
Research Article
Sampled-Data Synchronization for Complex
Dynamical Networks with Time-Varying Coupling
Delay and Random Coupling Strengths

Jian-An Wang and Xin-Yu Wen

School of Electronics Information Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China

Correspondence should be addressed to Jian-AnWang; wangjianan588@163.com

Received 14 January 2014; Revised 31 March 2014; Accepted 14 April 2014; Published 6 May 2014

Academic Editor: He Huang

Copyright © 2014 J.-A. Wang and X.-Y. Wen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper is concerned with the problem of sampled-data synchronization for complex dynamical networks (CDNs) with time-
varying coupling delay and random coupling strengths. The random coupling strengths are described by normal distribution. The
sampling period considered here is assumed to be less than a given bound. By taking the characteristic of sampled-data system
into account, a discontinuous Lyapunov functional is constructed, and a delay-dependent mean square synchronization criterion
is derived. Based on the proposed condition, a set of desired sampled-data controllers are designed in terms of linear matrix
inequalities (LMIs) that can be solved effectively by using MATLAB LMI Toolbox. Numerical examples are given to demonstrate
the effectiveness of the proposed scheme.

1. Introduction

In the real world, many practical and natural systems can be
described by models of complex networks such as internet,
food webs, electric power grids, scientific citation networks,
and social networks. Therefore, a dynamical network can be
regarded as a dynamical system with a special structure. In
the last few years, complex dynamical networks (CDNs) have
received extensive attention and increasing interest across
many fields of science and engineering [1–3]. CDNs are a large
set of interconnected nodes, inwhich each node represents an
element with certain dynamical system and edge represents
the relationship between them.With the important discovery
of the “small-world” and “scale-free” properties, complex
dynamical networks have become a focal research topic in the
area of complexity science.

It is very common thatmany natural systems often exhibit
collective cooperative behaviors among their constituents.
Synchronization, as a kind of typical collective behavior, is
one of key issues in the study of complex dynamical networks.
The main reason is that network synchronization not only
can explain many natural phenomena but also has wide

applications in many fields including secure communica-
tions, synchronous information exchange in the internet,
genetic regulatory process, the synchronous transfer of digital
signals in communication networks, and so on. Over the
past several decades, the synchronization in CDNs has been
intensively investigated from various fields such as sociology,
biology, and physics [4–16]. The authors in [5] focused the
synchronization stability of general CDNs with coupling
delay. In [6], the authors investigated the locally and globally
adaptive synchronization of an uncertain complex dynamical
network. The problem of globally exponential synchroniza-
tion of impulsive dynamical networks was investigated in
[7]. The pinning synchronization problems in CDNs have
been analyzed in [8, 9]. In [10], the authors studied the
global exponential synchronization and synchronizability
for general dynamical networks. In [11], some sufficient
conditions for CDNs with and without coupling delays in the
state to be passive were presented. Recently, the guaranteed
cost synchronization of a CDN via dynamic feedback control
was addressed in [15].

It is well known that the coupling strength of complex
dynamical network plays an important role in the realizing
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synchronization. In general, the coupling strength of the
considered CDNs is deterministic [4–16]. If the determin-
istic coupling strength is large enough, a complex network
can realize synchronization by itself. However, according
to the discussion in [17, 18], because of the effects of
environment and artificial factor, the coupling strength of
complex dynamical networks may randomly vary around
some constants. If the upper or lower bound of the random
coupling strength is only considered, some conservative
result will be derived. That is to say, random phenomena in
coupling strength should be taken into account when dealing
with the synchronization of CDNs. Furthermore, the normal
distribution characteristic of random variables can be easily
obtained by statistical methods. Therefore, it is interesting
to investigate the synchronization of CDNs with random
coupling strengths described by normal distribution.

On the other hand, the sampled-data control system,
whose control signals are allowed to change only at discrete
sampling instants, can drastically reduce the amount of infor-
mation transmitted and increase the efficiency of bandwidth
usage. Therefore, sampled-data control has received notable
attention [19–22]. The input delay approach proposed in
[19] is very popular in the study of sampled control system,
where the system is modeled as a continuous-time system
with a time-varying sawtooth delay in the control input
induced by sample-and-hold. In [20], by constructing the
time-dependent Lyapunov functional, a refined input delay
approach was presented. Later, the chaos synchronization
problems are investigated by using sampled-data control
[23–26]. Recently, in the framework of the input delay
approach, the sampled-data synchronization problem has
been investigated for a class of general complex networks
with time-varying coupling delays in [27]. Furthermore,
some improved sampled-data synchronization criterion has
been derived to ensure the exponential stability of the
closed-loop error system and corresponding sampled-data
feedback controllers are designed in [28]. By combining
the time-dependent Lyapunov functional approach and con-
vex combination technique, the exponential sampled-data
synchronization of CDNs with time-varying coupling delay
and uncertain sampling was studied in [29]. However, the
Lyapunov functional proposed in [27, 28] ignored the sub-
stitutive characteristic of sampled-data system, which leads
to some conservatism inevitably. In addition, the results
obtained in [29] are sufficient conditions, which imply that
there is still room for further improvement. To the best of
our knowledge, the sampled-data synchronization problem
of complex dynamical networks with time-varying coupling
delays and random coupling strengths has not been studied
in the literature.

Motivated by the aforementioned discussions, in this
paper, the problemof sampled-data synchronization of CDNs
with time-varying coupling delay and random coupling
strengths is investigated. The sampling period is assumed to
be time varying but less than a given bound. The random
coupling strengths are described by normal distribution. By
capturing the characteristic of sampled-data control system,
a new discontinuous Lyapunov functional is constructed.
By using the low bound lemma and convex combination

approach, a mean square synchronization condition is for-
mulated in terms of LMIs. The corresponding sampled-data
controllers are designed that can achieve the synchronization
of the considered CDNs. The proposed method can lead
to a less conservative result than the existing ones. Finally,
numerical examples are given to illustrate the effectiveness
and less conservatism of the presented sampled-data control
scheme.

Notation. The notations used throughout this paper are
fairly standard. 𝑅𝑛 and 𝑅

𝑚×𝑛 denote the 𝑛-dimensional
Euclidean space and the set of all 𝑚 × 𝑛 real matrix,
respectively. 𝑃 > 0 or 𝑃 < 0 means that 𝑃 is symmetric
and positive or negative definite. The superscript
“𝑇” represents the transpose, and “𝐼” and “0”
denote the identity and zero matrix with appropriate
dimensions. diag{𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
} stands for a block diagonal

matrix. The symmetric terms in a symmetric matrix are
denoted by ∗.

2. Preliminaries and Model Description

Consider a class of linearly coupled complex dynamical
networks consisting of 𝑁 identical coupled nodes, in which
each node is an 𝑛-dimensional subsystem

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1
(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑥
𝑗
(𝑡)

+ 𝑐
2
(𝑡)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖

= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
) ∈ 𝑅

𝑛 and 𝑢
𝑖
(𝑡) ∈ 𝑅

𝑛 are,
respectively, the state variable and the control input of
the node 𝑖. 𝑓 : 𝑅

𝑛

→ 𝑅
𝑛 is a continuous vector-

valued function. 𝑐
1
(𝑡) and 𝑐

2
(𝑡) are mutually independent

random variables, which denote the random coupling
strengths of nondelayed coupling and time-delayed cou-
plings, respectively. 𝜏(𝑡) denotes the time-varying coupling
delay satisfying 0 ≤ 𝜏(𝑡) ≤ ℎ, ̇𝜏(𝑡) ≤ 𝜇, where ℎ >

0 and 𝜇 are known constants. 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛 is the

constant inner-coupling matrix and 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛 is

the time-delay inner-coupling matrix. 𝐺 = (𝑔
𝑖𝑗
) ∈ 𝑅

𝑁×𝑁 is
the coupling configuration matrix, where 𝑔

𝑖𝑗
is defined as

follows: if there is a connection between node 𝑖 and node 𝑗

(𝑖 ̸= 𝑗), then 𝑔
𝑖𝑗

> 0; otherwise, 𝑔
𝑖𝑗

= 0, and the diagonal
elements of matrix 𝐺 are defined by 𝑔

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝐺
𝑖𝑗
, 𝑖 =

1, 2, . . . , 𝑁.

Remark 1. The coupling configuration matrix 𝐺 represents
the topological structure of network (1). In this paper, the
matrix 𝐺 is not assumed to be symmetric or irreducible. In
[27, 28], the coupling configuration matrix is assumed to
be symmetric, which is quite restrictive in practice. In this
regards, the network model considered here is more general.
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In this paper, similar to [17, 18], we assume that almost all
the values of 𝑐

𝑖
(𝑡), 𝑖 = 1, 2, are taken on some nonnegative

intervals, that is, 𝑐
𝑖
(𝑡) ∈ (𝜎

𝑖
, 𝜌
𝑖
), where 𝜎

𝑖
, 𝜌
𝑖
(𝑖 = 1, 2) are

nonnegative constants with 𝜎
𝑖

< 𝜌
𝑖
. Almost all the values

of 𝑐
𝑖
(𝑡) satisfying 𝑐

𝑖
(𝑡) ∈ (𝜎

𝑖
, 𝜌
𝑖
) imply that Prob{𝑐

𝑖
(𝑡) ∈

(𝜎
𝑖
, 𝜌
𝑖
)} = 1. It should be noted that the actual mini-

mum and maximum allowable coupling strength bounds are
not 𝜎
𝑖
and 𝜌

𝑖
, respectively. It just means that Prob{𝑐

𝑖
(𝑡) <

𝜎
𝑖
} = 0 and Prob{𝑐

𝑖
(𝑡) > 𝜌

𝑖
} = 0. The actual lower

bounds of 𝑐
𝑖
(𝑡) may be very small and the actual upper

bounds of themmay be very large.This is very different from
synchronization results obtained by traditional method, in
which constant coupling strength is always preassumed or
deterministic.

Remark 2. We assume the coupling strengths satisfy the
normal distribution, which can randomly vary around some
given intervals. This is very different from the considered
network models in [27–29], in which constant coupling
strengths are always preassumed or deterministic. Therefore,
for the random coupling strength, most of existing results
with constant coupling strength may not be applicable any-
more. In addition, it is worth pointing out that when 𝑐

1
(𝑡) =

𝑐
10

and 𝑐
2
(𝑡) = 𝑐

20
or 𝛿
1

= 𝛿
2

= 0, system (1) includes the
models in [27–29] as a special case.

Assumption 3. There nonlinear function 𝑓 satisfies

[𝑓 (𝑥) − 𝑓 (𝑦) − 𝑈 (𝑥 − 𝑦)]
𝑇

[𝑓 (𝑥) − 𝑓 (𝑦) − 𝑉 (𝑥 − 𝑦)]

≤ 0, ∀𝑥, 𝑦 ∈ 𝑅
𝑛

,

(2)

where 𝑈 and 𝑉 are constant matrices of appropriate dimen-
sions.

Assumption 4. The mathematical exception and variance
of 𝑐
𝑖
(𝑡) are 𝐸{𝑐

𝑖
(𝑡)} = 𝑐

𝑖0
and 𝐸{(𝑐

𝑖
(𝑡) − 𝑐

𝑖0
)
2

} = 𝛿
2

𝑖
, respec-

tively, where 𝑐
𝑖0
and 𝛿

𝑖
are nonnegative constants.

On the basis of the property of variables 𝑐
𝑖
(𝑡), system (1)

can be rewritten in the following form:

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

10

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑥
𝑗
(𝑡)

+ (𝑐
1
(𝑡) − 𝑐

10
)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑥
𝑗
(𝑡)

+ 𝑐
20

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ (𝑐
2
(𝑡) − 𝑐

20
)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁.

(3)

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡) be the synchronization error,

where 𝑠(𝑡) ∈ 𝑅
𝑛 is the state trajectory of the unforced isolate

node ̇𝑠(𝑡) = 𝑓(𝑥(𝑡)). Then, the error dynamics is given by

̇𝑒
𝑖
(𝑡) = 𝑔 (𝑒

𝑖
(𝑡)) + 𝑐

10

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑒
𝑗
(𝑡)

+ (𝑐
1
(𝑡) − 𝑐

10
)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑒
𝑗
(𝑡)

+ 𝑐
20

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

+ (𝑐
2
(𝑡) − 𝑐

20
)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝑢

𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(4)

where 𝑔(𝑒
𝑖
(𝑡)) = 𝑓(𝑥

𝑖
(𝑡)) − 𝑓(𝑠(𝑡)) = [𝑓

1
(𝑒
𝑖1
(𝑡)) 𝑓

2
(𝑒
𝑖2
(𝑡))

⋅ ⋅ ⋅ 𝑓
𝑛
(𝑒
𝑖𝑛
(𝑡))]
𝑇.

The control signal is assumed to be generalized by using
a zero-order-hold (ZOH) function with a sequence of hold
times 0 = 𝑡

0
< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑘

< ⋅ ⋅ ⋅ . Therefore, the state
feedback controller takes the following form:

𝑢
𝑖
= 𝐾
𝑖
𝑒
𝑖
(𝑡
𝑘
) = 𝐾
𝑖
(𝑥
𝑖
(𝑡
𝑘
) − 𝑠 (𝑡

𝑘
)) , 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
,

𝑖 = 1, 2, . . . , 𝑁,

(5)

where 𝐾
𝑖
is the feedback gain matrix to be determined

and 𝑒
𝑖
(𝑡
𝑘
) is the discrete measurement of 𝑒

𝑖
(𝑡) at sampling

instant 𝑡
𝑘
. In this paper, the sampling is not required to

be periodic, and the only assumption is that the distance
between any two consecutive sampling instants is less than
a given bound. It is assumed that 𝑡

𝑘+1
− 𝑡
𝑘
= ℎ
𝑘
≤ 𝑝 for any

integer 𝑘 ≥ 0, where 𝑝 > 0 represents the largest sampling
interval.

By substituting (5) into (4), we obtain

̇𝑒
𝑖
(𝑡) = 𝑔 (𝑒

𝑖
(𝑡)) + 𝑐

10

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑒
𝑗
(𝑡)

+ (𝑐
1
(𝑡) − 𝑐

10
)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐷𝑒
𝑗
(𝑡)

+ 𝑐
20

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏 (𝑡))

+ (𝑐
2
(𝑡) − 𝑐

20
)

𝑁

∑

𝑗=1

𝐺
𝑖𝑗
𝐴𝑒
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝐾

𝑖
𝑒
𝑖
(𝑡
𝑘
) ,

𝑖 = 1, 2, . . . , 𝑁.

(6)
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Furthermore, by using the Kronecker product, system (6)
can be rewritten as

̇𝑒 (𝑡) = 𝑔 (𝑒 (𝑡)) + 𝑐
10

(𝐺 ⊗ 𝐷) 𝑒 (𝑡)

+ (𝑐
1
(𝑡) − 𝑐

10
) (𝐺 ⊗ 𝐷) 𝑒 (𝑡)

+ 𝑐
20

(𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏 (𝑡))

+ (𝑐
2
(𝑡) − 𝑐

20
) (𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝐾𝑒 (𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑁,

(7)

where 𝑒(𝑡) = [𝑒
𝑇

1
(𝑡) 𝑒
𝑇

2
(𝑡) ⋅ ⋅ ⋅ 𝑒

𝑇

𝑁
(𝑡)]
𝑇

, 𝑔(𝑒(𝑡)) =

[𝑔
𝑇

(𝑒
1
(𝑡)) 𝑔

𝑇

(𝑒
2
(𝑡)) ⋅ ⋅ ⋅ 𝑔

𝑇

(𝑒
𝑛
(𝑡))]
𝑇

, and 𝐾 = diag{𝐾
1
, 𝐾
2
,

. . . , 𝐾
𝑁
}.

To proceed further, the following definition and useful
lemmas are needed.

Definition 5. The coupled complex dynamical network (1)
is said to be globally synchronized in mean square sense if
lim
𝑡→∞

𝐸{‖𝑒
𝑖
(𝑡)‖
2

} = 0, 𝑖 = 1, 2, . . . , 𝑁, holds for any initial
values.

Lemma 6 (extended Wirtinger inequality [22]). Let 𝑧(𝑡) ∈

𝑊[𝑎, 𝑏) and 𝑧(𝑎) = 0. Then for any matrix 𝑅 > 0, the
following inequality holds:

∫

𝑏

𝑎

𝑧
𝑇

(𝛼) 𝑅𝑧 (𝛼) 𝑑𝛼 ≤
4(𝑏 − 𝑎)

2

𝜋2
∫

𝑏

𝑎

𝑧̇
𝑇

(𝛼) 𝑅𝑧̇ (𝛼) 𝑑𝛼. (8)

Lemma 7 (reciprocally convex approach [30]). Let
𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
: 𝑅
𝑚

󳨃→ 𝑅 have positive values in an open
subset 𝐷 of 𝑅𝑚. Then, the reciprocally convex combination
of 𝑓
𝑖
over𝐷 satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑

𝑖

𝛼𝑖=1}

∑

𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max
𝑔𝑖,𝑗(𝑡)

∑

𝑖 ̸= 𝑗

𝑔
𝑖,𝑗

(𝑡)
(9)

subject to

{𝑔
𝑖,𝑗

: 𝑅
𝑚

󳨃󳨀→ 𝑅, 𝑔
𝑗,𝑖

(𝑡) ≜ 𝑔
𝑖,𝑗

(𝑡) , [

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑗,𝑖

(𝑡) 𝑓
𝑗
(𝑡)

] ≥ 0} .

(10)

The aim of this paper is to design a set of sampled-
data controllers (5) with sampling period as big as possible
to ensure synchronizing the complex network (1) in mean
square sense. By some transformation, the synchronization
problem of the delayed complex network (1) can be equiva-
lently converted into the mean square asymptotical stability
problem of error system (7). Therefore, we are interested in
two main issues in our paper, one is to find some stability
conditions for error system (7) in mean square for given 𝐾

𝑖
,

and the other is to derive the design method of sampled-data
controllers.

3. Main Results

In this section, by considering the characteristic of sampled-
data system, we first give a delay-dependent condition to

ensure error system (7) to be globally stable in mean square
sense. Then, based on the derived condition, the design
method of the sampled-data controllers is proposed. Before
presenting the main results, for the sake of presentation
simplicity, we denote

𝑈 =
(𝐼
𝑁

⊗ 𝑈)
𝑇

(𝐼
𝑁

⊗ 𝑉)

2
+

(𝐼
𝑁

⊗ 𝑉)
𝑇

(𝐼
𝑁

⊗ 𝑈)

2
,

𝑉 = −
(𝐼
𝑁

⊗ 𝑈)
𝑇

+ (𝐼
𝑁

⊗ 𝑉)
𝑇

2
.

(11)

Theorem 8. Under Assumptions 3-4, for given controller gain
matrices 𝐾

𝑖
, the error system (7) is globally asymptotically

stable in mean square sense if there exist matrices 𝑃 > 0, 𝑄
1
>

0, 𝑄
2

> 0, 𝑄
3

> 0, 𝑍
1

> 0, 𝑍
2

> 0, 𝑈 > 0, 𝑅 > 0, 𝑊 >

0, 𝑆
1
, 𝑆
2
, 𝑁, and a scalar 𝜀 > 0 such that the following LMIs

are satisfied:

[

[

Σ − 𝑝𝑅 Γ
1

𝑝𝑁

∗ −𝑋
1

0

∗ ∗ −𝑝𝑈

]

]

< 0, (12)

[
Σ + 𝑝𝑅 Γ

2

∗ −𝑋
2

] < 0, (13)

[
𝑍
𝑖

𝑆
𝑖

∗ 𝑍
𝑖

] ≥ 0, 𝑖 = 1, 2, (14)

where

Σ =

[
[
[
[
[
[
[

[

Σ
11

Σ
12

Σ
13

Σ
14

Σ
15

Σ
16

∗ Σ
22

Σ
23

−𝑁
4

−𝑁
5

−𝑁
6

∗ ∗ Σ
33

0 0 0

∗ ∗ ∗ Σ
44

Σ
45

0

∗ ∗ ∗ ∗ Σ
55

0

∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]

]

,

Σ
11

= 𝑐
10
𝑃 (𝐺 ⊗ 𝐷) + 𝑐

10
(𝐺 ⊗ 𝐷)

𝑇

𝑃

+ 𝑄
1
+ 𝑄
2
+ 𝑄
3
−

1

4
𝜋
2

𝑊 − 𝜀𝑈

− 𝑍
1
− 𝑍
2
+ 𝑁
1
+ 𝑁
𝑇

1
,

Σ
12

= 𝑃𝐾 +
1

4
𝜋
2

𝑊 + 𝑍
1
− 𝑆
1
− 𝑁
𝑇

1
+ 𝑁
2
,

Σ
13

= 𝑆
1
+ 𝑁
3
,

Σ
14

= 𝑃 (𝐺 ⊗ 𝐴) + 𝑍
2
− 𝑆
2
+ 𝑁
4
,

Σ
15

= 𝑆
2
+ 𝑁
5
,

Σ
16

= 𝑃 − 𝜀𝑉 + 𝑁
6
,

Σ
22

= − 2𝑍
1
−

1

4
𝜋
2

𝑊 + 𝑆
1
+ 𝑆
𝑇

1
− 𝑁
2
− 𝑁
𝑇

2
,

Σ
23

= 𝑍
1
− 𝑆
1
− 𝑁
3
,

Σ
33

= − 𝑄
1
− 𝑍
1
,
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Σ
44

= − (1 − 𝜇)𝑄
3
− 2𝑍
2
+ 𝑆
2
+ 𝑆
𝑇

2
,

Σ
45

= 𝑍
2
− 𝑆
2
,

Σ
55

= − 𝑄
2
− 𝑍
2
,

Γ
1
= [Ω

𝑇

1
𝛿
1
Ω
𝑇

2
𝛿
2
Ω
𝑇

3
] ,

Γ
2
= [Ω̂

𝑇

1
𝛿
1
Ω̂
𝑇

2
𝛿
2
Ω̂
𝑇

3
] ,

Ω
1
= [𝑐
10
𝑍 (𝐺 ⊗ 𝐷) 𝑍𝐾 0 𝑐

20
𝑍 (𝐺 ⊗ 𝐴) 0 𝑍] ,

Ω
2
= [𝑍 (𝐺 ⊗ 𝐷) 0 0 0 0 0] ,

Ω
2
= [0 0 0 𝑍 (𝐺 ⊗ 𝐴) 0 0] ,

Ω̂
1
= [𝑐
10

(𝑍 + 𝑝𝑈) (𝐺 ⊗ 𝐷) (𝑍 + 𝑝𝑈)𝐾 0

× 𝑐
20

(𝑍 + 𝑝𝑈) (𝐺 ⊗ 𝐴) 0 (𝑍 + 𝑝𝑈)] ,

Ω̂
2
= [(𝑍 + 𝑝𝑈) (𝐺 ⊗ 𝐷) 0 0 0 0 0] ,

Ω̂
3
= [0 0 0 (𝑍 + 𝑝𝑈) (𝐺 ⊗ 𝐴) 0 0] ,

𝑋
1
= diag {−𝑍, −𝑍, −𝑍} ,

𝑋
2
= diag {−𝑍 − 𝑝𝑈, −𝑍 − 𝑝𝑈, −𝑍 − 𝑝𝑈} ,

𝑍 = 𝑝
2

𝑍
1
+ ℎ
2

𝑍
2
+ 𝑝
2

𝑊,

𝑅 = diag {0, 𝑅, 0, 0, 0, 0} .
(15)

Proof. Consider the following Lyapunov functional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (16)

where 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) and

𝑉
1
(𝑡) = 𝑒

𝑇

(𝑡) 𝑃𝑒 (𝑡) + ∫

𝑡

𝑡−𝑝

𝑒
𝑇

(𝑠) 𝑄
1
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

𝑒
𝑇

(𝑠) 𝑄
2
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑇

(𝑠) 𝑄
3
𝑒 (𝑠) 𝑑𝑠,

𝑉
2
(𝑡) = ∫

0

−𝑝

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠𝑑𝜃

+ ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠𝑑𝜃,

𝑉
3
(𝑡) = (𝑝 − (𝑡 − 𝑡

𝑘
)) ∫

𝑡

𝑡𝑘

̇𝑒
𝑇

(𝑠) 𝑈 ̇𝑒 (𝑠) 𝑑𝑠

+ (𝑝 − (𝑡 − 𝑡
𝑘
)) (𝑡 − 𝑡

𝑘
) 𝑒
𝑇

(𝑡
𝑘
) 𝑅𝑒 (𝑡

𝑘
) ,

𝑉
4
(𝑡) = 𝑝

2

∫

𝑡

𝑡𝑘

̇𝑒
𝑇

(𝑠)𝑊 ̇𝑒 (𝑠) 𝑑𝑠

−
𝜋
2

4
∫

𝑡

𝑡𝑘

[𝑥 (𝑠) − 𝑥 (𝑡
𝑘
)]
𝑇

𝑊[𝑥 (𝑠) − 𝑥 (𝑡
𝑘
)] 𝑑𝑠.

(17)

It is clear that at any 𝑡 > 0 except the sampling
instants 𝑡

𝑘
, 𝑉
3
(𝑡) is continuous and nonnegative,

and right after the jump instants 𝑡
𝑘
, 𝑉
3
(𝑡) becomes

zero; that is, 𝑉
3
(𝑡
−

𝑘
) ≥ 0, 𝑉

3
(𝑡
+

𝑘
) = 0. According to Lemma 7,

we can easily find that 𝑉
4
(𝑡) ≥ 0 and 𝑉

4
(𝑡) vanishes at 𝑡 = 𝑡

𝑘
.

Thus, we have 𝑉(𝑡
−

𝑘
) ≥ 𝑉(𝑡

+

𝑘
).

Define the infinitesimal operator 𝐿 of 𝑉(𝑡) as follows:

𝐿𝑉 (𝑡) = lim
Δ→0+

Δ
−1

[𝐸 {𝑉 (𝑡 + Δ) | 𝑒 (𝑡)} − 𝑉 (𝑡)] . (18)

Taking the derivative of (16) along the solution of system
(7) for ∀𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

), it yields

𝐿𝑉
1
(𝑡) ≤ 2𝑒

𝑇

(𝑡)

× 𝑃 (𝑔 (𝑒 (𝑡)) + 𝑐
10

(𝐺 ⊗ 𝐷) 𝑒 (𝑡)

+ 𝑐
20

(𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏 (𝑡))

+𝐾𝑒 (𝑡
𝑘
)) + 𝑒
𝑇

(𝑡) 𝑄
1
𝑒 (𝑡)

− 𝑒
𝑇

(𝑡 − 𝑝)𝑄
1
𝑒 (𝑡 − 𝑝)

+ 𝑒
𝑇

(𝑡) 𝑄
2
𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − ℎ)𝑄
2
𝑒 (𝑡 − ℎ)

+ 𝑒
𝑇

(𝑡) 𝑄
3
𝑒 (𝑡)

− (1 − 𝜇) 𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
3
𝑒 (𝑡 − 𝜏 (𝑡)) ,

𝐿𝑉
2
(𝑡) = ̇𝑒

𝑇

(𝑡) 𝑍 ̇𝑒 (𝑡) − ∫

𝑡

𝑡−𝑝

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠

− ℎ∫

𝑡

𝑡−ℎ

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠,

𝐿𝑉
3
(𝑡) = (𝑝 − (𝑡 − 𝑡

𝑘
)) ̇𝑒
𝑇

(𝑡) 𝑈 ̇𝑒 (𝑡)

− ∫

𝑡

𝑡𝑘

̇𝑒
𝑇

(𝑠) 𝑈 ̇𝑒 (𝑠) 𝑑𝑠

+ (𝑝 − (𝑡 − 𝑡
𝑘
)) 𝑒
𝑇

(𝑡
𝑘
) 𝑅𝑒 (𝑡

𝑘
)

− (𝑡 − 𝑡
𝑘
) 𝑒
𝑇

(𝑡
𝑘
) 𝑅𝑒 (𝑡

𝑘
) ,

𝐿𝑉
4
(𝑡) = 𝑝

2

̇𝑒
𝑇

(𝑡)𝑊 ̇𝑒 (𝑡)

−
𝜋
2

4
[𝑥 (𝑡) − 𝑥 (𝑡

𝑘
)]
𝑇

𝑊[𝑥 (𝑡) − 𝑥 (𝑡
𝑘
)] .

(19)
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If (14) is satisfied, then by utilizing Lemma 6, we have

− 𝑝∫

𝑡

𝑡−𝑝

̇𝑒
𝑇

(𝑠) 𝑍
1

̇𝑒 (𝑠) 𝑑𝑠

≤ −[
𝑒 (𝑡) − 𝑒 (𝑡

𝑘
)

𝑒 (𝑡
𝑘
) − 𝑒 (𝑡 − 𝑝)

]

𝑇

[
𝑍
1

𝑆
1

∗ 𝑍
1

]

× [
𝑒 (𝑡) − 𝑒 (𝑡

𝑘
)

𝑒 (𝑡
𝑘
) − 𝑒 (𝑡 − 𝑝)

] ,

− ℎ∫

𝑡

𝑡−ℎ

̇𝑒
𝑇

(𝑠) 𝑍
2

̇𝑒 (𝑠) 𝑑𝑠

≤ −[
𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡))

𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − ℎ)
]

𝑇

[
𝑍
2

𝑆
2

∗ 𝑍
2

]

× [
𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡))

𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − ℎ)
] .

(20)

On the other hand, the following inequality is true for any
matrix𝑁 with appropriate dimensions:

− ∫

𝑡

𝑡𝑘

̇𝑒
𝑇

(𝑠) 𝑈 ̇𝑒 (𝑠) 𝑑𝑠

≤ (𝑡 − 𝑡
𝑘
) 𝜉
𝑇

(𝑡)𝑁𝑈
−1

𝑁
𝑇

𝜉 (𝑡)

+ 2𝜉
𝑇

(𝑡)𝑁 (𝑒 (𝑡) − 𝑒 (𝑡
𝑘
)) ,

(21)

where
𝜉 (𝑡)

= [(𝑡) 𝑒
𝑇

(𝑡
𝑘
) 𝑒
𝑇

(𝑡 − 𝑝) 𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑒
𝑇

(𝑡 − ℎ) 𝑔
𝑇

(𝑒 (𝑡))]
𝑇

.

(22)

Let Ω = Ω
1

+ (𝑐
1
(𝑡) − 𝑐

10
)Ω
2

+ (𝑐
2
(𝑡) − 𝑐

20
)Ω
3
.

Because 𝑐
1
(𝑡) and 𝑐

2
(𝑡) are mutually independent random

variables, it can be obtained from (7) that

𝐸 { ̇𝑒
𝑇

(𝑡) 𝑍 ̇𝑒 (𝑡)} = 𝐸 {𝜉
𝑇

(𝑡) Ω
𝑇

𝑍Ω𝜉 (𝑡)} = 𝜉
𝑇

(𝑡) Ω
1
𝜉 (𝑡) ,

𝐸 { ̇𝑒
𝑇

(𝑡) 𝑈 ̇𝑒 (𝑡)} = 𝐸 {𝜉
𝑇

(𝑡) Ω
𝑇

𝑈Ω𝜉 (𝑡)} = 𝜉
𝑇

(𝑡) Ω
2
𝜉 (𝑡) ,

(23)

where Ω
1

= Ω
𝑇

1
𝑍Ω
1

+ 𝛿
2

1
Ω
𝑇

2
𝑍Ω
2

+ 𝛿
2

2
Ω
𝑇

3
𝑍Ω
3
, Ω
2

=

Ω
𝑇

1
𝑍
3
Ω
1
+ 𝛿
2

1
Ω
𝑇

2
𝑍
3
Ω
2
+ 𝛿
2

2
Ω
𝑇

3
𝑍
3
Ω
3
.

In addition, based on Assumption 3, for any 𝜀 > 0, we
have

𝑦 (𝑡) = 𝜀[
𝑒 (𝑡)

𝑔 (𝑒 (𝑡))
]

𝑇

[
𝑈 𝑉

∗ 𝐼
] [

𝑒 (𝑡)

𝑔 (𝑒 (𝑡))
] ≤ 0. (24)

Combining (18)–(24) and takingmathematical exceptions on
both sides of (16) give that

𝐸 {𝐿𝑉 (𝑡)} ≤ 𝜉
𝑇

(𝑡) Φ𝜉 (𝑡) , (25)

where Φ = Σ+Ω
1
+(𝑝−(𝑡−𝑡

𝑘
))(Ω
2
+𝑅)+(𝑡−𝑡

𝑘
)(𝑁𝑈

−1

𝑁
𝑇

−𝑅).

Noting that Φ is a convex combination of 𝑡 − 𝑡
𝑘
and 𝑝 −

(𝑡 − 𝑡
𝑘
), so Φ < 0 if and only if

Σ + Ω
1
+ 𝑝𝑁𝑈

−1

𝑁
𝑇

− 𝑝𝑅 < 0,

Σ + Ω
1
+ 𝑝 (Ω

2
+ 𝑅) < 0.

(26)

From the Schur complement, (12) and (13) can ensure Φ <

0. This means that 𝐸{𝐿𝑉(𝑡)} ≤ −𝜌‖𝑒(𝑡)‖
2 for a sufficiently

small 𝜌 > 0. We can conclude that system (7) is asymptot-
ically stable in the mean square sense. This completes the
proof.

Remark 9. Inspired by [20, 22], the characteristic
of sampling instants has been considered in the
construction of the Lyapunov functional. The discontinuous
terms 𝑉

3
(𝑡) and 𝑉

4
(𝑡) can make full use of the sawtooth

structure characteristic of sampling instants and play the
key role in the reduction of conservatism. In the process of
taking the derivative of 𝑉(𝑡), reciprocally convex approach
and convex combination technique were employed, which
were beneficial to lead less conservativeness. Moreover, the
derived synchronization criterion is formulated in terms of
LMIs that can be easily verified by using available software.

Next, wewill consider how to design the desired sampled-
data controllers. Based on Theorem 8, a set of sampled-data
controllers are presented as follows.

Theorem 10. Under Assumptions 3-4, the complex dynamical
networks (1) with random coupling strength is globally asymp-
totically synchronized inmean square by the sampled-data con-
trollers (5) if there exist matrices 𝑃 = diag{𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑁
} >

0, 𝑄
1

> 0, 𝑄
2

> 0, 𝑄
3

> 0, 𝑍
1

> 0, 𝑍
2

> 0, 𝑈 >

0, 𝑅 > 0, 𝑊 > 0, 𝑆
1
, 𝑆
2
, 𝑁, 𝑋 = diag{𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑁
},

and a scalar 𝜀 > 0such that (14) and the following LMIs are
satisfied:

[

[

Σ̂ − 𝑝𝑅 Υ 𝑝𝑁

∗ −𝑋
1

0

∗ ∗ −𝑝𝑈

]

]

< 0,

[
Σ̂ + 𝑝𝑅 Υ

∗ −𝑋
2

] < 0,

(27)

where

𝑋
1
= diag {−2𝑃 + 𝑍, −2𝑃 + 𝑍, −2𝑃 + 𝑍} ,

𝑋
2
= diag {−2𝑃 + 𝑍 + 𝑝𝑈, −2𝑃

+𝑍 + 𝑝𝑈, −2𝑃 + 𝑍 + 𝑝𝑈} ,

Υ = [Υ
𝑇

1
𝛿
1
Υ
𝑇

2
𝛿
2
Υ
𝑇

3
] ,

Υ
1
= [𝑐
10
𝑃 (𝐺 ⊗ 𝐷) 𝑋 0 𝑐

20
𝑃 (𝐺 ⊗ 𝐴) 0 𝑃] ,

Υ
2
= [𝑃 (𝐺 ⊗ 𝐷) 0 0 0 0 0] ,
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Υ
3
= [0 0 0 𝑃 (𝐺 ⊗ 𝐴) 0 0] ,

Σ̂ =

[
[
[
[
[
[
[

[

Σ
11

Σ̂
12

Σ
13

Σ
14

Σ
15

Σ
16

∗ Σ
22

Σ
23

−𝑁
4

−𝑁
5

−𝑁
6

∗ ∗ Σ
33

0 0 0

∗ ∗ ∗ Σ
44

Σ
45

0

∗ ∗ ∗ ∗ Σ
55

0

∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]

]

,

Σ̂
12

= 𝑋 +
1

4
𝜋
2

𝑊 + 𝑍
1
− 𝑆
1
− 𝑁
𝑇

1
+ 𝑁
2
,

(28)

and the other terms follow the same definitions as those in
Theorem 8. Moreover, the desired controllers gain matrices are
given by

𝐾
𝑖
= 𝑃
𝑖

−1

𝑋
𝑖
, 𝑖 = 1, 2, . . . , 𝑁. (29)

Proof . Define matrices 𝑋 = 𝑃𝐾, 𝐽
1

=

diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑃𝑍−1, 𝑃𝑍−1, 𝑃𝑍−1}, and 𝐽
2

=

diag{𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝑃(𝑍+𝑝𝑈)
−1

, 𝑃(𝑍+𝑝𝑈)
−1

, 𝑃(𝑍+𝑝𝑈)
−1

}.
Note that −𝑃𝑍

−1

𝑃 ≤ −2𝑃 + 𝑍 and − 𝑃(𝑍 + 𝑝𝑈)
−1

𝑃 ≤

−2𝑃 + 𝑍 + 𝑝𝑈 are true for 𝑍 > 0 and 𝑈 > 0. Then,
performing a congruence transformation of 𝐽

1
to (12) and

performing a congruence transformation of 𝐽
2

to (13),
respectively, and considering the relation 𝑋 = 𝑃𝐾, we
can obtain that if (27) holds, then (12) and (13) hold. This
completes the proof.

If 𝑐
1
(𝑡) = 𝑐

10
and 𝑐
2
(𝑡) = 𝑐

20
, the random coupling

strengths reduce to constant, and the error system (7) can be
rewritten as following simple form:

̇𝑒 (𝑡) = 𝑔 (𝑒 (𝑡)) + 𝑐
10

(𝐺 ⊗ 𝐷) 𝑒 (𝑡)

+ 𝑐
20

(𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏 (𝑡)) + 𝐾𝑒 (𝑡
𝑘
) ,

𝑖 = 1, 2, . . . , 𝑁.

(30)

Based on Theorems 8 and 10, by eliminating 𝛿
1
and 𝛿

2
,

we can easily get the following results.

Corollary 11. Under Assumption 3, for given controller
gain matrices 𝐾

𝑖
, the error system (30) with sampled-data

controllers 𝐾
𝑖
can achieve synchronization, if there exist

matrices 𝑃 > 0, 𝑄
1

> 0, 𝑄
2

> 0, 𝑄
3

> 0, 𝑍
1

> 0, 𝑍
2

>

0, 𝑈 > 0, 𝑅 > 0, 𝑊 > 0, 𝑆
1
, 𝑆
2
, 𝑁, and a scalar 𝜀 > 0 such

that (10) and the following LMIs are satisfied:

[

[

Σ − 𝑝𝑅 Ω
𝑇

1
𝑝𝑁

∗ −𝑍 0

∗ ∗ −𝑝𝑈

]

]

< 0,

[
Σ + 𝑝𝑅 Ω̂

𝑇

1

∗ −𝑍 − 𝑝𝑈
] < 0,

(31)

where the other terms follow the same definitions as those in
Theorem 8.

Corollary 12. Under the Assumption 3, the complex dynam-
ical network (1) with random coupling strengths is glob-
ally asymptotically synchronized in mean square by the

sampled-data controllers (5) if there exist matrices 𝑃 =

diag{𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑁
} > 0, 𝑄

1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑍

1
>

0, 𝑍
2

> 0, 𝑈 > 0, 𝑅 > 0, 𝑊 > 0, 𝑆
1
, 𝑆
2
, 𝑁, 𝑋 =

diag{𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
}, and a scalar 𝜀 > 0 such that (10) and

the following LMIs are satisfied:

[

[

Σ̂ − 𝑝𝑅 Υ
𝑇

1
𝑝𝑁

∗ −2𝑃 + 𝑍 0

∗ ∗ −𝑝𝑈

]

]

< 0,

[
Σ̂ + 𝑝𝑅 Υ

1

∗ −2𝑃 + 𝑍 + 𝑝𝑈
] < 0,

(32)

where the other terms follow the same definitions as those in
Theorem 10.

Remark 13. Since the characteristic of sampled-data control
system is fully considered, the conservatism of Corollary 12
is much less than those not taking delay characteristic into
account [27, 28], which will be verified by numerical example
in next section.

Remark 14. It is worth pointing out that the main result here
can be extended to some more general complex dynamical
networks with probabilistic time-varying coupling delay [18]
or distributed coupling delay. Owing to the space limit, it is
omitted here.

4. Numerical Examples

In this section, two numerical examples are given to show the
validity of the proposed results.

Example 1. Consider complex network model (1) with three
nodes. The out-coupling matrix is assumed to be 𝐺 =

(𝐺
𝑖𝑗
)
𝑁×𝑁

with

𝐺 = [

[

−1 0 1

0 −1 1

1 1 −2

]

]

. (33)

The time-varying coupling delay is chosen as 𝜏(𝑡) =

0.2 + 0.05 sin(10𝑡). A straight-forward calculation gives ℎ =

0.25 and 𝜇 = 0.5. The nonlinear function 𝑓 is taken as

𝑓 (𝑥
𝑖
(𝑡)) = [

−0.5𝑥
𝑖1
+ tanh (0.2𝑥

𝑖2
) + 0.2𝑥

𝑖2

0.95𝑥
𝑖2
− tanh (0.75𝑥

𝑖2
)

] . (34)

It can be found that 𝑓 satisfies (2) with

𝑈 = [
−0.5 0.2

0 0.95
] , 𝑉 = [

−0.3 0.2

0 0.2
] . (35)

The inner-coupling matrices are given as 𝐷 = 0 and

𝐴 = [
1 0

0 1
] . (36)

Let the coupling strength 𝑐
2
(𝑡) be a constant; that is,𝑐

2
(𝑡) = 𝑐.

For different 𝑐, Table 1 lists the maximum sampling interval
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Table 1: Maximum sampling interval p for different coupling
strength c.

𝑐

0.5 0.75
[27] 0.5409 0.1653
[28] 0.5573 0.2277
[29] 0.9016 0.8957
Corollary 12 0.9795 0.9121

𝑝 obtained by Corollary 12 and [27–29]. From this table, we
can see that our result has less conservatism than the existing
ones.

Furthermore, choosing 𝑐 = 0.5 and applying MATLAB
LMI toolbox to solve the LMIs in Corollary 12, the gain
matrices of the desired controllers can be obtained as follows:

𝐾
1
= [

−0.6578 −0.0978

−0.0172 −1.2316
] ,

𝐾
2
= [

−0.6578 −0.0978

−0.0172 −1.2316
] ,

𝐾
3
= [

−0.4543 −0.1223

−0.0185 −1.1988
] .

(37)

In the numerical simulation, assume that the initial
values are 𝑥

1
(0) = [3 5]

𝑇, 𝑥
2
(0) = [−2 −1]

𝑇, 𝑥
3
(0) =

[2 1]
𝑇

, and 𝑠(0) = [−5 3]
𝑇. The state trajectories of the

synchronization error and the control inputs 𝑢
𝑖
(𝑡) are given

in Figures 1 and 2, respectively. Clearly, the synchronization
errors are globally asymptotically stable inmean square under
the proposed sampled-data scheme.

Example 2. The isolated node of the dynamical networks and
the coupling delay are the same as Example 1. The inner-
coupling matrices are given as

𝐷 = 𝐴 = [
0.1 0

0 0.1
] , (38)

and the outer-coupling matrix

𝐺 =

[
[
[
[
[
[
[

[

−3 1 0 2 0 0

0 −2 0 1 1 0

1 0 −3 1 0 1

0 2 0 −2 0 0

1 1 1 1 −4 0

1 1 0 0 1 −3

]
]
]
]
]
]
]

]

. (39)

We assume that 𝑐
1
(𝑡) and 𝑐

2
(𝑡) are two mutually inde-

pendent random variables satisfying normal distribution
with 𝑐

10
= 5, 𝑐

20
= 1, 𝛿

1
= 0.5, and 𝛿

2
= 0.15. According

to the property of normal distribution, almost all the values
of 𝑐
𝑖
(𝑡) satisfy 𝑐

1
(𝑡) ∈ (𝑐

𝑖0
− 3𝛿
𝑖
, 𝑐
𝑖0

+ 3𝛿
𝑖
); that is 𝑐

1
(𝑡) ∈

(3.5, 6.5) and 𝑐
2
(𝑡) ∈ (1.55, 2.45). Figures 3 and 4 depict the

random coupling strengths 𝑐
1
(𝑡) and 𝑐

2
(𝑡), respectively.
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Figure 1: Synchronization error states.
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u31(t)

u32(t)

Figure 2: Sampled-data control inputs.

Let 𝑝 = 0.05; based on Theorem 10, we can get the
corresponding sampled-data controller gain matrices

𝐾
1
= [

−0.1314 −0.1212

−0.0709 −1.1841
] ,

𝐾
2
= [

−0.4319 −0.1243

−0.0753 −1.3982
] ,

𝐾
3
= [

0.1045 −0.1144

−0.0747 −0.9176
] ,
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10.80.60.40.20

7

6.5

6
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Figure 3: Random coupling strength 𝑐
1
(t).
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Figure 4: Random coupling strength 𝑐
2
(t).

𝐾
4
= [

−0.5565 −0.1190

−0.0665 −1.5593
] ,

𝐾
5
= [

0.5769 −0.1184

−0.0688 −0.4136
] ,

𝐾
6
= [

0.1801 −0.1154

−0.0846 −0.8069
] .

(40)

In the numerical simulation, assume that the initial val-
ues are 𝑥

1
(0) = [3 2]

𝑇, 𝑥
2
(0) = [−1 −3]

𝑇, 𝑥
3
(0) =

[2 4]
𝑇, 𝑥
4
(0) = [5 −1]

𝑇, 𝑥
5
(0) = [−4 3]

𝑇, 𝑥
6
(0) =

[4 1]
𝑇

, and 𝑠(0) = [3 −4]
𝑇. The state trajectories of the

synchronization error and the control inputs 𝑢
𝑖
(𝑡) are given

in Figures 5 and 6, respectively.
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Figure 5: Synchronization error states.
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Figure 6: Sampled-data control inputs.

5. Conclusions

In this paper, the sampled-data synchronization problem
has been considered for a kind of complex dynamical net-
works with time-varying coupling delay and random cou-
pling strengths. The sampling period and random coupling
strengths considered here are assumed to be time varying
but bounded and to obey normal distribution, respectively.
By capturing the characteristic of sampled-data system, a
novel discontinuous Lyapunov functional is defined. By
using reciprocally convex approach and convex combination
technique, a mean square synchronization criterion is pro-
posed based on LMIs. The corresponding desired sampled-
data controllers are designed. Numerical examples show the
effectiveness of the proposed result.
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