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Abstract. We present in this paper a new non-parametric method for
polygonal approximations of digital curves. In classical polygonal approx-
imation algorithms, a starting point is randomly chosen on the curve and
heuristics are used to ensure its effectiveness. We propose to use a new
canonical representation of digital curves where no point is privileged.
We restrict the class of approximation polygons to the class of digital
polygonalizations of the curve. We describe the first algorithm which
computes the polygon with minimal Integral Summed Squared Error in
the class in both linear time and space, which is optimal, independently
of any starting point.

1 Introduction

Polygonal approzimation of digital curves or shapes is an important task in
pattern recognition, digital cartography, data compression... Polygonal models
are still easier to handle than digital curves. The problem is usually defined by
an error criterion and the constraint that the vertices of the polygonal model are
points of the original digital curve. In the present work, we only use the Integral
Summed Squared Error (ISSE) criterion. We refer to the thesis of Marji [Mar(3]
which contains more than 100 algorithms, methods and measures. Polygonal
approximations are closely related to dominant [TC89] and corner [MS04] point
detection. The polygonal approximation problem consists in finding the real
polygon such that the ISSE with the digital curve is minimized. This problem is
ill-posed since the polygon obtained by linking every point of the digital curve
clearly reaches the minimal value of 0. This fact leads to the min —e problem
which corresponds to the minimization of the ISSE for polygons with a fixed
number of edges, or to the non-parametric algorithms where the number of
edges is automatically defined. Two classes of algorithms have been proposed:
graph-theoretical [II88] and optimization (dynamic programming) [PV94]. Best
complexities are O(n? log n) for the former and closed to O(n?) time and O(Mn)
space where M is the fixed number of edges [Sal01l[Sal02] for the latter and n is
the number of points. Beside this, suboptimal methods have also been proposed
[DP73L[RR92,MS04L[KF04]. They have the advantage of having low complexity,
but they lack guarantee for high quality results.
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In almost all previous works, digital curves were considered opened and so
for closed curves an initial starting point was randomly chosen. Heuristics have
been proposed to overcome the problem [PV94,[HL02]. We propose in this paper
a non-parametric approach to the problem by combining graph-theoretic and
optimization approaches in order to solve the initial point problem. The result
is an algorithm which does not depend on any point of the digital curve. Our
algorithm is based on digital lines - partially used by Cornic [Cor97] -, a circular
arc-graph canonical representation of digital curves [Fes05] and efficient error
computation following the ideas in [HLO02]. The resulting algorithm is linear time
and linear space and is thus optimal. Starting with digital lines, we construct
a graph representation. To obtain an efficient algorithm, we restrict the class
of allowed polygonal models to the class of digital polygonalizations. We solve
the polygonal approximation problem using the graph structure. Our strategy
does not suffer from the tendency of the ISSE to favor polygonal model with a
high number of edges since it is known [FT03] that there exists only two lengths
differing by only one for the whole set of polygonalizations of any digital curve.

In Section 2, we present the notion of digital lines and the graph represen-
tation of digital curves known as the tangential cover. The method is presented
in Section 3 and experimental validation in Section 4. Final conclusions and
extensions end the paper.

2 Representation of Closed Digital Curves

A closed digital curve C' is a list of connected points p; = (z;,v;) of Z2. The
allowed connectivities are the standard four and eight connectivities correspond-
ing to the points with L; and respectively L, distance of one of a given point.
Self-intersections are allowed as soon as points are duplicated in the list. For
closed digital shapes, any boundary tracking algorithm produces the required
list and the choice of the point pg is arbitrary. If C' = (p;)y<;.,,, we call n the
length of the curve. The curve is closed if p, = pg. The order given by the usual
order of the indices defines the orientation of the curve. In the paper, left and
right as well as next and previous are defined relatively to the orientation of C'.
Indices are intended modulo n. A polygonal approximation of the curve C' is a
real polygon whose vertices belongs to C. It has the same orientation than the
curve C. The goal of this section is to construct a geometrical representation
suitable for computing polygonal approximations.

2.1 Digital Lines

Our representation has been introduced in [FT99], used in [FT03] and fully
exploited in [Fes05]. It is based on digital lines (we refer to Rosenfeld and Klette
[RK04] for definitions and main properties of digital lines). A digital segment is
a finite connected subset of a digital line. Given a list of points extracted from a
digital curve C, there exist algorithms to incrementally recognize if the list is a
digital segment or not. When the answer is positive, the algorithms output the
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parameters of a digital line containing the digital segment. The points can be
taken both in positive or negative orientation of the curve C'. The complexity
of the recognition is linear in the number of points of the list. Given a subset
of C' which is a digital segment, it is called maximal if and only if it cannot be
extended over C' to another digital segment. Maximality of digital segments can
be checked during their recognition within the same complexity bound.

2.2 Tangential Cover

We now briefly present the construction given in [Fes05]. It is based on the
notion of discrete (or digital) tangent at a point p; of C. A digital tangent is
a subset (pi—i,...,Di,.-.,Pitr) Which is a maximal segment. The construction
is as follows: points are alternatively added to the right and to the left of p;
while the resulting subset is a digital segment. When one side cannot be further
extended, the addition of points are pursued at the other side while the subset
is a digital segment. The resulting set forms the digital tangent of C at p; and
is as symmetric as possible. However, symmetry is not imposed and [ and r are
usually different. Any digital tangent is a maximal digital segment. We denote
by Tj, the digital tangent at p;.

As explained in [Fes05], it often happens that T}, = T}, ,. This property was
exploited in [FT99,[Fes05] to built an efficient algorithm to construct the set of
all digital tangents 7(C) = {Ip,, p; € C}. The set 7(C) is called the tangen-
tial cover of C. The complexity of its construction is proved to be O(n). The
tangential cover has the property that is contains all maximal digital segments
which can be constructed on the curve C with connected subsets.

Each digital tangent can be represented by its left and right ending points
pi—; and p;4, and by the parameters of the associated digital segment. It is
straightforward to see that the series of [ and r are increasing series and that
two consecutive tangents must overlap. Moreover due to the maximality of the
discrete segments, no tangent can be contained in another one. To represent the
tangential cover, we use the concept of circular arc graphs [Sch03|. A digital
tangent can be represented by an interval [i — [,i + r]. We associate to it the
arc between the angles 2(i — I)7/n and 2(i + r)m/n. We obtain a circular arc
graph (see Fig. [I right). We have increased or decreased the radius of each
arc to distinguish between overlapping arcs. It must be said that each point
can be viewed has a radial line from the center of the representation to one
point of the boundary of the central unit circle. All the intersected arcs by this
line correspond to the digital tangents containing the point. The horizontal axis
pointing to the right corresponds to the points (0, 0) of the left image. It is clear
from the previous embedding that the tangential cover is canonical meaning that
the arbitrary starting point does not influence the resulting graph.

We put on the graph the orientation of the curve C. For a tangent T}, , there
exists a finite subset of tangents T}, such that T, and T},  overlap and i is at
the left of j. We construct the function F(.) by mapping T}, to the overlapping
tangent T}, with maximal j intended modulo n, that is following the orientation
of the graph. A digital polygonalization of C' is a succession of digital segments
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Fig. 1. (left) the chromosome shape (middle) maximal digital segments (right) its
tangential cover

covering C, sharing only their ending points - the ending point of a digital
segment is the beginning point of the next segment - and such that all but the
last segment are maximal. This concept is well used in shape description [ZL04)
or shape evolution [LL99]. Polygonalizations can be deduced from the function
F(.) [FTO03],

Property 2.1. For any tangent T in T (C), the digital segment starting at the
right limiting point of T and ending at the right limiting point of F(T) is a
maximal digital segment.

Thus using iterates of the function F(.) and the maximality of any tangent,
it is possible to build any polygonalizations of the curve. For instance on the
chromosome shape of Fig. [l containing 60 points, points from 59 to 13 forms a
maximal digital segment. The maximal segment starting at 59 ends at 13 and
the maximal digital segment starting at 13 ends at 15 and so on.

We now introduce the tangent F*(T') for any tangent T defined as the tangent
such that: F*(T) = F7(T) for some j and there exists a digital tangent in 7 (C)
containing both the ending point of F*(T') and the beginning point of 7. In
other words, F*(T') is the last maximal digital segment of the polygonalization
starting at the beginning point of T.

3 Polygonal Approximations

3.1 Context

The class of allowed polygonal approximations is exactly the class of digital
polygonalizations of the curve C' from any of the starting point of the digital
tangents of the tangential cover 7 (C'). We believe that this class is sufficiently
rich. Moreover all other points of C' appear inside straight parts and do not
appear to be dominant or corner points.

To measure the error between a polygonal approximation and the original
curve C, we use the classical ISSE criterion. We consider two points p; = (24, ;)
and p; = (z;,y,) of C. We introduce a = y; —y;, b = z; —z; and ¢ = x;y; — y;x;



914 F. Feschet

such that all points (x,y) of the real line passing through p; and p; satisfies
ax — by + ¢ = 0. Each point py of C' with ¢ < k < j are projected onto this line
using perpendicular projection and the resulting distance d;;(py) is dfj (pr) =
(azg — byx + ¢)* / (a® +b%). The ISSE value between p; and p; is ISSE(p; —
i) =Dk d?j (pr) such that

(a® + b?) ISE(p; — pj) =a* Y af + b2y yi+c2 Y 1
k k k
+ QGCZJSk — 2602:1/;C — QGbekyk
k k k

If the sums of eq. ([Il) can be computed in linear time then so is the ISE criterion.
The ISSE of a complete polygonal approximation is defined as the sum of the
ISE for each segment of the real polygon.

(1)

3.2 Method

To compute a polygonal approximation of C, we start by computing the tan-
gential cover 7(C). We call P(C) the class of all allowed polygonal approxi-
mations. Our goal is to compute the element P of P(C) such that ISSE(P) =

min{ISSE(Q), Q € P(C)}.

Fig. 2. (left) The iterates of F(.) (right) cycles and paths for the chromosome shape

The first step of the algorithm consists in computing the function F(.) (the
algorithm is described in the next subsection). Having the function F(.), we now
consider a polygonalization, depicted in Fig. 2 (left). To compute the ISE value
of a polygonalization, we must compute two partial ISE values: the first one is
the ISE of each tangent and the second one is the ISE between a tangent 7" and
the tangent F'(T'). Those two computations are done in the second step of the
method. Note that in fact we compute the six sums of equation ().

The third step the method is a decomposition of the graph of the tangential
cover into cycles and paths. To introduce those notions, let us fix an initial
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tangent for instance Ty = T,,. If we consider the tangents T} = F’(Tp), then
the list is obviously finite. Hence, there exists a minimal iterates jo such that
Fiot1(Ty) = F*(Tp) with k < jo+1. The set of tangents from Tp until T}, forms
a cycle in the graph. Let us consider now a tangent 7" not belonging to the
previous cycle. Then either the iterates F7(T") create a new cycle or they merge
with a previously computed cycle and the portion of the graph from T” to the
cycle is a path in the graph. For each path, we compute the label of the cycle it
merges with. Those information are stored in each tangent. For the chromosome
shape (see Fig. [ right), there exists only one cycle, depicted in dotted lines,
and paths merging to this cycle. The merging process implies that the end of
the polygonalization starting at one tangent in a path must end with a tangent
of the cycle. So, the function F*() is defined on a cycle and also concerns all
tangents belonging to paths merging with the cycle.

Hence the fourth step consists in computing the F*() values. To do this, we
rely on the merging labels previously computed. We first pick a tangent in a
cycle and compute its F*() value using iterates of F(). Then, we move along the
tangential cover graph and update F*() simply by checking if there still exists
one tangent overlapping the current tested tangent and the current F*() tangent.
So in one pass of the tangential cover graph, to each tangent is associated an
F*() tangent.

To complete the computation of ISSE; we must end each polygonalization by
the portion of the digital segment linking each tangent 7" and F*(T"). This is the
fifth step of the algorithm.How to do all steps in linear time is explained in next
subsection.

3.3 Intermediate Constructions and Complexity

In first step, we compute F(). We start with 7' = T},,. By moving to the right,
we determine F'(T') simply by checking the overlappings. This step obviously can
be done in linear time with one complete turn over the tangential cover graph.

pop DT 6 o
E(])R 5— 9 push & X
(DR 5 o push&X
@R (HR > o X &push
(2)R o o push& z

Fig. 3. ISE computation of each tangent

The computation process of the ISE from the beginning point of a tangent
to its ending point is given in Fig. Bl T is the tangent being computed and R
is a moving tangent. The numbers in parentheses mark which R are associated
to which T'. We use a FIFO (First-In First-Out) list. The sum symbol means
summation in a global counter. The algorithm proceed by summing from the
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beginning of T to the beginning of R (excluded) and push each portion in the
list. When R reaches the next tangent of F/(T'), the accumulation buffer contains
the value of the six sums of the ISE computation. Then, we do not push since
the computation is only partial at this step but we move T" and pop from the
list. The pop values are subtracted to the accumulation buffer. The process goes
on but summation and push are inverted to push a complete part in the list. By
moving all along the tangential cover graph, all partial ISE are computed, since
we use the same strategy for the link between T and F(T). The complexity is
O(#7T(C)) where # denotes cardinal.

To compute cycles and paths, the algorithm works in two steps. First, we
initialize the cycle mark to 1 and mark T}, with it. We also mark F(T,,). We
now consider 7" to be the next tangent of 7}, . If it is not marked, we increase the
cycle mark by one, mark T" and F(T') with the mark. If it is already marked, we
propagate its mark to F'(T') if this last one is not already marked. At each tangent
when a merging is detected, we store it in a lookup table. After a complete
turn over the tangential cover, each tangent has a mark and all merging have
been stored in the lookup table. However, it might happen that a path merges
with another path before merging with a cycle. Hence, the lookup table must be
modified in order to have a cycle mark for each path. For instance, let us consider
the following lookup table [1,1,3,3,2,4,4] which means that path 7 (cell with
index 7 in the array) merges with path 4 and path 4 with cycle 3. The two cycles
are 1 and 3 since the numbers in these cells correspond to the indices of the
cells. We start with path 7 and move in the lookup table until we reach a cycle
then we mark each element with the mark of the cycle. We then proceed with
another unmodified element in decreasing order. In one pass, we get the correct
lookup table [1,1,3,3,1,3,3]. Then each time we consider a mark, we access to
the lookup table to get the merging cycle. So step 3 is also done in linear time.

To compute the F*() values, we first consider T,, and find F*(T,,) and
store it in a lookup table. We then consider the tangent 7" next to 7}, in the
tangential cover. If it does not have a F*() tangent, we look in the lookup table
if an F*() has already been computed for its cycle. If not, we compute it and
store in the lookup table. If there exists a previously computed F*(), we move
it to find F*(T) and store it in the lookup table. After, one complete turn over
the tangential cover, every tangent T has an F*(T') tangent. The complexity is
O(HT(C)).

The last step of the algorithm is similar to the previous one. But summation
must be done to complete the computation of the ISE of each polygonalization.

o—m o F¥M=F*)
CG——© S
o o T=F¥V)
o— o U(=newYS)
o—o V

Fig. 4. ISE computation for the end of the polygonalizations
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The process is depicted in Fig. @l We suppose that T and F*(T) have been
computed. To end the computation of the ISE measure, we sum the portion of
the curve in grey level and store it in 7. When going to the next tangent U,
we discover that F*(U) = F*(T) since S also covered U. Hence, we accumulate
the summation in the buffer and store it in U. Next tangent is V' which has a
different F*(). So we set the buffer to zero and do the summation. In one turn of
the tangential cover using the lookup table for the currently computed F*(), we
can complete the computation of the ISSE measure for each polygonalization.
To see that the whole complexity is O(n), we must ensure that the number of
time a point is computed is independant of n. This fact can be deduce from the
following remark: when F*() change this means that the new S, equals to U in
Fig. @ must be strictly at the right of .S such that when the buffer is set to zero,
the new accumulation covers points not accumulated before. Hence, we obtain
a linear time complexity.
The following theorem summarizes the previous complexity analysis.

Theorem 3.1. The computation of the digital polygonalization starting at a
beginning point of a digital tangent and with minimal ISSE can be done in O(n)
time and space complezity for any closed digital curve C of length n.

4 Experiments

Experiments were performed on different shapes part of which is given on Fig.
The first three are taken from [T'C89] and the last two from [MS04]. Results are
given in Table[Il Several facts appear. First, the method performs well since the
numbers of detected vertices are not too high and the ISSE values are relatively
small. Second, the quality of the results of our strategy is very stable. Its non-
parametric nature must be kept in mind when comparing the results with other
methods. Moreover, the complexity of our method is linear time and space. Our
method also controls the L, error measure since it is based on digital segments.
When using eight connected digital segments, we can guarantee that the L.
error is strictly below 1. But, thickness of digital lines might be increased. For
instance, for the Bird shape, the use of four-connected digital lines leads to a
solution in 20 vertices with an ISSE of 65.50. If we used the concept of blurred
segments [DREFR05] which forms a fuzzy-like extension of digital segments, when
modifying the blurness of digital segments we can reach a solution in only 19

W OWRY

Fig. 5. Different shapes used for experimentation
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Table 1. Results of experiments

Shapes  Methods ISSE # vertices|| Shapes Methods ISSE # vertices
Chromosome Optimal 5.82 12 Semicircle Optimal 14.40 15
Optimal 3.13 17 Optimal 2.64 30
[Cord7] 957 12 [Cord7] 13.00 22
[TCRY 7.2 15 [TCRY] 20.61 22
[RR92] 4.81 18 [RR92] 11.5 27
[SRS03] 853 17 [SRS03] 7.29 30
New  5.90 14 New 14.59 21
Leaf Optimal 22.42 17 Bird [MS04] 72.92 15
Optimal 6.80 28 New 34.93 36
[Cor97] 25.80 23 Cock [MS04] 39.96 24
[TC89] 14.96 29 New 25.53 39
[RR92] 14.18 32
[SRS03] 59.92 32
New 13.77 25

vertices with an ISSE of 54.70. Our algorithm applies without any modifications
since it is only based on the graph structure. Moreover, another extension can be
used to also increase the quality of our method by allowing any polygonalizations
of C'. We currently cannot proved that our method remains linear time but
experiments show computing times coherent with a linear time complexity.

5 Conclusions

We have proposed a new non-parametric algorithm for polygonal approximation
of digital curves. It is based on digital lines and a canonical graph representation.
By restricting the polygonal models to the digital polygonalizations starting at
beginning points of digital tangents, our algorithm finds the polygonal model
with the minimal ISSE value. The algorithm is linear in time and space com-
plexity. A work is in progress to extend our representation to thick digital lines
in order to increase the size of the class of polygonal models. We believe that we
will nearly always find the global optimal polygonal model in linear time.
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