of 
sequences within the regulatory regions. These models now provide powerful tools to annotate 
regulatory regions in other maize lines beyond the reference, at low cost and with high accuracy. 
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INTRODUCTION 

The vast majority of sequence polymorphisms that are statistically associated with phenotypic 
variation (GWAS) lie in the non-genic portion of the genome, where they might play regulatory 
roles [1,2]. Recently biochemical characterization of the open chromatin space in B73 (the maize 
reference line), revealed that as much as 40% of the significant sequence polymorphisms - as 
identified through variance components analyses – overlap with regions in which regulatory 
elements are expected [3]. These biochemical assays are prohibitively expensive and time 
consuming at the scale of breeding programs for any crop species. This is even more true for 
species, such as maize, with high genomic diversity and a high rate of polymorphism.  In maize, 
less than half of the genome sequence is expected to be shared between inbred lines [4]. Building 
accurate models from expensive data derived from the maize reference line will enable breeders 
to broadcast that information to other genotypes for use in genomic selection models and to 
prioritize regions of the genome to edit using strategies such as CRISPR [5,6]. 
 

Most of the experimental and computational approaches used to annotate functional non-
coding regions focus on the regulatory role of transcription factor binding sites (TFBSs) [7,8]. 
However, it has been observed that patterns of sequence organization (the grammar) and the 
chromatin context in which TFBSs are located contribute to the regulatory message[9-11]. For 
instance, the spatial arrangement of poly(dA:dT) tracts within yeast promoter regions have been 
identified as causal drivers of transcriptional patterns at comparable levels to TFBSs [12]. More 
recently, it was shown that developmental enhancers in Ciona rely on the positioning, 
arrangement, and space between TFBSs to counterbalance low TFBS affinity [13]. From this 
emerging view, it appears that regulatory regions have distinctive features that can be exploited 
for prediction, identifying enriched key sequences and sequence organization. 
 

The frequency of oligomers of length k (i.e., short k-mers in the size range of TFBS) have 
been exploited to build supervised models capable of discriminating regulatory regions from 
random genomic regions, as well as to score sequence variation with few or no assumptions 
regarding to the role that a given k-mer might play [14-16]. The early k-mer count-based classifiers 
have been improved to count gapped k-mers, allowing exploration of short and long k values 
without losing power as the total number of k-mers increases [17]. Some limitations of k-mer 
frequency-based methods include: (1) they make poor or no use of the k-mer positional 
relationships in their models, and (2) they perform poorly in the presence of repetitive regions, the 
frequencies of short size k-mer are misleading, which might hamper the performance of this 
methods for genomes with high repeat content. 
 

Recently however, a growing set of computational tools using Neural Networks (NNs) 
have shown success in learning to recognize simple sequence patterns, similar to Position Weight 
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Matrices (PWMs).  These approaches have been able to further integrate those patterns into more 
complex features to discriminate regulatory regions [18-20]. Generally, the NNs implemented for 
genomic data are Convolutional Neural Networks (CNNs), a type of architecture that shows state-
of-the-art performance for key phrase recognition tasks in Natural Language Processing (NLP), 
but not Recurrent Neural Networks (RNNs) which are preferred for comprehension of whole 
sentence semantics given their power in modeling long-span relations [21-22]. Despite their 
power, CNNs are often implemented in a black-box context and interpretation of their output is 
challenging; thus it remains unclear how much of their performance is derived from recognizing 
key motifs, motif relationships, and the general sequence context. For these reasons we choose to 
implement k-mer approaches rather than CNN’s or RNN’s. 
 

To define groups of k-mers sharing regulatory roles, we analyzed the architecture of 
regulatory regions at the k-mer level, focusing on weighted individual frequencies and co-
occurrences. The core of the analysis builds on NLP machine learning approaches that are easily 
interpretable and rely on word statistics to recover semantic and syntactic cues [23-26]. We 
evaluated the accuracy and precision of these approaches with a diverse set of functional genomics 
experiments to provide a comprehensive description of the regulatory landscape of the maize 
genome. The software implementation is open source and available through Bitbucket repository. 

RESULTS 

Weighted frequencies and co-occurrences of short sequences can accurately discriminate 
regulatory from random genomic regions 

To build accurate classifiers we collected a comprehensive set of regions enriched in 
regulatory function (hereafter, ‘regulatory regions’), as identified in B73 (maize reference genome) 
through different biochemical assays. We included in the analysis open chromatin regions by 
MNAseq derived from two tissues [3], binding loci from ChIP-seq peaks of two TFs (i.e., 
Homeobox Knotted 1 – KN1, bZIP Fasciated ear4 – FEA4) [27,28], and core promoter regions 
around TSSs [29-31] (Supplementary Table 1). Because the specific background signals from each 
individual experiment are not available, regulatory regions were paired with randomly chosen 
regions controlling for G+C content and genomic distribution. Each group of sequence (regulatory 
regions and their control) was separated into training and holdout sets for model evaluation. In 
total we analyzed 52,292,705 bp of regulatory regions corresponding to ~2.5% of the B73 genome. 
 

The first part of the analysis involved the training of “bag-of-k-mers” and “vector-k-mers” 
models (Figure 1). The “bag-of-k-mers” captures information from the k-mer individual 
frequencies and fits a logistic regression to a matrix filled with the TF*IDF transformation of the 
frequencies per sequence [23]. Thus, the β coefficients of the logistic regression can be interpreted 
as weights of the contribution of each k-mer to the classifier decision and of its enrichment in 
regulatory and random regions. By contrast, the “vector-k-mers” captures information from the k-
mer co-occurrences by training a shallow NN that learns the probability for each k-mer given its 
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context (window = 5). The output is 300 dimensional vectors (vk-mer) – one per k-mer - 
independently generated for regulatory regions and their respective control (Vregulatory and Vrandom 
to denote different geometric spaces containing vk-mers). Next, Vregulatory and Vrandom are utilized to 
determine the likelihood of groups of k-mers being observed in regulatory or control regions 
[25,26]. Put together, these two models aim to learn the importance of key sequence features and 
sequence feature relationships as descriptors of regulatory architecture. 
 

Model performance was measured with three metrics: (1) accuracy, (2) the area under the 
receiver operating characteristic (auROC) curve, and (3) the area under the precision recall curve 
(auPRC) (Supplementary Table 2). The first evaluation was done on balanced holdout sets (i.e., 
the same number of regulatory and random sequences) (Fig. 2a-d). The two models perform 
similarly, with an average difference of 3% in accuracy between the two for any given k. Overall, 
the “bag-of-k-mers” model shows better performance for most of the cases, with the “vector-k-
mers” models only outperforming when k is small (k=5 and k=6) and training datasets are large 
(e.g., MNAseq shoot) (Supplementary Table 3). The performance of the “bag-of-k-mers” models 
was reliable even at k ≥ 8, as opposed to similar approaches that rely on raw k-mer counts as 
features to train machine learning classifiers [15,32]. The above suggests that the TF*IDF 
transformation is efficient in alleviating some of the noise inherent to the matrix sparsity that 
increased with k. 
 

To increase the stringency of our evaluation criteria, we measured each models’ 
performance with unbalanced holdout sets in which regulatory regions are outnumbered by 
random regions by 1 to 10 (Fig. 2e-h, Supplementary Table 4). Scaling up the number of random 
regions did not appreciably change accuracy and auROC values, but the auPRC showed a drop in 
model performance as the rate of false positive increased. At k=8, both models have a desirable 
precision, ~80-70%, at a desirable recall rate of ~60% for open chromatin and core promoter 
datasets. The “bag-of-k-mers” model works better for prediction of TF binding loci than the 
“vector-k-mers”, with the last one displaying an excess of false positives at our aimed recall rate. 
The performance measurement under an unbalanced set suggests that applying extra stringency to 
the predicted probability, thereby allowing the recovery of ~60% of the relevant sequences, would 
result in an acceptable tradeoff between sensitivity and specificity for most of the models when 
non-regulatory regions are in large numbers. 
 

Highly repetitive genomes include an abundance of low-complexity regions. These 
repetitive regions are expected to carry little information for regulation, and because of their high-
frequency, they represent an obstacle to identifying the key elements from raw k-mer counts. To 
empirically determine a complexity threshold for k-mers unlikely to have a regulatory role, we 
examined a collection of regulatory motifs and calculated complexity (as measured with Shannon 
entropy) for the consensus sequences (Supplementary Fig. 1). Using this threshold, k-mers with 
low complexity were filtered out to build “bag-of-k-mers” models with a reduced vocabulary 
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(filtered), and contrasted against models using the whole vocabulary (full). The differences 
between the two models at a base pair level is illustrated for the ga2ox1 first intron recognized by 
KN1 [27,33]. We observed that low complexity regions overlapped with k-mers that have a high 
score from the model trained on the full k-mer vocabulary (Fig. 3a). This is different from the 
filtered model which appears to be in agreement with the ChIP-seq data (Fig. 3, Supplementary 
Fig. 2). To evaluate the importance of these repetitive sequences in recognizing the regulatory 
regions, we compared the models with and without low complexity k-mers using an unbalanced 
holdout set and found that both models show almost identical performance, as observed from the 
comparison of the auROC (Fig. 2c, 3b) and the auPRC curve (Fig. 2g, 3c). This suggests that in 
general, low complexity k-mers in maize do not contribute substantially to the regulatory message. 

Models to predict regulatory regions are scalable to the genome-wide space and transferable 
to related species 

Under the assumption that annotation of non-coding regions would be part of general 
pipelines, in which ~85% of the genome should be recognized as repeats and ~5% as coding 
sequences, our models for annotating regulatory regions should be limited to ~10% of the space. 
To adhere to the above scenario while gaining insights on the behavior of the models at a genome-
wide scale, the sequence of chromosome 10 was partitioned into 1,943,698 regions (300 bp length) 
and 115,149 regions that were neither repeats nor coding sequences were selected to be annotated. 
We used models derived from MNAseq shoot data applying different levels of stringency for the 
predicted probabilities (Supplementary Table 4). According to the results obtained with 
unbalanced holdout set, and in order to balance sensitivity and specificity, we determined that the 
ideal predicted probability cut-off was the one that captures ~60% of the regions that overlap with 
the annotated regulatory regions. Under this criteria the “bag-of-k-mers” (k=8, filtered, probability 
> 0.85) and the “vector-k-mers” models (probability > 0.95), predicted 38,945 and 41,932 
regulatory regions respectively. The high confidence regions classified as regulatory correspond 
to ~2.2-2.3% of the total regions from chromosome 10, in line with the expected portion of the 
genome with a regulatory function.  
 

Transference of functional genomic annotations across diverse maize lines requires models 
than can preferentially capture conserved features (those common between lines or related 
species). Consistently, we expect that models that are accurate in related species should also 
perform well in different maize lines. To gain insights into this we evaluated models trained on 
core promoters and TF binding loci in two species (sorghum and rice). For the evaluation of models 
trained on core promoters we used a balanced holdout set derived from a random sample of 
sorghum annotated gene models. We obtained auROC values of 0.72 and 0.63 for the “bag-of-k-
mers” (k=8, filtered) and “vector-k-mers” models, respectively, which represent a reduction of 
~30% compared to the maize holdout data, as a result of a higher false positive rate (Fig. 4a-d). 
This might be a consequence of the strong differences between the repeat landscape in the non-
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coding regions between sorghum and maize that is not captured in the maize training set, rather 
than a lack of similarities between the regulatory regions of the two species. 
 

In order to determine positional preferences among binding loci, we built peak meta-
profiles that summarized KN1 models’ performance in maize and rice at the base-pair level (Fig. 
4e-f, Supplementary Fig. 3a-b). The “bag-of-k-mers” model can differentiate between regulatory 
regions and their control in maize, and in addition can distinguish rice KN1-like (i.e., OSH1) 
binding sites (i.e., peaks from rice OSH1 ChIP-seq data [34]). On the other hand, the “vector-k-
mers” cannot differentiate between random regions and regulatory regions in rice, predicting 
random as regulatory (Supplementary Fig. 3a-b). Interestingly, the distributions of regulatory 
probabilities for random and regulatory regions are noticeable different (Supplementary Fig. 3c), 
suggesting that the “vector-k-mers” model distinguish between OSH1 peaks and control regions, 
but not enough to assign greater non-regulatory probability to random regions. In maize, the “bag-
of-k-mers” model (filtered) shows a slight preference towards the midpoint region versus the 
edges, while the “vector-k-mers” recognizes the whole region without preference for to the middle 
(Fig. 4e). In rice, the “bag-of-k-mers” shows a marked preference near or at the peak midpoint 
over the flanking (Fig. 4f). This suggests that “bag-of-k-mers” models capture a diverse array of 
features which are enriched at the center of the peak and beyond in maize. However, only the key 
features that are enriched at the center of the peak appear indeed conserved between the two 
species. Taken together we have shown that classifiers trained in maize can be useful to predict 
regulatory regions in sorghum and rice, and that features enriched in maize regulatory regions and 
in the random genomic space (as captured by the models) are of two general types: (1) maize 
specific and (2) conserved across related species. 
 

Scored vocabularies highlight signatures of regulatory function 

The methods proposed here were chosen because of the interpretability of the learned 
features, aiming to better understand the patterns in sequence that characterize regulatory regions. 
Thus, we focused on scored k-mer vocabularies (k=8, filtered) as easiest to interpret, and 
systematically analyzed the tails of the distribution as they concentrated the most informative 
sequences. Therefore, the largest positive coefficient values (top scored k-mers) are indicative of 
enrichment and the largest negative values (bottom scored k-mers) of depletion in regulatory 
regions. The absolute values from both sides of the score distribution are different, with preference 
for positive over negative ones, meaning that model's prediction are the result of identifying those 
k-mers that are enriched in regulatory regions rather than depleted ones (or enriched in random 
regions). We found that properties of the scored k-mers obtained from applying an out-of-the-box 
NLP technique [23] are similar to those previously described with sequence kernels developed to 
analyze vertebrate genomic data [15,17]. 
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We observed a bias in the G+C content at the extremes of the score distribution for core 
promoters (Fig. 5a) and to a lesser extend for open chromatin regions (Fig. 5b-c). The 1% of the 
top shows a bimodal distribution, in which a subpopulation of k-mers exhibits low G+C content, 
in contrast to the 1% of the bottom, and the remaining 98%. Conversely, the score distribution for 
TF binding loci shows a general shift of top and bottom tails towards higher G+C contents, in 
comparison to the remaining 98% (Supplementary Fig. 4). These results are in agreement with 
known roles for high A+T sequences within core promoters related to the TATA elements and 
high G+C sequences as TF binding sites [31,35]. Indeed, when investigated, individual k-mers 
with high A+T content were positionally restricted upstream of the TSS and preferentially on the 
region defined for the TATA element in maize (Fig. 5d). 
 

The enrichment of MNAseq regions for k-mers with high A+T content (rich A+T k-mers) 
might be derived from signal co-localization between open chromatin regions and core promoters 
[3]. If signal co-localization were sufficient to explain the similarities between open chromatin and 
core promoter regions, then controlling for distance to annotated genes should remove the signal 
from rich A+T k-mers in distal regions. However, even when gene proximal regions account for 
more signal than distal ones, the positional constraints remain in both proximal and distal regions 
(Fig. 5e-f). These rich A+T k-mers might be part of poly(dA:dT) tracts which can provide an 
increase in DNA rigidity and are known to be in proximity to regions that are enriched in TFBSs 
[36]. In agreement with the positional restriction, rich A+T k-mers flank the midpoints where G+C 
content is high, as expected for the regions that are bound by TFs [35], and where the signal for 
open chromatin regions is concentrated. 
 

In addition to key structural tracts, k-mers with the largest positive values for each 
regulatory category are expected to be enriched for TF motifs. Because the number of 
experimentally verified maize motifs is limited, we contrasted the top 1% of positive scored k-
mers against two large collections of TF motifs as identified from large scale experiments in the 
reference plant Arabidopsis thaliana (TOMTOM, p-value < 0.001 [39]) [38-39]. For the evaluated 
experiments we found that the top 1% of positive k-mers are ~threefold more enriched for 
significant hits against the motif database than expected by chance for all the k-mers in the 
population. The enrichment for the top k-mers was statistically significant (hypergeometric test, p-
value < 0.001). Further analyses revealed that k-mer scoring is consistent within families of TF 
binding sites. In particular, motifs  preferentially hit by the top 1% of positive k-mers from FEA4 
binding loci (a bZIP transcription factor) correspond to the bZIP/TGA-class, and motifs 
preferentially hit by k-mers enriched in KN1 (a Homeobox transcription factor) correspond to the 
Homeobox family (Supplementary Table 5). Thus, the scored vocabularies produced a 
comprehensive catalog of k-mers with putative structural roles and a collection of k-mers similar 
to TFBSs that constitute signatures of the maize regulatory architecture.  
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Sequence similarity in the geometric space reveals a prevalent distinctive k-mer organization 
within regulatory regions 

The set of highly enriched individually scored sequences, as output from “bag-of-k-mers” 
models, is likely to include groups of k-mers that correspond to the same motif, given the 
degeneracy of TFs binding sites. However, the question arises of how to group k-mers that likely 
share functional roles and constitute single motifs. In NLP, Word2Vec is an effective method to 
extract linguistic regularities between words by considering the local context in which they occurs 
(e.g., apple and oranges might share local contexts as they are words with similar meanings) [40]. 
Because vector position in each geometric space is determined from the composition of the local 
word/k-mer context (i.e., neighboring k-mers), we can assume that two k-mers that are close (i.e., 
close in cosine distance) to each other in a geometric space share local sequence similarity (Fig. 
6a). Therefore, we used the geometric spaces obtained from the “vector-k-mers” models, to extract 
k-mer regularities or k-mer organizational ‘rules’ that differentially arise between regulatory and 
random regions. Because, the position of k-mers between geometric spaces cannot be directly 
contrasted, we compared the lists of closest k-mers for any given k-mer in the vocabulary as 
obtained from the geometric spaces about regulatory and random regions (respectively, Vregulatory 
and Vrandom). 
 

To illustrate, we compared the representative vector of ‘CTATATA’ in Vregulatory (i.e., set 
of vk-mers learned from core promoter regions) and in Vrandom (i.e., set of vk-mers learned from random 
regions used as controls for core promoters). Using vCTATATA we obtained the set of top five closest 
vk-mers in Vregulatory and in Vrandom and found that k-mers from Vregulatory share more sequence 
similarity (average edit distance1.8 vs 4.2 respectively) and have, on average, more positive scores 
from the respective “bag-of-k-mers” model (1.49 vs 0.01) (Fig. 6b). In addition, k-mers close to 
vCTATATA in Vregulatory share positional constraints that are not recovered from those related in Vrandom 
(Fig. 6c-d). This example shows how the output of the geometric spaces can be exploited to 
determine groups of similar k-mers according to their context.  
 

To obtain a global view of how many k-mers are embedded in different local sequences 
between regulatory and random regions, we collected for any given k-mer (k=8) in the vocabulary, 
the list of the closest similar k-mers ranked by cosine similarity from Vregulatory and Vrandom. Next, 
we contrasted the two ranked lists and determined which k-mers show the greatest dissimilarity 
between regulatory and random regions [41]. In general, we found that low complexity k-mers do 
not show distinctive organizational ‘rules’ between regulatory regions and random, reinforcing our 
view that short repetitive sequences are not important to define the identity of a sequence. We 
found that, in terms of the number of k-mers with different relationships between Vregulatory and 
Vrandom, “vector-k-mers” models derived from TF binding loci (~45%) and core promoter regions 
(~30%) result in notably more differentially represented k-mers than models derived from open 
chromatin regions (~5%) (Supplementary Table 6). In all the cases, we observed a similar 
proportion of k-mers enriched and depleted in regulatory regions (as established from the “bag-of-
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k-mers” scores). The results from models trained in open chromatin regions, might represent the 
heterogeneity of the regions that prevents the model from learning many specific k-mer vectors. 
However, the fact that the classifiers work with great accuracy indicates that even when the 
differences are less pronounced than for TF binding loci and core promoter regions, they are large 
enough to distinguish between an open chromatin region and its control.  
 

We integrated the information obtained from the “bag-of-k-mers” and the “vector-k-mers” 
models and found that for the top 1% of the k-mers that are enriched in frequency in regulatory 
regions there is little overlap between k-mers that resemble motifs and k-mers that show differential 
relationships between regulatory regions and random regions (Supplementary Table 6). For 
instance, from the FEA4 models, only 10 out of 103 k-mers, that are statistically similar to 
Arabidopsis motifs, show differential k-mer relationships between regulatory and random regions. 
The difference might be derived from the proportion of TFBSs that are not similar between Maize 
and Arabidopsis cistromes. In summary, we have compiled a regulatory vocabulary that includes 
a proportion of key k-mers that are enriched in regulatory regions and (1) resemble known motifs, 
and (2) are embedded in a specific regulatory context. 

DISCUSSION 

The decreased cost of large scale genotyping and genome assemblies for crops such as 
maize and related species, has already shown potential to accelerate the breeding process by 
linking sequence and structural variation to phenotype [42]. A vast amount of functional genetic 
variation that is important to phenotype is located in the non-coding regions of the genome. This 
variation is largely untapped because recognizing functional alleles in the non-coding regions of 
the genome is both expensive and laborious. In humans and other metazoan models, non-coding 
annotation that allows identification of functional genetic variation has been accelerated over the 
last decade using two types of analyses: (1) functional analysis from large collections of 
biochemical assays; and (2) comparative sequence analysis between reference genomes of closely 
related species [43]. Yet, in maize, these two types of analyses are particularly challenging. Large 
collections of biochemical assays remain prohibitive at the scale necessary to cover maize 
diversity, which is ~20 times more than the diversity found in humans [44]. In addition, 
comparative sequence analysis requires genome alignment between closely related species, which 
for maize and its relatives is complicated by the presence of a large number of repetitive sequences 
in the genome.  
 

In this study, we introduce a computational framework consisting of two type of machine 
learning models that can accurately classify regulatory regions obtained from functional genomic 
experiments and random genomic regions. These approaches were borrowed from the fields of 
natural language processing and information retrieval, and were explicitly chosen to overcome the 
challenges of annotating intergenic regions in maize. To address highly repetitive sequences and 
the role of low-complexity regions in maize non-coding regions the “bag-of-k-mers” model relies 
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on first filtering out k-mers with low-complexity, and next using a sublinear function to transform 
raw k-mer frequencies to down weight k-mers that are too frequently observed in a group of 
sequences and in consequence have less power to discriminate between regulatory and non-
regulatory regions. In parallel, the “vector-k-mers” model learns local k-mer organization from k-
mer co-occurrence frequencies, which in practice results in a geometric space that allows 
alignment-free comparisons between sequences [45]. The simultaneous use of two different 
approaches adds robustness to the predicted annotations, allowing researchers to contrast or 
combined the results of the two types of models. 
 

Because both models are amenable to interpretation, examination of the learned features 
offers novel insights about key sequence characteristics that can help to build mechanistic 
hypotheses to be tested at molecular level, and allow comparison of regulatory programs under the 
same framework. For instance, both types of models suggest that low complexity k-mers are not 
important for regulatory regions in maize. Also, through modeling MNAseq data we found that 
open chromatin regions in maize are characteristically organized within poly(dA:dT) tracts 
flanking G+C rich k-mers resembling motifs (Fig. 5a-b). Likewise, from modeling maize KN1 
ChIP-seq data and further annotation of regions bound by OSH1, we determined conservation only 
at the center of binding loci (Fig. 4f). Taken together, our framework can be used beyond the 
transference of regional annotations, as can easily be extended to in silico evaluate the putative 
effect of sequence variation (i.e., SNPs, single nucleotide polymorphisms) in regulatory function 
from the differences in k-mer scores and regulatory probabilities for small groups of k-mers. 
 

This work opens many avenues for improving models by adding relevant layers of 
information. Possible layers to add include: predictions of the 3D structure of regulatory regions, 
joint modeling of functional genomic data spanning the range of maize diversity to identify general 
patterns for relevant phenotypes, or even extended across species to build generalizable models 
that capture conserved features unseen with alignments. Furthermore, we expect these annotations 
to be useful as priors to improve marker assisted technologies such as genomic selection and to 
identify targets for genome editing to purge sequence variation contributing to gene expression 
dysregulation. 
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METHODS 

Definition of maize regulatory regions 

In the analyses presented throughout this study, we used data sets derived from different 
functional genomic experiments and obtained from the reference genome (ZmB73 AGPv3, 
chromosomes 1 to 10) [46]. We included in the analysis open chromatin regions in shoot and roots 
derived from MNAseq data [3]; binding loci for Knotted 1 (KN1) and Fasciated ear4 (FEA4) 
transcription factors from ChIP-seq data [27,28], and promoter regions [29-31] from the 
intersection of TSSs obtained with CAGE and FLcDNAs (Supplementary Table 1). For MNAseq 
and ChIP-seq peaks, we collected sequences of 300 bp length symmetrically surrounding the 
midpoints from the originally defined regions. Similarly, for core promoters, we selected the 
region between -50 bp; +250 bp surrounding the TSSs.  Each group of regulatory regions was 
randomly divided between training and holdout sets and reserved for further analyses. 
 

To randomly select control regions, we first divided the reference genome into sliding 
windows of 300 bp length, with 50 bp overlap using bedtools v2.24.0 [47] (bedtools makewindows 
-g zmb73Genome.tsv -w 300 -s 50 > regulatoryRegions.bed ) and after removal of all the windows 
overlapping with the regulatory regions (bedtools -v -a regulatoryRegions.bed -b 
zmb73GenomeWindows.bed) stored in a sqlite3 database. Next, for each sequence in the training 
sets we queried the database for regions in their vicinity (10 kb window) with a matching G+C 
content; if no match was found, we removed the vicinity criteria and searched for a G+C matching 
region in the same chromosome; if yet no control region could be identified we discarded the 
regulatory sequence from the training set. For the holdout sets we build balanced and unbalanced 
holdout sets from randomly selecting one and ten control regions respectively. 

Definition of grasses regulatory regions 

Sorghum (Sorghum bicolor) core promoter regions were obtained from the reference 
genome (v2.1) [48] for the coordinates between -50; +250 bp surrounding the start position of 
genes with annotated 5’UTR and a subset of 1000 sequences randomly selected for further 
analyses. Rice Knotted1-like (i.e., OSH1) binding regions were obtained from re-analyzing ChIP-
seq experiment starting with the download of raw data from DDBJ (accession numbers 
DRA000206 and DR000313) corresponding to two biological replicates of immunoprecipitation 
with α-OSH1 and IgG antibodies [34]. Raw reads were mapped against the rice reference genome 
(Oryza sativa Nipponbare, IRGSP-1.0 [49] using bowtie v1.1.2 (options -n 2, -l 60, -X 500, --best, 
--strata, -m 1) [50] and low quality and duplicated reads were removed using picard1 
(MarkDuplicates) and samtools (-F 780, -F 1024, -f 2) [51] MACS v2.1.0 [52] was used for peak 
calling (-g 3.73e8, -q 0.01) for each of the replicates and 42 peaks with a reproducible summit 
reserved and further extended to 300 bp for downstream analyses.  

                                                
1 http://broadinstitute.github.io/picard/ 
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Corresponding control regions were obtained as explained above for maize. Briefly, each 
reference genome was divided into windows and after removal of sequences overlapping the 
putative regulatory regions we randomly selected sequences matching G+C content and when 
possible in the vicinity (~10 kb) of each of the regulatory sequences. 
 
Preprocessing of sequences 

Sequences were preprocessed before fitting models. The preprocessing for the “bag-of-k-
mers” model involves the dividing of each sequence into 1bp sliding (overlapping) windows of a 
given size k (k-mers) to collect for a sequence of length L (L-k)+1 k-mers. Next, k-mers were 
converted into tokens (t) that correspond to collapsed pairs of k-mer and their respective reversed 
complementary. For the “vector-k-mers” models, each sequence is described as a collection of 
“sentences” resulting from walking k times and sliding by 1bp. Each sentence is broken into 
ordered non-overlapping k-mers and next converted into new tokens, as described for the “bag-of-
k-mers”. 

Calculation of TF-IDF and implementation of the “bag-of-k-mers” model 
Let's define all the sequences in a given set from a functional genomics experiment and its 

corresponding control regions as a collection S={s1, s2, … sn} of individual sequence si={t1, t2, …, 
tn} divided into tokens t. The set of all the possible tokens for a given k belong to the vocabulary, 
Y. Each si is mapped to a list of token weights -Ws- of size | Y | that contains “weights” for each 
token that occurs in si, where the “weight” (equation 1) is defined as the product of the token 
frequency - f(t) - in si, and its inverse collection frequency - idf(t)-. Calculation of TF-IDF were 
done according to the implementation in the python library scikit-learn v0.19.0 [53]. 
weight(s, t) = f(t)log( 1 + | S | /  |{s � S : t � s}| + 1 )  equation 1 
 

To generate a “bag-of-k-mers” model, each training data set is represented as a matrix with 
Ws -list of token weights- as rows, and a list of sequence labels (1 for regulatory regions and 0 for 
control regions) to fit a regularized logistic regression were the C parameter has been chosen by 
fivefold cross-validation using a grid search function logistic regression and grid search function 
used correspond to the implementation of the python library scikit-learn v0.19.0 [53]. 

Implementation of “vector-k-mers” model 
To generate “vector-k-mers” models we used the implementation of word2vec algorithms 

from the python library gensim v1.0.0, which fits sequence representations (k-mer vectors - vk-mers) 
via Stochastic Gradient Descent (SGD) that aims to optimize an objective function, that implicitly 
correspond to likelihood for k-mer occurrences [54,25]. Next, as shown for text classification, 
sequence representations -vk-mers- can be turned through inversion via Bayes rule to determine the 
likelihood of a new sequence of being part of a regulatory region based on its k-mer composition 
[26]. This classification schema interprets the individual vk-mers as components in a composite 
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likelihood approximation that allows classification of sequences without extra modeling or 
estimation steps.  
 

In brief, we trained a shallow (one single hidden layer), fully connected neural network 
aimed to optimize the probability of predicting a given k-mer (k-mertarget) from its context, that is 
from the observation of the co-occurring k-mers appearing anywhere within a small window 
around the target. We ran word2vec with 30 iterations using hierarchical softmax and no negative 
sampling (iter=30, hs=1, negative=0, size=300, min_count = 0 and window = 5, all others 
parameters were kept as the defaults) for each data set and obtain two independent geometric 
spaces (a continuous space of sequence representations), one for the regulatory regions (Vregulatory) 
and the other for the control regions (Vrandom).  
 

For the classification step, we calculated the probability of every new sequence si under 
each sequence representation – Vregulatory and Vrandom – by first calculating the likelihood of every 
window within a sentence (using the score function from gensim) and the averaging likelihoods to 
obtain sentence likelihoods. Next, from the matrix of sentence likelihoods by the two categories 
(i.e., C =  regulatory and control) we derive the sequence probabilities - pVregulatory(si) and 
pVrandom(si). The category probabilities were calculated via Bayes rule, using as priors !"=1/C, 
such that the classification proceeds by assigning the category for which pVcategory(si) is greater 
[26]. 

Evaluation of models performance 
Accuracy, ROC and precision recall curves were generated using the python library scikit-

learn v0.19.0 [53] and plotted with python matplotlib v2.0.0 [55]. 

Calculation of k-mer complexity on a TF motifs database 
The sequence complexity of any k-mer was approximated to the Shannon entropy for the 

symbols succession given by equation 2. 
 
Entropy(k-mer) = - #$	log)	#$  equation 2 
 

Were pi correspond to the probability of appearance of the i-th symbol in the k-mer.  
 

To empirically establish a threshold of complexity for k-mers within regulatory regions we 
calculated the k-mer complexity for any given k and for all the consensus sequences derived from 
transcription factor (TF) binding models represented as Position Weight Matrices (PWMs) in the 
HOmo sapiens COmprehensive MOdel COllection (HOCOMOCO) v10 [56]. 
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Motif enrichment analyses 

To identify k-mers similarity to transcription factor binding sites we used TOMTOM from 
the MEME suite [37] and two collections of Arabidopsis thaliana TF binding motifs derived from 
large-scale experiments [38,39]. The fold enrichment was calculated according to equation 3, in 
which N correspond to the size of the k-mer vocabulary, n correspond to the 1% of the k-mer 
vocabulary taking from the top after sorted with the weights obtained from the model, M 
correspond to the number of k-mers with a significant hit against a TF motif and m to the number 
of k-mers that are in the top 1% and have a significant hit against a TF motif. 
 
Fold enrichment = */,-/. equation 3 

 
The statistical significance of the enrichment was calculated using the hypergeometric test, 

as implemented with the python library scipy 0.18.1 (stats.hypergeom), after applying the 
Bonferroni correction for multiple testing hypothesis to the alpha value required for statistical 
significance. 

Data accessibility 

All the regulatory and control sequences together with the code used to train and evaluate 
the models are available through Bitbucket repository 
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Figure 1: Schematic of the Steps to Generate “bag-of-k-mers” and “vector-k-mers”Models
The above workflow shows the steps from data preprocessing tomodel output. We fitted “bag-of-k-mers”
and “vector-k-mers” models for k values between 5 to 10 bp (within the common range in which
regulatory elements have been observed). Training and evaluation of both methods happened on the same
portion of the data to facilitate comparisons. The common pre-processing step involved the collapsing of
complementary k-mers as the same token to reduce the noise of k-mer counts and the effective vocabulary
for feature selection. The final outputs are both the classifiers and learned features.
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Figure 2:ComparisonofROC and PRCCurves for PredictionofRegulatory Regions
Comparison of models performance under balanced (a - d) and unbalanced holdout sets (e - h). For each model (k=8),
the receiver operating characteristic (ROC) curve and the precision recall curve (PRC) are shown for all the regulatory
datasets and the correspondingcurves for classification of the holdout set with randomized labels (dotted lines)
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Figure 3: Low Complexity Regions do not Provide Relevant Information to Discriminate Regulatory Regions
(a) Annotation at a base pair level of the first 1Kb of the long intron in the maize gene ga2ox1using sequence 
complexity (Entropy), scores from “bag-of-k-mers” models (Full and Filtered), and regulatory probabilities 
(Probability) from the “vector-k-mers” model. Sequence complexity and “bag-of-k-mers” scores were calculated using 
a 1bp sliding window of size k. Regulatory probabilities were calculated using a 1bp sliding window of 3*k to evaluate 
co-occurrence of groups of 3 and 2 k-mers. The evaluated region includes the KN1 ChIP-seq peaks as identified from 
two biological replicates in developing ears (the center of the peak for each replicate is indicated with a vertical dotted 
line). (b) ROC curve and (c) PRC curve are shown for a “bag-of-k-mers” model (k=8) after removal of low-complexity 
k-mers (filtered) and tested with unbalanced holdout set. 
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Figure 4: “bag-of-k-mers” and “vector-k-mers” Models can Accurately Predict Core Promoter Regions and TF 
Binding Loci Across Species
ROC curve and PRC curves summarizing the performance of “bag-of-k-mers” (filtered) (a-b) and “vector-k-mers” (c-
d) models (k=8) trained in maize core promoter and tested in a set of randomly chosen 1,000 core promoter regions and 
their respective controls in sorghum. (e) Base-pair annotation of KN1 binding loci (blue) and control regions (red) 
using scores derived from a “bag-of-k-mer” model (filtered) trained on KN1 (Knotted 1, ZmHD1) ChIP-seq data [27] 
show a slight preference for the center of the peak over flanking regions. (f) The same model also works in rice, 
differentiating regions targeted by OSH1 (the functional orthologue of KN1) [34] (blue) from control regions (red) with 
the same GC content with a strong preference for the center of the peak. 
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Figure 5: Scored Vocabularies Uncovers G+C Content Bias Positionally Constrained within Promoters and 
Enhancer Regions
Comparison of the distribution of G+C content across top 1%, bottom 1% and remaining 98% of scored k-mer
vocabularies (k=8, filtered) for (a) core promoters, MNAseq (b) shoot and (c) root model’s results. The positional 
constraints of k-mers with high A+T content on the top 1% visualized as k-mer’s density with respect to a reference 
point: (d) TSS for core promoters and MNAseq hotspot middle point (e) shoot and (f) root (solid blue lines). 
Contrasting density plots are shown for corresponding random regions (dotted gray lines).
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Figure 6: “vector-k-mers” Models Capture Related k-mers from the Influence of their Local Sequence Context Within 
Regulatory Regions
(a) Schematic of capturing local sequence composition versus aligning flanking contexts as implemented in the “vector-k-
mers” models in which k-mers that share a similar context would be represented by close vectors (vk-mers) in a geometric space. 
(b) The vector space obtained from core promoters (Vregulatory) and their corresponding control (Vrandom) define two different 
groups of closest k-mers (cosine similarity) to the ‘CTATATA’ vector (vCTATATA). The group of closest k-mers in Vregulatory, when 
compared to the group formed in Vrandom, are more similar in sequence (shorter edit distance), and have in average more positive 
k-mer scores from an equivalent “bag-of-k-mers” model. This suggests a functional relationship between those k-mers in 
regulatory sequences versus random regions. (c) Likewise, the group of k-mers closest in the Vregulatory space share positional 
preferences relative to the TSSs in the region expected for the TATA element. (d) Their counterpart in Vrandomdoes not. 
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