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INTERSECTION THEORY OF LINEAR EMBEDDINGS

SEAN KEEL

Abstract. We study intersection theoretic properties of subschemes defined by

ideal sheaves of linear type in particular their behavior with respect to blowups

and segre classes.

Introduction

Micali [M] has shown that if an ideal 7 in a ring A is generated by a regular

sequence, then the canonical surjection from the dih symmetric power of 7 to
Id

(1) SymdA(I)^Id

is an isomorphism for all d. Huneke [H] calls an ideal for which ( 1 ) holds an

"ideal of linear type." Valla [V] gives numerous criteria for when an ideal is of

linear type, and has shown in particular that this class of ideals contains ideals

generated by a ¿/-sequence as well as ideals of almost complete intersections.

Such ideals can be quite general, for example Huneke shows in [H] that any

ideal in a normal ring which is generated by two elements can be generated by

a ¿/-sequence. Further references, supplied by the referee, are included in the

bibliography.
In this paper we investigate subschemes defined by ideal sheaves of linear

type. A subscheme X «-> Y with ideal sheaf 7 c tfy is said to be linearly

embedded if the ideal sheaf is of linear type. If ( 1 ) is an isomorphism only for

d sufficiently large, then the embedding is said to be weakly linear.
We will show that a number of properties of regular embeddings extend to

the more general class of linear embeddings. Throughout the discussion we will

be concerned with a composition of embeddings:

X ¿> Y^Z

with J <zl ccfz the ideal sheaves of Y and X respectively.

If X <-> Y and Y t-> Z are regular embeddings, then there is an exact

sequence of normal bundles:

0 -» NXY -» NXZ -» f NyZ -» 0

which implies the equation among Chern classes

_ c(NxZ) = c(NxY) • c(i-NyZ).
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196 SEAN KEEL

This equation can be rewritten as

(2) s(X,Y) = c(i*NYZ)ns(X,Z)

or as

(3) i*s(Y,Z) = c(NxY)ns(X,Z)

where for any subscheme X c Y, s(X, Y) is the segre class of X in Y . For

a regular embedding
s(X,Y) = c(NxY)-xn[X].

(2) makes sense even if i is not a regular embedding so long as j is regular

(i.e. both sides of the equality are defined) while (3) makes sense even if j

is not a regular embedding so long as i is regular. However, it is known that

under these conditions the equalities do not always hold (see [F, p. 139]). We

show that (2) holds provided / is a linear embedding and j is regular and that

(3) holds provided j o / is a linear embeddings and i is regular.

Let Z i Z be the blowup of Z along X and let Y be the blowup of

Y along X. Y embeds in Z as the strict transform of Y under Z ^> Z.

Let E = n~x(X) be the exceptional divisor of the blowup. Tí is a subscheme

of 7t_1(^) • Let M = 9î(E, n~l(Y)) be the residual scheme. (This notation

is fixed throughout the section.) (In general, if we have a scheme Y with a

subscheme X and a carrier divisor D of Y which is itself a subscheme of X

D^X^Y

then we obtain a scheme ¿% = ¿%(D, X) the residual scheme to D in X, by

locally dividing equations for X by a defining function for D. In terms of the

ideal sheaves, 32 is characterized by the equation

•^31 -^D = ^X-)

If / and j are regular embeddings it is known (Fulton [F, p. 169]) that

W  ? = €»
(2) Y <-> Z is a regular embedding,

(3) N~Z = 7i*(NyZ)®^(-7±).

We show that these results hold as long as X <-> Y is a linear embedding and

Y <-> Z is a regular embedding.

In summary our main results are the following three theorems: (notation as

above)

Theorem 1. Consider the following conditions:

(1) I^»y is a weakly linear embedding,

(2) Bt-Y,
(3) I" n J = 7"_1 • / for all n sufficiently large.

Then (1) => (2) o (3) and if X <-» Z is weakly linear, then (1) & (2).
Furthermore, if

X ^ Y

is linear then
I"nJ = /"-' -J
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for all n and if

xtiz
is linear then the two statements are equivalent.

Theorem 2. If i is a linear embedding and j is a regular embedding then

(1) Y = &,

(2) Y <-► Z is a regular embedding,

(3) N~Z = 7t*(NyZ)®^(-7±),

(4) There exists a cone

C^XxA1

flat over A1 with fibers Ct equal to CXZ for t not equal to zero and Co equal

to CxY®i*NYZ.
(5) s(X, Y) = c(i*NYZ) n s(X, Z).

Theorem 3. If i is regular and j o i is linear, then

( 1 ) There exists a cone

C -> X x A1

flat over A1 with fibers Ct equal to CXZ for t not equal to zero and Co equal

to NxY®i*CYZ.
(2) The embedding

i*CYZ «-» CYZ

is regular of the same codimension as i.

(3)
i*s(Y, Z) = c(NxY) ns(X, Z).

These results are applied in [Kl and K2] where they are used to study the

intersection theory of parameterizing spaces for polygons in projective space

and the intersection theory of the moduli space of stable pointed curves of

genus zero.

I wish to thank W. Fulton, S. Bloch, M. Murthy, M. Kumar, and G. Lubeznik
for a number of interesting discussions. I also wish to thank J. Sally for bring-
ing to my attention the works of Huneke and Valla and for encouragement in

general.
This paper is organized as follows: Section 1 recalls some standard notations

and facts. Section 2 is a catalogue of results from Valla [V] which will be used.

Section 3 contains the proofs of Theorems 1, 2 and 3. Section 4 gives examples

and counterexamples, and the appendix contains new "geometric" proofs of

several of the results of Valla, as well as a lemma clarifying the relationship

between linear and weakly linear.

Notations and conventions

Here we collect basic notation and facts which will be used throughout the

chapter. We continue to follow the notation of the introduction. All spaces

considered are noetherian equidimensional schemes. Pow^ (7) denotes the Rees

algebra of 7
Pow,i(7) = A ® I © I2 © 73 • • • .

grA(I) denotes the associated graded algebra

gr/i(7) = ^/7©7/72©72//3---.
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198 SEAN KEEL

CXY denotes the normal cone to X in Y , i.e.

Cx7 = Specgr^(7).

When X is regularly embedded this cone is a bundle, and in that case we denote

it by NXY.
For a commutative ring A andan A module M, SymA(M) is the symmet-

ric algebra of M,

SymA(M) = A® Sym^(M) © Synr2 (M) © • • • .

Some properties of Sym : If N is a submodule of M, we have an exact se-

quence

N® SymdA-x(M) - Sym^(M) - Sym^ (j^j -> 0.

In particular,

Sym^M) ®Aj = Sym^ Í —^

Also
SymdA(N®M) = 0 SymA(N) ®A SymA(M).

i+j=d

We will make frequent use of the following: If S is a sheaf of graded algebras

then there is a canonical identification of subschemes of Proj(S') and graded

ideals of S via

7 c S — Proj (y
I

Under this identification, two ideals 7 and J give the same subscheme iff their

graded components Id and Jd are equal for all d sufficiently large. In addition

there is a correspondence between quasicoherent tf?mi(S) modules and sheaves

of graded S modules

M ~» M.

(See [M].)

Catalogue of results of Valla

Here we record some results of Valla [V] which will be useful. We will refer

to the results by their numbering in [V] preceded by a V.

Theorem V1.3. Sym^y(7) is isomorphic to Pow/i(7) iff Sym^ (7/I2) is isomor-

phic to grA(I).

In the appendix we give a geometric proof of this (see Theorem A.2) as well

as of the related result:

Proj(Syrrvy(/)) - Proj ((¡)(Id) j & Proj (sym^ (J^j^j £ proj Í0 (J^
Id

d / v v-    / / \ d

(see Theorem A.l).

Theorem V2.1. If i is linear and j is regular then j o i is linear.

Remark. A geometric proof of this fact is given in the appendix (see Theorem

A.3).
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Theorem V2.3. If i is a regular embedding and ioj is a linear embedding then

j is linear along X (i.e. the ideal Jx c tfz x is of linear type for each x in
X).

Remark. A geometric proof of this fact is given in the appendix (see Theorem
A.4).

Proofs of Theorems 1-3. We now prove Theorems 1-3 in succession. Before

proceeding to Theorem 1, we obtain the following lemma:

Lemma 1. M is the subscheme of Z defined by the graded ideal sheaf

07-'. J c 07«.
n n

Proof. As remarked in the introduction M is characterized by the fact that

The ideal sheaf of E = n~x(X) is

07"+1 =I-c?~
n

while the graded ideal sheaf of n~x(Y) is 0„ J • I" . From our remark the

result is now clear.   D

Theorem 1. Consider the following conditions:

(1) X <-► Y is a weakly linear embedding,

(2) Bt = Y,
(3) Id nJ = In~x -J for all n sufficiently large.

Then (1) => (2) «■ (3) and if X <-* Z  is weakly linear, then (1) <=> (2).

Furthermore:  If X «-» Y is linear then In n J = In~x • J for all n and if

X «-» Z is linear then the two statements are equivalent.

Proof. We have a commutative diagram

/•Sym"-'(7)    -    Sym"(7)    -    Sym"(7/V)    -    0

0   -*       JnlH        -»       I"       -*     (l/J)n

with (pn surjective and J-I"~x the image of tp„ . ( 1 ) is equivalent to <p'„ being

injective for n sufficiently large. The graded ideal sheaf of Y is

0/n/"c0/«
n n

so by the preceding lemma, (2) is equivalent to (p'„ being surjective for n large

which in turn is equivalent to (3). Now by the snake lemma, (1) implies (2).

If j o i is weakly linear, then q>n is an isomorphism for n sufficiently large,

and so again by the snake lemma, (1) and (2) are equivalent. The proof of the

second pair of assertions is analogous,   o

Remark. The proof also shows that when j o i is weakly linear

Bt = Proj(Synvy (///)).

Kleinman has made this observation in the case j o / is regular (see [KL]).

The proof of Theorem 2 will require the following:
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200 SEAN KEEL

Lemma. Let X, D be subschemes of a scheme Y with D a earlier divisor,

DC\X <-^> X a earlier divisor and D n X <-> X a linear embedding. Then if

BL(Y ,X)^ Y

is the blowup of Y along X then n~x(D) is the blowup of D along DnX.

Proof. Since BL(D, DnX) embeds canonically in n~x(D) it is enough to check

the theorem locally on Y along XnD. Thus we may assume that Y is Spec(A)

for (A, m) a local noetherian ring, that X is defined by an ideal 7 c m and
that f £ m defines D. Then by Lemma A.4 X is linearly embedded. Thus

BL(Y,X)=J>roj(SymA(I)),

BL(D,DHX) = Proj(Sym^//(7/7n (/))),

7r-1(7)) = Proj(Sym^//(7/7./)).

/•/ is equal to Ir\(f) since / is not a zero divisor modulo 7. This completes

the proof.   □

Theorem 2. // i is a linear embedding and j is a regular embedding then

(1) ? = .#,

(2) 7^Z is a regular embedding,

(3) N¿Z = n*(NYZ)®(f(-E),

(A) there exists a cone

C -» X x A1

flat over A1 with fibres Ct equal to CXZ for t not equal to zero and Co equal

to CxY®i*NYZ.
(5) s(X, Y) = c(i*NyZ) n s(X, Z).

Proof. By Theorem VI.3 701 is linear and so (1) holds by Theorem 1. By [F,
p. 164] there is a canonical embedding of cones

(*) C<gZ «-» n*NYZ ® tf(-E).

Thus if we establish (2), it will follow that CggZ is a vector bundle and (since

both bundles will have the same rank) that (*) is an isomorphism, establishing

(3). Also (4) implies (5) by [F, p. 234]. We establish (4) by means of the
deformation to the normal cone. By [F, p. 64] there is a scheme S (in the

language of [F] S is M°) with a flat map S -^ A1 and an embedding

commuting with the maps to A1 with the following properties:

The open set
U = 7t~x(Ax\{0})

is isomorphic to the product Z x (A'\{0}) and the embedding X x (A'\{0}) t->

U is the composition

X x (A'\{0}) - Y x (A'\{0}) <-> Z x (A'\{0}).

The fiber over 0, So is isomorphic to the normal bundle of Y in Z and

the embedding K0 is the composition

X d» y «-» NyZ
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where the last embedding is the zero section. (S is an open subset of the blowup

of Z x A1 along Y x {0} .)

We will show that C = CXxAiS has the properties prescribed by (4).

Let L be A1 and let B be the blowup of S x L along X x A1 x {0} , let E
be the exceptional divisor of this blowup and let p and q be the compositions

p:B->SxAx ^S^*AX,    q.E^B^A1.

Of course E is P(C©1).
Observe that p~l(A!\0) is the product

BL(Z x A'\{0} x L, X x A'\{0} x {0})

= BL(ZxL,Ix{0})xA'\0

and that ^"'(A^O) is the product

P(CxZ©l)xA1\0.

By the preceding lemma (applied to the subschemes X x {0} and So x L of

SxL) p~x(0) is the blowup of SoxAx along X and q~x(0) is the exceptional

divisor of this blowup. Thus if / is a local parameter for A1 at zero and g is
a local equation for E in tfB near some point of the fibre p~x(0) then (/, g)

is a regular sequence. Hence (g, f) is a regular sequence and q is flat, near

the point we are considering. Letting the point vary over the fibre we conclude

that q is flat. From what we have seen it follows that

q~x(t) = -p(CxZ®l)   forr^O,

q~x(0) = P(CXx0(NYZ x A1)) - P(CXY © i*NYZ © 1).

In particular C is flat over A1 and has the desired fibres.

In order to establish (2) it is sufficient to demonstrate that the embedding

P(CXY) = Y n E — E = P(CrZ)

is regular. (Since ;' is regular, the embedding Y <-► Z is regular away from

E. E n Y is a carrier divisor on Y and Tí is a carrier divisor on Z . The
reduction then follows from the fact that a regular sequence remains regular

when the elements are permuted.)

The question is local and we may assume that Z is sp2c(^4) and J —

C/'i ,J2, ■■■ , Jd) with jx,j2, ... , jd a regular sequence in A .

We induct on d. Using VI.3 we may assume that d — 1 and J = (f). In

order to show that the embedding is regular it suffices to show that the image of

/ in 7/72 (as an element of degree one) is a nonzero divisor in gr^(7). Since

/ is a nonzero divisor it suffices to show that

f-lknlk+2cf-lk+l   for all k.

This holds by Theorem 1. This completes the proof of the theorem.   D

Our proof of Theorem 3 will require the following lemma:

Lemma 2. Let (A, m) be a local noetherian ring. Let Jem be an ideal and

x £ m an element whose image in A/J is a nonzero divisor. If the ideal J + (x)

is of linear type then x is a nonzero divisor and

x-Jd-xnJd = x-Jd   for all d.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



202 SEAN KEEL

Proof. By Theorem V2.3 J is of linear type. Since the image of x is not a

zero divisor in A/J we have an exact sequence

o _ j {-±;x) A®j-^d(x + j)^ o.

This induces the exact sequence of symmetric groups

d-\ d

0 SymV) ® J ^ e 0 SymV) ̂  Sym^jc + J) - 0.
1=0 i=0

Here g is induced by

SymV) ®J^~' Symrf(jc + /)

(where ® indicates multiplication in the symmetric algebra) and / is induced

by

SymV) ® ̂  (/^/2) SymV) © Sym'+1(7)

where fx  is induced by A module multiplication a <g> j —► -a • 7 and 72 is

induced by a ® 7 —» a® (7 • x). We have a commutative diagram

etc'SymV) ® •/   -   ©to SymV)    ^   Sym^x + J)    -»    0
U 11 p Ï

©to1^1 ^        ©to-''        ^      (* + •/)*      -   0-

A is surjective and q and p are isomorphisms (since / and (/ + x) are of

linear type). Here g' is induced by

/' '£"' (x + J)d

and /' is induced by

In particular we have the exact sequence

0 _ /¿ (-¡l;^ /'-i © /<* --i'd (X . /'-> + y") _ 0.

This sequence implies that

x-Jd~x nJd = x-Jd

and
Ann(x)nyd"1 =Ann(x)n7d

for all d . This second equality implies that

Ann(x) c Jd   for all d

which implies that Ann(x) is zero.   D

Remark. The conclusion of the lemma is equivalent to the statement that x is

a nonzero divisor modulo Jd for all d.

Lemma 2 has the following corollary which is included as it gives a sort of

generalization of the fact that in a local ring a permutation of a regular sequence

is a regular sequence. The corollary is not needed for the proof of Theorem 3.
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Corollary. Let (A, m) be a local noetherian ring. Let Jem be an ideal

and xx, x2, ... , xn a sequence of elements whose image in A/J is a regular
sequence. If the ideal

J + (xx, x2, ... , x„)

is of linear type then J is of linear type and xx, ... , x„ is a regular sequence
(in A).

Proof. J is of linear type by Theorem V2.3. We will prove the second assertion

by induction on n . The case of n = 1 is contained in Lemma 2. In general

the remark following Lemma 2 implies that x„ is a nonzero divisor modulo

(J + (xx, ... , x„-X))d for all d. Also by Theorem V2.3 J + (xx, ... , x„-X) is
an ideal of linear type. It then follows by Lemma A.5 that J + (xx, ... , x„_ i ) +

(x„)/(x„) is an ideal of linear type in A/xn . But since xx, ... , x„_i is a regular

sequence modulo J + (x„)/(x„) it follows by induction that xx, ... , x„-X is a

regular sequence modulo x„ . This completes the proof.   D

Theorem 3. If i is regular and j o i is linear, then

(1) There exists a cone C —> X x A1 flat over A1  with fibres Ct equal to
CXZ for t not equal to zero and Co equal to NXY ® i*CYZ .

(2) The embedding
i*CYZ «-» CYZ

is regular of the same codimension as i.

(3) i*s(Y,Z) = c(NxY)ns(X,Z).

Proof. We have an exact sequence of tfx modules

/n72     72     n + j

with I/I2 + J locally free. By [F, p. 73, Example 4.1.7] this implies an equality
of segre classes

S{jr^)=c{l2+-j)ns{l2)-

(For an rfx module 9~, s(9r) is the segre class of the cone Spec(Sym(^")).)

Spec(Sym^(7/72 + 7))

is the normal bundle of X in Y and

Spec(Sym^(7/72))

is the normal cone of X in Z . Also, by Theorem V2.3 the embedding 7 is

linear along X (i.e. Jx c cfz,x is an ideal of linear type for each x in X)

and thus

gr^V) ®cfx = Sym^Y(J/J2) gcfx

= Sym^ (///•/)

= Sym^(7/7n72)

(this last equality holds by Theorem 1). With these observations our segre class
equality becomes

s(i*CYZ) = c(NxY)ns(CxZ) = c(NxY)ns(X,Z).
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In addition our exact sequence of cfx modules implies the exact sequence of

cones (in the sense of [F, p. 73])

0 - NXY -» CXZ -» i*CYZ -» 0.

By [F, p. 73] this implies (1). Thus to establish (3) it suffices to demonstrate

that
s(i*CYZ) = i*s(CYZ).

We have a fiber diagram

P(**CyZffil)     A    P(CyZ©l)

1 I
X -Ù Y

and the result will follow if we can show that i't is a regular embedding of the

same codimension as i. Of course this will also yield (2). This follows from

the next lemma by replacing XY and Z by X x {0}Y x {0} and Z x A1 . The
new triple continue to satisfy the assumptions of the lemma by Theorem VI.3

(or Lemma A.3).   D

Lemma 3. If i is a regular embedding and j o i is a linear embedding then

P(i*CyZ)-» P(CyZ)

is a regular embedding of the same codimension as i.

Proof. We have a fiber diagram

P(/*CyZ)     -»     P(CyZ)

I I
X -» Y.

The question is local on X and so we may assume that Z is the spectrum of a

local ring. Let n be the codimension of i. We prove the lemma by induction

on n.

Case n = 1. We can assume that 7 = J + (x) with x a nonzero divisor modulo

J . Then by the previous lemma we conclude that x is a nonzero divisor and

x-Jd-xnJd = x-Jd.

Together these imply that x (as an element of degree zero) is a nonzero

divisor in %rA(J) which in turn implies the result.

General Case. Factor i as a composition of two regular embeddings

X&Xx&Y

each of codimension less than n . By induction the embedding i2CYZ <-» CYZ

is regular of the same codimension as i2 (observe that 7'o/2 is linear by V2.3).

Thus it suffices to show that the embedding i*CYZ <-+ i2CYZ is regular of the

same codimension as ix. We have a fiber diagram

i*CXlZ   <-»     CXtZ
I I

i*CYZ    «-»    i*2CYZ.
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By induction the top row is a regular embedding of the same codimension as

ix . The next lemma implies that the right column is a smooth map and thus
the result follows.   D

Lemma. If i is regular and joi is linear then the canonical map CXZ —> i*CYZ

is smooth.

Proof (as in the proof of Theorem 3). We have an exact sequence of tfx mod-

ules

/n72 I2 l2 + J

with I/I2 + J locally free, Sym^(7/72) equal to CXZ and Sym#x(J/J n I2)

equal to i*CYZ . The result is local on X and so we can assume that I/I2+J is

isomorphic to cfx for some n and the above exact sequence is split. The result

then follows from the fact that for an A module M the symmetric algebra

SymA(M © A") is a polynomial ring over SymA(M).   G

Counterexamples. The purpose of this section is to prove that the following

two "Theorems" are false for a sequence of embeddings X «-» Y <-* Z with i

regular and j linear.

( 1 ) joi is weakly linear.

(2) i*s(Y,Z) = c(NxY)ns(X,Z).

In order to construct counterexamples we need the following lemmas:

Lemma 1. The embedding of a point in a scheme is weakly linear if and only if

the scheme is regular at the point.

Proof. Let (A, m) be the local ring at the point. If the embedding is weakly

linear then the graded map

SymA/m(m/m2) —► A/m © m/m2 © • ■ ■

is an isomorphism for high degree. This implies (for example by considering

the Hubert polynomial) that A is regular.   D

Lemma 2. Let x, y, z, w be the coordinates of A4. The embedding of the

plane x = z = 0 in the cone xy = zw is linear.

Proof. Let A be the coordinate ring of the cone

k[x, y, z, w]
A =

xy = zw

and let 7 be the ideal defining the plane I = (x, z). Since A is normal and

7 is generated by two elements this follows from the result of Huneke stated in

the introduction. Just for fun we give a direct proof. Let B be the quotient of

the polynomial ring
A[X,Z]

(xZ - zX, Xy - Zw)'

There is a surjection B -» SymA(I) defined by sending X and Z to the ele-

ments x and z in Sym^(7). We will show that B/I -» gr^(7) is an isomor-

phism. This will imply in particular that the surjection

SymA/I(I/I2)^grA(I)
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is an isomorphism and thus imply the result by Theorem VI.3. Since B/I is

an integral domain it is enough to show that the surjection

(B/I)y^grAy(Iy)

is an isomorphism. By is isomorphic to the polynomial ring Ay[Z] and in

particular is a domain of dimension three. Pow/4),(7y) is a domain of the same

dimension and hence the surjection By -» Pow^j,(/J)) is an isomorphism. This

implies the desired result.   D

For our counterexamples we take Z , Y and X to be the affine cone xy =

zw , the plane x - z = 0 and the vertex of the cone x = y = z = w = 0.

i is regular and j is linear by Lemma 2 but j o / is not weakly linear by

Lemma 1. This contradicts (1).

c(NxY) n s(X ,Z) = s(X,Z) = 2- [X].

By Theorem 3.2

s(Y, Z) = c(NzA4)-lns(Y, A4) = s(Y, A4) = [Y].

Thus i*(s(Y, Z)) = [X]. This contradicts (2).

Appendix: "Geometric" proofs

Theorem A.l. The embedding

ProjÍ0/"j^Proj(Sym^(/))

is an isomorphism if and only if the embedding

Proj Í0/"/7"+1 J ^Proj(Sym^(7/72))

is an isomorphism.

Remark. Of course Theorem A. 1 is equivalent to the statement:

Algebraic formulation. The following are equivalent:

( 1 ) Sym^ (7) is isomorphic to Id for all d sufficiently large.

(2) SymA/I(I/I2) is isomorphic to Id/Id+X for all d sufficiently large.

The proof will require two lemmas:

Lemma A.l. The subscheme

Proj(Sym^(7/72)) -» Proj(Sym^(7))

is locally principal (i.e. the ideal sheaf is locally generated by a single element).

Proof (G. Lubeznik). We may assume that Y is Spec(^) and that X is defined

by the ideal I = (ix, i2, ... , im). Let ij be the element i¡ £ Sym^(7).

Then Proj(Sym^y(7)) is covered by the affine open sets

Uj = Spec(Symy4(7)(7-))

where Sym^(7)(j-. is the subring of SymA(I)- consisting of elements of degree
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zero. In Uj Proj(Sym^(7/72)) is defined by the ideal 7 c A = Sym°(7). In

the ring SymA(I)- ik = (ik/ij)-ij. Thus i¡ generates 7 in U¡. This completes

the proof.   D

Lemma A.2. Let D ■-> Y ■-» Y' be a composition of subschemes of Y' such that

D <-> Y is a cartier divisor of Y and D <-* Y' is a locally principal subscheme

of Y'. If Y\D is equal to Y'\D then Y is equal to Y'.

In order to prove the lemma it is enough to establish the following local result:

Local Version. Let (A, m) be a local noetherian ring. Let f £ m be an element

of A. If I c (f) is an ideal such that the image of f is a nonzero divisor in

A j I then I is the zero ideal.

Proof. We have an exact sequence

0 -* 7 - A -> A/I -» 0.

The sequence remains exact after tensoring with A/(f) since by assumption /

is not a zero divisor in A/I. Thus we have an exact sequence

0-»///• 7->¿//-¿/(/,/)-»0.

Since 7 is contained in / A/f —> A/(I, f) is an isomorphism and so 7 is

equal to f • I. The result then follows from Nakayama's lemma.   D

Proof of Theorem A.l. Assume that the embedding

Proj Í07"/7"+1j ^ Proj(Sym^(7/72))

is an isomorphism. Then by Lemma A. 1 we have a composition of subschemes

Proj Í0/"/7"+1 J - Proj Í07" J - Proj(Sym^(7))

such that

Proj (07"/7"+1 j -» Proj (07" J

is a cartier divisor and

Proj Í07»/7"+1j -Proj(Sym^(7))

is a locally principal subscheme. Since on the complement of Proj(©„ 7"/7"+1 )

both Proj(©„7") and Proj(Sym^y(7)) are isomorphic to Y\X the result fol-

lows from Lemma A. 2.   D

Theorem A.2. The following are equivalent:

(1) Sym^(7) is isomorphic to Pov/A(I).

(2) SymA/[(I/I2) is isomorphic to grA(I).

The proof of Theorem A.2 requires two lemmas:
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Lemma A.3. The following are equivalent:

(1) Sym^(7/72) * Id/Id+X for all d.

(2) Sym^m((7, T)/(I, T)2) $ (I, T)d/(I, T)d+X for all d.

(3) SymdA[TX((I, T)/(I, T)2) % (I, T)d/(I, T)d+X for all d sufficiently large.

Proof.   (I, T)k/(I, T)k+X is an A/1 module (i.e. it is annihilated by T and
by 7) and there is a canonical isomorphism

(7, T)k/(I, T)k+X S 7V7*+1 © Ik/Ik~x -T®---®A/I-Tk.

Consequently there is a canonical identification

d

Synvlm((7, T)/(I, T)2) = Sym!(7/72 ®A-T) = Q SymA(I/I2) - Td-
i=0

and the map

SymV,((7, T)/(I, T)2) - (7, T)d/(I, T)d+X

is the direct sum of the maps

SymV7/72) • Td~' -+ P/Ii+X - Td-(

for i between zero and d. In particular we see that the map

Sym*m((7, T)/(I, T)2) -, (I, T)k/(I, T)k+l

is an isomorphism if and only if the maps

Sym^(7/72) -+ 7'77'+1    for i = 0, 1, ... , k

are all isomorphism. This implies the result.   D

Lemma A.4. The canonical map of A modules

0 SymA(I) ■ P - Sym*m((7, T)) ®A[T] A[T]/(Td+x)
i+j=d

is an isomorphism.

Proof. We compute SymdA[T]((I, T)) from the exact sequence:

0 -» (7 • T) - 7 • A[T] © T - A[T] - (7, T) - 0.

This induces the exact sequence

symdA^x(i-A[T]®T-A[T])®(i-T)

-» Sym^[r](7 • A[T] ® T - A[T]) -, SymdA[T]((I, T)) -, 0.

When we tensor with A[T]/(Td+x) the middle term becomes (after some easy

manipulations)

Sym^(7) © T ■ (SymdA(I) © Sym^V))

© • ■ • © Td ■ (Sym^(7) © • • ■ © SymJ,(7) © A)

and the left term becomes

T ■ (SymdA-x(I) ®A I) © • • • © Td - (Sym^1 (7) © • • ■ © Sym}(7) © A) ®A I.
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The map between them is induced by the maps

Sym^(7) ®A I if±g) SymA(I) ® SymA+l(I)

for 7 = 0, 1, ... , d - 1. Here f is the multiplication map

Sym^(7)®^7^Sym^(7)

and g is the surjection

Sym^7)^7^Sym^+1(7).

The lemma will be established if we demonstrate that the induced map

A" image(/, g)

is an isomorphism. The map is surjective since g is surjective. To show that

the map is injective it is enough to show that the kernel of g is contained in

the kernel of /.

Claim. The kernel of g is generated by elements of the form

ix ® ■ ■ ■ ® ij ® ij+x - ix ® ■ ■ ■ ® ij+x ® ij

Here ix ® ■ ■ ■ ® i¡ indicates the image of ix ® ■■■ ® ij in Sym^(7).

Since these elements are obviously in the kernel of / the result follows once

we establish the claim.

Proof of Claim. We have a commutative diagram

0

I
W

1
/®y'+i — /®7+i

0   -,   kerg   -,   SymJA(I)®I   4   SymA+l(I)   -,   0

l Ï
0 0

Here n is the map obtained by tensoring the canonical surjection

¡®j _» SymA(I)

with 7. By the Snake lemma the kernel of g is the image under n of W.  W

is generated by elements of the form

ix ® ■■ ■ ® ¿k® ■■■ ® ¿i ® ■■ ■ ® ij+X - ix ® ■ ■ ■ ® i¡ ® ■ ■ ■ ® ik® ■■■ ® ij+X.

These elements are in the kernel of n except when one of k or / is r + 1 and

this collection of elements are exactly the generators proposed in the claim.

This completes the proof of the lemma.   G

Corollary. If Sym^[r]((7, T))  is isomorphic to (I, T)d then Sym^(7) is iso-

morphic to V for any j less than or equal to d.

Proof of Corollary. We have a commutative diagram

Sym>(7)    '^J   SymdA[T]((I, T))

I I
V U (I, T)d

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



210 SEAN KEEL

By the previous lemma the top row is injective and thus if the right column is

an isomorphism, the left column is injective and hence an isomorphism (in any

case the left column is a surjection).   a

Proof of Theorem A.2. Assume that Sym/1//(7/72) is isomorphic to gr^(7).

Then by Lemma A.3 we have that Sym^[r]//(/ r)((7, T)/(I, T)2) is isomorphic

to gr/4[7-]((7, T)). Then by Theorem A.l it follows that for all d sufficiently

large Sym^[r]((7, T)) is isomorphic to (I, T)d. Finally, by the preceding

corollary this implies that Sym^(7) is isomorphic to P for all j.   G

Corollary A.2. The following are equivalent:

(1) X <-, Y is a linear embedding.
(2) The composition

Xx{0}^,Yx{0}^YxAx

is a linear embedding.

(3) The composition

Xx{0}^,Yx{0}^YxAx

is a weakly linear embedding.

Proof. This is immediate from Theorem A. 2 and Lemma A. 3.   G

Lemma A.5. Let (A, m) be a noetherian local ring. Let 7cm be an ideal of

A and let f E m be a nonzero divisor of A whose image in A/I is again a

nonzero divisor. The following two conditions are equivalent:

( 1 ) The surjection

SymdA/if)(l/(f)nl)^ld/(f)nId

is an isomorphism.

(2) The surjection Sym^(7) —> Id is an isomorphism and the image of f in

A/Id is a nonzero divisor.

Proof. Observe that since the image of / is not a zero divisor in A/1 the ideals

(/) n I and f • I are equal. We have a commutative diagram

SymdA(I)®AA/(f)    ±   Id®AA/(f)

II
lAf{f)(Symdn(I/f-I) Id/f-Id

Symdn(I/(f)nl)   À   Id/(f)nld

g 1
, T It f\ r-, t\       h.        id I

lA/(f)\

in which all of the maps are surjections. As a result h is an isomorphism if and

only if / and g are each isomorphisms, g is an isomorphism if and only if the

image of / in A/Id is a nonzero divisor. Thus (2) implies (1) and to show that

(1) implies (2) we need only demonstrate that if / is an isomorphism then the

map Sym^(7) -, Id is an isomorphism. Let K be the kernel of this map. Since

/ is not a zero divisor the sequence 0 -* K -, Sym^(7) —> Id —> 0 remains

exact after tensoring with A¡(f). This shows that if / is an isomorphism then

K and f • K are equal, which by Nakayama's lemma completes the proof.   G
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Theorem A.3. Let

X¿, Y¿,Z

be a composition of embeddings. If i is linear and j is regular then the compo-

sition j o i is linear.

Proof. If Z is a vector bundle and j is the zero section then the result follows

from Corollary A.2 (and induction on the rank of the bundle). In general we

make use of the deformation to the normal cone to reduce to this case. As is

the proof of Theorem 2 by [F, p.   64] there is a scheme S with a flat map
is

S -» A1 and an embedding IxA1 <-> S commuting with the maps to A1 with

the following properties:

The open set U = ^"'(A'^O}) is isomorphic to the product Z x (A'\{0})

and the embedding X x (A'\{0}) <-» Í7 is the composition

X x (A'\{0}) ^7x (A'\{0}) ^Zx (A'\{0}).

The fibre over 0, So is isomorphic to the normal bundle of Y in Z and

the embedding 7v"0 is the composition

X ¿+ Y «-» NYZ

(where the last embedding is the zero section). Fix an integer d and a point

x £ X. We will show that the surjection Sym^z ^(7*) —► Id is an isomorphism.

Let J c cfs be the ideal sheaf of X x A1 . Let ft be a local parameter for

A1 at the point t and let p be the point K(x, 0). f, is a nonzero divisor in

<?s,p and its image in cfs,p/Jp is again a nonzero divisor. By the remarks at

the beginning of the proof the embedding X x {0} «-» So is linear and thus in

particular the surjection

Syr4spifQ(Jp/fo n Jp) -, Jd/fo n //

is an isomorphism. By Lemma A.5 this implies that the surjection Sym^   (Jp)

—► Jd is an isomorphism. The same result then holds for all points in a neigh-

borhood of p and in particular for some q = K(x, t) with t nonzero we

have

sym^/y,) - //.

Now ft is not a zero divisor in tfs,q and its image is not a zero divisor in

^s,q/Jd- (Ln U S is a product so that the subscheme defined by Jd is the

product X x A'\{0} where X is the subscheme of Z defined by Id. In

particular Jd defines a subscheme of U flat over A1.) Thus by Lemma A.5

the surjection

Sym^t/fi(Jq/f0nJg)^Jqd/ftnJd

is an isomorphism. But (since U is a product) this is the map

Sym^^-V*.   a

We will say that a cone is linear if it is Spec SymtT7) for some coherent sheaf

F.

Lemma A.6. Any section of a linear cone is a linear embedding.
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Proof. There is an automorphism of the cone carrying the section to the zero

section (subtract off the section), thus we reduce to the case of the zero section.

One now checks the result immediately using Theorem A. 2.   G

Theorem A.4. Let

X -í» Y ±Z

be a composition of embeddings. If i is regular and j o / is linear then j is

linear along X.

Proof. As in the proof of Theorem A. 3 we make use of the deformation to

the normal cone. There exist schemes S and T with flat maps S -^ A1 and

T -£♦ A1 and a composition of embeddings IxA1 <-, T <-> S commuting with

the projections to A1 and with the properties:

Over the open set Al\{0} this is the composition

X x A'\{0} ^fx A'\{0} mZx A'\{0}

while on the fibres over zero we have the composition

X^NXY^CXZ.

The embedding of NXY in CXZ is induced by the surjection 7/72 -» I/I2 + J .
Since the term on the right is locally free, this locally splits, and thus locally

Cx Y is a linear cone over Nx Y and the above embedding is a section. Hence

by the previous lemma, this embedding is linear, i.e. p~x(0) <-> n~x(0) is a

linear embedding. This implies, just as in the proof of Theorem A.2, that for

nonzero t the embedding p~l(t) <-► n~x(t) is linear along I x {/} . Since this

is the embedding of Y in Z , this completes the proof.   G
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