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Abstract. Given a set of pointsS= {p1, . . . , pn} in Euclideand-dimensional space, we
address the problem of computing thed-dimensional annulus of smallest width containing
the set. We give a complete characterization of the centers of annuli which arelocally
minimalin arbitrary dimension and we show that, ford = 2, a locally minimal annulus has
two points on the inner circle and two points on the outer circle that interlace anglewise
as seen from the center of the annulus. Using this characterization, we show that, given a
circular order of the points, there is at mostonelocally minimal annulus consistent with that
order and it can be computed in timeO(n logn) using asimplealgorithm. Furthermore,
when points are inconvex position, the problem can be solved in optimal2(n) time.

1. Introduction

Let S = {p1, . . . , pn} be a set ofn points inEd and letd(x, y) denote the Euclidean
distance between pointsx andy. If we denote byF the family of hyperspheres inEd, the
problem of finding the optimal Tchebyshev fit ofSwith a hypersphere can be formulated
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as a min-max problem, that is, finding

min
γ∈F

max
i=1,...,n

d(pi , γ ).

We call d-annulus withcenter c, inner radius r1, and outer radius r2, denoted by
A(c, r1, r2), to the locus of points between two concentric spheres of radiusr1 and
r2, that is,

A(c, r1, r2) = {x ∈ Ed | r1 ≤ d(x, c) ≤ r2}.
Thewidth of the annulus isw = r2 − r1 and the problem that we address here can

be formulated in a more geometric setting in the following way: compute the annulus of
smallest width containing the setS. If we define the functionRS(x) as the difference of
distances between the furthest and the closest neighbor ofx in S, we say that an annulus
is locally minimal if its center is a local minimum ofRS(x) and the problem of finding
the annulus of smallest width containing the set of points is equivalent to finding the
global minimum ofRS(x).

The main motivation for this problem comes from Computational Metrology. Given an
object that has to be tested for circularity (d = 2), take a sample of points from the object
and measure the circularity of this sample set; then accept the object if the circularity
is good enough and reject otherwise. The measure for circularity recommended by
international standards is the width of the annulus of smallest width containingS (see
pp. 40–42 of [8] and p. 14 of [9]). Further information about the relation between
Computational Geometry and Metrology can be found in [15] and [19].

The problem of computing the annulus of smallest width containing a set of points has
been extensively studied in the Computational Geometry literature. The first nontrivial
algorithm was independently proposed by Wainstein [18], by Roy and Zhang [14], and
by Ebara et al. [6], observing that the center of the annulus is either an intersection of
an edge of the closest-point Voronoi diagram with an edge of the furthest-point Voronoi
diagram, or a vertex of one of these Voronoi diagrams. This leads to an algorithm whose
complexity isO(n logn+ I ), whereI is the number of intersections between closest-
and furthest-point Voronoi diagrams and can be quadratic in the worst case (even for
sets of points in convex position). In [16] Smid and Janardan point out that the optimal
annulus can be a slab. We include this case into the general one by considering a slab as
an annulus with center at∞.

This characterization of the center of the annulus is used by Agarwal et al. [2] in order
to give a solution to the problem inO(n8/5+ε) time which has been improved toO(n3/2+ε)
time by Agarwal and Sharir [1] by reducing the problem to a width-type problem inE3.
Both algorithms use parametric search and other sophisticated programming techniques.

Other recent papers deal with some related problems: Mehlhorn et al. [11] give an
algorithm which takes into account the sampling process and not only the discrete op-
timization problem, while Duncan et al. [5] and de Berg et al. [4] solve the problem in
O(n logn) time if the inner, the outer, or the medial radius is fixed.

The equivalent problem for simple polygons has been studied by Le and Lee [10] and
has been solved in optimalO(n) time for the special case of convex polygons and center
of the annulus inside the polygon by Swanson et al. [17].

The problem has also been treated in a number of papers in different areas. Actually,
a complete characterization of the local minima in the two-dimensional case was given
by Rivlin [13], showing that a point is a local minimum if, and only if, there are at least
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two points on each boundary circle (and, therefore, the center is always an intersection
of one edge of the closest-point Voronoi diagram with one edge of the furthest-point
Voronoi diagram) and, furthermore, closest and furthest points interlace anglewise as
seen from the center of the annulus.

1.1. Our Results

We give necessary and sufficient conditions for a point to be the center of a locally minimal
annulus inEd. This characterization has important implications on the distribution of
local minima in some cases: we prove that, if points are in convex position, there is at
mostonelocal minimum inside the convex hull. More generally, we see that, given an
angular order of a set of points, there is at mostone local minimum compatible with
the given order. Actually, this is the problem that has to be solved in practice, because
sampled points are given in order around areference centerand the solution we are
looking for should preserve this order.

In Section 5 we give a simpleO(n logn) algorithm that computes the local minimum
for a given angular order of the points and improve this to optimal linear time if points
are in convex position.

Finally, in Section 6 we give an example of a set of points with a quadratic number
of local minima for the roundness function.

Before going on, we state the formal definitions and introduce some notation in the
next section.

2. Preliminaries

Let S= {p1, . . . , pn} be a set of points inEd. The convex hull ofS is denoted by convS
and theboundaryof convS is denoted byCH(S). Vc(S) andVf(S) denote the closest-
and furthest-point Voronoi diagram ofS, respectively.

Given a pointx ∈ Ed, CN(x) andFN(x) denote, respectively, the set of closest and
furthest neighbors ofx in S, that is,

CN(x) =
{

pj ∈ S | d(x, pj ) = min
i=1,...,n

d(x, pi )

}
,

FN(x) =
{

pj ∈ S | d(x, pj ) = max
i=1,...,n

d(x, pi )

}
.

Then theroundness functioncan be defined in the following way:

RS(x) = d(x,FN(x))− d(x,CN(x)).

The problem of computing the annulus of smallest width containingSis equivalent to the
problem of finding the global minimum ofRS(x). The special case where the annulus of
minimum width is a slab could be included in the general one by extending the definition
of RS(x) to the real projectived-space,PdR. We recall thatPdR can be obtained by
adding toRd a point at∞ for each family of parallel lines.
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Given a pointx ∈ PdR\Rd, we defineRS(x) as the limit, wheny goes to∞ along
a line of the corresponding family, ofRS(y). Clearly, this limit does not depend on the
line and the value is the distance between the supporting hyperplanes ofSorthogonal to
the family of lines.

If p,q ∈ Ed, Epq denotes the vector fromp to q and, as usual, we identify pointp
and vectorp (for a fixed pointo). The Euclidean scalar product is denoted byu · v and
‖u‖ = (u · u)1/2 is the length of the vector.

We usek-planeor k-sphereto denote a plane or a sphere of dimensionk and the unit
k-sphere is denoted bySk. Given a setT , its complement is denoted byTc. As usual,
we say that a hyperplane separates two sets of points if each set has points in, at most,
one open half-space and the same applies for infinite cones that divide the space into
two open connected components.

Finally, we point out that ifS is included in a(d− 1)-sphere, the global minimum of
RS(x) is zero. This property can be checked in linear time so, from now on, we exclude
this case from our study.

3. Characterizing Local Minima of RS(x)

The following lemma, whose proof follows easily from Taylor expansion, will be useful
later:

Lemma 1. Let p∈ Ed, v ∈ Sd−1, and letαp be the angle determined byp andv. Then

‖λv− p‖ = ‖p‖ − λ cosαp + λ
2

2

sin2 αp

‖p‖ + o(λ2).

The next result gives a complete characterization of the local minima ofRS(x) in
arbitrary dimension.

Theorem 1. o is a local minimum ofRS(x) if,and only if,closest and furthest neighbors
of o cannot be separated by a circular cone with apex at o.

Proof. We focus on the finite case. Ifo ∈ PdR\Rd, the circular cone is a cylinder
and the proof follows from a complete analogous reasoning substituting the angles with
respect to the axis of the cone by the distances to the axis of the cylinder and, instead of
taking derivatives, taking points on the axis of the cylinder “close enough” to∞.

We first observe that, ifv defines the axis of the cone, closest and furthest neighbors
are not separated if, and only if,

min
pi∈FN(o)

v · pi

‖pi ‖ < max
pi∈CN(o)

v · pi

‖pi ‖ . (1)

For a givenv ∈ Sd−1, let pc(v) denote the point ofCN(o) that minimizes the angle
betweenv andpi for pi ∈ CN(o) and letαc(v) be that angle, that is,

cosαc(v) = v · pc(v)

‖pc(v)‖ = max
pi∈CN(o)

v · pi

‖pi ‖ .
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In a similar way,pf(v) is the point ofFN(o) that maximizes the angle betweenv andpi

for pi ∈ FN(o) and letαf(v) be that angle, that is,

cosαf(v) = v · pf(v)

‖pf(v)‖ = min
pi∈FN(o)

v · pi

‖pi ‖ .

Then, condition (1) says that,

∀ v ∈ Sd−1, cosαf(v) < cosαc(v). (2)

From Lemma 1, it follows that, forλ > 0 small enough,pc(v) andpf(v) are, respectively,
the closest and furthest neighbors ofλv and, from Taylor expansion, we have

RS(λv) = RS(o)+ λ (cosαc(v) − cosαf(v))+ λ
2

2

(
sin2 αf(v)

‖pf(v)‖ −
sin2 αc(v)

‖pc(v)‖
)
+ o(λ2).

Therefore, if condition (1) holds, we have cosαc(v)−cosαf(v) > 0 for all v ∈ Sd−1 ando
is a local minimum. Conversely, if there existsv ∈ Sd−1 such that cosαf(v) ≥ cosαc(v),
thenRS(x) decreases in that direction ando is not a local minimum.

Observing that the intersection between a circular cone and a hypersphere is contained
in a hyperplane, the previous characterization can also be stated saying that if we project
points ofCN(o) andFN(o) onto a common sphere centered ato, then projections of
points ofCN(o) cannot be separated from projections of points ofFN(o)by a hyperplane.

We also observe that Theorem 1 implies that|CN(o)|+|FN(o)| ≥ d+2 if o is a local
minimum. To see this, we observe that two setsR andB in Ed with |R| + |B| ≤ d + 1
can be separated by a hyperplane (this is easy to prove, using induction ond).

Finally, we point out that|CN(o)| > 1 and|FN(o)| > 1 because, in other cases,
points can be separated by a degenerate cone.

Ford = 2, this is also equivalent to saying that there are two points on the outer circle
and two points on the inner circle of the annulus that interlace anglewise as seen from
the center of the annulus.

In the last section we shall see that this characterization can also be the basis for the
construction of a point set in the plane withÄ(n2) local minima forRS(x).

4. Roundness in the Plane

From now on,S = {p1, . . . , pn} will be a labeledset of points in the plane such that
polygonP with verticesp1, . . . , pn is simple. We also assume that points are ordered
in the positive (counterclockwise) direction and indices are understood modulon. We
define thekernelof S, denoted by kerS, as the locus of points from which the points of
Sare seen in the given angular order.

We denote byei the edge betweenpi and pi+1 and byhi the left half-plane defined
by the directed line throughpi , pi+1. For a given edgeei in the convex hull ofP, we
denote by

Hi =
⋂
j 6=i

hj .
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Fig. 1. (a) kerSis shaded with the ear corresponding toei darkened. (b) Illustration for the proof of Lemma 2.

The (possibly empty) part ofHi outside convS is called theear of kerScorresponding
to edgeei (see Fig. 1(a)).

It is important to distinguish between the kernel of the set of points and the kernel
of the simple polygon because in some relevant practical situations the solution to the
problem is expected to be outside the polygon (for example, when the set is in the shape
of an arc of a circle). The following result includes an alternative characterization of
kerSand the relation between this concept and the well-known concept of a kernel of a
simple polygon.

Lemma 2.

(a) kerS=⋃ei∈CH(P) Hi .
(b) kerP = kerS∩ convS.
(c) If P is star-shaped, kerS is also star-shaped andkerP is contained in the kernel

of kerS.
(d) If P is not star-shaped, kerS is convex(and contained in one of the ears).

Proof. Part (a) follows from the observation that, ifq ∈ kerS, points appear ordered
and thusq is outside of, at most, one of the half-spaces which, in that case, corresponds
to an edge of the convex hull (see Fig. 1(b)), while part (b) is obvious from (a) and the
definition of kerP.

For (c), assume thatp ∈ kerP andq ∈ kerS. Thenp,q ∈ Hi for somei and, because
Hi is convex,pq ∈ Hi and we have thatpq ∈ kerS.

Finally, in order to prove part (d), we observe that, ifP is not star-shaped,⋂
ei 6∈CH(P)

hi ∩ P = ∅.

Let q ∈ kerS and letei be the edge ofP supporting the tangents fromq to P (see
Fig. 1(b)). Because kerP is empty, there existj, k such thatej andek are not on the
convex hull ofP andhj ∩ hk ∈ hc

i . Therefore, kerS= Hi and is a convex set (the ear
of ei ).
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The following theorem is the main result of this section:

Theorem 2. InsidekerS there is, at most, one local minimum ofRS(x).

Proof. Assume thato ∈ kerS is a local minimum of the roundness function and let
v ∈ S1. If we denote bỳ v the half-lineλv, λ > 0, it is enough to show that there is no
other local minimum iǹ v ∩ kerS. Assume thatv defines the direction of the positivex
axis,CN(o) = {pi , pj } andFN(o) = {pk, pl }. If αi denotes the angle betweenv andpi

we can further assume, without loss of generality, thatαi ≤ αj andαk ≥ αl . Then, from
Theorem 1, it follows thatαi < αk. Finally, forq ∈ E2,

C(q) =
{

x ∈ E2

∣∣∣∣v · x‖x‖ ≥ v · q
‖q‖

}
denotes a cone with apex ato. We useC(q)c to denote the complement.

We distinguish two cases:

(i) If v · pi ≥ v · pk, looking at circles centered atλv and passing throughpk (see
Fig. 2(a)) we have thatFN(λv) ⊂ C(pk)

c, while looking at circles centered atλv
and passing throughpi it follows that the closest neighbors ofλv are contained
in the half-plane

H = {q |q · v > pi · v}
and, because

H ∩A(o, ‖pi ‖, ‖pk‖) ⊂ C(pk),

it follows that CN(λv) ⊂ C(pk) and there cannot be any local minima on the
half-line`v ∩ kerS.

(ii) If v · pi < v · pk, it holds thatv · pk > 0 and we claim that there exist two points
pc ∈ CN(o) and pf ∈ FN(o), both in the upper or the lower half-plane and such
thatv ·pf > v ·pc andαf > αc. In order to prove the claim assume thatpk is in the
upper half-plane. Ifpi is also in the upper half-plane, thenpk = pf andpi = pc

Fig. 2. Illustration for the proof of Theorem 2.
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so assume thatpi is in the lower half-plane. In that case, ifαl > αi and pl is in
the lower half-plane,pl = pf and pi = pc. Otherwise,pj is betweenpk and pl

and we havepc = pj while pf is pk or pl depending on the situation ofpj .
Without loss of generality, we assume thatpc and pf are in the upper half-

plane as in Fig. 2(b) and denote byq the intersection between the half-line`v

and the line passing throughpc and pf . Again, looking at circles centered atλv
passing throughpc and pf , it follows that, to the left ofq, CN(λv) ⊂ C(pc) and
FN(λv) ⊂ C(pf)

c. Therefore, in order to finish the proof we only have to show
that there are no points of kerSon the half-linè v to the right ofq. However, this
follows from Lemma 2: observing that in the chain betweenpc andpf there is at
least one edge not belonging to the convex hull and intersecting the half-line`v

to the left ofq and thato is not inside an ear (in that case, the rest of the points
should be inside the angular region defined bypc, o, and pf , contradicting the
fact that the other furthest neighbor is outside that region).

If Sis a set of points in convex position (i.e., they are the vertices of a convex polygon),
because convS⊂ kerS, we have:

Corollary 1. If S is in convex position,RS(x) has at most one local minimum inside
convS.

It is worth noticing that Theorem 2 easily gives useful properties about the distribution
of local minima in practical examples. For instance, if we assume that we have taken a
sample ofn points which are contained in an annulus of widthε centered at the origin
(we normalize the problem in such a way that the inner radius is one) and denote byθ

the smallest angle between two consecutive points, a straightforward computation shows
that the disk centered at the origin with radius

δ = (1+ ε) sinθ√
1+ (1+ ε)2− 2(1+ ε) cosθ

is contained in kerS and thus has at most one local minimum. If points are equally
distributed and we assume a (huge) 5% error both in the angle and the width, forn = 360
we haveδ ≈ 0.33. This result can explain why standard optimization methods perform
well “in practice” to approximate the solution.

In the next section we see that an additional structure of the problem will allow us to
design a simple and efficientdiscretealgorithm which can find theexactsolution to the
problem.

5. The Roundness Algorithm

Before we describe how to compute roundness when the circular order of the points
is known, we need some additional notation and definitions. Consider the edges of the
furthest-point Voronoi diagram that lie in the kernel ofS, namely,T = kerS∩ Vf(S).
Note thatT can be disconnected, but has linear size because the intersection between an
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Fig. 3. (a) Illustration for the proof of Lemma 3. (b) Illustration for the proof of Lemma 4.

edge ofVf(S) and kerS is connected. We denote byei j the edge ofT contained in the
bisector of segmentpi pj . The endpoints ofei j are denoted byci j (the closest end topi

andpj ) and fi j (the furthest end). This is well defined except for, at most, one edge ofT ,
which can be treated separately. Finally, we assume that points are labeled in such a way
that triangleci j pi pj has positive orientation and we denote bySi j the chain betweenpi

and pj (see Fig. 3(a)). Then we have:

Lemma 3. The roundness function has a local minimum in ei j if,and only if,CN(ci j ) ⊂
Si j and CN( fi j ) ⊂ Sji .

Proof. Using the same arguments as in the proof of Theorem 2, it follows that if the
closest neighbor ofci j is not in Si j , then the closest neighbors of points ofei j cannot
be inSi j and, therefore, there is no local minimum in this edge. Moreover, if the closest
neighbors ofci j and fi j are inSi j , then the closest neighbors of all the points inei j are
in Si j (if this was not true, we would get a contradiction with the preceding argument).
Finally, if CN(ci j ) ⊂ Si j andCN( fi j ) ⊂ Sji , then the local minimum is achieved when
the closest neighbors switch betweenSi j andSji .

Using this result, the algorithm is straightforward: as a first step, we compute Voronoi
diagramsVf(S) andVc(S) and processVc(S) for point location. This can be done in
O(n logn) time [12], [7]. Because the number of intersections betweenVf(S) and kerS
is linear,T can also be computed in timeO(n logn)with a standard sweepline algorithm.
We can process each edge ofT in time O(logn) by locating the closest neighbors of its
endpoints. Finally, if we get an edgee ∈ T containing a local minimum, we can locate
it traveling alonge acrossVc(S) in additionalO(n) time. Then we have shown:

Theorem 3. If there is a local minimum ofRS(x) insidekerS, it can be computed in
O(n logn) time.
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It can be useful to point out that, ifT is connected (which is likely to be the case
in most practical situations), the algorithm can be made even simpler within the same
asymptotic complexity by avoiding the point location step. Furthermore, the complexity
can be improved to optimal linear time if points are in convex position. Both results are
based on the following lemma.

Lemma 4. Let q∈ kerS be a vertex ofVf(S) with FN(q) = {pi , pj , pk} where points
are ordered according to their indices. Assume thatT is connected and letTi j denote
the subtree corresponding to points in Si j (see Fig. 3(b)). If the closest neighbor of q is
not in Si j , there is no local minimum ofRS(x) in Ti j .

Proof. If the anglepi qpj is smaller thanπ , the result follows by repeatedly applying
Lemma 3 to the edges ofTi j starting atq. If this is not the case, as in Fig. 3(b) forTki , we
can use again the same arguments as in the proof of Theorem 2 to see that if the closest
neighbor ofq is not inSki , then the closest neighbor of points ofeki cannot be inSki and
iterate this argument to show that there is no local minimum inTki .

Using this lemma, we computeT as before and locate a vertex such that the subtrees
that it connects have size smaller thatcn for some constantc. Now, we compute the
closest neighbor of the vertex by brute force and discard a linear fraction of the edges in
linear time. Therefore, the edge containing the local minimum is located inO(n logn)
time. We conclude the section observing that, if points ofSare in convex position, both
approaches can be combined in order to get:

Theorem 4. If S is a set of points in convex position andRS(x) has a local minimum
insideconvS, it can be computed in time2(n).

Proof. If points are in convex position,Vc(S)andVf(S) can be computed and the former
processed for point location inO(n) time [3], [7]. Moreover,T = Vf(S) ∩ convS is
connected and can be computed in linear time. To see this, considerT as a directed tree
rooted at the center of the minimum enclosing circle ofSand observe that an edgee∈ T
cannot enter convS. Finally, applying Lemma 4 we can discard a linear fraction of the
edges ofT in time O(max{logn, |Ti |}) whereTi is the tree afteri prune steps and the
result follows.

6. An Example withÄ(n2) Local Minima

Previous works [2], [16] conjectured thatRS(x)may haveÄ(n2) local minima because
Vc(S) andVf(S) can have a quadratic number of intersections. We constructn+1 closest
andn + 1 furthest points whose respective Voronoi diagrams haven2 intersections in
the first quadrant, all of which will be local minima by Corollary 2.
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Fig. 4. Closest- and furthest-point Voronoi edges in the first quadrant.

Corollary 2. If edges ofVc(S) andVf(S) intersect and the closest and furthest points
interlace anglewise as seen from the intersection point, thenRS(x) has a local minimum
at that point.

First, we choose the set ofn+ 1 “closest points” along they axis withy coordinates
yi = (2c+ 1)i−1, for 1 ≤ i ≤ n+ 1, wherec is a positive constant to be chosen later.
The bisectors of these points are the lines

y = yi + yi+1

2
= (c+ 1)yi .

In the first quadrant, these bisectors will be edges of the closest-point Voronoi diagram.
See Fig. 4.

We choose then+ 1 “furthest points” in the third quadrant of a circle centered at the
origin with radiusr > yn to be determined later. Thus, the furthest-point Voronoi edges,
{`j : 1≤ j ≤ n}, begin at the origin and extend to infinity in the first quadrant.

We choose “furthest points” so that the angle from thex axis to the first edgè1 is
θ1 = π/8 and the angle from linèj−1 to line `j is θj = π/2 j+2. Then the angle from
thex axis to`j is π/4− θj for 1≤ j ≤ n. Specifically, choose thej th “furthest point,”
f j , to lie on the line through the origin at angleπ/4− 4θj /3, for 1≤ j ≤ n+ 1. Then
the bisector of the pointsf j and f j+1 has angle

1

2

(
π

4
− 4θj

3
+ π

4
− 4θj+1

3

)
= π

4
− 1

2

(
4θj

3
+ 2θj

3

)
= π

4
− θj ,

and the furthest-point Voronoi edge`j has the desired angle.
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Theorem 5. If the n+ 1 “closest points” and n+ 1 “furthest points” are defined
as above, then for some constant c and radius r, the functionRS(x) has2(n2) local
minima.

Proof. First, some additional notation. We denote the furthest-point Voronoi edge`j by
its slope/intercept formy = mj x, where the slopemj = tan(π/4− θj ). We can bound
1
2 ≤ mj < 1, for all j . We denote the slope of the line that defines the furthest pointf j

by m′j . We can expressm′j in terms ofmj :

m′j = tan

(
π

4
− 4θj

3

)
= tan(π/4− θj )− tan(θj /3)

1+ tan(π/4− θj ) tan(θj /3)
= mj − tan(θj /3)

1+mj tan(θj /3)
.

Now, the i th closest-point edge intersects thej th furthest-point edge in the point
qi j =

(
(c+ 1)yi /mj , (c+ 1)yi

)
. By Corollary 2, the pointqi j is a local minimum if the

points(0, yi+1), f j , (0, yi ), and f j+1 appear in counterclockwise order viewed fromqi j .
It is clear that(0, yi+1) is first; we need to check thatf j and f j+1 are on opposite sides
of the line throughqi j and(0, yi ). The equation of this line is

y =
(
(c+ 1) yi − yi

(c+ 1) yi

)
mj x + yi =

(
c

c+ 1

)
mj x + yi .

Notice that this line is abovel j in the third quadrant, sof j+1 is below the line. Notice also
that the slope of this line is determined only by the furthest-point Voronoi edge`j —all
lines defined by intersection with̀j are parallel. If we can choosef j to lie above the
highest line,y = cmj x/(c+ 1)+ yn, then the pointsqi j will be local minima for alli .

For the furthest pointf j to be above the highest line, the slopem′j of the line definingf j

must be less than the slopecmj /(c+1) of the highest line. If we choosec > 2/tan(θn/3),
then

c

c+ 1
mj >

mj

1+ tan(θj /3)/2
≥ mj − tan(θj /3)

1+mj tan(θj /3)
= m′j .

Thus the line definingf j crosses from below to above the highest line at some point. As
long as we chooser , the radius of the circle that definesf j , larger than the distance to the
intersection of these two lines, thenf j will be above the highest line. Thus, it is possible
to construct the furthest pointsf j so that then2 intersection pointsqi j determined by a
closest- and furthest-point Voronoi edge in the first quadrant are local minima.

To get an idea of the magnitude of the coordinates involved, choosec = 2n+5. The
circle must include all intersections of the linesy = m′j x with y = cmj x/(c+ 1)+ yn

for all 1≤ j ≤ n. The largesty coordinate is at most the largestx coordinate, which the
reader can check is

yn

m′j − cmj /(c+ 1)
<

(2c+ 1)n−1

mj /(1+ tan(θj /3)/2)−mj /(1+ 1/c)
< 2(n+2)(n+5).

Therefore the radius can be chosen to ber = 22(n
2). Since the positions of points in

this construction have been chosen to simplify the proof, we are certain that smaller
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constructions ofÄ(n2) local minima can be given. We conjecture, however, that the
magnitudes of points must grow exponentially inn.

We note that in this construction all of the points are on the boundary of the convex
hull, and that a small perturbation could make all points be vertices of the convex hull.
TheÄ(n2)minimal annuli all have centers outside the convex hull; we have seen that at
most one center can be inside the hull.

7. Concluding Remarks

In this paper we have dealt with the problem of computing the annulus of minimum
width containing a set of points. We have characterized the set of local minima ofRS(x)
(feasible centers for the annulus) in thed-dimensional case and we have shown that,
inside thekernelof the set, there is at most one local minimum which can be computed
in O(n logn). We remark that the algorithm is more efficient than previous algorithms
solving the general problem and that it is useful for solving the problem in practice,
because in the metrology application the sample points are given in angular order. We
also remark that the algorithm is simple and, thus, easy to implement. It is an interesting
open problem to see whether or not a set of points in convex position in the space has
only one local minimum inside its convex hull.
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