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Abstract. Given a set of point§ = {ps, ..., pn} in Euclideand-dimensional space, we
address the problem of computing th@limensional annulus of smallest width containing

the set. We give a complete characterization of the centers of annuli whidbcaléy
minimalin arbitrary dimension and we show that, tbe= 2, a locally minimal annulus has

two points on the inner circle and two points on the outer circle that interlace anglewise
as seen from the center of the annulus. Using this characterization, we show that, given a
circular order of the points, there is at moselocally minimal annulus consistent with that
order and it can be computed in tin@&nlogn) using asimplealgorithm. Furthermore,

when points are iconvex positionthe problem can be solved in optim@&ln) time.

1. Introduction
Let S = {p1,..., pn} be a set oh points inE® and letd(x, y) denote the Euclidean

distance between pointsandy. If we denote byF the family of hyperspheres i, the
problem of finding the optimal Tchebyshev fit®fvith a hypersphere can be formulated
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as a min-max problem, that is, finding
min max d(p; .
yeFi=1,..n (P> )
We call d-annulus withcenter ¢ inner radius r, and outer radius p, denoted by

A(c, ry, rp), to the locus of points between two concentric spheres of radiasd
ro, thatis,

A(C,r1,12) = {x € E%| ry <d(x,c) <r3}.

Thewidth of the annulus isv = r, — r; and the problem that we address here can
be formulated in a more geometric setting in the following way: compute the annulus of
smallest width containing the s&t If we define the functioR s(x) as the difference of
distances between the furthest and the closest neightxand$, we say that an annulus
is locally minimal if its center is a local minimum @& s(x) and the problem of finding
the annulus of smallest width containing the set of points is equivalent to finding the
global minimum ofR s(x).

The main motivation for this problem comes from Computational Metrology. Given an
object that has to be tested for circularity-£ 2), take a sample of points from the object
and measure the circularity of this sample set; then accept the object if the circularity
is good enough and reject otherwise. The measure for circularity recommended by
international standards is the width of the annulus of smallest width contath{sge
pp. 40-42 of [8] and p. 14 of [9]). Further information about the relation between
Computational Geometry and Metrology can be found in [15] and [19].

The problem of computing the annulus of smallest width containing a set of points has
been extensively studied in the Computational Geometry literature. The first nontrivial
algorithm was independently proposed by Wainstein [18], by Roy and Zhang [14], and
by Ebara et al. [6], observing that the center of the annulus is either an intersection of
an edge of the closest-point Voronoi diagram with an edge of the furthest-point Voronoi
diagram, or a vertex of one of these Voronoi diagrams. This leads to an algorithm whose
complexity isO(nlogn + 1), wherel is the number of intersections between closest-
and furthest-point Voronoi diagrams and can be quadratic in the worst case (even for
sets of points in convex position). In [16] Smid and Janardan point out that the optimal
annulus can be a slab. We include this case into the general one by considering a slab as
an annulus with center ab.

This characterization of the center of the annulus is used by Agarwal et al. [2] in order
to give a solution to the problem @ (n®5+¢) time which has been improved@(n®/%+¢)
time by Agarwal and Sharir [1] by reducing the problem to a width-type probleft.in
Both algorithms use parametric search and other sophisticated programming techniques.

Other recent papers deal with some related problems: Mehlhorn et al. [11] give an
algorithm which takes into account the sampling process and not only the discrete op-
timization problem, while Duncan et al. [5] and de Berg et al. [4] solve the problem in
O(nlogn) time if the inner, the outer, or the medial radius is fixed.

The equivalent problem for simple polygons has been studied by Le and Lee [10] and
has been solved in optim@l(n) time for the special case of convex polygons and center
of the annulus inside the polygon by Swanson et al. [17].

The problem has also been treated in a number of papers in different areas. Actually,
a complete characterization of the local minima in the two-dimensional case was given
by Rivlin [13], showing that a point is a local minimum if, and only if, there are at least
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two points on each boundary circle (and, therefore, the center is always an intersection
of one edge of the closest-point Voronoi diagram with one edge of the furthest-point
Voronoi diagram) and, furthermore, closest and furthest points interlace anglewise as
seen from the center of the annulus.

1.1. Our Results

We give necessary and sufficient conditions for a point to be the center of alocally minimal
annulus inEY. This characterization has important implications on the distribution of
local minima in some cases: we prove that, if points are in convex position, there is at
mostonelocal minimum inside the convex hull. More generally, we see that, given an
angular order of a set of points, there is at mms¢ local minimum compatible with
the given order. Actually, this is the problem that has to be solved in practice, because
sampled points are given in order aroundgegerence centeand the solution we are
looking for should preserve this order.

In Section 5 we give a simpl@(n log n) algorithm that computes the local minimum
for a given angular order of the points and improve this to optimal linear time if points
are in convex position.

Finally, in Section 6 we give an example of a set of points with a quadratic number
of local minima for the roundness function.

Before going on, we state the formal definitions and introduce some notation in the
next section.

2. Preliminaries

LetS={pi, ..., pn} be aset of points ifi¢. The convex hull oSis denoted by cong
and theboundaryof convSis denoted byCH(S). V.(S) andV5(S) denote the closest-
and furthest-point Voronoi diagram & respectively.

Given a pointx € E¢, CN(x) andFN(x) denote, respectively, the set of closest and
furthest neighbors of in S, that is,

CN(x)

.....

{pj e S|dx, p) = i:”}axnd(X, pi)} .
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Then theroundness functionan be defined in the following way:
Rs(X) = d(x, FN(X)) — d(x, CN(x)).

The problem of computing the annulus of smallest width contaiSiisgequivalent to the
problem of finding the global minimum & s(x). The special case where the annulus of
minimum width is a slab could be included in the general one by extending the definition
of Rs(x) to the real projectivel-space P'R. We recall thatP?R can be obtained by
adding toR¢ a point atoo for each family of parallel lines.



392 J. Gar@-Lopez, P. A. Ramos, and J. Snoeyink

Given a pointx € PAR\RY, we defineRs(x) as the limit, whery goes tooco along
a line of the corresponding family, ®s(y). Clearly, this limit does not depend on the
line and the value is the distance between the supporting hyperplaBestbbgonal to
the family of lines.

If p,q e EY pqgdenotes the vector from to q and, as usual, we identify poimt
and vectorp (for a fixed pointo). The Euclidean scalar product is denotedubyv and
ull = (u- u)¥?is the length of the vector.

We usek-planeor k-sphereo denote a plane or a sphere of dimendi@nd the unit
k-sphere is denoted h§¥. Given a sefT, its complement is denoted By*. As usual,
we say that a hyperplane separates two sets of points if each set has points in, at most,
one open half-space and the same applies for infinite cones that divide the space into
two open connected components.

Finally, we point out that iSis included in ad — 1)-sphere, the global minimum of
Rs(x) is zero. This property can be checked in linear time so, from now on, we exclude
this case from our study.

3. Characterizing Local Minima of Rg(x)

The following lemma, whose proof follows easily from Taylor expansion, will be useful
later:

Lemmal. LetpeEd veSi? and letor, be the angle determined pyandv. Then
A2 sirfa,
2 pl

Av —pll = [Ipll — A cosap + + 0(A?).

The next result gives a complete characterization of the local mininfasgx) in
arbitrary dimension.

Theorem 1. oisalocal minimum oRs(x) if,and only if closest and furthest neighbors
of o cannot be separated by a circular cone with apex.at o

Proof. We focus on the finite case. &f ¢ PYR\RY, the circular cone is a cylinder
and the proof follows from a complete analogous reasoning substituting the angles with
respect to the axis of the cone by the distances to the axis of the cylinder and, instead of
taking derivatives, taking points on the axis of the cylinder “close enoughd.to

We first observe that, if defines the axis of the cone, closest and furthest neighbors
are not separated if, and only if,

N V- Pi
min —— < max —.
pefN© [[Pill  meCN©O ||pi|

D

For a givenv € 8971, let pe, denote the point oEN(0) that minimizes the angle
betweerv andp; for p; € CN(0) and leta, be that angle, that is,

V- Pevy — max V- P

COSa ) = = .
IPcwll  peCN© [Ipi i
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In a similar way, pr is the point ofFN(0) that maximizes the angle betweeandp;
for pi € FN(0) and letesyy be that angle, that is,

cosayy, = V- Prv) . VD
“ T bt perNo Pl
Then, condition (1) says that,
VveStt  cosay < COSay). 2

From Lemma 1, it follows that, fax > 0 small enoughpc., and pr,) are, respectively,
the closest and furthest neighbors\efand, from Taylor expansion, we have
)»2

Rs(AV) = Rs(0) + A (COSucwy — COSatyy) + > <

Psew) Il IPeew) I
Therefore, if condition (1) holds, we have eag,, — cosas, > 0 forallv € S9-* ando

is a local minimum. Conversely, if there exists S9! such that CO8f«) > COSacy),
thenRs(x) decreases in that direction aads not a local minimum. O

) +0(2?).

Observing that the intersection between a circular cone and a hypersphere is contained
in a hyperplane, the previous characterization can also be stated saying that if we project
points of CN(0) and FN(0) onto a common sphere centeredoathen projections of
points ofCN(0) cannot be separated from projections of poinBNo) by a hyperplane.

We also observe that Theorem 1 implies tizXl(0)| + [FN(0)| > d+2if oisalocal
minimum. To see this, we observe that two $etandB in E with |R| + |B| <d + 1
can be separated by a hyperplane (this is easy to prove, using inductin on

Finally, we point out thafCN(0)| > 1 and|FN(0)| > 1 because, in other cases,
points can be separated by a degenerate cone.

Ford = 2, this is also equivalent to saying that there are two points on the outer circle
and two points on the inner circle of the annulus that interlace anglewise as seen from
the center of the annulus.

In the last section we shall see that this characterization can also be the basis for the
construction of a point set in the plane with(n?) local minima forRs(x).

4, Roundness in the Plane

From now on,S = {p, ..., pn} Will be alabeledset of points in the plane such that
polygonP with verticesp, ..., pn is simple We also assume that points are ordered
in the positive (counterclockwise) direction and indices are understood modWe
define thekernelof S, denoted by ke§, as the locus of points from which the points of
Sare seen in the given angular order.

We denote byg the edge betweep, and p;1 and byh; the left half-plane defined
by the directed line through;, pi.1. For a given edge in the convex hull ofP, we

denote by
Hi = (")h;.
jA
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(a) ®)

Fig.1. (a)kerSisshaded with the ear correspondingtdarkened. (b) lllustration for the proof of Lemma 2.

The (possibly empty) part dfli outside con&is called thesar of ker S corresponding
to edges (see Fig. 1(a)).

It is important to distinguish between the kernel of the set of points and the kernel
of the simple polygon because in some relevant practical situations the solution to the
problem is expected to be outside the polygon (for example, when the set is in the shape
of an arc of a circle). The following result includes an alternative characterization of
ker Sand the relation between this concept and the well-known concept of a kernel of a
simple polygon.

Lemma 2.

(@) kerS=J, ccHepy Hi-

(b) kerP = kerSn convS.

(c) If Pis star-shapegkersS is also star-shaped aketrP is contained in the kernel
of kerS.

(d) If P is not star-shapedkerS is conveXand contained in one of the edrs

Proof. Part (a) follows from the observation thatgife kerS, points appear ordered
and thugy is outside of, at most, one of the half-spaces which, in that case, corresponds
to an edge of the convex hull (see Fig. 1(b)), while part (b) is obvious from (a) and the
definition of kerP.

For (c), assume that € kerP andq € kerS. Thenp, q € H; forsome and, because
Hi is convex,pqg € H; and we have thapq € kerS.

Finally, in order to prove part (d), we observe thatPifs not star-shaped,

ﬁ hi NP =0.
& ¢CH(P)

Let g € kerS and lete be the edge of? supporting the tangents fromto P (see
Fig. 1(b)). Because ké? is empty, there exisf, k such thatg; ande, are not on the
convex hull of P andh; N hy € hf. Therefore, ke = H; and is a convex set (the ear
of g). O
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The following theorem is the main result of this section:

Theorem 2. InsidekerS there isat mostone local minimum oRs(X).

Proof. Assume thab € kerSis a local minimum of the roundness function and let
v € S If we denote by, the half-lineav, A > 0, it is enough to show that there is no
other local minimum irg, N kerS. Assume that defines the direction of the positive
axis,CN(o) = {pi, pj} andFN(0) = {pk, pi}. If o denotes the angle betweemndp;

we can further assume, without loss of generality, that «; anday > . Then, from
Theorem 1, it follows tha; < . Finally, forq e E?,

vx, va)
X1 lall

denotes a cone with apexatWe useC(q)° to denote the complement.
We distinguish two cases:

c@Q) = {x e E?

@) If v-pi = v-pg, looking at circles centered av and passing throughk (see
Fig. 2(a)) we have th&N(Av) C C(px)©, while looking at circles centered at
and passing throughy it follows that the closest neighbors b¥ are contained
in the half-plane

H={qlg-v>pi-Vv}
and, because

HOAQ, [Pl el € C(po),

it follows that CN(Av) C C(px) and there cannot be any local minima on the
half-line ¢, N kerS.

(i) If v-p; < V- px, itholds thatv - px > 0 and we claim that there exist two points
pc € CN(0) andpr € FN(0), both in the upper or the lower half-plane and such
thatv-ps > v-pc anda; > ac. In order to prove the claim assume tipgtis in the
upper half-plane. Ify is also in the upper half-plane, theg = pr andp; = pc

(‘(p{f

(@) (b)

Fig. 2. lllustration for the proof of Theorem 2.
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so assume thag; is in the lower half-plane. In that casegif > «; andp is in
the lower half-planep = pr andp; = pc. Otherwise,p; is betweenp, and p,
and we havey. = p; while pr is px or py depending on the situation .

Without loss of generality, we assume thatand pr are in the upper half-
plane as in Fig. 2(b) and denote fythe intersection between the half-lidg
and the line passing through and p;. Again, looking at circles centered a¥
passing througlp, and p, it follows that, to the left ofy, CN(Av) C C(pc) and
FN(Av) C C(ps)®. Therefore, in order to finish the proof we only have to show
that there are no points of k&mwon the half-line?, to the right ofq. However, this
follows from Lemma 2: observing that in the chain betweggand p; there is at
least one edge not belonging to the convex hull and intersecting the half;line
to the left ofg and thato is not inside an ear (in that case, the rest of the points
should be inside the angular region defineddayo, and p;, contradicting the
fact that the other furthest neighbor is outside that region). O

If Sis a set of points in convex position (i.e., they are the vertices of a convex polygon),
because con8 C kerS, we have:

Corollary 1. If S is in convex positigniRs(x) has at most one local minimum inside
convs.

Itis worth noticing that Theorem 2 easily gives useful properties about the distribution
of local minima in practical examples. For instance, if we assume that we have taken a
sample ofn points which are contained in an annulus of widtbentered at the origin
(we normalize the problem in such a way that the inner radius is one) and dendte by
the smallest angle between two consecutive points, a straightforward computation shows
that the disk centered at the origin with radius

_ (1+¢)sind
1+ @A +6)2—21+¢)cosh

is contained in ke® and thus has at most one local minimum. If points are equally
distributed and we assume a (huge) 5% error both in the angle and the width=f860
we haves ~ 0.33. This result can explain why standard optimization methods perform
well “in practice” to approximate the solution.

In the next section we see that an additional structure of the problem will allow us to
design a simple and efficiedtscretealgorithm which can find thexactsolution to the
problem.

5. The Roundness Algorithm

Before we describe how to compute roundness when the circular order of the points

is known, we need some additional notation and definitions. Consider the edges of the

furthest-point Voronoi diagram that lie in the kernel®fnamely, 7 = kerSn V(S).

Note that7 can be disconnected, but has linear size because the intersection between an
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(@) (b)

Fig. 3. (a) lllustration for the proof of Lemma 3. (b) lllustration for the proof of Lemma 4.

edge of)}(S) and kerSis connected. We denote lgy the edge ofl contained in the
bisector of segmeng; p;. The endpoints o; are denoted by;; (the closest end tg;

andp;) and f;; (the furthest end). This is well defined except for, at most, one edge of
which can be treated separately. Finally, we assume that points are labeled in such a way
that trianglec;; p; p; has positive orientation and we denote$ythe chain betweep

andp; (see Fig. 3(a)). Then we have:

Lemma 3. Theroundness function has alocal minimumjrifeand only if CN(c;j) C
Sj and Cl\(fij) C Si.

Proof. Using the same arguments as in the proof of Theorem 2, it follows that if the
closest neighbor of;; is not in §;, then the closest neighbors of pointseyf cannot

be in§; and, therefore, there is no local minimum in this edge. Moreover, if the closest
neighbors ot;; and fj; are inS;, then the closest neighbors of all the pointgjnare

in §; (if this was not true, we would get a contradiction with the preceding argument).
Finally, if CN(cij) € §; andCN(fj;) C S;, then the local minimum is achieved when
the closest neighbors switch betwegnands; . O

Using this result, the algorithm is straightforward: as a first step, we compute Voronoi
diagramsVx(S) andV.(S) and procesd’.(S) for point location. This can be done in
O(nlogn) time [12], [7]. Because the number of intersections betwaés) and kerS
islinear,7 can also be computed in tin@(n log n) with a standard sweepline algorithm.
We can process each edge/ofn time O(logn) by locating the closest neighbors of its
endpoints. Finally, if we get an edges 7 containing a local minimum, we can locate
it traveling alonge acrossV;(S) in additionalO(n) time. Then we have shown:

Theorem 3. If there is a local minimum oRs(x) insidekerS, it can be computed in
O(nlogn) time
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It can be useful to point out that, #f is connected (which is likely to be the case
in most practical situations), the algorithm can be made even simpler within the same
asymptotic complexity by avoiding the point location step. Furthermore, the complexity
can be improved to optimal linear time if points are in convex position. Both results are
based on the following lemma.

Lemma4. Letqe kerS be avertex af;(S) with FN(q) = {pi, pj, p«} where points
are ordered according to their indiceAssume thaf is connected and lef;; denote
the subtree corresponding to points iy Gee Fig 3(0)). If the closest neighbor of g is
not in §;, there is no local minimum d®s(x) in 7j; .

Proof. If the anglep;qp; is smaller thanr, the result follows by repeatedly applying
Lemma 3 to the edges &f; starting an. If this is not the case, as in Fig. 3(b) f@g, we

can use again the same arguments as in the proof of Theorem 2 to see that if the closest
neighbor ofg is notin &, then the closest neighbor of pointsef cannot be irs; and

iterate this argument to show that there is no local minimurin O

Using this lemma, we computE as before and locate a vertex such that the subtrees
that it connects have size smaller tleat for some constant. Now, we compute the
closest neighbor of the vertex by brute force and discard a linear fraction of the edges in
linear time. Therefore, the edge containing the local minimum is locat€x(irlog n)
time. We conclude the section observing that, if pointSafe in convex position, both
approaches can be combined in order to get:

Theorem 4. If S is a set of points in convex position aRd(x) has a local minimum
insideconvs, it can be computed in tim® (n).

Proof. If points are in convex position.(S) andV;(S) can be computed and the former
processed for point location i@®(n) time [3], [7]. Moreover,7 = V:(S) N convSis
connected and can be computed in linear time. To see this, cons@er directed tree
rooted at the center of the minimum enclosing circl&ahd observe that an edge 7
cannot enter con8. Finally, applying Lemma 4 we can discard a linear fraction of the
edges of7 in time O(max{logn, |7;|}) where7; is the tree after prune steps and the
result follows. O

6. An Example with Q(n?) Local Minima

Previous works [2], [16] conjectured thRis(x) may haveQ (n?) local minima because
V:(S) andVz(S) can have a quadratic number of intersections. We construdtclosest
andn + 1 furthest points whose respective Voronoi diagrams m&vietersections in
the first quadrant, all of which will be local minima by Corollary 2.
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/Qll

Fig. 4. Closest- and furthest-point Voronoi edges in the first quadrant.

Corollary 2. If edges ofV(S) andV;(S) intersect and the closest and furthest points
interlace anglewise as seen from the intersection ptienR s(x) has alocal minimum
at that point

First, we choose the set nf+ 1 “closest points” along thg axis withy coordinates
yi = (2c+ 1)'71, for 1 <i < n+ 1, wherec is a positive constant to be chosen later.
The bisectors of these points are the lines

2

In the first quadrant, these bisectors will be edges of the closest-point Voronoi diagram.
See Fig. 4.

We choose the + 1 “furthest points” in the third quadrant of a circle centered at the
origin with radius > y, to be determined later. Thus, the furthest-point Voronoi edges,
{¢; : 1 < j < n}, begin at the origin and extend to infinity in the first quadrant.

We choose “furthest points” so that the angle from xhaxis to the first edgé; is
61 = 7/8 and the angle from lingj_; to line ¢; is 6; = /2/+2. Then the angle from
thex axis to¢; is /4 — 6; for 1 < j < n. Specifically, choose thgth “furthest point,”
fj, to lie on the line through the origin at angtg¢4 — 46;/3,for 1< j <n+ 1. Then
the bisector of the point$; and fj, has angle

1 46; 40; 1/46, 26
_<z__1+z_ J+1>=z__<_1+_1)_z_91,

2\4 3 4 3 4 2\3 3] 4

y= =(C+Dy.

and the furthest-point Voronoi edgg has the desired angle.
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Theorem 5. If the n+ 1 “closest points” and n+ 1 “furthest points” are defined
as abovethen for some constant ¢ and radiusthe functionRs(x) has®(n?) local
minima

Proof.  First, some additional notation. We denote the furthest-point Voronoigdne
its slopgintercept formy = m;x, where the slopen; = tan(z/4 — 6;). We can bound
% <m; < 1, for all j. We denote the slope of the line that defines the furthest dpint
by m}. We can expresmjf in terms ofm;:

40, ) tan(z /4 — 6;) — tan(9; /3) _om - tan(6; /3)

m} =tan rT_oM) 2 = .
4 3 1+tan(z/4 —6;)tan®;/3) ~ 1+ m;tan®;/3)

Now, theith closest-point edge intersects thin furthest-point edge in the point
gij = ((c +Dyi/mj, (c+ 1)yi). By Corollary 2, the pointy; is a local minimum if the
points(0, yi+1), fj, (0, yi), and fj 1 appear in counterclockwise order viewed fram
Itis clear that(0, yi11) is first; we need to check thd} and f;,; are on opposite sides
of the line throughg;; and(0, y;). The equation of this line is

_(c+Dyi -y . o C A _
= (Sery ) e = (i) mcen

Notice that this line is abovgin the third quadrant, s ;1 is below the line. Notice also
that the slope of this line is determined only by the furthest-point Voronoi édgall
lines defined by intersection witt) are parallel. If we can choosg to lie above the
highest liney = cm;jx/(c + 1) + ya, then the points}; will be local minima for alli.
For the furthest point; to be above the highestline, the slopeof the line definingf;
must be less than the slopes; /(c+ 1) of the highest line. If we choose> 2/tan(6,/3),
then
c m > m; > m; — tan(9; /3) _
c+1 1+tan®;/3)/2 ~ 1+ m; tan(®;/3)

Thus the line definingdj crosses from below to above the highest line at some point. As
long as we choosg the radius of the circle that definég larger than the distance to the
intersection of these two lines, thénwill be above the highest line. Thus, it is possible
to construct the furthest point so that then? intersection pointsj; determined by a
closest- and furthest-point Voronoi edge in the first quadrant are local minima. O

/

To get an idea of the magnitude of the coordinates involved, choes@"+>. The
circle must include all intersections of the lings= m;x with y = cmjx/(c + 1) + y,
forall 1 < j < n. The largesy coordinate is at most the largestoordinate, which the
reader can check is

Yn - (2c+ D" < p(+2(n+5)
mi—cmj/(c+1) m/(1+tan®;/3)/2) —m;/(1+1/c) '

Therefore the radius can be chosen tarbe 29" Since the positions of points in
this construction have been chosen to simplify the proof, we are certain that smaller
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constructions 0f2(n?) local minima can be given. We conjecture, however, that the
magnitudes of points must grow exponentiallynin

We note that in this construction all of the points are on the boundary of the convex
hull, and that a small perturbation could make all points be vertices of the convex hull.
The(n?) minimal annuli all have centers outside the convex hull; we have seen that at
most one center can be inside the hull.

7. Concluding Remarks

In this paper we have dealt with the problem of computing the annulus of minimum
width containing a set of points. We have characterized the set of local miniRg(&j
(feasible centers for the annulus) in thelimensional case and we have shown that,
inside thekernelof the set, there is at most one local minimum which can be computed
in O(nlogn). We remark that the algorithm is more efficient than previous algorithms
solving the general problem and that it is useful for solving the problem in practice,
because in the metrology application the sample points are given in angular order. We
also remark that the algorithm is simple and, thus, easy to implement. It is an interesting
open problem to see whether or not a set of points in convex position in the space has
only one local minimum inside its convex hull.
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