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Abstract. We explore a new approach for computing the diameter of n points in R3 that
is based on the restriction of the furthest-point Voronoi diagram to the convex hull. We
show that the restricted Voronoi diagram has linear complexity. We present a deterministic
algorithm with O(n log2 n) running time. The algorithm is quite simple and is a good
candidate to be implemented in practice. Using our approach the chromatic diameter and
all-furthest neighbors in R3 can be found in the same running time.

1. Introduction

We address the well-known diameter problem:

The Diameter Problem. Let S be a set of n points in d-dimensional space. Compute
the diameter of S, defined as the maximum distance between two points of S.

Let diam(S) denote the diameter of set S. In this paper we consider the diameter
problem in R3 . This problem was solved by Clarkson and Shor [12] by a randomized
algorithm with optimal expected running time 0 (n log n) . The diameter can be determin-
istically computed in 0(n2) time by brute force, by simply comparing all the distances.
Yao [30] solved this problem in 0((nlogn) 1 . 8) time (in higher dimensions d > 4 he
obtained O(n2-° (d) logy-° (d) n) time, where a(d) = 2-(

d+l ) ).

By computing a structure that allows point location in the (implicitly represented)
furthest-point Voronoi diagram of S, it is possible to achieve running time O(n413+E)

[20].
The further results in [3], [8], [11], [21], and [25] are based on the same approach.

Clarkson and Shor [12] first transformed the three-dimensional diameter problem to the
following problem.
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The Ball Problem. Given n unit-balls and n points in R3 , determine whether any point
lies outside the common intersection of the balls.

The diameter of a set S is the smallest r such that the intersection of the balls of
radius r centered at the points of S contains S. The algorithms of [11], [21], and [8] use
Megiddo's parametric search technique [22]. For a specific value r, an oracle 0 decides
whether r < diam(S), r = diam(S) or r > diam(S) using an algorithm for the ball
problem.

Chazelle et al. [11] obtained a deterministic O(n l +e) algorithm, where s > 0 is an
arbitrary small constant. Matousek and Schwarzkopf [21] improved this running time to
0 (n log' n) where c> 0 is a constant. Amato et al. [3], Bronninman et al. [8], and Ramos
[25] gave 0 (n log3 n) algorithms for computing the diameter. Ramos [26] improved the
running time by a factor of log n, using a one-dimensional lower envelope algorithm, and
further insight into geometric optimization in an arrangement of surfaces. Very recently,
Ramos [27] obtained a 0 (n log n) algorithm using derandomization and s-nets that hide
a constant in the asymptotic running time much larger than ours.

In this paper we study a new approach for computing the diameter by constructing a
restriction of the furthest-point Voronoi diagram to the convex hull (in a special case).
We present an algorithm with running time O (n loge n). Our algorithm uses practical
data structures such as the lists (including the double-connected-edge-lists), the balanced
binary search tree, and the hierarchy of Dobkin and Kirkpatrick [14]. The algorithm is
quite simple and its performance should be good in practice. Using our approach the
chromatic diameter in R3 and all furthest neighbors of points on a convex polytope in
R3 can be found in the same running time.

The Chromatic Diameter. For n colored points in 1R3 , compute the largest distance
between points of different colors.

The All-Furthest Neighbors. Given a set S of n points on a convex polytope in R 3 ,
for each point of S. compute its furthest neighbor in S.

The paper is organized as follows. In Section 2 we obtain basic geometric properties
of the restricted furthest-point Voronoi diagram. In Section 3 we reduce the diameter
problem of computing the diameter to the computation of the red—blue diameter. A red—
blue diameter algorithm is described in Section 4. The details of the basic steps of the
algorithm are given in Sections 5-7. In Section 8 we analyze the running time of the
algorithm. In Section 9 we consider applications that can be solved by our approach.
Section 10 contains some concluding remarks and open questions.

2. Geometric Preliminaries

We introduce some notation that is used throughout this paper. Denote the Euclidean
distance between two points p and q by dist(p, q). For a finite set A C R 3 , CH(A)
denotes the convex hull of A, and Vor(A) denotes the furthest-point Voronoi diagram of
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Fig. 1. The Voronoi cell of p contains each point q together with the ray qr.

A. For a point p E A, Vor(p) denotes the Voronoi polytope of p in the Voronoi diagram
Vor(A). The boundary of a polytope P is denoted by bd(P).

The following lemmas are useful.

Lemma 1. Let A be a finite set of points in IRd , let p be a point of A, and let q be a
point of the furthest point Voronoi cell of p. Then the Voronoi cell Vor(p) contains the
ray starting at q in the direction from p to q.

Proof. Let r be a point of the ray pq, see Fig. 1. Suppose that r does not belong
to the Voronoi polytope Vor(p). Hence, for a point p' E A, the point r E V(p') and
dist(p, r) < dist(p', r). By the triangle inequalitydist(p', r) < dist(p', q)+dist(q, r) <
dist(p, q) + dist(q, r) = dist(p, r). Contradiction. q

Lemma 2. Let A be afinite set of points in 1R3 and let P be a convex polytope containing
A. For a point p E A, the intersection of the furthest-point Voronoi cell of p and the
boundary of P is a connected set.

Proof. Let q and r be any distinct points of the intersection of the Voronoi cell of p
and the boundary of the polytope P, i.e. q, r E Vor(p) fl bd(P). We can assume that
the set A contains at least two points. Hence p 0 Vor(p) and p q and p r. Let
.n be the plane passing through the points p, q and r, see Fig. 2. The boundary of the

L

Fig. 2. Connectivity of Vor(p) fl bd(P).



238	 S. Bespamyatnikh

convex polygon Q = zr fl P contains q and r. Let L be the line passing through q and
r. The points q and r divide the boundary of Q into two polygonal chains. Let C be the
polygonal chain such that L separates p and C.

It is sufficient to show that the Voronoi cell of p contains the polygonal chain C.
Consider any point s E C. The furthest-point Voronoi cell of p is a convex set. Hence
it contains the line segment [q, r] and the point s' which is the intersection of the line
segments [q, r] and [p, s]. The Voronoi cell of p contains s by Lemma 1. q

Lemma 3. Let S be the set of vertices of a convex polytope in R3 . The furthest point
Voronoi diagram of S satisfies the following properties:

(1) For a point p E S. the Voronoi cell of p is nonempty.
(2) For a point p E S and a plane a, 0(1) operations suffice to determine a side

of a such that the corresponding halfspace and the Voronoi cell of p intersect
(assuming that the list of edges/faces incident top can be accessed in 0(1) time).

Proof. (1) Let be a support plane fi touching the convex hull of S only at the point
p, i.e. fl CH(S) = { p}. Let w be the ray starting at p, perpendicular to ,B and lying in
the same halfspace formed by ,B as the set S. It is easy to show that the Voronoi cell of
p intersects w.

(2) Using the previous case it is sufficient to find a support plane intersecting the
convex hull of S only at p to determine a side of the plane a. Let f be a support face of
the convex hull of S and let (p, q) and (p, r) be the consecutive edges of f. By a slight
perturbation of the plane containing f (it suffices to rotate it around lines pq and pr)
we can find a plane fi such that

• 8 is still a support plane of the convex hull of S,
• 8 intersects the convex hull of S only at the point p, and
• fi is not perpendicular to the plane a.

Compute the ray w as defined above. Note that w is not parallel to the plane a.
The halfspace bounded by a that contains the tail of w can be determined in constant
time. q

Our algorithm is based on the following theorem.

Theorem 4. Let A be a finite set of points in R3 and let P be a convex polytope
containing A. The restriction of the furthest point Voronoi diagram of A to the boundary
of P has linear size. In other words, the number of vertices, edges and faces of Vor(A)
intersecting the boundary of P is 0(1 Al).

Proof. By Lemma 2 the boundary of the polytope P is partitioned into at most IA
connected areas with polygonal boundaries. We can map bd(P) into a plane to obtain a
planar subdivision with complexity 0(1 Al). Note that an "edge" of the subdivision is a
polygonal chain that separates two polygons and contributes I to the complexity. q
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3. Reduction

First we reduce the problem of finding the diameter of a set to the problem of finding
the furthest distance between points of two sets separated by a plane.

The Red—Blue Diameter Problem. Let R be a set of red points and let B be a set of
blue points that are separated by a plane n. Find the red—blue diameter of R and B,
defined as the largest distance between red and blue points.

Let rb_diam(R, B) denote the red—blue diameter of sets R and B. The reduction of
the diameter problem to the red—blue diameter problem can be done easily. Compute the
minimum axes-parallel box that contains data points. Construct three planes perpendic-
ular to all coordinate axes such that each plane divides the covering box into two boxes
of equal size. Consider one plane. It divides set S into two subsets. Solve the red—blue
diameter problem for these sets. The diameter of S is the maximum of these diameters
(the proof is given in Theorem 5). This reduction uses only three red—blue diameter
subproblems. The pseudocode is as follows.

Algorithm Diam(S)

Input. A set S of n points in R3 .
Output. The diameter of S.

1. Compute the bounding box [lx , rX ] x [ly , ry ] x [l Z , rZ ] of S
2. Compute planes irx = {p I px — (lx + rX )/2), Try = {p I py =

(ly + ry)/2}, 7r = {P I pz = (lz + rz )/2}
3. return max (rb_diam(S fl jr, S f itx , n x ),

rb-diam(S f Try , S fl ny , rry ),
rb-diam(S fl nz , S fl 7rz , 7r,)),

where rb-diam(R, B, n) is a function that computes the red—blue
diameter of the sets R and B separated by the plane it .

Theorem 5. The reduction algorithm is correct.

Proof. Consider the smallest axes-parallel box A containing S. Let a, b and c denote
the lengths of its sides. It is clear that the diameter of S is at least max(a, b, c). Three
planes partition the box A into eight equal boxes with sides a/2, b/2 and c/2. We show
that any pair that determine the diameter of S cannot lie in the same subbox. Suppose
that there exists a pair p, q of S in the same subbox such that dist(p, q) = diam(S). It is
clear that the distance between p and q is at most the length of the diagonal of A. Hence

 l 2	2
diam(S) = dist(p, q) <^(a)

2

 (2 +	 ) + (2)

< 2 max(a, b, c) < max(a, b, c) < diam(S).

Contradiction.
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Consider any diametrical pair p, q of points in S, i.e. dist(p, q) = diam(S). At least
one of three planes separates p and q. Therefore the red—blue diameter corresponding
to this plane is equal to the diameter of S. Hence our algorithm correctly computes the
diameter of S. q

4. Red—Blue Diameter Algorithm

In this section we solve the red—blue diameter problem. Let R be a set of nR points and
let B be a set of nB points. The plane r separates these sets. Without loss of generality
we can assume that nR >_ nB• Two points p E R and q E B forming the red—blue
diameter dist(p, q) = diam(R, B) lie on the convex hull of the union of red and blue
sets. First we construct the convex hull H = CH(R U B) and remove points that lie
inside it.

Let 7r1 be a plane that

• is parallel to the plane 7r, and
• divides the set R into two subsets of (almost) equal size.

Let Rt denote the subset of R which lies in the same halfspace defined by 7r1 as the
set B. Let R2 denote another subset of R, i.e. R2 = R\R t .

Construct the intersection of the furthest-point Voronoi diagram Vor(B) and the plane
rr 1 . The intersection has size O(n). The algorithm for constructing Vor(B) fl 7r 1 is
described in Section 5. We also construct a polygon Q that is the intersection of the
convex hull H and the plane nl. It is clear that Q is a convex polygon.

For a point p E B, there are four cases of layout Vor(p), Jrl and Q. In each case we
analyze whether Vor(p) might contain points of R i and R2.

Case 1. The Voronoi cell of p does not intersect the plane zr1.

There are two subcases depending on which side of n l the Voronoi cell is on. By
Lemma 3, the side can be determined in 0(1) time.

Case 1.1. The Voronoi cell of p is on the same side of rr I as the points of B. The
Voronoi cell of p does not contain any point of R2.

Case 1.2. The plane yr1 separates the Voronoi cell of p and the set B. The Voronoi
cell of p does not contain any point of R1.

In the following cases the Voronoi cell of p intersects the plane yrl• Denote this
polygon by P = Vor(p) fl 7r1.

Case 2. The polygon P lies inside the polygon Q (see Fig. 3). We show that the Voronoi
cell of p does not contain any point of R1. Suppose to the contrary that the Voronoi
cell of p contains a point q € R1. Consider a ray emanating from any point r' E P in
the direction from p to r'. By Lemma 1 it is contained in Vor(p). Let r be the point of
intersection of the ray and the boundary of H. Clearly, r E Vor(p). By Lemma 2, there
is a path in Vor(p) fl bd(H) from q to r. This path crosses the boundary of the polygon
Q. Hence the Voronoi cell of p (and the polygon P) contains at least one point of the
boundary of polygon Q. This contradicts the assumption P C Q.
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Fig.3. Case2:PCQ.

Case 3. The polygon P lies outside the polygon Q. Construct a line 11 (see Fig. 4) such
that

• 11 separates the polygons P and Q, and
• ll is tangent to the polygon P.

To compute the line l l we can use an optimal O (log n) algorithm of Edelsbrunner [ 15]
for finding the minimum distance between two convex polygons. Consider the tangent
point of l l and edges of P incident to it. These edges share the Voronoi region of p and the
Voronoi regions of two points, say q and r. It is clear that the Voronoi cell of p lies in the
halfspace It I dist(p, t) < dist(q, t)} and in the halfspace It I dist(p, t) < dist(r, t)}.
The intersection of these halfspaces lies in the halfspace defined by a plane passing
through the line 11 and the line It I dist(p, t) = dist(q, t) = dist(r, t)}. We denote this
plane by 1T2.

The plane ir2 (and the Voronoi cell of p) cannot intersect both parts of the convex
hull H into which it is divided by the plane Tcl. We want to determine a part that does
not intersect the plane ire. Find a vertex s of the polygon Q that is closest to the line 11.

ll	 12
fi

Vor(q	 S	 f?

Vor(p)	
Q /V or

P

•
p

Fig.4. Case3:PnQ =0.
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P

p

Fig.S. Case4:PnQ0oandP\Q00.

Let f' and f2 be the facets of the convex hull H that

• are incident to the point s, and
• intersect the plane irl (see Fig. 4).

Compute a line 12 that is an intersection of planes passing through the facets fl and
f2. Consider the point of intersection of the line 12 and the plane ire. If the plane n1
separates it and the point p, then the Voronoi cell of p does not contain any point of R 1 .
If these points lie at the same halfspace defined by nl, then the Voronoi cell of p does
not contain any point of R2. If the line 12 is parallel to the plane ire, then the Voronoi cell
of p does not contain any point of R.

Case 4. The polygon P intersects the boundary of the polygon Q (the vertices and the
segments) (see Fig. 5). This is the last case. Unfortunately, the point p can be the furthest
neighbor of points in both Rl and R2.

Thus, we partition the set B into three subsets B = B l U B2 U B3, where the points of
Bl (B2) satisfy the property that their Voronoi cells do not contain any point of Rl (R2).
The set B3 = B \BI U BZ contains the points of Case 4. An algorithm to determine the
sets B 1 , B2 and B3 is given in Section 6.

The red—blue diameter rhdiam(R, B) is maximum of the red—blue diameters rbidiam
(R 1 , B2), rbdiam(R2, B1) and rb-diam(R, B3). The first two diameters are computed
recursively. We show how to compute the red—blue diameter of R and B3 in Section 7.

Algorithm rb_diam(R, B, it)

Input. Sets R and B are separated by a plane it, i.e. R C it  and B C ir
(ir might be an external variable because it is never changed.

Output. The red—blue diameter of R and B.

1. nR=IRIandnB=IBS
2. if (n R < nB) then exchange R and B
3. H = convex_hul1(R U B)
4. compute a plane .it 1 parallel to it such that the sets R1 = R fl iri and

R2 = R fl ni have at most Inn/21 points.
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5. build P = H fl ir 1 and the intersection of 7r i and the furthest-point
Voronoi diagram of B

6. divide B = Bl U B2 U B3 as described above in Cases 1-4
7. return max (rb_diam(R 1 , B2, n),

rb_diam(R2, B1, n),
rb_diaml(R, B3 , n 1 )),

where rb_diaml(R, B, it) is a function that computes the red—blue
diameter of the sets R and B in a special case.

Lemma 6. Let T (N) be the running time of rb_diamQ for total N red and blue points.
Let Ti (n, m) be the running time of rb_diamlO for n red and m blue points. Then

T(N) = 0(N log N)+T(N1 )+T(N2 )+Tt(N,N3)

for some Nl , N2, N3 > 0 such that N = N t + N2 + N3 and N 1 , N2 <3N/4+1.

Proof. Steps 1 and 2 take 0(1) time. The convex hull can be built in O (N log N) time
[23]. The plane zr1 in Step 4 can be found in 0(1) time using presorting of points. We
show that Step 5 can be done in O (N log N) time in Section 5. In Section 6 we describe
how to perform Step 6 in 0(N) time.

Two recursive calls at Step 7 add T(N1) + T (N2) time to the total running time of
the algorithm above, where N1 = IRi I + IB21 and N2 = IR2 I + IB 3 I. Note that

i n	 3n m	 3n m	 3N
Ni = IRlI+IB2I ^ `2 + 1)+ne = 4 — 4 +m+1 < 4 — 4 +m+1 = 4 +1.

Similarly, N2 < 3N/4 + 1.
The call of rb_diaml () at Step 7 takes at most T1 (N, N3) time where N3 = I B31 =

N—N1—N2.	 q

5. Voronoi Diagram in Plane

In this section we consider the problem of constructing the intersection of a plane and the
furthest-point Voronoi diagram in 1R 3 . We call it the clipped Voronoi diagram for brevity.
This problem is related to power diagrams or Laguerre diagrams [24] or Dirichlet cell
complexes [4}-[7], [17]. The power diagram is a generalization of the Voronoi diagram.
Recall that the closest-point (furthest-point) Voronoi diagram of a set S is defined as the
subdivision of the space into Voronoi cells and the Voronoi cell of a point p is defined
as the locus of points q such that p is the closest (furthest) point of S to q. The order k
Voronoi diagram is defined in similar way, the only difference is that the Voronoi cell of
order k is defined by k points of S that are closest to the cell points. The order (n — 1)
Voronoi diagram is the furthest-point Voronoi diagram.

In the power diagram of S the distance from a point p in S to a point q is measured
as power

pow(p, q) = d(p, q) 2 — w(p),
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where d(p, x) is the Euclidean distance between p and q and w(p) > 0 is a weight of
a point p. The power pow(p, q) can be considered as the square of the length of the
tangent segment from q to the sphere s = {r, d(p, r) = w(p)1. In Laguerre geometry
a point (x, y, z) in 1R3 is made to correspond to a directed circle in the plane z = 0 and
radius JzJ, the circle being endowed with the direction of the sign of z. The Laguerre
distance between two points corresponds to the length of the common tangent of the
corresponding two circles. Hence the power pow(p, q) in the plane z = 0 is the square
of the Laguerre distance between points (px , py , pow(p)) and (q, qy , 0) in 1R3 .

The Voronoi diagram is a special case of the power diagram if all points have the
power 0. Similarly, the order k power diagram and the furthest-point power diagram (the
maximal power diagram) can be defined [5]).

Now we show a relation between the clipped Voronoi diagram CVD and the furthest-
point power diagram. We can assume that the clipped plane n is z = 0 for simplicity.
Consider a point p = (px , py , p,) E S. Let p' = (pr , p) , 0) be the projection of p
onto Jr. The cell of CVD corresponding to p contains points q E it such that d(p, q)
or d(p', q) 2 + pZ is smallest. Assigning w(p) = — pZ would reduce CVD to the power
diagram except for the condition that w(p) must be nonnegative. In order to overcome
this shortcoming, we use the fact [17] that the power diagram does not change if we add
any number to all powers. Let p,,, be the maximum of pX, p E S. Assigning the weight
pm — pZ > 0 to the point p produces the correct reduction of CVD to the power diagram.

To construct the furthest-point power diagram we can use the 0 (n log n) algorithm
of Aurenhammer [5]. Aurenhammer reduced the problem to the convex hull problem
in R3 using the lifting map technique. Also one can create a direct algorithm using the
divide-and-conquer technique like an algorithm of Imai et al. [17] for the closest-point
power diagram.

6. Partitioning the Set B

Recall that we computed the intersection of the plane it and the furthest-point Voronoi
diagram Vor(B). Denote this subdivision of 7r by P. We also computed the convex
polygon Q that is the intersection of 7r and the convex hull of the red and blue sets. We
solve the following problem.

Problem. Given a convex polygon Q and a subdivision of the plane into k convex
polygons P such that the total number of edges in Q and P is n, subdivide P into three
groups of polygons that

• lie inside Q,
• lie outside Q,
• intersect the boundary of Q.

We restrict the problem to finding the last set P' of polygons (the remaining groups
can be found by traversing the subdivision). We can find the intersection of edges of Q
and the edges of polygons of P. The number of intersections is bounded by O(n) (in
fact it is 0(k)). We can apply the algorithm of Bentley and Ottmann [9] and compute
the polygons of 7" in 0(n log n) running time.
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Q

Fig. 6. Walk around boundaries of polygons intersecting the edge qi, qZ.

We present a simple way to find P' in linear time. Denote the vertices of Q by
qm in clockwise order. We move the point p around the boundary Q and find the

polygons of P that contain p. The moving starts at point p = ql. Determine the polygon
of P containing p by trying each polygon of P. Denote it by P. It is clear that P E P'.

The point p moves in direction from ql to Q2 (see Fig. 6). Determine the side e of P
that intersects the line through p and q. We distinguish three cases to process the point p.

Case 1. The edge e intersects the line segment [p, q]. The edge e is common to two
polygons of P. One of them is P. It is clear that the second polygon belongs to P'. Add
it into P' and assign it as P.

Case 2. The edge e does not intersect the line through p and q. (This case can occur after
Case 1.) Take the next edge of P after e in clockwise order as e.

Case 3. The edge e intersects the line through p and q but does not intersect the line
segment [p, q]. Move the point p into q and take the next point after p as q.

The proof of correctness of the algorithm is straightforward.

7. Processing the Set B3

In this section we show how to find the red—blue diameter of the sets B3 and R. Our
approach is a modification of the following simple scheme. Construct the restriction of
the Voronoi diagram of B3 to the boundary of H. By Theorem 4, the restriction has
linear complexity. Locate each red point p in the subdivision of bd(H) to determine the
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furthest blue point from p in B3. The diameter diam(R, B3) is the largest distance from
a red point to its furthest neighbor.

Consider the furthest-point Voronoi diagram of B3 in k3 . By Lemma 2, the boundary
of the convex hull H is partitioned into IB31 connected domains that we refer to as the
surface Voronoi cells. For a point p E B3, let V (p) = Vor(p) n H denote the surface
Voronoi cell corresponding to p. The surface Voronoi cells are determined by faces of
polytopes Vor(B3) that intersect the convex hull H. Each face lies in the bisector plane
of two points in B3.

It should be noted that the description of V(p) does not include all intersection
points of the boundary of Voronoi cell Vor(p) with the edges of H (otherwise the total
description may have quadratic size). It contains vertices and edges defined as follows.
The vertices of V (p) correspond to the intersections of edges of Vor(B3) and the boundary
of the convex hull H. In other words, a point q E bd(H) is the vertex of V(p) if q is
equidistant from at least three points in B3 (p is one of them). An edge of V (p) connects
two vertices of V (p) and separates two surface Voronoi cells, one of them is V (p). In
fact any edge of V(p) is a polygonal chain in the convex hull. In spite of this we store
only endpoints of the edge and the pair of data points whose surface Voronoi cells are
shared by the edge.

Recall that B3 is the set of points p E B such that the interior of the Voronoi cell
Vor(p) intersects the polygon Q = H n Jrl . We decompose the problem of constructing
the restriction of the Voronoi diagram of B3 into two subproblems according to the
halfspaces bounded by the plane jrI. In the subproblems we construct the restriction of
surface Voronoi cells to bd(H) fl Jrl and bd(H) n iri . (In order to obtain the general
solution we can glue the edges of surface Voronoi cells that intersect the plane nl. In
fact we do not need to combine the solutions, see Section 7.2.)

The important condition making it possible to solve subproblems efficiently is that
the complexity of the restricted Voronoi diagrams is still linear. Consider a point p in B3.
How many chains can the Voronoi cell Vor(p) produce? The number of chains might be
Q I in the worst case (I Q I means a number of vertices of Q). It follows from the fact

that the intersection of an edge of Q and the Voronoi cell Vor(p) is a segment (if any).
The total number of chains is 0(N3) because there is 0(N3) edges of the subdivision
Vor(B3) fl 7rl and each edge intersects the convex boundary of Q at most twice. To be
more precise it gives the bound 6N3 on the number of chains.

Let cl, ... , ck be the polygonal chains and let e; and e;+ i be the endpoints of the
chain c1 . Note that k is at least N3 where N3 = I B31. Let p,, i = 1, ... , k, be the point
of B3 whose surface Voronoi cell contains the polygonal chain c1. One can show that
(pi, ... , pk) represents an (N3, 2) Davenport—Schinzel sequence [1], [13]. It follows
thatk <2N3-1.

7.1. Restricted Voronoi Diagram

In this section we show how to compute the restriction of the furthest-point Voronoi
diagram to the upper hull bd(H) f13rj (the lower hull can be processed similarly). Its
description includes a list of surface Voronoi cells restricted to the upper hull, a list
of edges and a list of vertices of the subdivision. We assume that the list of incident
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eb 	eb	 eb cb eb+t

En +l	 ca	 ea

(a)	 (b)

Fig. 7. (a) Bold edge is a centroid of T. (b) Dashed edges complete the binary tree T.

vertices/edges/faces to a vertex/edge/face can be accessed in 0(1) time. Note that a
Voronoi cell can be split into many connected components in bd(H) fl ni , an edge can
be split into at most two restricted edges producing new vertices. The lower hull can be
processed similarly.

We construct the Voronoi diagram clipped by nl for the set B3 using the algorithm de-
scribed in Section 5. The polygon Q e with vertices el, e2, ... , ek is partitioned into cells
corresponding to the points of B3. Applying the divide-and-conquer approach we find
two chains ca and Cb, a < b, and split the problem into two subproblems corresponding
to the point sets Pi = {pa, pa+i, ... , ph} and P2 = {Pb, Pb+1..... Pk, P1. • • • . Pa}. To
balance the sizes of the subproblems we use centroid decomposition of Guibas et al.
[16]. Without loss of generality we can assume that the vertices of the clipped Voronoi
diagram have degree 3. If the edges of the Voronoi diagram clipped by the polygon Q e

are connected (in other words k = N3) they define a binary tree T. In 0(N3) time one
can find a centroid of T using the algorithm [16]. The centroid edge decomposes T into
two parts, each of size at least L(I T I + l)/3j. The centroid can also be obtained by a
polygon cutting theorem of Chazelle [10]. The Voronoi cells separated by the centroid
edge define subproblems of balanced sizes, see Fig. 7(a). If there is a cell A with more
than one chain we split it to complete the tree T, see Fig. 7(b).

For both subproblems Pl and P2, the chains around Q can be computed in linear
time. There are two cases. If pa = Pb, then the chain endpoints are {ea+l , ea+2 , ... , eb )

and (eb+1, eb+2. • • • . Pk q Pt' • • •'Pa). Otherwise they are {e', ea+1 , ea+2, ... , eb } and
{e", eb+1, eb+2. • • • . Pk, Pl. • • • . Pa) where e' and e" are the points of intersection of Q
and the bisector of Pa and Pb

The merging step works as follows. If pa = pb, then the edges of two surface Voronoi
diagrams define the surface Voronoi diagram of Pt U P2. Suppose Pa • The surface
Voronoi cells for Pi U P2 can be obtained by merging the edge structures similar to the
Voronoi digram in the plane [18], [19], [28].

Lemma 7 (Merge Chain). There is a path C of edges of the surface Voronoi cells for
P1 U P2 such that

• every edge of C shares the surface Voronoi cells of points from different subsets Pl
and P2
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• the path C starts from ea and ends in eb, and
• the path C partitions the surface H fl n+ into two parts corresponding to P 1 and P2.

Proof. In fact C is the set of all edges sharing cells of points from different subsets.
The points ea and eb are connected in C, otherwise there is a path connecting two points
from the chains Cab = (ea , e,+ 1, ... , eb) and Cba = (eb, eb+1, ... , ea) avoiding C.
Let C' _c C be the path connecting ea and eb. By Lemma 2 each point c in C can be
connected to Cab/Cba by a path in a surface Voronoi cell of a point in Pl /P2. Thus c E C'
andC=C'. q

The problem now is to find the merge chain C. The computation of C can be viewed
as the motion of a point q along C that discovers the endpoints of the edges on C. Let
y (i, j) denote the bisector plane of the points pi and p. Let P, j denote the polygonal
path P, = y(i, j) fl bd(H) fl nc+. The algorithm starts with the point e a that is the
endpoint of an edge separating the surface Voronoi cells V (pa ) and V (pa _ I ). Consider
the moment of time when we found an endpoint e that is the intersection of C and the
edge separating two surface Voronoi cells, say V (p ; ) and V (P)  see Fig. 8. Without
loss of generality we can assume that pi, p1 E PI and i < j. The path C enters the
surface Voronoi cells V (pt). The edge of C incident to e separates V (pi ) and the surface
Voronoi cell of a point of P2, say pl. The point e is the first endpoint of new edge E E C
separating the surface Voronoi cells V (p j ) and V (Pi).

To find the second endpoint e' of the edge E we apply a chain shooting. The edge
E is a subchain of the polygonal chain Pjl . The chain shooting in V (pj ) finds the first
point t1 of the boundary of V (p1 ) in the way on Pal starting at e, see Fig. 8. The path Pa l
intersects the boundary of V (p^) in two points e and t3 . The chain shooting can be done
by tracing the boundary of V (p1 ) in the direction opposite to the direction of polygonal

c^	 ej+l

P a+

e _1

Fig. 8. Merge chain C.
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chains ct, ... , ck (in the projection onto the plane n). Let E' be the current edge of the
boundary of V (p j) separating V (p j) and V (p r ). To detect whether tj belongs to E' we
compute the intersection of the convex hull H and the line L that is the set of points
equidistant from the points pj , pi and Ps. To do this we use the algorithm of Dobkin and
Kirkpatrick 1114].  Their algorithm takes

• 0 (n log n) time to preprocess the convex hull H, and
• 0 (log n) time to find the intersection of the line L and the convex hull H.

If the line L does not intersect the convex hull we pass the edge E' and take the next
edge on the boundary V (pj ). Suppose the line L intersects the boundary of the convex
hull in two points. We choose the point r that is the first in the motion of e along the path
P^t.l The point r belongs to the bisector y (j, s). We can test whether it belongs to the
edge E' in 0(1) time . 2 If the edge E' does not contain the point r, we pass it and take
the next edge on the boundary V (p j) .

We also apply the chain shooting in V (pi) to find the point tj. The second endpoint
e' of E is one of the points tj and tt that occurs first in the chain shooting. One of the
cells V (p1 ) or V (pl) participates in the next edge of C. The tracing of its boundary can
be continue starting with the last visited edge. This is important for the running time
because we try to detect the intersection with an edge at most twice.

To prove the correctness of the algorithm we exploit the following lemmas.

Lemma 8. For any points p E Pl and p1 E P2, the intersection of the surface Voronoi
cell V (pj) (in the Voronoi diagram of P1) and the bisector plane of pj and p' is a
polygonal chain (if any).

Proof. Let I denote the intersection of the surface Voronoi cell V (pj) and the bisector
y(j,1) (or Ps,). Let u and v be any distinct points in I. Consider the subchain of Pj J
connecting u and v. Suppose that there is a point c in this chain that does not belong to
the surface Voronoi cell V (pj). There is a point p, E Pt \ { p j } whose surface Voronoi
cell V (ps ) contains c. The plane passing through u, v and pj gives a polygonal chain Cl
from u to v in V (pj) (see the proof of Lemma 2). Using the plane passing through u, v
and pl we construct a polygonal chain C2 from u to v.

Consider the furthest-point Voronoi diagram of the set Pt U {Pi }. The points c and es

still lie in V (Ps). However, the closed path Cl U C2 separates them (Cl C V (ps ) and
C2 C V(pl)). Contradiction. q

Lemma 9. Two consecutive chain shootings in V(pj) do not intersect.

Proof. Let the shot by Pjt end in the point e' of an edge of V(p1) separating V (pi) and
V (Ps ) (where pi, ps E P2). The next shot in V (pj ) is defined by the chain Pj s . Suppose it

1 The direction of the motion in the chain Phi can be defined using the halfplane {t I dist(t, pj) = dist(t, pi)

and dist(t, pj) < dist(t, pi)} fore 54 eo and the halfplane n+ fl {tj dist(t, pi) = dist(t, Pk)} for e = el.
2 The edge E' does not contain the point r if and only if the line passing through endpoints of E' separates

the points r and (p + p,,)/2 in the bisector y(j, s).
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Fig. 9. Path e^ce,, separates e' and e".

intersects the chain Pal at the point e" ,4 e'. Consider the furthest-point Voronoi diagram
of the set Pl U (p1, Ps). It contains the edge Cs sharing the cells of pj and pS . Let c be
any internal point of Cs . The points e^ and es can be connected by a path from e3 to c in
V (pj ) (by Lemma 2) and a path from c to e s in V (p5 ). This path separates the points e'
and e", see Fig. 9. However, they are connected in the cell of V(pi) by the path in the
plane passing through points e', e" and pi. Contradiction. q

Theorem 10. The algorithm for building the surface Voronoi cells of B3 in the upper
cap of H is correct and takes 0 (N3 log N3 log N) time where N3 = I B31 and N is the
number of vertices of H.

Proof. The basic step of the algorithm is to find hit points tj and ti in the chain shooting
in V (ps ) and V (pl). Lemma 8 implies the existence of the points t1 and t1 . By Lemma 9,
the endpoints tj in the boundary of V (p^) computed by chain shooting in V (pp) form a
monotone sequence in bd (V (pd)). Note that chain shooting in V (pj ) never crosses over
the chain cj . Hence the tracing of edges is correct.

Now we analyze the running time of constructing the surface Voronoi diagram. The
input of the recursive procedure contains k chains in bd(Q) and the convex hull H
with at most N vertices. The reduction to the subproblems takes 0(k) time. The sizes
of subproblems are at most 2k/3 + 0(1). The merge chain has 0(k) vertices that can
be found in 0 (k log N) time using a Dobkin—Kirkpatrick hierarchy [ 14]. The surface
Voronoi diagram is constructed in 0 (k log k log N) time. Hence the total running time
is 0(N3 log N3 log N). q

7.2. Furthest Neighbors

In this section we explain how to find furthest neighbors. Specifically, for any point of
R, we find its furthest neighbor among the points of B3.

Theorem 11. For n R red points, the furthest neighbors among N3 blue points of B 3

can be found in O((nR + N3 ) log N3) time using the surface Voronoi diagram.
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Proof. We also divide the problem into two subproblems, for R1 and R2. The subprob-
lems are similar, so we consider only the subproblem for R2. The surface Voronoi cells
induce a forest whose trees can be linked and form a binary tree T as in the previous
section. Applying the divide-and-conquer approach we also use the centroid decompo-
sition of Guibas et al. [16]. Let E be the centroid edge of T separating two chains c,, and
cb. There are two cases.

Case 1, Pa,-E Pb. Let e be an endpoint of E (it may be any point of E). The upper
hull can be partitioned into two parts by a path ea eeb as follows. The path eq e lies in
the intersection of the convex hull and the plane a passing through points pQ , ea and e.
The plane f3 passing through points Pb, eb and e defines the path eeb. The points of R2
are partitioned into two subsets by the path e0 eeb. For a point p E R2 we determine a
halfspace bounded by a bisector plane of pa and Pb. If A, is closer to p than Pb, then the
location of p is defined by the plane a. Otherwise it depends on the plane $ (p € 8 1 or

p E 3).

Case 2. pa = Pb. The partition algorithm is very simple. The points of R2 are divided
by the plane passing through pa , ea and eb.

At the end of the recursion (if the number of data points is 0(1) or the number of
vertices of a tree is 0(1)) computing the furthest neighbors is straightforward.

The points of R1 can be handled in similar way.
Now we estimate the running time. The algorithm is recursive. The centroid edge is

found in 0(N3) time. To split the red points the algorithm spends 0 (nR) time. Thus the
algorithm takes linear time before recursive calls. Note that the total number of red and
blue points in two recursive calls is nR + N3 + 2. The number of levels is 0 (log N3) by
choosing centroid edges. The total running time is 0 ((n R + N3) log N3). q

8. Analysis

We analyze the running time of the entire algorithm.

Theorem 12. The diameter of a set of n points in R 3 can be computed in O (n loge n).

Proof. The running time of the diameter algorithm is O(T(n)) where T(N) is the
running time of computing the red—blue diameter of the total N red and blue points. Let
T'(N) be the running time except for the time for processing the set B3. By Lemma 6,

T'(N) = 0(N log N) + T'(N1) + T'(N2), (1)

producing T'(N) = 0 (N log2 N). Note that each point might participate in B3 at most
once. The total running time for constructing Voronoi diagrams in the planes (Sec-
tion 5) and for partitioning the set B (Section 6) is O (n log n). By Theorem 10 the
total running time to construct all restricted Voronoi diagrams is 0 (n log2 n). The fur-
thest neighbors are computed in 0 ((n R + N3) log N3) time by Theorem 11. The part
0 (N3 log N3) is dominated by the time for computing the surface Voronoi diagram. The
part 0 (n R log N3) is dominated by the first addend in (1). Hence the total running time
T(n) = O (n loge n). q
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9. Applications

In this section we discuss a few applications of our approach. Aggarwal and Kravets [2]
gave a linear-time algorithm for finding all furthest neighbors in a convex polygon. We
consider a three-dimensional analog, the all-furthest neighbors (AFN) for points on a
convex polytope.

Theorem 13. The all furthest neighbors for points on a convex polytope in R3 can be
computed in 0 (n loge n) time.

Proof. We modify the diameter algorithm. The algorithm uses a reduction of the AFN
problem to a red—blue AFN problem similar to one in Section 3. The red—blue AFN
problem is to find furthest blue neighbors for all red points. We split the bounding box A
of the size a x b x c by nine planes, three planes per each axes, into 43 subboxes of equal
size. A point p and its furthest neighbor q lie in different subboxes because otherwise

dist(p, q)

2^ ( a )2

4 +() +()2

4 max(a, b, c) <
 max(a, b, c)

 < dist(p, q).

The last inequality follows from the fact that the distance from p to one of the points
defining the longest sides of A is at least Is 1/2. The red—blue AFN problem is asymmetric,
so we add extra calls of rb_diam() with opposite side of the splitting planes. The total
number of calls of rb_diam() is 9.

Note that all the points are in the convex polytope P. We do not exchange colors in
Step 2 of rb_diam() and do not compute the convex hull H in Step 3. The algorithm
uses the boundary of P as H and the precomputed Dobkin—Kirkpatrick hierarchy DK
for P. It follows that the size of the polygon Q might be c2 (n). To avoid the walk around
Q in the algorithm of Section 6 we apply edge queries to Q. To decide if an edge e
intersects the boundary of Q we use DK hierarchy. The edge query can be answered in
O (log n) time. Therefore the partition of B can be computed in 0 (N3 log n) time.

The surface Voronoi cells and the furthest neighbors in Section 7 can be found in
0(N3 log2 n + n R log n) time. The first part 0(N3 log2 n) contributes O (nB log2 n) over
all recursive calls, so we can ignore it in the runtime analysis. The algorithm rb_diam()
has 0(log nR) levels of the recursion. At each level of the recursion it spends O(n log n)
total time because each red and blue point participates in at most one call of rb_diamO.
The total running time of the AFN algorithm is 0 (n loge n). q

Toussaint [29] gave a linear-time algorithm for finding the symmetric all-furthest
neighbors in the plane. For a set S, the symmetric neighbors are defined as a set of pairs
p, q E S such that p is the furthest neighbor of q and vice versa. Note that the symmetric
neighbors are located in the convex hull of S. Theorem 13 implies the following result
in R3.
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Corollary 14. The symmetric all furthest neighbors in R 3 can be found in 0 (n loge n)
time.

We consider two other applications, the colored versions of the above problems. In
the chromatic AFN problem we are given a colored set S of n points in li and, for each
point p E S. we want to find its furthest neighbor of a different color.

Theorem 15. For a colored set of n point on a convex polytope, the chromatic all-
furthest neighbors can be found in 0 (n loge n log k) time where k is number of colors.

Proof. First we show how to solve the problem for two colors, i.e. k = 2. It suffices
to solve the asymmetric version, which is to find the furthest blue neighbor for each red
point. In contrast to Section 4 the points are not necessarily separated by a plane. We
split the bounding box of blue points as in the proof of Theorem 13. In addition to the
nine planes we consider six planes passing through the faces of A. Each of the six planes
defines one call of rb_diam() (because there are no blue points on one side of the plane).
Each of the nine planes defines two calls of rb_diam(). The rest is straightforward.

For arbitrary number of colors we apply divide-and-conquer technique. We partition
the colors into two groups of at most [k/21 colors and color the points into two colors
according to these groups. We solve the bichromatic AFN problem as described above
and proceed with each group of colors recursively. The total running time is 0 (n loge n
log k). q

Corollary 16. The chromatic diameter of n points in 1R3 colored in k colors can be
computed in 0 (n loge n log k) time.

Remark. The chromatic diameter can be computed in 0(Td(n)logk) time using a
diameter algorithm with 0 (Td (n)) running time. Hence it can be computed in 0 (n log n
log k) time using an algorithm of Ramos [27].

10. Conclusion

We presented a 0 (n loge n) algorithm for computing the diameter of n points in R3 .

The algorithm is based on the idea of restriction of the furthest-point Voronoi diagram
to the convex hull (in a special case) reducing the complexity from 0(n2) to 0(n). It
would be interesting to find an optimal algorithm for computing the diameter using our
approach. We applied our technique for finding the all-furthest neighbors for points on
the convex hull, the symmetric all-furthest neighbors for any points and for chromatic
versions of these problems in R3 . We mention two open problems in 1R3 whether it
possible in 0 (n log n) time to compute

• the restriction of the furthest-point Voronoi diagram to the convex hull, and
• all furthest neighbors.

We believe that our approach can also be applied to other problems in R3.
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