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Abstract

Rapid, accurate prediction of protein structure from amino acid sequence would
accelerate fields as diverse as drug discovery, synthetic biology and disease diagnosis.
Massively improved prediction of protein structures has been driven by improving the
prediction of the amino acid residues that contact in their 3D structure. For an average
globular protein, around 92% of all residue pairs are non-contacting, therefore accurate
prediction of only a small percentage of inter-amino acid distances could increase the
number of constraints to guide structure determination. We have trained deep neural
networks to predict inter-residue contacts and distances. Distances are predicted with
an accuracy better than most contact prediction techniques. Addition of distance
constraints improved de novo structure predictions for test sets of 158 protein
structures, as compared to using the best contact prediction methods alone.
Importantly, usage of distance predictions allows the selection of better models from the
structure pool without a need for an external model assessment tool. The results also
indicate how the accuracy of distance prediction methods might be improved further.

Introduction 1

The problem of predicting protein structure from amino acid sequence has been 2

transformed in the last decade from one of aspiration to one of application, although 3

prediction methods are not yet a routine laboratory tool. Recently, well founded 4

predictions of 137 novel folds were published [1]. The authors benchmarked the time for 5

predicting the structure of a 200 amino acid protein as ∼ 13 000 CPU core hours, which 6

amounts to around 5 days of processing on 100 cores in a supercomputing cluster, or 7

around 50 to 100 days on a typical desktop machine. This limitation makes structure 8

prediction inaccessible for non-specialists and prevents broader exploitation, e.g. for 9

high-throughput protein structure prediction. Elofsson and co-workers developed a 10

faster high throughput modelling pipeline, but using a less accurate structure prediction 11

protocol, and predicted several hundred novel folds [2]. Here we demonstrate that 12

successful prediction of the distances between residues allows one to predict better 13
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structural models. More accurate structures can be generated and better models can be 14

selected from a pool of possible structures than when contact predictions alone are used 15

to constrain the models in the pool. Inter-residue distance predictions thus enhance the 16

ability to generate and select good quality models. 17

Contacts in a protein structure often involve amino acids that vary across homologs 18

in a correlated way, which is attributed to evolution selecting contacting amino acids to 19

maintain the structural stability of the protein [3] (Fig 1A). However, strong correlation 20

can arise due to two residues contacting a common third amino acid, referred to as a 21

transitive effect, and these residues can thus be falsely predicted as being in contact. 22

During the last decade, efficient global statistical techniques for removing the transitive 23

effect have been developed, thus allowing one to identify clearly the directly coupled 24

positions in multiple sequence alignments (MSAs) [3–7]. For an alignment of length L, 25

such statistical techniques can now predict L/10 contact pairs with accuracies as high as 26

70 to 80% [8]. A direct result of this has been a rapid improvement in de novo structure 27

prediction, e.g. [1, 2], thus fulfilling the original hopes of Valencia and co-workers [9]. 28

Fig 1. Co-variance between columns of a multiple sequence alignment can
be used to predict inter-residue contacts and distances and thence protein
structure.

Training neural networks provides further improvement to the accuracy of contact 29

predictions. MetaPSICOV [8] uses a two-layer neural network for contact prediction (i.e. 30

input layer, hidden layer, output layer), with an input vector of 672 features. The 31

feature vector includes local properties of the amino acids under consideration, such as 32

predicted secondary structure and solvent accessibility, properties of the whole sequence, 33

such as the average of the predicted solvent exposure, and coevolutionary scores for 34

directly coupled amino acid positions inferred from the aforementioned global statistical 35

techniques. MetaPSICOV pushes the accuracy of contact prediction to over 90% for the 36

predicted top L/10 contacts, where L in the number of amino acids in the target protein 37

sequence [8]. Very recent applications of deep learning, i.e. multi-layered neural 38

networks, are reported as surpassing the prediction accuracy of MetaPSICOV by 16 to 39

23% for the top L/5 long range contacts, for the CASP11 protein sets [10–12]. Deep 40

learning increases the number of processing layers so the network can learn to abstract 41

features from the input data, which the final layer can then use for classification. 42

Another recent paper uses a näıve Bayes classifier to calculate the posterior probabilities 43

of eight coevolution analysis, which are then processed by a shallow feed-forward neural 44

network [13]. 45

We hypothesised that pairs of spatially distant amino acids may also co-evolve. 46

Indeed, the literature has some evidence for this [14–16] and Pollastri and co-workers 47

have published distance predictions [17,18]. However, the RMSD between the actual 48

distance and the predicted distance by this method was over 8 for residues separated by 49

23 or more residues in sequence. Moreover, ab initio models generated with this data 50

had TM-scores of a little over 0.2. TM-score measures the similarity of two protein 51

structures, with 0.2 meaning the predicted structure and the native structure are 52

unrelated. 0.5 indicating that the structures are more likely to be the same fold than 53

not and 0.7 or greater indicating that proteins are almost certainly the same fold [19]. 54

In test systems, adding distance information to contact information could improve 55

structure predictions significantly compared to using contacts alone, even when the 56

distance information was noisy [17, 18]. Thus, accurately predicting precise inter-residue 57

distance from sequence would provide further constraints during structure prediction, 58

with the possibility of increased speed and accuracy (Fig 1B). 59

We trained four feed-forward neural network models to distinguish residue pairs in 60
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spatial distance ranges of 0-8 Å (i.e. contact), 8-13 Å, 13-18 Å and 18-23 Å, which 61

together we call DeepCDpred (deep contact distance prediction). Our method uses a 62

similar feature vector to MetaPSICOV but with eight hidden layers and with only one 63

prediction stage (while MetaPSICOV uses two). The key development is that we predict 64

accurate inter-residue distances, which we show improve structure prediction, and the 65

ability to choose better models from a pool of candidate models. 66

Methods 67

Neural Network Feature Vector and Set Up 68

All four distance ranges were trained using the same neural network architecture and 69

inputs, but with training data appropriate to that distance interval. Distances were 70

measured between the Cβ atoms (or Cα in the case of glycine) of a pair of residues. 71

There are 733 features as input, described in the supplementary methods, and nine-layer 72

neural network model (i.e. one input layer, one output layer and eight hidden layers 73

where the first layer has 120, second has 50 and the rest have 30 neurons, S1 Fig). For 74

the contact prediction model, networks were trained on distance intervals of (0-7.9]Å, 75

(0-8.0]Å, (0-8.1]Å and (0-8.2]Å, with the final score for any residue pair being the 76

average output value of all these four. For each of the three distance prediction models, 77

only one neural network was produced. 78

We implemented here the QUIC algorithm [20] for sparse inverse covariance 79

estimation to calculate amino acid direct couplings for inclusion in the feature vectors. 80

QUIC is similar to PSICOV [5], solving a GLASSO problem, but our tests show that it 81

is much faster than PSICOV, taking on average a quarter of the time to calculate 82

contacts for a 300 amino acid protein, with negligible loss of amino acid contact 83

prediction accuracy ( S2 Fig). This allows us to perform calculations on longer amino 84

acid sequences than is achievable with PSICOV. 85

Residue positions that are very close in protein sequence would be expected to be 86

close in the 3D structure without any need for sophisticated prediction tools. Thus, 87

since they may mask other significant co-evolutionary signals during neural network 88

training, residue pairs separated by 5 or fewer residues were ignored during training and 89

testing, as was also done by others [5–8]. 90

Similarly, it is trivial to predict the distance between two residues on the same 91

secondary structure element, if their sequence separation is known. For the distance 92

predictions, residue pairs on the same predicted alpha helix or beta strand were ignored, 93

to stop their trivial distance prediction; this was done for the training, test and 94

validation sets. In addition, a different minimum sequence separation was set for each 95

distance bin. If the sequence separation of a pair is 5 amino acids, even once residues on 96

the same secondary structure have been ignored, their spatial separation can still be 97

trivially predicted as highly likely to be in distance bin 8-13 Å ( S3 Fig). With a 98

sequence separation of 8 amino acids, the distance between them is likely to be in the 99

range of 10-18 Å ( S3 Fig, the left blue highlighted bar). Thus, a sequence separation 100

cut-off of 8 or more residues was used for distance bin 8-13 Å and similarly, 13 was the 101

minimum sequence separation for distance bin 13-18 Å. For the 18-23 Å bin a separation 102

of 15 amino acids or more was chosen. For contact predictions, we kept in the data set 103

residue pairs that were predicted to be on the same secondary structure element. 104

Training and testing 105

The main test set consists of 108 from the 150 proteins of the MetaPSICOV test set, so 106

we can be sure that the test proteins are not in the training set of either MetaPSICOV 107
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or DeepCDpred. Additionally, these 108 proteins are not listed in the training set of 108

RaptorX [11]. A chain was removed from the MetaPSICOV test set when a sequence 109

with >25% identity to it was found in the training set of SPIDER2 [21], since we used 110

SPIDER2 for secondary structure prediction, which is included in our feature vector 111

and for subsequent structural modelling. This gave 108 protein chains ranging from 52 112

to 266 amino acids with 25% or less sequence identity to each other. Based on 113

annotation in the PDB, 87 chains are monomers in the biological unit, and 21 are from 114

multimeric complexes of some sort, one chain is a membrane protein. The PDB IDs of 115

these 108 protein chains are listed in S2 Table. 116

Even though the maximum sequence identity is 25% between the training and the 117

test sets, some of the proteins in our test set have common topology classes (and 118

homologous superfamily classes) with the training set proteins, based on CATH 119

classification [22]. In order to test whether our trained model has a bias towards 120

predicting contacts and distances for structures with training set topologies, we 121

generated another test set with 50 proteins that do not have the same topology as any 122

of the training set proteins of DeepCDpred, RaptorX and MetaPSICOV which are listed 123

in S3 Table. 124

The training set was chosen from the PISCES set [23], downloaded in November 125

2016. The selected training set protein chains and 50 topologically independent test 126

protein structures were solved with no worse than 2 Å resolution, a maximum R value 127

of 0.25, with no more than 25% pairwise sequence identity to each other or the test set, 128

and with fewer than 400 amino acids. Of these structures, 1701 chains were arbitrarily 129

selected. 130

The neural network training protocols are described in supplementary methods. The 131

accuracy of the test set predictions was calculated as the true positives divided by the 132

total number of predictions. Since we make no predictions for false positives, i.e. FP=0, 133

the standard formulae for accuracy and precision (PPV) become identical. 134

Comparison with other methods 135

Structure predictions were made using only DeepCDpred contact predictions, using 136

DeepCDpred contact and distance predictions, MetaPSICOV predictions, NeBcon 137

predictions, RaptorX contact predictions and RaptorX contact predictions with 138

DeepCDpred distance predictions. As constraints, the top 3L/2 scoring contacts were 139

used for structure predictions, applying the same Rosetta protocol for all predictions, as 140

described in the next subsection. Residue pairs predicted in the 8-13 Å, 13-18 Å and 141

18-23 Å distance ranges were selected when they had a neural network score of greater 142

than or equal to 0.6, up to a maximum of 1.5L, L, and L pairs, respectively, for 8-13 Å, 143

13-18 Å and 18-23 Å bins. For comparison, the RaptorX server was also used for 144

structure predictions. 145

Structure prediction protocol 146

All structures were predicted with AbinitioRelax from Rosetta [24], with constraints 147

applied to enforce predicted secondary structure, contacts and inter-residue distances, 148

as described in Supplementary Methods. Three-residue and nine-residue fragments were 149

created using the program make fragments.pl from the Rosetta suite with the option of 150

excluding homologous structures. We generated 100 candidate structures for each test 151

protein and the one with the lowest total Rosetta energy, including constraint energy, 152

was selected as the prediction, unless otherwise stated. The script for the protocol is 153

given in the supplementary material. 154
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Determining whether certain residue types are over represented 155

in our predictions 156

Correctly predicted distances and contacts were examined for biases towards certain 157

residue types. For a score from our neural network of >= 0.7 , we examined the ratio of 158

the expected distribution (E) in a given distance bin for a given structure, assuming all 159

residue pairs were predicted equally well, to the bias in the distribution that was 160

actually observed (O). 161

E =

∑
AB ∈ d∑

all residue pairs ∈ d
(1)

O =

∑
AB correctly predicted ∈ d∑

all residue pairs correctly predicted ∈ d
(2)

In the above equations, AB is a given residue pair type and d is the distance bin to 162

which they are assigned based on their spatial separation in the structure under 163

consideration. The mean O/E over all structures was calculated for each pair type, AB. 164

We also calculated the fraction of predictions that were true positives for each pair of 165

residue types in each distance bin. 166

Results 167

Distance predictions lead to improved structure prediction 168

Our nine-layer neural network was tested on two sets of proteins. The first set tests the 169

network's ability on the types of proteins that it might encounter in practice, and the 170

second set tests the network's ability to deal with totally novel folds. The first test set 171

consisted of 108 proteins with 25% or less sequence identity to each other, of which 80 172

belong to a CATH family homologous to one of the training proteins, 90 have the same 173

CATH topology as a training protein, and the remaining 18 being neither topological 174

nor homologous to our training set. This group represents the sort of sequences that 175

might routinely be submitted to a contact/structure prediction algorithm, 25% sequence 176

identity generally being considered too low for a reliable homology model, even where 177

family homology can be detected [25]. The second test set was 50 proteins topologically 178

different from the training set proteins of our network and of the MetaPSICOV and 179

RaptorX contact prediction neural networks. 180

The accuracies of the distance predictions for the 108 protein test set are higher than 181

the accuracies of the 50 protein set (Fig 2). For the test set with 108 proteins, distance 182

prediction accuracies are better than the contact prediction accuracies of many other 183

methods. For the test set with 50 proteins, distance prediction accuracies are better 184

than the contact prediction accuracies of MetaPSICOV, but not as high as the RaptorX 185

convolutional neural network ( S4 Fig). Comparing with Fig 2 and S4 Fig, the 186

accuracy of the distance predictions falls off much more slowly than the contact 187

predictions, e.g. for the 50 protein set, for the 8-13 Å distance bin, there is a drop of 20 188

percentage points in accuracy between L/10 predictions and 1.5L predictions, whereas 189

the equivalent drop for contact predictions for RaptorX, DeepCDpred and 190

MetaPSICOV is 40 percentage points. 191

Fig 2. DeepCDpred predicts distances with high average accuracy for both
the 108 protein and 50 protein test sets used here.
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Distance predictions lead to improved structure prediction, 192

primarily via better model selection 193

The model with the lowest Rosetta energy when modelled using distance and contact 194

constraints, from DeepCDpred and RaptorX respectively, is more similar to the 195

experimental structure than when using contact constraints alone. This is true for both 196

the 108 protein test set (Fig 3A) and the set of 50 proteins topologously distinct from 197

the training sets of RaptorX, MetaPSICOV and DeepCDpred (Fig 3C). 198

Selecting models by the lowest Rosetta energy, distance constraints in addition to 199

contact constraints improved the mean TM-score compared to experiment by ∼ 0.07 in 200

the 108 protein set and ∼ 0.03 in the 50 protein set (p-value = 9x10−9 and p-value = 201

0.004 in two paired t-tests, respectively). Inclusion of distance constraints on average 202

improves the best model (i.e. highest TM-score compared to experiment) produced for 203

the 108 protein test set, compared to using constraints only (a p-value of 0.001 in a 204

paired t-test), and has a small but statistically insignificant improvement on the set of 205

50 proteins (p-value 0.158), with average TM-scores increased by ∼ 0.01 and ∼ 0.008 206

respectively (Fig 3B,D). 207

Thus, applying distance constraints in addition to contact constraints improves the 208

quality of models produced, increasing average TM-scores by ∼ 11% and ∼ 4% for the 209

108 and 50 protein sets, respectively, although much of this effect is achieved by the 210

model with the lowest Rosetta energy being close to the best model in the ensemble of 211

models produced by Rosetta, which is not true when contact constraints alone are used 212

(Fig 4). With both test sets ∼ 1.4% of the improvement is attributable to improved 213

modelling, with the rest attributable to model selection. 214

Fig 3. Distance constraints improve structure predictions using Rosetta
AbinitioRelax. Addition of distance constraints improves the accuracy of the model
with the lowest Rosetta energy (A) and the model closest to the experimental structure
(B) for the test set with 108 proteins. For the test set of 50 proteins, distance
constraints improve the models with the lowest Rosetta energy (C), but there is small
but statistically insignificant improvement in the best model (D). For each test protein
200 structures were generated by Rosetta.

Fig 4. The models with the lowest Rosetta energies, when using distance
together with contact constraints, are closer to the best model in the
ensemble of models than when using contact constraints alone. For each test
protein 200 structures were generated by Rosetta.
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Aliphatic residues are predicted in the contact bins more than 215

expected by chance, but all residue types are equally accurately 216

predicted 217

To see if any pairs of residue types were disproportionately represented in our 218

predictions, for the 108 protein test set, we analysed all predictions with a neural 219

network score of >=0.7. The contact predictions have a higher proportion of 220

hydrophobic interactions than would be expected given the structures under 221

consideration, with aliphatic residues in particular being highly represented (Fig 5 ). As 222

the inter-residue distance increases, hydrophilic residues become more prevalent in the 223

predictions, but aliphatic residues are over-represented up to a distance of 18 Å, with 224

the 18-23 Å range having hydrophilic interactions disproportionately represented, albeit 225

not as strongly as the 0-8 range is dominated by aliphatic residues. Lysine, and to some 226

degree arginine and glutamate are the most disproportionately represented in the 13-18 227

and 18-23 Å distance ranges, with valine also continuing to be over-represented. 228

However, the accuracy of a prediction for a given neural network score is largely 229

independent of the residue pair under consideration ( S7 Fig). 230

Fig 5. The propensity of correctly predicted contact pairs to be of a given
residue type in a given distance bin range. A: 0-8 Å, B: 8-13 Å C: 13-18 Å
D: 18-23 Å. Coloured squares represent log2(<O/E>) as shown on the
right hand scale.
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Discussion 231

There is a large disparity between the accuracy of the predictions of the 108 and 50 232

protein test sets for distance, contact and structure prediction. In our contact 233

prediction data ( S4 Fig), a large part of the difference is due to the set of 50 having 234

much lower Nf values compared to the set of 108 ( S9 Fig), where Nf is the number of 235

non-redundant sequences (Meff ) in the MSA divided by the square root of the protein 236

length; Meff is the number of sequences with <80% sequence identity with respect to 237

each other [6]. It has been shown that there is a correlation between the Nf value and 238

the structure prediction accuracy [26]. Sequences were removed from the alignments of 239

the 108 protein set to give them the same Nf as the set of 50, which reduced the 240

accuracy of contact prediction by DeepCDpred, but only accounts for half of the 241

difference between our two test sets ( S4 Fig). The accuracy of contacts predicted by 242

the RaptorX server is also affected by reducing the Nf value; the size of this effect for 243

the top 1.5L predictions is approximately a quarter of that seen in the DeepCDpred 244

contact predictions ( S4 Fig). 245

It seems unlikely that DeepCDpred is overfitting the examples, since it was trained 246

with early stopping, and validation and test results give similar prediction accuracies to 247

those of the training data. Nonetheless, the results point to DeepCDpred having poorer 248

generality than RaptorX. Two obvious differences between the prediction methods are 249

that RaptorX uses 6767 training proteins compared to 1701 used for DeepCDpred, and 250

that RaptorX uses a residual neural network, a type of convolutional neural network, 251

whereas DeepCDpred uses a feed-forward network. Increasing the size of the 252

DeepCDpred training set is likely to improve its accuracy for contact and distance 253

prediction. Similarly, investigating the use of alternative neural network architectures, 254

may also lead to improved distance predictions. 255

It is reasonable to question whether there is a need to pursue improved predictions 256

of inter-residue distance, since one might assume that it is sufficient to be able to 257

predict all contacting residues. It seems unlikely that the goal of predicting all 258

contacting residues will be achievable, since it depends currently on co-variance in 259

residue substitution patterns and there will generally be many positions in a sequence 260

alignment that are totally or highly conserved. The results here demonstrate that using 261

distance prediction can help in model selection and thus improve the prediction of 262

model structure above what can be achieved by the best contact prediction method that 263

was available at the time we undertook this work. Moreover, others report that even in 264

the event of knowledge of all contacts further distance information can improve de novo 265

modelling [17,18]. Knowledge of why the distance between non-contacting residues can 266

be predicted is of interest for trying to improve predictions and also for the potential 267

insight into protein structure and function. 268

It may be anticipated that the distance prediction could be achieved simply by 269

realising that hydrophilic residues have longer inter-residue distances since they are on 270

the surface and thus in many cases on the far extreme ends of the protein from each 271

other. However, some hydrophilic residues are also in contact with each other on the 272

surface of the protein and thus also form contacts. Constant precision values across all 273

residue pair types ( S7 Fig) imply that the fraction of correct predictions is the same 274

irrespective of the residue types. For contacting residue pairs, hydrophobic residues 275

make up a higher proportion of correctly predicted contacts than would be expected 276

based on their frequency of occurrence in the proteins under analysis, i.e. at shorter 277

distance the network has more sensitivity for finding hydrophobic pairs. As the distance 278

increases the network becomes more sensitive for finding hydrophilic residue pairs. It is 279

not clear why there should be this difference in sensitivity, although it may reflect the 280

relative number of examples of the different residue pair types in each distance range, 281

i.e. the network can optimise its error function most easily by becoming more confident 282
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at predicting the most abundant residue pair types in a given distance range. 283

Conclusion 284

The data show that inter-residue distances can be predicted reliably using DeepCDpred, 285

the method introduced here. The consequent addition of distance constraints into de 286

novo structural modelling leads to better models than when contact predictions alone 287

are used. Including distance constraint terms leads to the models with the lowest 288

Rosetta energy being much closer to the experimental structure than when using only 289

contact constraints together with the Rosetta forcefield. Although others have 290

previously pointed towards the usefulness of distance prediction [17,18],to our 291

knowledge, this is the first demonstration of the practical benefit of inter-residue 292

distance prediction in the structure prediction problem. We anticipate that improved 293

prediction of inter-residue distance is possible via the most recent developments in deep 294

learning and by understanding the intrinsic bias in amino-acid distribution within 295

protein structures and the effect that has on the accuracy of deep learning methods. 296

Supporting information 297

S1 Text. Detailed explanation of the implementation Full details of the 298

feature vector and network architectures for DeepCDpred are explained further here, 299

including the software used for the generation of the feature vector. Details of the 300

structure prediction protocol and a sample from a constraint file are also given. 301

S1 Table. Parameters of the contact and distance constraints. 302

S2 Table. PDB ID list of the test set with 108 proteins. 303

S3 Table. PDB ID list of the test set with 50 proteins. 304

S1 Fig. The architecture of the neural network model adopted for amino 305

acid contact and distance predictions in this study. 306

S2 Fig. Contact prediction accuracy and speed comparisons between 307

PSICOV and QUIC. 221 proteins from the training set were chosen for the 308

comparisons and the accuracies of the top 1.5L amino acid contact predictions of each 309

protein for both PSICOV and QUIC is shown in graph (a). Graph (b) shows the 310

average contact prediction accuracies of the top scoring 1.5L amino acid pairs. (a) and 311

(b) indicate there is little difference between PSICOV and QUIC for amino acid contact 312

prediction. (c), based on the same computer (8-core i7-3770, 32 GB RAM), PSICOV 313

took 16.9 minutes to complete the contact prediction for each protein on average; while 314

QUIC only took 6.9 minutes; especially for large proteins (>300 amino acids), QUIC is 315

much faster than PSICOV. 316

S3 Fig. The distribution of inter-residue distance with respect to the 317

sequence separation of a pair of residues. The mean and standard deviation for 318

435 experimental protein structures from the training set are shown. The three blue 319

highlighted sequence separations (8, 13 and 15) are the minimum sequence separation 320

cut-offs chosen for distance predictions in bin 8-13, 13-18 and 18-23, respectively. 321
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S4 Fig. Contact prediction accuracies of both test sets (with 108 and 50 322

proteins). The average accuracies for the test set with 108 proteins is higher than the 323

test set with 50 proteins. The 108 protein test set had the number of sequences in each 324

MSA reduced to give an average Nf value similar to that of the MSAs for the 50 protein 325

test set. Reducing the Nf value decreased the prediction accuracy of DeepCDpred and 326

RaptorX, however the drop in accuracy of the former was much larger than that of the 327

latter. 328

S5 Fig. Addition of distance constraints improves the model quality of 329

both DeepCDpred and RaptorX when the model is selected with Rosetta 330

energy score. The calculations are for the test set of 108 proteins. The graphs show 331

comparison of the TM-score with respect to experimental structures of lowest energy 332

models predicted using constraints from RaptorX, DeepCDpred contact only, 333

DeepCDpred contact + distance and RaptorX contact + DeepCDpred distance 334

predictions. For each test protein 100 structures were generated by Rosetta. 335

S6 Fig. Addition of distance constraints improves the model quality of 336

both DeepCDpred and RaptorX when the model with highest TM-score is 337

selected. The calculations are for the test set of 108 proteins. The graphs show 338

comparison of the TM-score with respect to experimental structures of the best models 339

predicted using constraints from RaptorX, DeepCDpred contact only, DeepCDpred 340

contact + distance and RaptorX contact + DeepCDpred distance predictions. For each 341

test protein 100 structures were generated by Rosetta. 342

S7 Fig. The precision of predicting contacts and distances between 343

different residue types for (a) 0-8 Å, (b) 8-13 Å, (c) 13-18 Å, (d) 18-23 Å. 344

The scale is given on the right hand side for each plot. Precision is calculated as the 345

number of correctly predicted contacts for that pair of amino acid types divided by the 346

total number of contact predictions for that pair for the predictions with >=0.7 network 347

score. 348

S8 Fig. TM-scores of the models generated with different tools. Structure 349

predictions for Rosetta contact and Rosetta contact plus DeepCDpred distances were 350

replicated (replica1 (r1) and replica2 (r2)). For Rosetta server predictions models were 351

selected either by the lowest energy score (CNS score) or the best model among the 5 352

structures that the server provides. For all other prediction methods, models were 353

selected either with the lowest Rosetta energy or the best TM-score. The calculations 354

were performed for the test set of 108 proteins. The upper and the lower edges of the 355

boxes indicate the 25th and 75th percentiles, respectively. The medians are shown with 356

the central lines, the means are shown with black '+' signs and the outliers are shown 357

with red '+' signs. Even though the first set of best models which were generated with 358

the restraints of RaptorX contact predictions (RaptorX r1) are significantly better than 359

the best models generated with DeepCDpred contact predictions, replication of the 360

structure predictions with RaptorX contacts (RaptorX r2) resulted in no significantly 361

different average TM-score than the predictions performed with DeepCDpred contacts 362

(paired t-test p-value: 0.507). The results from the RaptorX server were on average 363

worse than all other calculations except the use of MetaPSICOV contact restraints 364

together with Rosetta, presumably because CNS, used by the RaptorX server, is not as 365

good at modelling structures as Rosetta is. 366

S9 Fig. Nf value distributions of both test sets (with 108 and 50 proteins). 367

The upper and the lower edges of the boxes indicate the 25th and 75th percentiles, 368
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respectively. The medians are shown with the central lines, the means are shown with 369

black '+' signs and the outliers are shown with red '+' signs. 370

S1 Compressed Folder. Scripts for Rosetta structure prediction and 371

training the neural network. 372
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