
HAL Id: hal-01308973
https://hal.archives-ouvertes.fr/hal-01308973

Submitted on 28 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SMART: Secure Multi-pAths Routing for wireless
sensor neTworks

Noureddine Lasla, Abdelouahid Derhab, Abdelraouf Ouadjaout, Miloud
Bagaa, Yacine Challal

To cite this version:
Noureddine Lasla, Abdelouahid Derhab, Abdelraouf Ouadjaout, Miloud Bagaa, Yacine Challal.
SMART: Secure Multi-pAths Routing for wireless sensor neTworks. 13th International Confer-
ence, ADHOC-NOW, Jun 2014, Benidorm, Spain. pp.332-345, �10.1007/978-3-319-07425-2_25�. �hal-
01308973�

https://hal.archives-ouvertes.fr/hal-01308973
https://hal.archives-ouvertes.fr

SMART: Secure Multi-pAths Routing for
wireless sensor neTworks

Noureddine Lasla1, Abdelouahid Derhab2, Abdelraouf Ouadjaout1, Miloud
Bagaa1, and Yacine Challal3

1 Department of Theories and Computer Engineering, CERIST, Algiers, Algeria
2 Center of Excellence in Information Assurance (CoEIA), King Saud University,

Riyadh, Saudi Arabia
3 Laboratoire de Méthodes de Conception des Systèmes (LMCS), Ecole nationale

Supérieure d’Informatique, Algiers, Algeria

Abstract. In this paper, we propose a novel secure routing protocol
named Secure Multi-pAths Routing for wireless sensor neTworks (SMART)
as well as its underlying key management scheme named Extended Two-
hop Keys Establishment (ETKE). The proposed framework keeps con-
sistent routing topology by protecting the hop count information from
being forged. It also ensures a fast detection of inconsistent routing in-
formation without referring to the sink node. We analyze the security
of the proposed scheme as well as its resilience probability against the
forged hop count attack. We have demonstrated through simulations that
SMART outperforms a comparative solution in literature, i.e., SeRINS,
in terms of energy consumption.

1 Introduction

Wireless sensor networks (WSNs) [1] are defined as a large collection of tiny sen-
sor nodes, which have scarce resources regarding energy, bandwidth, processing
capacity and storage. Such networks are designed to gather data in inhospitable
places and might be involved in critical applications meant for civil and military
use. The main task of a wireless sensor network is to collect/aggregate data from
the sensor nodes and transmit them towards the sink node using a hop-by-hop
communication. In these critical applications, establishing a reliable path free of
compromised nodes is an important security concern.

The single-path routing is not resilient to attacks as it is sufficient to com-
promise one node along the path to cause path failure. To deal with this failure,
a path maintenance process is initiated to find a new path, which is costly in
terms of time, control overhead, and energy consumption. The use of multi-
path routing can be a good solution against attacks that target the reliability of
the network. As data are transmitted redundantly through multiple paths, the
packets are likely to reach the sink even in the presence of some compromised
nodes.

The attacks against wireless sensor networks can be either insider or outsider
according to whether or not the adversary retrieves the information stored in

the sensor nodes. Using cryptography mechanism, the outsider attacks can be
avoided as there is no way for an attacker to inject or read information from the
network. The insider attack, however, is more powerful as by compromising a set
of sensor nodes, an adversary can get access to the security materials of these
nodes, change their running codes, and inject false information. For example,
in routing construction protocols, an adversary can succeed at launching the
Sinkhole attack by simply injecting a faked shortest path RREQ message using
the cryptographic materials of the compromised nodes.

To construct the routing topology, different metrics are employed. Among
them, we can find the hop count, sequence number, path identifier, etc. The hop
count for example is used to select the shortest path leading to the sink and avoid
routing loops, where each node should increment it by one before relaying it to its
next hop. However, these metrics are mutable information, meaning that every
node could manipulate it during the relay. In a security context, this mutable
information is attractive for adversaries who want to compromise the network
and can be exploited by many attacks like the sinkhole and the wormhole attacks.
Using only cryptography techniques to ensure the integrity of route construction
information (hop count, sequence number, etc.) is not sufficient especially when
the adversary compromise a set of nodes in the network, as mentioned earlier.
For these reasons, detecting compromised nodes is an important security concern
that should be considered when designing a secure communication protocol.

In the literature, some solutions [2–5] have been designed to build a reliable
routing topology. Authors in [5] propose a protocol to secure tree construction,
based on braodcast key to authenticate neighboring nodes. However, although
this protocol is resilient to node replication attack, the protocol cannot protect
the transmitted routing information from being altered or forged when an ad-
versary compromise a node. SEIF [3] allows the construction of more alternative
disjoint paths belonging to different sub-branches. Each path from different sub-
branches can be only intersected at nodes that are at one hop from the sink,
and each sub-branch is tagged with a unique identifier that guarantees the con-
struction of such topology. Furthermore, to ensure the security of the sub-branch
identifiers, authors use a set of one-way hash chains to authenticate messages
from the sink and the sub-branches origin. Therefore, any attempt of injecting
faked sub-branch identifier can be immediately detected even if the adversary
make an inside attack. However, SEIF cannot detect a Wormhole attack, when
an adversary captures a valid hash chain of sub-branches from one end and re-
play them at the other end [6]. In addition, SEIF does not consider any metric
to carry out the routing decision.
SeRINS [2] is a semi-distributed solution based on the hop count metric to select
routes. This protocol provides a mechanism to protect the hop count information
at the sensor node level with the help of the sink. Each sensor, first, chooses its
first parent that will be used as a reference to verify the correctness of any re-
ceived alternate route. After that, when a node suspects on one alternate route,
it sends an alert to the sink, which makes a decision about whether the suspected
or the alert sender node is malicious. However, involving the sink in the verifi-

cation process of suspected nodes, causes considerable communication overhead
and affects negatively the network scalability.

In this paper we propose a novel multi-path routing protocol called Secure
Multi-pAths Routing for wireless sensor neTworks (SMART), relying on a ex-
tended version of our previous key management scheme EPKE [7], we call it
Extended Two-hop Keys Establishment (ETKE). The main contributions of the
paper are the following: Firstly, the establishment of two-hop broadcast keys en-
ables the authentication of two-hop neighbors, which allows applying the watch-
dog mechanism to check the well-behaving of one-hop neighbors during the relay
of RREQ messages. Secondly, we show that if two consecutive nodes along the
path are not compromised, SMART ensures an immediate detection of incon-
sistent routing information without referring to the sink, using a two-hop veri-
fication mechanism. Thirdly, if the two consecutive nodes are compromised, an
analysis of detection evasion is provided.

The remaining of this paper is organized as follows: Section 2 provides system
model and basic idea. In Section 3, description of ETKE is presented. Section 4
describes SMART. Security analysis and simulation results are given in Section
5. Finally, Section 6 concludes the paper.

2 System model and basic idea

2.1 Attack model

We consider the node capture attack, in which an attacker can capture a legit-
imate node and turn it into a malicious one by extracting cryptographic keys
from the captured node and makes it run a malicious code. The compromised
node then broadcasts a fake RREQ with false hop count in order to attract the
traffic that is destined to the sink. This mechanism is used by some attacks such
as : Sinkhole and Wormhole.

2.2 Basic idea

In the tree-based construction process, each node forwards a RREQ message
initiated by the sink node. The RREQ message contains a mutable information
(hop count) that should be incremented by one at each relay level. To secure the
routing topology construction, we should ensure a correct alteration of the hop
count value during the relay.
The idea behind our solution is to provide a secret that is shared between each
node and its two-hop neighbors. This secret is unknown for the one-hop neighbors
and allow to verify their behaviour during the relay by the two-hop neighbors.

For instance, let us consider the network in Fig. 1(a), where the dashed lines
represent the communication links between neighboring nodes and the solid lines
represent the selected routing paths. The number besides each node represents
the hop count information relayed by that node. In Fig. 1(b), if c (the child node
of parent p) is a compromised node, without any security mechanism, it can

p4

b5

c5

a5

d6

f7

e6

g7

(a)

p3

b3

c2

a3

d3

f4

e3

g4

(b)

X X

p4

b5

c2

a5

d7

f8

e7

g8

(c)

Fig. 1. The two-hop verification mechanism used in SMART

forge inconsistent hop count with value 2, in order to make most of the network
traffic pass through it without being detected. Our idea, as shown in Fig. 1(c),
is to share a secret (virtual tunnel) between node p and its two-hop neighbors
d and e. This secret is used by node p to generate a proof (encryption of the
current hop count vlaue). This proof is forwarded by node c without being able
to decrypt it, and allows node d and e to verify if c has correctly incremented
the hop count value received by its parent p. Note that each node, during the
relay, (i) forwards the received proof to verify its correct relay of the received
RREQ and also (ii) generates its own proof to ensure that the next forwarder
node correctly relays its RREQ message.

In the next section, we give a detail description of how nodes in the network
share a secret keys with their one-hop and two-hop neighbors, allowing then to
check the correct relay of the RREQ messages.

2.3 Notations

The following notations in Table 1 are used throughout the paper.

Table 1. Notations

Notation Description

E(K, m) Encryption of m using key K
A→ B : m A sends m to B
A→ ∗ : m A broadcasts m
KA,B Secret pairwise key between A and B
BKA Broadcast key of A
|| Concatenation operator

3 ETKE description

In this section we describe how to establish the required key materials between
communicating nodes to secure the tree-based routing construction in SMART.
ETKE extends EPKE [7] by adding the two-hop pairwise key and the two-hop
broadcast key. Mainly, the required keys are the two-hop and one-hop broadcast
keys, shared between each node and its one-hop and two neighbors, respectively.

To achieve key agreement between communicated nodes, the pre-distribution
method is more suitable for WSN [8]. In this method, nodes are preloaded, prior
to deployment, with secret information that will be used to establish secure links
between neighboring nodes. In this section, we propose a solution to establish
the one hop pair-wise key, one hop broadcast key, two hops pair-wise key and two
hops broadcast key, based on the Transitory Initial Key setup scheme of LEAP
[9] and OTMK [10]. The transitory initial key KIN is used to establish keys
between neighboring nodes during a key setup phase (trust period). To secure
nodes against capture attacks, the KIN is erased from the node’s memory at the
end of the trust period. The trust period represents the minimum time (Tmin)
needed by an adversary to compromise a legitimate node.

3.1 Key setup phase

Each node u is preloaded with a transitory initial key KIN and a random number
Nu. Node u compute its master key MKu as follows: MKu = G(KIN , IDu),
where G is a pseudo random function. After Tmin, each node u erases KIN

and Nu from its memory. Node u discovers its neighbors by broadcasting the
following message

u→ ∗ : Join1, u, E(KIN , u||Nu) (1)

When u’s neighbors receive this message, they relay it to u’s two-hop neigh-
borhood as follows

Relay node→ ∗ : Join2, u, E(KIN , u||Nu) (2)

Depending on the state of node u’s neighbors, i.e., still keeping the initial key
KIN or already erased it, we distinguish two cases to establish one-hop pair-wise
key, two-hop pair-wise key, one-hop broadcast key and two-hop broadcast key.

3.2 Case 1: KIN is available

Creation of one-hop pair-wise key: To create the symmetric one-hop key
Ku,v between two direct neighbor nodes u and v, after they receive message (1)
from each other, the following formula is used:

Ku,v = G(MKmin(u,v), IDmax(u,v)||Nmax(u,v))
Note that u and v can compute MKmin(u,v) because each one knows KIN

and can generate the master key of any other node.

Creation of two-hop pair-wise key: When two-hop neighbor nodes u and
v receive message (2) from their relay nodes, the following formula is used to
create the symmetric key between them:

Ku,v = G(MKmin(u,v), IDmax(u,v)||Nmax(u,v))

Creation of one-hop broadcast key: Each node u creates one-hop broadcast
key, which it shares with its direct neighbors. This key is not used to authenticate
the node but to encrypt the message content. When node u’s neighbor receives
message (1), it uses KIN to generate u’s master key MKu, and computes u’s
one-hop broadcast key as the following:

BKu = G(MKu, Nu)

Creation of two-hop broadcast key: After the reception of message (2),
each u’s two-hop neighbor node uses KIN to compute u’s master key MKu, and
computes u’s two-hop broadcast key as follow:

BK2u = G(MKu, Nu||Nu)

3.3 Case 2: KIN is not available

After Tmin, each node v erases the transitory initial key KIN , and will not be
able to generate other master keys. It can only use its master key to calculate a
symmetric key with a new deployed node u (since u can generate any master key).
So, the following messages must be generated in order to establish a par-wise
key between them: If node v is a direct neighbor of node u, then, the following
message, Reply1, is sent to u:

v → u : Reply1, v, E(MKv, v||Nv) (3)

Otherwise, the following two messages Reply2 and Reply3 are sent to relay
nodes and to node u respectively.

v → Relay node : Reply2, v, E(MKv, v||Nv) (4)

Relay node→ u : Reply3, v, E(MKv, v||Nv) (5)

Creation of one-hop pair-wise key: The one-hop pair-wise key Ku,v between
two direct neighbor nodes u and v is computed using the following formula:

Ku,v = G(MKv, IDu||Nv)

Creation of two-hop pair-wise key: To calculate a two-hop pair-wise key
Ku,v between two-hop neighbor nodes u and v, the following formula is used:

Ku,v = G(MKv, IDu||Nv)

Creation of one-hop broadcast key: Because u’s neighbor (i.e., node v) has
erased the transitory initial key KIN , it cannot calculate the one-hop broadcast
key BKu of node u using the previous formula. The only way to do so is that
u sends BKu via a unicast encrypted packet using the shared one-hop pair-wise
key with node v.

u→ v : u,E(Ku,v, u||BKu). This message is sent by node u when it receives
Reply1 from node v.

Creation of two-hop broadcast key: The only way for v to get the two-
hop broadcast key BK2u of node u, is that u sends the BK2u via a unicast
encrypted packet using the shared two-hop pair-wise key with node v.

u→ v : u,E(Ku,v, u||BK2u). This message is sent by node u when it receives
Reply3 from node v.

3.4 Special case

When node v is newly deployed in the network, it can be inserted between two
nodes i and j that was not neighbors and become two-hop neighbors through
node v. In this case, node i and j should exchange the two-hop broadcast keys of
each other. The only way to do so is to transmit the two-hop broadcast through
node v during the trust period, using their master key, as follow.

i→ v : Join4, i, E(MKi, i||BK2i) (6)

j → v : Join4, j, E(MKj , j||BK2j) (7)

Node v then forwards Join4 to i and j using their master keys to ensure that
node v is a trust node as only node that has not yet erased its initial key, can
generate the master keys of other nodes. The following Join5 message is then
sent to j and j.

v → j : Join5, v, E(MKj , v, i||BK2i) (8)

v → i : Join5, v, E(MKi, v, j||BK2j) (9)

4 SMART description

4.1 Initialization

Global One-way Hash Chain (GOHC): Prior the deployment, a GOHC
is generated (S0, S1, S2, · · · , Sn) and stored in the sink node. Each sensor node
is preloaded with the last value (Sn) of the GOHC. After the deployment, the
sink node, at each round d, includes the last unused GOHC Value (Sn−d) in the
RREQ message. Each node that receives RREQ of round d (d = 1, · · · , n − 1)
can check if RREQ is generated by the sink or not. This is achieved by applying
the one-way hash function on the received value Sn−d and verifying whether the
result is equal to the pre-loaded GHOC value Sn−(d−1); F (Sn−d) = Sn−(d−1).

Local One-way Hash chain (LOHC): To allow a one hop authentication of
the broadcasted RREQ message, each node i generates a LOHC (L0

i , L
1
i , L

2
i , · · · , Ln

i)
and reveals the last LOHC value (Ln

i) to its reachable neighbors using its one-
hop broadcast key to encrypt it Ln

i . At round d (d = 1, · · · , n−1), each node can
check if RREQ is generated by its one-hop neighbor by applying the function
F on the received value Ln−d

i and verifying whether the result is equal to the
pre-loaded LOHC value Ln−(d−1)

i ; F (Ln−d
i) = L

n−(d−1)
i .

4.2 Route construction process

Route construction initialisation: To start the route construction process,
the sink node broadcasts the below RREQ packet, which includes the following
fields as shown in Table 2

Sink → ∗ : IDsink, Seq = Sn−d, OWC = Ld
sink,

h = 0, MAC2sink, ∅, ∅ (10)

Table 2. RREQ message Fields

Field Description

IDSrc Packet sender identifier
Seq The first unused GOHC value
OWC First unused One Way Chain value of a LOHC

to authenticate the source
h Hop count value
MAC2src MAC(BK2src, h); the MAC of the hop count value,

generated with the two-hop broadcast key
IDP arent Primary (or main) parent identifier
MAC2parent The MAC received from the primary parent, generated

with the parent’s two-hop broadcast key

Primary parent selection: When a node i receives the first RREQ message,
which indicates a new round d from a node j, it waits for a random time then
it selects the primary parent node with the lowest hop count h′ and relays the
RREQ message as follows:

i→ ∗ : IDi, Seq = Sd, OWC = Ld
i , h = h′ + 1,

MAC2i, IDparent, MAC2parent (11)

After relaying the RREQ message, node i might keep receiving RREQ mes-
sages from other neighbors.

Alternative parent selection: When node i with a hop count h receives a
RREQ message from node j with a hop count h′, the following conditions must
hold true so that j is accepted as an alternative parent:

– h′ ≤ h, in order to avoid routing loops.
– The grand parent of the received route must not exist as a grand parent or a

parent of an already selected accepted route, in the routing table, except the
case when the grand parent is the Sink. The accepted routes from different
grand parent nodes guarantee that all paths are two-hop disjoint.

For each accepted RREQ message, node i adds a new entry in the rout-
ing table, which contains the following information: <Parent-id, Hop-count,
Grand Parent-id>.

5 Analysis of SMART protocol

5.1 Security mechanisms

In SMART, the RREQ message encapsulates three security mechanisms that
ensure sink authentication, source authentication and hop count integrity.

– The Seq field, containing the first unused GOHC, allows sensor nodes to
verify that the RREQ message is initiated by the sink node and is not a
re-injection of an old RREQ message of a previous round.

– To forbid an intruder from spoofing source identities, each node i, when
receiving a RREQ from node j, can authenticates the message source by
checking if the stored L

n−(d−1)
j is equal to the hash value of the received

OWC, F (Ln−d
j).

– The integrity control of the hop count is ensured through theMAC2Grand parent

field. This MAC ensures that the received hop count value is a successor of
the hop count of the grand parent. By this way, an adversary which tries to
send a RREQ with lower hop count to perform a Sinkhole attack, is then
prevented.

5.2 Forged Hop count detection

For an intruder to inject forged routing information, he should first get the cryp-
tographic key materials by compromising some nodes in the network. However,
even by compromising some set of nodes, our scheme can detect, in most of
cases, the injection attempt of faked RREQ messages. In the following we give
three possible cases of attack scenarios by an intruder and show how SMART
can protect the routing construction by detecting these attacks.

1. When a compromised node c wants to inject forged routing information, it
relay a RREQ of its parent p with forged hop count h′ instead of h (see Fig.
1(b)). In this case, any node receiving or overhearing this RREQ can check
that h′ is not a successor of h−1, by simply comparing ifMAC2(BK2p, h

′) =
MAC2p.

2. A more intelligent attack consists in compromising two or more consecutive
nodes along the path simultaneously. The first possible scenario is that nodes
p, and c are compromised and node c try to inject a RREQ with a forged
hop count h′. In this case, node a and b (i.e., any common neighbor of
both c and p) using the watch-dog mechanism (i.e., the watchdog consists in
monitoring the neighboring nodes to check whether the latter are correctly
forwarding the RREQ messages or not), detect that the injected RREQ is
not consistent with the previous received RREQ from node p, and they will
report a detection message to forbid the concerned nodes d and e to relay
this RREQ. The adversary can succeeded at launching such an attack only
if all the common neighbors of p and c are compromised. We will present in
the next section the probability of success of such an attack under different
network densities.

3. In the third possible scenario, both nodes p and c inject a RREQ with a fake
hop count. Node a and b, in this case, cannot detect the inconsistency of the
received RREQ message. However the parent node of p and any common
neighbor between them can detect the forged hop count and then send a
detection message to the concerned nodes to detect and reject this RREQ.

5.3 Resilience probability against forged hop count

The fake RREQ can propagate to the lower levels of the network without being
detected if the following conditions hold true:

1. Two neighboring nodes in the network, the parent and the child in the tree,
are compromised.

2. The child node injects a fake RREQ with false hop count.
3. There are no common legitimate neighbors between the parent and the child

node.

pc pc x
r

A

Fig. 2. The intersection region A that contains the common neighbors of p and c.

The region where the common neigbors of the parent p and child c can reside,
represents the intersection of two circular communication areas with radius r and
centered at p and c . As shown in Fig. 2, The distance x, between the two nodes

p and c, ranges from 0 to r. The area A of the common region is calculated as
follows:

A(x) = 2r2cos−1(
x

2r
)− x

√
r2 − x2

4
(1)

The expected area of A, as shown in [11], is calculated as follow:

E[A] =
∫ r

x=0

A(x)f(x)dx (2)

The probability distribution function of x, when node p and c are uniformly
distributed in the deployment area, is as follow:

F (x) = P (distance < x) =
πx2

πr2
=
x2

r2
(3)

Then, the probability density function of x is given by:

f(x) = F ′(x) =
2x
r2

(4)

Then:

E[A] =
∫ r

x=0

(
2r2cos−1(

x

2r
)− x

√
r2 − x2

4

)
2x
r2

dx (5)

E[A] =

(
π − 3

√
3

4

)
r2 = 1.84255 r2 (6)

The average number of common neighbors CN , within the region A, is given
by CN = E[A]× d, where d is the network density.

Let Pcomp be the probability of compromising a node, and we define Pattack

as the probability that an attacker forges a fake RREQ without being detected.
The adversary needs to compromise all the common neighbors in A tu succeed
at launching its attack, then:

Pattack = (Pcomp)CN (7)

As depicted in Fig. 3, our protocol is effective when the network density
increases. The probability for an attacker to succeed at launching a forged hop
count is low, especially when the compromising probability is low. For example,
for an average network density of 5, the probability of successful attack does not
exceed 0.15, even if the compromising probability is hight (0.8).

5.4 Wormhole immunity

A wormhole attack occurs when a malicious node forwards incoming packets to
a distant point of the network by means of a fast link longer than a normal
node’s range. Wormhole attacks can cause severe damage to hop-count-based
routing protocols, since the attacker can present to distant nodes an attractive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 15 20
P

ro
ba

bi
lit

y
of

su
cc

es
sf

ul
at

ta
ck

Network density

Pcom = 0.2
Pcom = 0.6
Pcom = 0.8

Fig. 3. The probability of successful hop count forgery attack.

a

b

x1 x2

c

d

Region 1 Region 2

Wormhole

Fig. 4. Defense against a wormhole attack.

path, which other uninfected paths cannot compete. If such a scenario occurs,
the attacker will be advantageous compared to other nodes as a large amount of
packets will pass through him.

These attacks are challenging because attackers may relay the packets with-
out any malicious modification. Existing secure routing protocols for WSN, such
as SeRINS and SEIF, are vulnerable to wormholes. In contrast, SMART can
in some cases defeat this attack thanks to its two-hop key distribution scheme.
Basically, this is due to the fact that these keys represent locality proofs that can
be used to detect false neighborhood links introduced by a wormhole.

To clarify how these locality proofs can be used to detect wormholes, let us
consider the example in Fig. 4. Attacker x1 tunnels its RREQ messages to x2.
To propagate this message, the attackers must ensure that nodes at different
endpoints of the tunnel share two-hops broadcast keys to make the wormhole
looks like a normal single hop. Here, we can distinguish two cases:

1. If the nodes were deployed before the compromise of x1 and x2, we can show
that such keys cannot be established. Indeed, only a node with KIN can

create an authentic two-hop link between already deployed nodes. There-
fore, when x1 and x2 become compromised, they are necessary unaware of
KIN and thus the keys between nodes in Regions 1 and 2 cannot be estab-
lished through the tunnel. Consequently, exisitng keys will play the role of
locality proofs to detect the far distance between Region 1 and 2, and hence
preventing the tunnel to be viewed as a normal single hop.

2. If a node is newly deployed in the vicinity of the attackers, keys between
nodes in different tunnel regions can be maliciously created. For example,
suppose that node b is deployed after wormhole creation. Attacker x1 can
tunnel the key exchange messages of b to Region 2. Therefore, nodes at
this endpoint will consider b as a two-hop neighbor through the wormhole
link. The attackers can therefore relay consistent RREQ to connect the two
regions and without being detected.

5.5 Energy consumption

In this section, we evaluate the performance of SMART and compare it to
SeRINS as both aim to secure the hop count information. Also, in a survey
about secure multi-path routing in WSNs [6], SeRINS is the only one so far,
which ensures the following security properties: authentication, integrity, confi-
dentiality, freshness, and accountability. It is easy to show that these security
properties are also ensured by SMART. Both protocols SMART and SeRINs
have been implemented in TinyOS. To evaluate energy consumption, we have
used Avrora [12] that emulates and analyzes programs written for AVR micro-
controller, which is produced by Atmel and used in MICAz sensor mote.

The energy consumption determines the network lifetime and must be con-
sidered when designing protocols for WSNs. For this reason, we have measured
the average energy consumption of SeRINS and SMART during one round while
varying the number of intruders in the network, as shown in Fig. 5. In our simu-
lation scenario, the total number of nodes in the network is set to 300 nodes. We
can notice that SMART does not consume an additional energy when increas-
ing the number of intruders in the network. However, the energy consumption in
SeRINS increases as the number of intruders increases. This is due to the number
of alerts sent to the sink for each intruder and from each intruder’s neighbor.

6 Conclusion

In this paper we have proposed a security framework composed of multi-path
routing protocol (SMART) and two-hop key management scheme (ETKE). The
proposed framework keeps consistent routing topology by protecting the hop
count information from being forged. The two-hop verification and the watch-dog
mechanisms ensure a fast detection of inconsistent routing information without
referring to the Sink node. The security analysis have shown that the probability
of successful attack is very low under medium and high network densities. In ad-
dition, simulation experiments have shown that SMART is more energy-efficient
compared to SeRINS.

1.1816

1.1818

1.182

1.1822

10 20 30 40 50

E
ne

rg
y

co
ns

um
pt

io
n

(
Jo

ul
e)

Number of intruders

SMART
SeRINS

Fig. 5. Energy consumption vs. number of intruders in the network.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38(4) (2002) 393 – 422

2. Lee, S., Choi, Y.: A secure alternate path routing in sensor networks. Computer
Communications 30(1) (2006) 153–165

3. Challal, Y., Ouadjaout, A., Lasla, N., Bagaa, M., Hadjidj, A.: Secure and effi-
cient disjoint multipath construction for fault tolerant routing in wireless sensor
networks. Journal of Network and Computer Applications 34(4) (2011) 1380–1397

4. Ghosal, A., Halder, S.: Intrusion detection in wireless sensor networks: Issues,
challenges and approaches. In: Wireless Networks and Security. Signals and Com-
munication Technology. (2013) 329–367

5. Dimitriou, T.: Securing communication trees in sensor networks. In: ALGOSEN-
SORS. (2006) 47–58

6. Stavrou, E., Pitsillides, A.: A survey on secure multipath routing protocols in
wsns. Computer Networks 54(13) (2010) 2215 – 2238

7. Bagaa, M., Challal, Y., Ouadjaout, A., Lasla, N., Badache, N.: Efficient data
aggregation with in-network integrity control for wsn. J. Parallel Distrib. Comput.
72(10) (2012) 1157–1170

8. Chen, C.Y., Chao, H.C.: A survey of key distribution in wireless sensor networks.
Security and Communication Networks (2011)

9. Cheng, Y., Agrawal, D.P.: An improved key distribution mechanism for large-scale
hierarchical wireless sensor networks. Ad Hoc Networks 5(1) (2007) 35–48

10. Deng, J., Hartung, C., Han, R., Mishra, S.: A practical study of transitory master
key establishment for wireless sensor networks. In: Proc First IEEE Int’l Conf
Security and Privacy for Emerging Areas in Comm. Networks (SecureComm ’05).
(2005)

11. Hai, T.H., nam Huh, E., Jo, M.: A lightweight intrusion detection framework for
wireless sensor networks. Wireless Communications and Mobile Computing 10(4)
(2010) 559–572

12. Titzer, B., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation with
precise timing. In: Proceedings of the 4th International Symposium on Information
Processing in sensor Networks (IPSN). (2005) 477–482

