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Abstract In data science, anomaly detection is the process of identifying the items,
events or observations which do not conform to expected patterns in a dataset. As
widely acknowledged in the computer vision community and security management,
discovering suspicious events is the key issue for abnormal detection in video surveil-
lance. The important steps in identifying such events include stream data segmentation
and hidden patterns discovery.However, the crucial challenge in streamdata segmenta-
tion and hidden patterns discovery are the number of coherent segments in surveillance
stream and the number of traffic patterns are unknown and hard to specify. Therefore,
in this paper we revisit the abnormality detection problem through the lens of Bayesian
nonparametric (BNP) and develop a novel usage of BNP methods for this problem. In
particular, we employ the Infinite Hidden Markov Model and Bayesian Nonparamet-
ric Factor Analysis for stream data segmentation and pattern discovery. In addition,
we introduce an interactive system allowing users to inspect and browse suspicious
events.
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1 Introduction

In data science, anomaly detection is the process of identifying items, events or obser-
vationswhich do not conform to expected patterns or other items in a dataset. Typically
the anomalous items are existing in some kind of specific problem such as bank frauds,
medical problems or finding errors in text. There are twomajor categories of abnormal
detection namely unsupervised abnormal detection and supervised abnormal detec-
tion. The former detects anomalies in an unlabeled test data set under the assumption
that the majority of the instances in the data set are normal by looking for instances
that seem to fit least to the remainder of the data set. The latter requires a data set that
has been labeled as ‘normal’ and ‘abnormal’ and involves training a classifier (e.g.
Support Vector Machine [1], Logistic Regression [2]).

In this paper, we consider specifically the problem of unsupervised abnormality
detection in video surveillance. As widely acknowledged in the computer vision com-
munity and security management, discovering suspicions and irregularities of events
in a video sequence is the key issue for abnormal detection in video surveillance [3–7].
The important steps in identifying such events include stream data segmentation and
hidden patterns discovery. However, the crucial challenge in stream data segmentation
and hidden patterns discovery are the number of coherent segments in surveillance
stream and the number of traffic patterns are unknown and hard to specify.

The theory of Bayesian nonparametric (BNP) [8–13] holds a promise to address
these challenges. As such, BNP can automatically identify the suitable number of
cluster from the data. Therefore, in this paper we revisit the abnormality detection
problem through the lens of BNP and develop a novel usage of BNP methods for this
problem. In particular, we employ the infinite hiddenMarkovmodel [14] andBayesian
nonparametric factor analysis [15].

The first advantage of our methods is that identifying the unknown number of
coherent sections of the video stream would result in better detection performance.
Each coherent section of motion (e.g. traffic movements at night time and day time)
would contain different types of abnormality. Unlike traditional abnormality detection
methods which typically build upon a unified model across data stream. The second
benefit of our system is an interface allowing users to interactively examine rare events
in an intuitive manner. Because the abnormal events detected by algorithms and what
is considered anomalous by users may be inconsistent, the proposed interface would
greatly be beneficial.

To this end, we make two major contributions to abnormal detection in video
surveillance: (1) proposing to use the Infinite Hidden Markov Model for stream
data segmentation, and (2) introducing the Bayesian nonparametric Factor Analysis-
based interactive system allowing users to inspect and browse suspiciously abnormal
events.

This paper is organized as follows.Wepresent an overviewon abnormality detection
in video surveillance and the need of segmenting the data and interaction in Sect. 2.
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In Sect. 3, we describes our contribution on Bayesian nonparametric data stream
segmentation for abnormal detection. Section 4 illustrates our introduced browsing
system for abnormal detection. The experiment is provided in Sect. 5. Finally, we
present a summary of the paper with some concluding remarks in Sect. 6.

2 Video Surveillance

Ideally, abnormality detection algorithms should report only events that require
intervention—however, this is impossible to achieve with the current state-of-art. A
large semantic gap exists between what is perceived as abnormal and what are compu-
tationally realizable outlier events. An alternative framework in which the algorithm
reports a fraction (<1%) of rarest events to a human operator for potential intervention
[4] has been successful commercially (icetana.com). By retaining humans in the loop,
whilst drastically reducing the footage that needs scrutiny, the framework provides a
practical recourse tomachine-assisted video surveillance. A typical medium-sized city
council has to handle hundreds of cameras simultaneously, and it is imperative that the
computational cost is low. This is achieved via an efficient algorithm based on PCA
analysis of the video feature data. Motion-based features are computed within a fixed
duration video clip (typically 10–30s). PCA analysis is performed on the training data
set to obtain the residual subspace, and the threshold corresponding to a desired false
alarm rate. During testing, if the projection of the test vector in the residual subspace
exceeds the computed threshold, the event is reported to the operator. Since the algo-
rithm is based on PCA, it is important that the training data is coherent, so as to have
most of the energy concentrated within a low dimensional principal subspace. In this
case, most normal events remain within the principal space upon projection, and the
residual subspace retains the fidelity for detecting subtle but rare events. However, for
typical outdoor surveillance, the feature vectors generally exhibit different modes -
depending on the time of day, climatic variations etc. If we try to fit all these incoherent
modes into a single model, we reduce the sensitivity of detection. If we construct one
principle sub-space for a 24h period, we are likely to miss events at night, because
nights have very different motion profiles to that of the daytime.

Thus, it is of paramount importance that video data be separated into coherent
sections on which subsequent statistical analysis, for tasks such as anomaly detection,
can be performed. One solution to provide this data segmentation into coherent modes
is to use Markov models such as the Hidden Markov Model. However, these models
requires apriori specification of the number of modes. To circumvent this problem,
we model the activity levels as a mixture of Gaussian states for the infinite hidden
Markov Model (iHMM) [14] segmentation. We show an application of the model to
such stream data and present the collapsed Gibbs inference to achieve automatic data
segmentation. To demonstrate the model, we perform experiments with 336 hours
of footage obtained from a live surveillance scene. We show how the use of model
selection as a preliminary process improves typical downstream processes such as
anomaly detection.

The novelty of our contribution is in tacking a novel problem in large-scale stream
data—model fitting to find coherent data sections, on which suitable models can be
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subsequently constructed. The significance of our solution is that the use of iHMM
allows incremental use, and thus lends itself to large-scale data analysis. In addition,we
introduce a browsing framework assisting users in analyzing and filtering suspicious
events to overcome the semantic gap between the returned events by the algorithms
and the true events.

3 iHMM Stream Data Segmentation

For data segmentation using standard HMM, one needs to specify the number of
states in advance and use the EM algorithm to estimate the parameters. The iHMM
[14] overcomes this restriction, allowing the number of states to grow unboundedly
according to the data. In otherwords, the number of stateswill be automatically inferred
from the data. It was later shown in [16] that this model can be interpreted using the
hierarchical Dirichlet process formalism inwhich the number of groups is dynamically
changed according to the state assignments. This interpretation is significant as it
provides a deeper understanding and formal framework to work with the iHMM.
Interested readers are referred to [14,16] for details.

3.1 Multi-model Abnormality Detection Framework

We use video footage spanning multiple days for model selection and abnormality
detection. A video is divided into a sequence of fixed 20s clips. Optic flow vectors are
computed [17]. For each clip, we first aggregate the total count of optic flow vectors
at each pixel location over all the frames, and then spatially bin them into a 10 × 10
uniform grid. After vectorization, we obtain a 100 dimensional feature vector for each
clip (as in [4]). For the model selection phase, we use the total activity level in an hour,
computed by summing the feature vectors over an hourly window and then summing
across the length of the resultant vector generating a scalar value for the total activity.
The activity level is then modeled by a mixture of Gaussian states for the infinite-
HMM [14,16] segmentation. Once we obtain the segmentation of hours based on the
activity levels, we run separate anomaly detectors for each model. In the following
sections, we present the framework for iHMM followed by a brief description of the
core anomaly detection algorithm of [4].

3.1.1 Bayesian Nonparametric

A Dirichlet Process [8] DP (γ, H) is a distribution over discrete random probability
measureG on (Θ,B). Sethuraman [18] provides an alternative constructive definition
which makes the discreteness property of a draw from a Dirichlet process explicit via

the stick-breaking representation: G = ∑∞
k=1 βkδφk where φk

iid∼ H, k = 1, . . . ,∞
and β = (βk)

∞
k=1 are the weights constructed through a ‘stick-breaking’ process. As

a convention, we hereafter write β ∼ GEM (γ ). Dirichlet Process has been widely
used in Bayesian mixture models as the prior distribution on the mixing measures,
resulting in a model known as the Dirichlet process mixture model (DPM) [9].
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Fig. 1 The infinite Hidden Markov model representation. Left Stochastic process of iHMM. Each obser-
vation yt indicates for a traffic movement for an hour t (including 24 hours) collected from 14days. Right
Stick-breaking representation of the data

Dirichlet Process can also be constructed hierarchically to provide prior distribu-
tions over multiple exchangeable groups. Under this setting, each group is modelled as
a DPM and these models are ‘linked’ together to reflect the dependency among them.
One particular attractive approach is theHierarchical Dirichlet Processes (HDP) [16]
which posits the dependency among the group-levelDPMbyanotherDirichlet process.

3.1.2 iHMM for Data Segmentation

Under the hierarchical dirichlet process specification [16], the building block property
can be adopted to represent the infinite Hidden Markov model (iHMM) [14]. [16]
describe the infinite Hidden Markov model, namely a Hierarchical Dirichlet Process
Hidden Markov model (HDP-HMM) which provides an alternative method to place
a Dirichlet prior over the number of state. Therefore, the (unknown) number of states
in HMM is identified in the same way as HDP.

Using HDP [16] as a nonparametric prior for building block, the stochastic process
of HDP-HMM is described as:

G0 ∼ DP (γ, H × S) θt
iid∼ Gk

Gk
iid∼ DP (α,G0) k = 1, 2, ...∞ yt ∼ F (θt−1) t = 1, 2, ..., T .

There are T timestamps (e.g. number of hours in a day the data is collected). The
stick-breaking of HDP-HMM is illustrated in Fig. 1 in which the parameters have the
following distributions:

β ∼ GEM (γ ) πk ∼ DP (α,β)

φk ∼ H k = 1, 2, . . . ∞ zt ∼ πzt−1 t = 1, 2, . . . , T
yt ∼ F

(
φzt

)
.
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Inference for HDP-HMM In this work, we use iHMM at the first stage to segment the
data into coherent sections before building the abnormality detection models. The use
of Markov model ensures that the temporal dynamics nature of the data is taken into
consideration. The number of coherent sections is unknown andwill be estimated from
the data. Our first goal is perform a rough data segmentation at hourly intervals; thus
there are 24 data points for each day using the averagemotion at each hour as the input.
These inputs correspond the observed variables {yt }, and {zt } plays the role the latent
state variables as in a standard HMM. H is the base measure from which parameters
{φk} will be sampled from. In our case, we model yt as a univariate Gaussian and
thus each φk is a tuple of

{
μk, σ

2
k

}
where both μk and σ 2

k are unknown and treated as
random variables.We use H as a conjugate prior, and thus H in our case is a Gaussian-
invGamma distribution. A graphical model representation is shown in Fig 1.

We use collapsed Gibbs inference for iHMM as described in [19] in which the
latent state zt and the stick-breaking weight βk are sequentially sampled by explicitly
integrating out parameters {φk} for the emission probability and {πk} for the transition
probability. For example, given zt−1 = i, zt+1 = j from the previous iteration, the
conditional Gibbs distribution to sample zt has the form:

Here we shortly present the Gibbs sampling for HDP-HMM.

– Sampling zt . Consider the conditional probability of zt

p (zt = k | z−t , y,β, H) ∝ p
(
yt | zt = k, z−t , y−t , H

)

︸ ︷︷ ︸
observation likelihood

× p (zt = k | z−t , α,β)
︸ ︷︷ ︸

CRP of transition

.

The first term is the likelihood of the observation yt given the component φzt . In
otherwords, this likelihoodcanbe expressed as

∫
φk

p (yt | zt =k, φk) p
(
φk | y−t , z−t ,

H) dφk which is easily analyzed using the conjugate property. The second probability
is simply the Chinese Restaurant Process of transition. Denote ni j as the number of
transitions from state i to state j , n∗ j as the number of all transitions to state j . Sim-
ilarly, ni∗ is the number of all transitions departing from state i . The CRP likelihood
under Markov property can be analyzed as:

p (zt = k | z−t , α,β) ∝ p (zt = k | zt−1, α,β)
︸ ︷︷ ︸

from previous state t−1 to state t

× p (zt = k | zt+1, α,β)
︸ ︷︷ ︸
from state t to next state t+1

.

We then have four cases to compute this probability:

p (zt = k | z−t , α,β) ∝

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
nzt−1,k + αβk

) nk,zt+1+αβzt+1
nk∗+α

k ≤ K , k �= zt−1

(
nzt−1,k + αβk

) nk,zt+1+1+αβzt+1
nk∗+1+α

zt−1 = k = zt+1

(
nzt−1,k + αβk

) nk,zt+1+αβzt+1
nk∗+1+α

zt−1 = k �= zt+1

αβnewβzt+1 k = K + 1.

– Sampling stick-breaking β, and hyperparameters α,γ are exactly the same as for
HDP describing in [16].
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For robustness we also let the concentration hyper-parameters α and γ to follow
Gamma distributions and they will also be re-sampled at each Gibbs iteration.

Abnormality Detection Algorithm Assume that X ∈ R
d×n is the data matrix with n

centralized feature vectors of d dimensions and C is the covariance matrix with its
SVD factorization:

C = UΣUT .

We divide the eigenvectors from U in two groups:

C = [U1 U2]
[

Σ1 0
0 Σ2

]

UT

such that
tr
(
Σ1

)

tr(Σ1)+tr(Σ2)
= 0.9, i.e., selecting the most significant eigenvectors such that

they cover 90% of the total energy.U1 is called the principal subspace andU2 is called
the residual subspace. The abnormality detection algorithm works by projecting the
test vectors to the residual subspace U2 and comparing it to the detection threshold
(λ), also called the Q-statistic, and is a function of the non-principle eigenvalues in
residual subspace.

4 Interactive System for Browsing Anomalous Events

Security and surveillance systems focus on rare and anomalous events detection. Typ-
ically, these events are detected by estimating the statistics from the “normal” data -
anything that deviates is termed as rare. The problem, however, is that in surveillance
data, there is a semantic gap between statistically rare events produced by the detection
algorithms and what the user would consider as semantically rare.

In this section,we raise the question: Is there an alternative to examining these anom-
alies, at least retrospectively? Consider security officers being given location/time of
an incident - they now wish to find the matching footages. We propose a novel inter-
face that permits the operators to specify such queries, and retrieve potential footages
of rare events that match. This geometric query can be either spatial (rare events in
region of interest) or spatial–temporal (rare events at location A, then B).

Our solution is firstly to find the hidden patterns in the scene. Since the number
of latent factors is unknown in advance, we employ recent advances in Bayesian
nonparametric factor analysis. The generative process models non-negative count data
with a Poisson distribution [20]. The presence or absence of a factor ismodeled through
a binary matrix. Its nonparametric distribution follows the Indian buffet process [21],
and ismodeled through a draw fromBeta process,which allows infinitelymany factors.
The extracted factors correspond to patterns of movement in the scene. The rareness
of each extracted factor is determined by how much it is used across the whole data
set. The factors are then ordered in decreasing rarity, and the user is allowed to choose
a proportion of rare factors for consideration. Three top candidates rare factors from
MIT dataset are visualized in the right column of Fig. 6 while three other common
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A: Adjusting level of rareness.
The indicator is displaying 10% of the total of events.

B: Two browsing schemes: spatial and spatio-temporal.

C: Latent factors detected using % of rare factors chosen.

D: Filtered output.

E: Spatially selected region.

F: Video clip matching filtered result.

G: List of clips containing latent factors.

H: Number of consecutive frames.

B
A

E

FG D

H

C

Fig. 2 Graphical user interface (GUI) for our browsing system

Divide into Blocks [sz x sz] SummarizingRank-1 Robust PCA

XSM
n frames n raw motion features n blocked raw motion features 1 motion feature matrix

Fig. 3 Foreground extraction and feature computation using rank-1 robust PCA

patterns are on the left hand side. Frames that contain these factors are considered
as potential candidates. The solution to a given geometric query is candidate frames
that satisfy the specified spatial or spatial–temporal constraints. We demonstrate this
browsing paradigm, with spatial and spatio-temporal queries in video surveillance.
The user interface of our system is displayed in Fig. 2.

The significance of this paradigm is that it allows an operator to browse rare events,
either spatially or spatial–temporally, at different “scales” of rarity. The use of non-
parametric factor analysis models allows the framework to gracefully adapt to the data,
without the need for a priori intervention. The framework can also easily be extended
to accommodate multiple cameras. To our knowledge, there is no such existing system
in the literature. Our main contributions in this interface include:

– The anomaly detection frame work based on part-based matrix decomposition that
utilizes our recently introduced rank-1 robust background subtraction for motion
video from static camera and nonparametric pattern analysis.

– The new browsing scheme allowing users not only to control the rareness degree
but also to query spatial or spatial–temporal searching to overcome the difficulty
due to the semantic gap.

4.1 Proposed Browsing Framework

A schematic illustration of the proposed system is shown in Fig. 3. The first step is
to perform background subtraction followed by the feature extraction step detailed
in Sect. 4.2. Once the features are extracted, latent factors are learned as detailed
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in Sect. 4.3. We use non-parametric factor analysis to recover the decomposition
of factors (motion patterns) and constituent factor weights. For each latent factor, a
rareness score is derived based on their overall contribution to the scene, and sorted
in an decreasing order of rareness level. Since we follow a part-based decomposition
approach for scene understanding, each latent factor is a sparse image having the
same dimension of the original video frame. Therefore, a query for rare events at a
spatial location can directly ‘interact’ with latent factors. The user is then able to select
a proportion of rare factors for consideration. Based on the rareness degree of each
latent factors, the interface returns to the user the corresponding footages. We shall
now describe these steps in detail.

4.2 Robust Foreground Extraction and Data Representation

Since our framework focuses on scene understanding and therefore, features are
extracted directly from the foreground information. To do so, we require a robust fore-
ground extraction algorithm which can operate incrementally and in real-time. To this
end, we utilize a recently proposed robust PCA approach [22] which is a special case
of the robust PCA theory [23,24] developed specifically for static surveillance camera.
Given a shortwindow time size of n andM = [M1, M2, . . . , Mn] being the datamatrix
consisting of n consecutive frames, the goal of robust PCA theory is to decompose

M = L + S,

where L is a low-rank matrix and S is a sparse matrix. A standard algorithm to per-
form robust PCA is principal component pursuit (PCP) [23] which involves SVD
decomposition at each optimization iteration step. However, it can be very costly to
compute. Static cameras, on the other hand, pose a strong rank-1 characteristicwherein
the background remains unchanged within a short duration. Given this assumption,
an algorithm for rank-1 robust PCA can be efficiently developed which is shown to
be a robust version of the temporal median filter [22]. This makes the foreground
extraction, contained in S, becomes extremely efficient 1 since it can avoid the costly
SVD computation in the original formulation of [23]. Moreover, it can be operated
incrementally in real-time.

Next, using the sparse matrix S, a fixed sz × sz block is super-imposed and the
foreground counts in each cell is accumulated to form a feature vector X summarizing
the data matrix M over a short window time of size n. An illustration of this step is
shown in Fig. 3.

4.3 Learning of Latent Factors

Recall that a foreground feature Xt is collected for each short window t . Let X =
[X1X2 . . . XT ] be the feature matrix over such T collections. Our next goal is to learn
latent factors from X , each of which represents a ‘part’ or basis unit that constitutes

1 In practice, it is noted to be 10–20 times faster than a standard optical flow implementation.
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our scene. Using a part-based decomposition approach, a straightforward approach is
to use nonnegative matrix factorization (NNMF) of [25] which factorizes X into

X ≈ WH, (1)

whereW and H are nonnegativematrices. The columns ofW contains K latent factors
and H contains the corresponding coefficients of each factor contribution to the orig-
inal data in X . Due to the nonnegativity of H , a part-based or additive decomposition
is achieved and each columns of X is represented by X j =∑K

k=1 WkHkj . However,
a limitation of NNMF for our framework is that it requires a manual specification of
the number of latent factors K in advance. This can severely limit the applicability of
the proposed framework since such knowledge on K is very difficult to obtain.

To address this issue, we employ recent advances in Bayesian nonparametric factor
analysis for this task which can automatically infer the number of latent factors from
the data [15,26]. In particular, we use a recent work [20] that models count data using
Poisson distribution. For the sake of completeness, we shall briefly describe it here.
A nonparametric Bayesian factor analysis can be written as follows:

X = W (Z 
 F) + E, (2)

wherein
 denotes as the Hadamard product, Z is a newly added binary matrix whose
nonparametric prior distribution follows an IndianBuffet Process (IBP) [21]. Its binary
values indicates the presence or absence of a factor (i.e. a column of matrixW ) and the
matrix F contains the coefficients when working with matrix Z. Formally, Zkn = 1
implies that the k-th factor is used while reconstructing the n-th data vector, i.e. n-th
column of the matrix X . In this nonparametric model, Z is modeled through a draw
from Beta process which allows infinitely many factors. Given the data, the number
of active factors 2 are automatically discovered using the inference procedure.

The distributions on the parameters W , F of the above nonparametric model is as
below

Wmk ∼ Gamma (aw, bw) , Fi ∼ 
K
k=1Gamma (aF , bF ) , (3)

where aw, bw, aF and bF are the shape and scale parameters. Similarly, given the
parameters, the data is modeled using a Poisson distribution in the following manner

Xi | X, Zi , Fi ∼ Poisson (X (Zi 
 Fi ) + λ) , (4)

whereλ is a parameterwhich expressesmodeling error E such that Emn ∼ Poisson (λ).
We use Gibbs sampling to infer W and F. Since the condition posteriors are

intractable, auxiliary variables are introduced to make the inference become tractable.
For example, the Gibbs update equation for i-th row of W , denoted by W (i), is given
as:

2 e.g. k-th factor is an active factor, if k-th row of the matrix Z has at least one non-zero entry.
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p(W (i)
∣
∣Z, F, X, λ, s) ∝ 
K

k=1 (Wik)
a+∑T

j=1 s
ik
j −1

× exp

⎧
⎨

⎩
−
⎛

⎝b +
T∑

j=1

Hkj

⎞

⎠Wik

⎫
⎬

⎭
, (5)

where the auxiliary variables s =
{
sikj

}K+1

k=1
can be sampled from a Multinomial

distribution for each j ∈ {1, . . . , T } satisfying∑K+1
k=1 sikj = 1:

p
(
si1j , . . . siKj , si(K+1)

j | ·
)

∝ Xi j !
∏K+1

k=1 sikj !

K
k=1

(
WikHkj

)sikj λ
si(K+1)
j . (6)

The matrix F and Z can also be sampled in a similar manner proposed in [26].

4.4 Browsing Functionalities

Using the latent factors learning in the previous steps, we propose the following func-
tionalities for our system.

4.4.1 Discovering Rare Factors and Footages

For each factor Wk within K factors discovered in the previous step, we define a
score to measure its rareness based on its overall contribution to the scene. Since
X j = ∑k WkHkj , it is clear that Hkj is the contribution of factor Wk to reconstruct
X j . Hence, we have the term of

∑
j Hk j is the overall contribution of factor k to X.

We define the rareness score of a factor as a function reciprocal to this quantity:

r-score (Wk) = − log

⎛

⎝
∑

j

Hk j

⎞

⎠ . (7)

In our system, we rank the scores for those factors learned in Sect. 4.3 using Eq. 7 and
allows the user to interactively choose the percentage α of rare factors to be displayed
and interacted with (cf. Figs. 8, 2a). The list of footages associated with this factor is
also returned to the user (cf. Fig. 2g). Denote S (Wk) as the corresponding index set,
then:

S (Wk) = { j | Hkj > ε, j = 1, . . . , T
}
, (8)

where ε is a small threshold, mainly used for the stability of the algorithm. Further,
let Kα be the collection of all rare factors, then the index set of all detected footages
is:
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Fα =
⋃

W∈Kα

S (W ) . (9)

4.4.2 Spatial Searching

Given a spatial region of interest R being input to the system, spatial filtering on rare
events can now be efficiently carried out by analyzing the intersecting region between
the spatial region R and the set of rare factors W . First we extend R to R′ to have
the full size of the video frame by zero padding and mask it with each rare factor W
which will be selected if the resultant matrix is non-zero. Let SPα (R) be the set of
output indices returned, then formally we have:

SPα (R) =
⋃

W∈SPF(Kα,R)

S (W ) where

SPF (Kα, R) = {W | W ∈ Kα,
∣
∣
∣
∣W 
 R′∣∣∣∣

0 > 0
}
.

Here, α is a percentage of rareness degree in as described in Sect. 4.4.1 and 
 is
element-wise multiplication, ||A||0 is the l0-norm which counts the number of non-
zero elements in the matrix A. The demonstration of this browsing capacity is shown
in Fig. 8 which reveals that the security officer can scrutinize the red rectangle region
in the left window to inspect any unusual things happened in the right panel such as
an event that one person is crossing the street.

4.4.3 Spatial–temporal Searching

More significantly, the spatio-temporal criteria searching is included in our model in
Fig. 8. The semantic can be understood as “show me the events here (red rectangle)
followed by the events there (blue rectangle)” that is set temporally as within �t sec-
onds. Once again our filters extracted the frames data into the potential candidates for
rare frames. Initially, an user indicates a queue region of interest. For this purpose, we
illustrate them into two regions, say red and blue rectangle. Spatial scanning in previ-
ous section will be applied into both rectangles. Those output patterns are considered
as the necessary input for this process. In accordance with the mathematical formula
in Eq. 10, the typical illustration of this searching category can be found in Fig. 8.

STα (R1, R2) = {(i, j) | i ∈ SPα (R1) , j ∈ SPα (R2) , |i − j | < �t} .

(10)

5 Experiment

In this experiment, we first demonstrate quantitatively the abnormality detection per-
formance, then present the user interface system.
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5.1 Quantitative Experiment

We use a 14 day long video footage from an existing surveillance camera mounted at
a street junction overlooking a busy thoroughfare. For each hour, we have 14 separate
observations from each of the 14 days—this is used as the input matrix for the iHMM
inference. The total number of Gibbs iterations performed for the inference is 1500,
with 500 burnings. An example of the discovered segmentation is shown in Fig 4. We
discover two segments including 8.00a.m.–8.59p.m., and 9.00p.m.–7.59a.m.. The
total running time is 10.58 s on the X5690 based server.

We next show why such data segmentation improves downstream processes like
anomaly detection. We divide the data into two parts. The first 7 days are used for
training, i.e. computing residual subspace and the detection threshold set. Thedetection
threshold (λ) is set at 0.1%. The remaining 7 days of video are used for testing, i.e.
projecting each feature vector onto the residual space and declaring an anomaly if
the projected energy in the residual space exceeds λ. We run two anomaly detectors:

0 500 1000 1500
0

2

4

6

8

10
estimated K for each Gibbs round

1 2 3 4 5 6 7 8
0

100

200

300

400
best K estimated is 2

Fig. 4 Example of of iHMM segmentation for 1-day data
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(1) The uni-model, that runs on the whole data, and (2) The multi-model, catering to
multiple modes for the segmented hours as obtained by iHMM,with separate anomaly
detectors for each mode.

The energy distribution of the test vectors in the residual subspace for the two
settings are shown in Fig. 5a. The energy distribution for the multi-model decays
more sharply, and thus an application of detection threshold will not ‘leak’ normal
events as anomalous ones. Fig. 5b shows the energy signal for a chain of anomalous
events—a street fight followed by police intervention. It shows that whilst the overall
projection energy is higher for the uni-model, the detection threshold is also much
higher, resulting in missed events (between frames 40 and 45 of Fig. 5a, for example).
For themulti-model, the detection threshold is low, and the energy for this entire period
remains above the detection threshold.

This effect is illustrated quantitatively in Table 1 which shows the number of events
detected by both set-ups. The multi-model is more effective than the uni-model—
detecting more loitering events (all of which occur at night, and thus are missed by
the uni-model) and the full sequence of events in the street fight period. Incidentally,
both models declared one (different) event as anomalous, which we consider a false
positive. For both models, the training and testing of the total 14 days of video were
achieved in less than 0.5 s.

5.2 User Interface Demonstration

Next, we demonstrate the proposed system using the MIT dataset [27]. In this public
dataset, the traffic scene are recorded by the static camera, especially the traffic flows
such as truck, car, pedestrian, bicycle, and other noisymotions such as leaves flickering
due to wind etc. These objects generate various motion patterns in the intersection area
of the traffic scene. The image dimension of the traffic scene is 480× 720 pixel per
frame (cf. Fig. 6). As mentioned earlier in Sect. 4.2, static cameras own the rank-1
property which is the necessary condition for our background subtraction task.

For the motion feature extraction stage, we choose the block size of 20× 20 and
a sequential footage of n = 200. In order to deal with matrix factorization prob-
lems when we do not know the number of latent factors beforehand, one possible
solution is to do model selection by varying the number of latent factor K . The visu-
alization of the model selection step is depicted in Fig. 1, in which we restrain the
parameter scope from 20 to 56. Using our nonparametric model, however, the para-
meter K is automatically identified as 40. From 40 learned patterns (cf. Fig. 7), we
sort all in an increasing order of rareness amount that is explained in Sect. 4.4.1. For
example, three candidates for common factors and three rare factors are shown in
Fig. 6.

We establish the browsing paradigm by assisting users to restrict their searching
region by spatial and spatial–temporal criteria. One typical example is presented in
Fig. 8. An user draws two regions: red and blue rectangles to investigate which patterns
will followed by others in those windows. Initially, the system will automatically
detects suitable candidate patterns in those regions with regard to the proportion of
rareness level that user are querying. Through the candidate factors, we will reverse
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Table 1 Description of
anomalous events

Event type # detected
(uni-model)

# detected
(multi-model)

Street fight 57 63

Loitering 1 7

Truck-unusual stopping 4 4

Big truck blocking camera 2 2

No apparent reason 1 1

Fig. 6 Illustration of our learned factors overlayedwith data the fromMIT dataset. The left column presents
three common patterns. Three rare factors are displayed in the right column

to all the consecutive frames and clips associated with the selected factors. Then, the
most appropriate event will be discovered following Eq. 10. In Fig. 8, people who
cross the zebra-crossing (red rectangle) and turn right (blue rectangle) are caught by
our system.
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One false positive is also recorded. Because of the big traffic flow in the period of
n = 200 serial frames in the selected rectangle, the system will treat it as an abnormal
episode. When a user draws a spatial interrogation in this area, the machine will give
back this flow as a possible candida for abnormality. However, the user can control,
fortunately, the rareness level and alter it following the true abnormality semantically
in the scene. Concerning with the input rareness rate, multiple patterns and clips are
discovered so that the user can decide which one is a real affair. Thus, our proposed
framework surmounts successfully the semantic gap between the statistical perspective
and human perception.

Our focus is on browsing interactively the abnormal activities locally in a scene.
There is no such existing interactive system available for comparison. Moreover, the
difficult thing in evaluating our experimental results for interactivity is that there is no
suitable ground truthwhich can satisfy all of user spatial and temporal queries. Because
an user can examine in different locations: top left, right bottom, or middle region,
and with different window sizes and time interval. For that reason, the quantitative
evaluation of our abnormality detection approach can be referred to Sect. 5.1.

This system is programmed in C# and Matlab. The experiment is running on a PC
Intel Core i7 3.4 GHz, with 8GB RAM. A query system takes approximately less than
0.2 s, as the motion feature extraction step was preprocessed. As mentioned, the rare
patterns are understood as human perception, so we select roughly p = 10% for the
number of rare events that the user can slide the bar to alter the number of rare events
following their interests.

6 Conclusion

Identifying meaningfully anomalous events in video surveillance is essential to secu-
rity management. In this paper, we address the problem of abnormality detection in
video surveillance data using Bayesian nonparametric methods. We propose a frame-
work for nonparametric data segmentation and multi-modal abnormality detection.
By building multiple abnormality detection models on different coherent sections of
the stream data, our proposed framework is more robust for abnormality detection
in large-scale video data. Especially, when the video cameras are monitored across
many days and exhibit strong variations in the data. Our experiments on a collection of
video data over 14 days have demonstrated the superior performance of the proposed
multi-modal anomaly detector compared to uni-model detectors.

In addition, we have addressed the problem of interactive monitoring in video sur-
veillance, allowing users to examine rare events. They are detected in an unsupervised
manner and can be filtered out interactively. We establish the browsing paradigm with
spatial and temporal–spatial treatments to overcome the limitation of pure computa-
tional processing.

The main contributions in this paper are (1) proposing to use the Infinite Hidden
Markov Model for stream data segmentation, and (2) introducing a user interface,
using Rank-1 Robust PCA for feature extraction and Bayesian Nonparametric Factor
Analysis for pattern discovery, allowing users to inspect and browse suspiciously
abnormal events.
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