
WEBCARD: A JAVA CARD WEB SERVER

Jim Rees and Peter Honeyman
Center for Information Technology Integration
University of Michigan
Ann Arbor
http:/ /smarty.citi.umich.edu/

Abstract Webcard is a Java application that implements a TCP /IP stack and
HTTP server and runs on a Schlumberger Cyberflex Access smartca.rd.
In this report, we describe the architecture and implementation of Web­
card and the constraints and assumptions that influenced its design.
Complete sources for the application and its supporting environment
are available.

Keywords: Smart card, Internet, World Wide Web

1. INTRODUCTION
Smartcards have numerous properties that make them useful in a se­

curity infrastructure:

• smartcards are tamper-resistant

• smartcards export a restricted API that limits access to content
and functionality

• this API includes generic cryptographic functionality.

In combination with these influences, the inherent mobility and con­
venient form factor of smartcards suggests deployment in application
domains that offer secure, personalized services; consequently, smartcard
specifications are dictated by an international standard. Consequently,
they are deployed worldwide in a variety of infrastructures and applica­
tions.

Consider, for example, a health card application, in which personal
medical information is stored securely on a smartcard. Health care con­
sumers maintain strict physical security of their personal data by storing
the health card in their wallets. However, when it comes time to use the

http://dx.doi.org/10.1007/978-0-387-35528-3_22

198 IFIP CARDIS 2000

information, the health card must be accessed by a proprietary applica­
tion provided by the card manufacturer or system integrator. So while
the health care consumer maintains the security of her personal infor­
mation, she does not really control it, and is not even able to examine
it.

We suggest an alternative. Providing access to confidential information
through web protocols can preserve the security and availability of crit­
ical, confidential information when it is needed, but has two additional
benefits:

• the information can be retrieved without special applications, i.e.,
by any web browser; and

• the information can be accessed remotely

The former benefit provides true control over personal data, while the
latter dovetails with telemedicine applications, so that the health care
consumer need not be physically present in the clinical setting.

The predominance of Internet protocols governing network commu­
nication cries for integration of smartcards with Internet technologies.
The success of the Internet is due to worldwide acceptance of strict stan­
dards on packet formats and concomitant semantics. The first step to­
ward smartcard integration with Internet technologies is the development
of a compliant Internet communication stack on a smartcard. In this pa­
per, we describe a prototype implementation of IP, TCP, and HTTP on
a commercial smartcard, Schlumberger's Cyberflex Access Java Card.

The rest of this paper is organized as follows. First, we describe the en­
vironment in which this research was performed. Next, we discuss nam­
ing and addressing issues that arise when integrating smartcards with
the Internet. The next section describes our implementation in detaiL
We conclude with a section that discusses the results and describes our
plans for further development.

2. DEVELOPMENT ENVIRONMENT
The Program for Smartcard Technology at the University of Michi­

gan's Center for Information Technology Integration (CITI) is a research
partnership with Schlumberger's Austin Product Center. The Program
is actively engaged in research projects that enhance and extend theca­
pabilities of smartcards. Among CITI's goals in the Program, two stand
out:

• innovative computer security applications of smartcards, and

• new models of interaction with smartcards.

Webcard: a Java Card Web Server 199

To these ends, we developed Webcard, a web server that is entirely
contained in a commercial, off-the-shelf smartcard.

Webcard accomplishes both of CITI's objectives in the categories of
research stated above. Webcard takes advantage of the inherent security
properties of smartcards, such as tamper resistance and a programming
interface appropriate for security applications. In contrast to the arcane,
operating system dependent applications characteristic of the smartcard
industry, Webcard offers a radically new mode of interacting with smart­
cards, one that is enabled by any Internet-capable web browser.

3. LOCATION DEPENDENCE
Internet services are bound to Internet addresses, which are them­

selves tightly woven to the Internet routing infrastructure. The very mo­
bility and security of smartcards complicates the challenge of making
rendezvous between arbitrary clients and smartcard-based servers.

Preserving security suggests an end-to-end approach so that interme­
diate systems along the network path merely forward datagrams. This
limits the security considerations to the client and server protocols and
applications.

To achieve end-to-end communication, each smartcard must be inde­
pendently addressable, i.e., each smartcard must have its own Internet
address. One option, the one we have chosen, is to assign a fixed IP ad­
dress to each smartcard. The choice of address dictates the path of IP
packets directed to the card's address. While this severely limits mobil­
ity, we find it useful in our prototype implementation as a quick way to
test out ideas unrelated to network routing.

Another option is to assign an address dynamically to each smartcard
as it enters the Internet infrastructure, e.g., with RARP [Finlayson et al.,
1984] or DHCP [Droms, 1997]. Dynamic DNS server updates [Vixie et al.,
1997] can provide fixed domain names for smartcards, solving the service
rendezvous problem. However, this depends on the availability of secure,
dynamic DNS servers.

4. TECHNICAL DETAILS
Webcard is a web server running on a Schlumberger Cyberflex Access

Java Card [Schlumberger, Inc., 1998]. The card is programmed by the
manufacturer to implement a Java virtual machine (JVM), recognizing
the bytecodes of a sizable subset of the Java programming language.
Specifically, Cyberflex implements the Java Card 2.0 specification [Sun
Microsystems, 1997]. Java Card is intended to support multiple applica­
tions on a single card, as described in ISO 7816-4 [International Organi-

200 IFIP CARD IS 2000

zation for Standardization, 1995b] and EMV 96 [Europay International
S.A. et a!., 1998]. Webcard is written as a single Java Card application
(variously called an applet or cardlet).

The Cyberflex Access card has 16 KB of EEPROM and about 1.2
Kbytes of RAM. These limited resources make it very difficult to imple­
ment a full, standards-compliant version of TCP /IP [Postel, 1981a, Pos­
tel, 1981b]. While that is our ultimate goal, we must also accommodate
the size limitations imposed by current smartcards; we find it useful and
interesting to see how much we can accomplish in as little space as pos­
sible.

As a first step toward implementing a standards compliant TCP /IP
stack, we elected to implement a minimal, functional server. Our main
"robustness" criterion is to produce a server that responds to valid inputs
and does not crash when presented with invalid inputs. We depend on
the TCP peer to assure reliable operation.

HTTP [Berners-Lee et a!., 1996], TCP, and IP specify many require­
ments, many of which are rarely or never used in practice. For our proto­
type implementation, we elected to elide those specifications that are not
required in normal operation. To determine which parts of the protocol
are actually used, we captured tcpdump traces of HTTP transactions
from several different clients against an existing server. In these traces,
we observed several properties that helped simplify our implementation:

• all HTTP requests fit in a single packet, so no assembly is required

• many IP header fields are unused, e.g., TOS, ID, Frag, options

• urgent data and TCP options are never used

• RST is never encountered in normal operation

• PUSH is always set on server data packets

• the client never closes connections; the server always closes the
connection

• client data always elicits a server response, so piggybacking client
data acks on server data suffices.

• content files are small, so the receive window never fills

4.1. ONE CONNECTION AT A TIME
The Webcard server is simplified by making the assumption that only

one connection is active at any time. This allows the server to preserve
state for a single connection until a new request comes in. This also

Webcard: a Java Card Web Server 201

eliminates the need to time out defunct connections and to respond to
most state change requests. However, most web browsers run requests in
parallel, so the server must not return pages with inline content such as
images.

It should not be difficult to relax this restriction. The only connection
state kept by the Webcard is the file name; TCP state, which is re­
membered but never used; and TCP port, to enforce the one connection
restriction. Connections can be discarded in LRU order as new connec­
tion requests arrive, eliminating the need for a timer, which is unavailable
on the Cyberflex Access platform.

4.2. HTTP CONSIDERATIONS
The server speaks a subset of the HTTP 1.0 protocol, which is simpler

and easier to implement than HTTP 1.1 or later. Earlier versions of
HTTP, such as HTTP 0.9, are unable to communicate with Webcard,
but these clients are now very rare. Modern web clients implement HTTP
1.1 or later, which are required to be backward compatible with HTTP
1.0.

Each request is handled as an individual TCP connection. The HTTP
status line, "HTTP /1.0 200 OK," and the HTTP headers are stored in
the files being served, so the server itself does not generate any headers
or send any data other than what is in the file.

An HTTP 1.0 GET request consists of the string "GET," followed
by one space character, followed by a server-relative URL. (Webcard
does not support any other methods, such as HEAD, POST, or PUT.)
For now, URLs are assumed to be three characters, with the last two
characters being the file name. (ISO 7816-4 file names are two bytes.)

When the server receives a request, it selects the requested file. It does
not store any other state that reflects the identity of the requested file.
This implies that only a single HTTP connection can be active at any
time, as described above.

4.3. TCP IMPLEMENTATION
The server has no configuration information. The network connection

is point-to-point, so all incoming packets are assumed to be addressed
to the server. The TCP stack simply swaps the source and destination
addresses when it constructs a reply packet. No subnet or routing infor­
mation is required.

Webcard discards any packets not addressed to the HTTP port (TCP
port 80). TCP options are ignored.

202 IFIP CARD IS 2000

The TCP stack never retransmits. This eliminates the need for timers,
which are unavailable anyway, and for keeping track of (most) TCP state.
We assume the TCP peer retransmits when necessary. In practice, pack­
ets are rarely dropped.

The Webcard TCP state machine has three states, LISTEN, ESTAB­
LISHED, and FIN-WAIT-1, instead of the usual eleven. It is incapable
of initiating a connection, thus does not have the corresponding SYN­
SENT state. It also does not have a CLOSED state. Other TCP states
are also eliminated, due to our special requirements and assumptions.

The state machine responds to four types of packets: SYN, data, FIN,
and ACK. A SYN elicits a SYN ACK reply and transitions to ESTAB­
LISHED, without waiting for the peer to ACK the SYN. We assume
that the SYN ACK will not be dropped and will eventually arrive. This
assumption is benign: if SYN ACK does get dropped, the peer will re­
transmit the SYN, allowing connection establishment to proceed.

HTTP 1.0 allows only one line of text to be sent to the server; follow­
ing our restrictions to HTTP 1.0 described above, any packet with data
is assumed to be a complete HTTP GET request. Webcard URLs are
exactly three bytes. We assume that the seven bytes in a GET URL re­
quest arrive in a single, unfragmented TCP segment. The server extracts
the URL from this request and selects the given file in the ISO 7816-4
file system. If the file does not exist, the server selects a file named "nf'',
which contains a "404 Not Found" error message. The data packet elicits
an ACK of the client's sequence number.

A FIN elicits an ACK and transitions the TCP state machine to LIS­
TEN. HTTP clients always wait for the server to close the connection,
so there is no CLOSE-WAIT or LAST-ACK state. If the client does try
to close the connection prematurely, it will wait in vain for FIN from
the Webcard and will be stuck in FIN-WAIT-2 indefinitely. Most TCP
clients eventually recover from this.

An ACK with no data attached elicits data from the currently selected
file. There is no windowing - data is sent when the ACK for the previous
segment arrives. Webcard sequence numbers always start at zero, so the
client's ACK number gives the offset into the file.

Webcard does not check the client's checksum and ignores the offered
window; this is benign as the card never sends more than one unacked
segment of 248 bytes. The PUSH flag, urgent flag and pointer, and RST
packets are all ignored. Outgoing packets always offer a small fixed win­
dow. The actual size of this window is unimportant - we assume the
client will never want to send more than 17 bytes.

Webcard: a Java Card Web Server 203

4.4. IP IMPLEMENTATION
Incoming packets are assumed to contain no IP options. It would not

be difficult to process options, but in practice IP options are never used.
The IP header checksum must be computed with 16 bit arithmetic be­
cause the card does not implement 32 bit arithmetic operations. The
checksum routine is simplified by observing that an IP header is never
long enough to overflow a 16 bit sum.

The MRU (incoming MTU) is limited by the ISO interface to slightly
less than 256 bytes. Webcard does not implement IP reassembly, because
the only important incoming information is the URL, which fits in the
first 17 bytes.

4.5. CARDLET DETAILS
Cyberftex extends Java Card in a number of ways. Cyberftex cardlets

contain a main method in addition to the Java Card methods. This allows
them to support standalone programs. Webcard does not depend on this
feature.

A cardlet must have at least three methods, ''install," "select," and
"process." The install method is invoked once at the time the card is
initialized. It creates and initializes the objects needed by the applet.

The select method is invoked at the time the cardlet is selected, usually
via the "select" application protocol data unit (or APDU). A cardlet can
be set as the default for the card, in which case that cardlet is implicitly
selected whenever the card is used.

The process method does all the work. When an APDU is sent to
the card, that APDU is passed to the process method of the currently
selected cardlet. IP packets are sent to the Webcard encapsulated in an
APDU that gets passed to the process method.

On reset, the default loader waits for an incoming APDU and passes
it to the Webcard cardlet. If the APDU is an IP packet (INS=OxFE),
the cardlet processes the APDU; otherwise the cardlet passes the APDU
back to the default loader.

The Webcard cardlet extracts the data length, destination port, and
several other fields from the IP and TCP headers, then enters the TCP
state machine. It then constructs a reply packet if needed, optionally
attaches outgoing data to it, computes TCP and IP checksums, and
sends the reply packet as outgoing 7816 data.

At several points in this process the cardlet calls apdu.waitExtension()
to send a 7816 no-op to the card terminal. This prevents the terminal
from timing out while the card is processing.

204 IFIP CARDIS 2000

The Webcard cardlet depends on the CyberflexFile class to access con­
tent files. To run the cardlet on a generic Java Card 2.1 platform, access
to persistent objects would have to be added to the cardlet. This would
complicate card management (see next section), but would improve the
name space for Webcard URLs.

The Webcard cardlet is about 1200 bytes of Java bytecode, leaving
about 14 Kbytes of space for web content.

4.6. CARD MANAGEMENT
Content is loaded onto the Webcard using SCFS (Itoi et al., 1999],

CITI's extension to the UNIX operating system, which mounts any ISO
7816-4 smartcard file system into the UNIX file system name space. Con­
tent is managed on the card with UNIX commands such as mv, cp, emacs,
etc.

Cardlets can be written in any Java development environment; we
tend to use standard UNIX editors and Sun Microsystem's JDK (Sun Mi­
crosystems, 1998] for compiling into bytecode. A Cyberflex-specific tool
called MakeSolo converts the class file into a cardlet ready for download­
ing with another tool from the Cyberflex development kit.

4.7. HOST INTERFACE
The Cyberflex Access card includes an ISO 7816-3 (International Or­

ganization for Standardization, 1997] interface. We use this framing pro­
tocol instead of implementing a more conventional serial protocol such
as SLIP or PPP.

A daemon running on OpenBSD attaches a tunneling network inter­
face to the Webcard IP address and reads from the endpoint of the tun­
nel, typically / dev jtunO. The daemon encapsulates IP packets in 7816
APDUs, with no additional headers or processing, and writes them to
the card reader serial port. The daemon processes IP packets emanating
from the card by stripping the APDU header and writing the payload to
the tunnel endpoint.

The maximum size of an APDU is 256 bytes. The tunnel daemon does
not implement IP fragmentation, and truncates any packet too big to fit
in an APDU.

Each incoming packet results in at most one reply packet. Cyberflex
Access supports 7816-3 T=O protocol, so the reply packet is retrieved by
the daemon with a "get response" APDU.

Routing packets to the Web card requires external advertisement of the
existence of the tunnel. At CITI, we assign the Webcard an otherwise
unused IP address from the local subnet's address space and install a

Webcard: a Java Card Web Server 205

static route on our upstream router. On the host to which the card
reader is attached, we configure with the following commands:

configure the tunnel
ifconfig tunO 141.211.169.2 smarty.citi.umich.edu
route through the tunnel
route add smarty 141.211.169.2
start the tunnel daemon
ip7816d 141.211.169.2

4.8. PHYSICAL CHARACTERISTICS
The physical dimensions of Web card, dictated by the Cyberflex Access

platform, correspond to ISO 7810 ID-1: 85.6 x 54 x .76 mm. [International
Organization for Standardization, 1995a]. Of this, roughly 10 x 12 mm
is chip carrier. The chip itself is less than 25 square mm. in size.

5. DISCUSSION
Webcard performance is less than spectacular: approximately 130 bytes

per second. We believe this can be accounted for in the main by code
path through the JVM. First-byte latency, from the point of view of the
tunnel host, is 2.6 sec. We plan to address performance issues when we
are satisfied with functionality.

We are participating in an IETF -governed standardization effort to
provide for interoperability among Internet smartcard developers. An
RFC describing IP encapsulation in ISO 7816-3 has been drafted and sub­
mitted to the IETF for consideration and development [Guthery et al.,
2000]. Our Webcard implementation complies with the first draft of the
RFC.

We intend to extend the functionality of Webcard in many directions,
but are mostly concerned with providing better HTTP, TCP, and IP
compliance. Our first priority is to address "hosts requirements" such as
ICMP functionality, which proves useful in remotely diagnosing problems
with IP.

With a more functional TCP /IP stack in hand, we plan to investigate
the potential of remote method invocations from host applications. We
are also interested in investigating IPv6 and mobile IP for the flexibility
they offer to the highly mobile computers embedded in smartcards.

6. AVAILABILITY
A Webcard demonstration, which includes the Java source code and an

image of the card, is at http://smarty.citi.umich.edu/. Complete source

206 IFIP CARDIS 2000

code for the cardlet, tunnel daemon, and 1/0 libraries can be found on
CITI's smartcard home page,

http:/ /www.citi.umich.edu/projects/smartcard.

7. ACKNOWLEDGMENTS
We thank Scott Guthery, Tim Jurgensen, and Bertrand du Castel for

valuable advice and suggestions.
This work was partially supported by Schlumberger, Inc.

References

[Berners-Lee et al., 1996] Berners-Lee, T., Fielding, R., and Frystyk, H.
(1996). RFC 1945: Hypertext transfer protocol- HTTP /1.0.

[Drams, 1997] Drams, R. (1997). RFC 2131: Dynamic host configuration
protocol.

[Europay International S.A. et al., 1998] Europay International S.A.,
MasterCard International Inc., and Visa International Service Assoc.
(1998). EMV '96 - Integrated circuit card specification for payment
systems.

[Finlayson et al., 1984] Finlayson, R., Mann, T., J. Mogul, J., and
Theimer, M. (1984). RFC 903: A reverse address resolution proto­
col.

[Guthery et al., 2000] Guthery, S., Baudoin, Y., Posegga, J., and Rees,
J. (2000). IP and ARP over ISO 7816-3.

[International Organization for Standardization, 1995a] International
Organization for Standardization (1995a). ISO/IEC 7810: Identifica­
tion cards - Physical characteristics.

[International Organization for Standardization, 1995b] International
Organization for Standardization (1995b). ISO/IEC 7816-4: Inte­
grated circuit(s) cards with contacts. Part 4: Interindustry commands
for interchange.

[International Organization for Standardization, 1997) International
Organization for Standardization (1997). ISO/IEC 7816-3: Inte­
grated circuit(s) cards with contacts. Part 3: Electronic signals and
transmission protocols.

[Itoi et al., 1999] Itoi, N., Honeyman, P., and Rees, J. (1999). SCFS:
A unix filesystem for smartcards. In Proc. USENIX Workshop on
Smartcard Technology, Chicago.

[Postel, 1981a] Postel, J. (1981a). RFC 791: Internet protocol- DARPA
Internet program protocol specification.

Webcard: a Java Card Web Server 207

[Postel, 1981b] Postel, J. (1981b). RFC 793: Transmission control pro­
tocol- DARPA Internet program protocol specification.

[Schlumberger, Inc., 1998] Schlumberger, Inc. (1998). Cyberfl.ex access
programmer's guide.

[Sun Microsystems, 1997] Sun Microsystems (1997). Java Card 2.0 pro­
gramming concepts.

[Sun Microsystems, 1998] Sun Microsystems (1998). Java Card applet
developer's guide.

[Vixie et al., 1997] Vixie, P., Thomson, S., Rekhter, Y., and Bound, J.
(1997). RFC 2136: Dynamic updates in the domain name system (DNS
UPDATE).

	WEBCARD: A JAVA CARD WEB SERVER
	1. INTRODUCTION
	2. DEVELOPMENT ENVIRONMENT
	3. LOCATION DEPENDENCE
	4. TECHNICAL DETAILS
	4.1. ONE CONNECTION AT A TIME
	4.2. HTTP CONSIDERATIONS
	4.3. TCP IMPLEMENTATION
	4.4. IP IMPLEMENTATION
	4.5. CARDLET DETAILS
	4.6. CARD MANAGEMENT
	4.7. HOST INTERFACE
	4.8. PHYSICAL CHARACTERISTICS

	5. DISCUSSION
	6. AVAILABILITY
	7. ACKNOWLEDGMENTS
	References

