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This paper describes a comparison of two Montgomery modular multiplication architectures: a systolic and a multiplexed. Both
implementations target FPGA devices. The modular multiplication is employed in modular exponentiation processes, which are
the most important operations of some public-key cryptographic algorithms, including the most popular of them, the RSA. The
proposed systolic architecture presents a high-radix implementation with a one-dimensional array of Processing Elements. The
multiplexed implementation is a new alternative and is composed of multiplier blocks in parallel with the new simplified Processing
Elements, and it provides a pipelined operation mode. We compare the time × area efficiency for both architectures as well as an
RSA application. The systolic implementation can run the 1024 bits RSA decryption process in just 3.23 ms, and the multiplexed
architecture executes the same operation in 4.36 ms, but the second approach saves up to 28% of logical resources. These results
are competitive with the state-of-the-art performance.

1. Introduction

Modular multiplication is widely employed in public-key
cryptography, especially where modular exponentiation is
essential. For instance, the most commonly used asymmetric
cryptographic algorithm is the RSA [1]. The RSA security
depends on the difficulty of factoring large numbers. Here,
large numbers mean prime numbers of up to 4096 bits, used
as cryptographic keys.

In this cryptosystem the main operation is the modular
exponentiation using the public and private keys, the first
to encrypt and the second to decrypt messages. So, the
performance of the whole system depends on the efficiency
of modular arithmetic implementations.

As modular operations are time consuming, it is com-
mon to use hardware devices to perform both the modular
multiplication and the exponentiation. Among the hardware
approaches, the increased use of reconfigurable devices to

implement cryptographic operations, especially the FPGAs,
is evident.

One of the most suitable methods for performing
modular multiplications in hardware is the Montgomery
multiplication [2]. This algorithm is fast and power efficient
in hardware implementations. Assuming the modular mul-
tiplication as A · B mod N , the Montgomery multiplication
avoids the division by N by replacing the division by
right shifts. Also, this method allows the use of multi-
precision arithmetic, which is useful for employing high-
radix operations. High-radix operations in turn make it
easier to develop modular multiplication architectures.

Aiming to implement RSA systems based on hardware,
many authors proposed Montgomery multiplications in
FPGAs [3–9]. Fully systolic architectures designed to speed
up the modular multiplication have been presented. These
architectures offer a Processing Elements (PEs) array where
each PE performs arithmetic additions and multiplications
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Require: N =∑m−1
i=0 (2k)ini, ni ∈ {0, 1, . . . , 2k − 1}

B =∑m−1
i=0 (2k)ibi , bi ∈ {0, 1, . . . , 2k − 1}

A =∑m−1
i=0 (2k)iai, ai ∈ {0, 1, . . . , 2k − 1}, R = (2k)m

A,B < 2N ; N < R = 2km; N ′ = −N−1 mod (2k).
return Si+1 = ABR−1 mod N
S0 = 0
For i = 0 to m− 1 do

qi = ((S0 + ai × b0)N ′) mod (2k)
Si+1 = (Si + qi ×N + ai × B)/2k

End for

Algorithm 1: Montgomery modular multiplication.

in a multiprecision context with carry propagation [10].
Depending on the word size (or radix) used, the architecture
can employ a high number of Processing Elements, conse-
quently increasing the needs of the logic elements (area) in
FPGA implementations.

As a new alternative in terms of implementation, the exe-
cution of additions and multiplications can be multiplexed
by a block positioned parallel to the Processing Elements.
This can be done by inserting multiplexed multipliers
in parallel with Processing Elements. Forcing a pipelined
operation mode and using a high-radix architecture (16 or
32 bits), the multiplexed multipliers ensure the high speed
performance provided by systolic architectures, with reduced
arithmetic and logic elements and also minimal carry signals
propagation.

This paper presents a trade-off between two proposed
modular multiplication architectures: a systolic and very
high-radix multiplexed implementation. Our approach uses
a radix-16 and radix-32 in both implementations to speed up
the processes and to match the resource usage of Virtex-4 and
Virtex-5 Xilinx FPGA Series [11]. The proposed architectures
show significant improvements compared to our previous
work [12]. Systolic architecture provides more simplified
Processing Elements in order to reduce the utilization
of FPGA resources. The multiplexed implementation is
arranged in arithmetic cores, which allow us to handle the
quantity of Processing Elements and multiplier blocks. Our
goal is to highlight that the small increase in the number
of clock cycles needed due to multiplexed multipliers made
up for the significant reduction in the use of logical and
architectural arithmetic.

This paper is organized as follows: Section 2 presents the
Montgomery modular multiplication algorithm. Section 3
discusses related state-of-the-art works. The proposed archi-
tectures are presented in Section 4. Finally, the results and
conclusion are presented in Sections 5 and 6, respectively.

2. Montgomery Modular Multiplication

The Montgomery Multiplication Algorithm is a method of
performing modular multiplication A · B mod N without
needing to divide by N . In cryptography, the Montgomery
Algorithm is very suitable for the hardware implementation
of modular multiplication, because it allows long integer

numbers to be represented in a numeric precision given by
a radix (generally a power of two).

The algorithm version used in this work is the original
one, with some preconditions. Algorithm 1 shows the mod-
ular multiplication with the notation proposed on [13], and
used for the remainder of this text.

The N ′ value is the modular inverse of N regarding the
N modulus, computed so that N · N ′ = 1 mod N . The final
result is placed on S, after m iterations, and is equal to A ·B ·
R−1 mod N , which must be corrected to retrieve the expected
result (A · B mod N). The correction is done by performing
an additional Montgomery multiplication with S and R2

mod N as parameters. It is interesting to highlight that this
correction is inexpensive during a modular exponentiation,
because it only needs to be made one time after the whole
exponentiation.

Since its publication in 1985 by Montgomery [2], the
Montgomery Algorithm has undergone many modifications
and improvements [14, 15]. One of those is particularly
interesting, because it avoids the final subtraction simply by
choosing the input data correctly. By limiting the operands
A and B to integers less than 2N and by defining 2N as less
than 2km, the final S is guaranteed to be less than N [15].
These pre-conditions are shown in Algorithm 1 and applied
to our architecture, as explained in Section 4.

3. Related Works

Tenca and Koç are widely referenced for their work on radix-
2 Montgomery Algorithm implementations. These authors
initially proposed architectures with improvements for the
radix-2 Montgomery Algorithm, like in [16]. Even though
the input operands are large numbers, radix-2 modular
multiplications avoid expensive multiplications, which are
visible on high-radix implementations (8 or more). Different
from the classic radix-2 Montgomery Algorithm [13], Tenca
and Koç’s modifications allow the scalable property for
modular multiplication architecture, that is, their proposed
Montgomery multiplier is able to work with any precision of
the input operands. In terms of hardware implementation,
there is a systolic array architecture composed of Processing
Elements and control blocks for managing the I/O words of
the architecture. Each Processing Element contains only a
few logic elements, providing a reduced area and high clock
frequency, when synthesized for FPGA or ASIC.

Based on the above work, in [4, 17] improvements are
presented to the Tenca and Koç proposition. The advantage
of these new approaches is concentrated in the Processing
Elements optimizations and, consequently, in the reduced
latency of the Montgomery modular multiplications by a
minimum factor of two, that is, the modular multiplication
is twice as fast than [16]. So, the main contributions are
in the modular multiplication speed improvement, and in
the reduced number of logical elements for the Processing
Elements. In [4], a radix-4 scalable Montgomery modular
multiplication architecture is proposed to enhance the speed.
Despite improvements in speed, these radix-2 and radix-4
architectures are still limited by the large number of clock
cycles required.
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Figure 1: Systolic Architecture.

Furthermore, in the context of high-radix implemen-
tations, a systolic architecture is presented in [3] which is
composed of Processing Elements able to provide modular
multiplication for a radix greater than 4. Despite its time
and area efficiency, this architecture requires preprocessing
before the modular multiplication execution. The authors
make use of the optimized Montgomery algorithm initially
proposed in [14], which presented a way to simplify the qi
quotient calculus, making the quotient determine a simple
truncation operation S mod 2k. However, as a consequence,
the input operands must meet the following limitations:
N ′ = −N−1 mod 2k = 1 and A,B < 2(N ′ mod 2k) · N ,
and the optimized Montgomery Algorithm will need three
additional iterations, because the B input operand is left
shifted by 2k and has to be corrected with these further
iterations.

To avoid preprocessing in a high-radix modular multi-
plication, [5] presents a fully systolic array architecture com-
posed of Processing elements containing internal multipliers
and adders. The Montgomery algorithm version used in
this implementation is also the optimized version proposed
in [14]. As an implementation in radix-16, the modular
multiplications take only 103 clock cycles, significantly less
than other architectures [3, 16, 17].

4. The Proposed Architectures

The proposed architectures for performing Montgomery
modular multiplication are detailed in this section. First,
the systolic architecture is described in detail as well as the
Processing Elements behaviour. Second, the multiplexed and
systolic Montgomery modular multiplication architecture is
presented.

4.1. The Systolic Architecture. The concept of systolic archi-
tecture combines a highly parallel array of identical Process-
ing Elements or data-paths with local connections, which
take external inputs and process them in a predetermined
manner and in a pipelined fashion.

The proposed systolic architecture is directly based on the
arithmetic operations of the Montgomery Algorithm, which
are performed in a numerical base 2k, in which the large

input operands are processed in a multi-precision context
containing m words of k bits. As seen in Section 2, the
Montgomery Algorithm has additions and multiplications
involving large integers that make use of multiple-precision
arithmetic.

The architecture is composed of m Processing Elements
distributed in a one-dimensional array, where each Process-
ing Element is responsible for the calculus involving k bits
words of the input operands with the same index of the
Processing Element. For example, for a 1024 bits modular
multiplication with radix-32, the operands are split in 32
words of 32 bits which results in a one-dimensional array of
32 Processing Elements.

Between the Processing Elements, there is a propagation
of carry signals which are the most significant bits of
the arithmetic processes in each PE. The carry signals are
processed as input parameters by the Processing Elements
that receive them.

In the systolic architecture, the Processing Elements
are designed by finite state machines. The control block
communicates with the first Processing Element (PE1) and
with the block responsible for the quotient calculation
qi = (S0 + ai · b0)N ′ mod 2k, according to line 4 of
the Montgomery Algorithm. Figure 1 presents the systolic
architecture.

The finite state machine structure of the control block
is designed to provide the required words for a modular
multiplication to the Processing Elements and to the quotient
block. Thus, at each Montgomery Algorithm iteration, these
words are read from an external RAM memory and passed
to the remaining architecture. At the end of the modular
multiplication, the control block provides the Montgomery
multiplication result A · B · R−1 modN through an output
multiplexer.

The one-dimensional array of Processing Elements per-
forms the calculation of Si+1 = (Si + qi × N + ai ×
B)/2k, according to the Montgomery Algorithm. In this
operation, there are two multiplications between an input
operand and a k bits word, and after the addition between
the result of these two multiplications. Therefore, the
systolic architecture works in a multi-precision context, and
each Processing Element is responsible for performing the



4 International Journal of Reconfigurable Computing

k MSB bits

k MSB bits

2 MSB bits

k MSB bits

2 MSB bits

k MSB bits

2 MSB bits

k MSB bits

2 MSB bits

k MSB bits

2 MSB bits

EP 0 EP 1 EP 2 EP m − 1

ai × B0 ai × B1 ai × B2 ai × Bm−1

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

k LSB
bits

qi ×N0 qi ×N1 qi ×N2 qi ×Nm−1

S(i)
0 S(i)

1 S(i)
2

S(i)
m−1

S(i+1)
0 S(i+1)

1 S(i+1)
m−1S(i+1)

m−2Result Si+1 at iteration i =

k MSB bitsk MSB bitsk MSB bitsk MSB bits . . .

. . .

. . .

. . .

+

++

+

+

++

+
+

+

++

+

+ +

+

+

+

+

Figure 2: Arithmetic operations of the Processing Elements to obtain Si + 1 = (Si + qi ×N + ai × B)/2k .

arithmetic operations involving one word of each input
operand. Thus, the number of words of each operand is
equal to the number of Processing Elements. Figure 2 shows
the arithmetic operations flowchart within each processing
element.

According to Figure 2, the multiplication between ai and
Bi words returns a 2k bits result, where the least significant
bits of this multiplication are added to the least significant
bits of the qi × Ni multiplication result. Finally, the least
significant bits of this add are also added to a k bits word
of the S result of the previous iteration. The carry signals
propagated to the next Processing Element are the most
significant bits of the two multiplications and the most
significant bits of the last addition.

4.1.1. First Processing Element. The first Processing Element
(PE1) establishes communication with the control block and
receives ai and qi words at each Montgomery Algorithm
iteration. This PE differs from the other Processing Elements
because it does not receive any carry signal as input and
it discards the first word of the S result, which means the
division of Si+1 = (Si + qi × N + ai × B) by 2k. The zero
index words of B and N (N0 and B0) are also provided to this
first Processing Element. The internal architecture of PE1 is
shown in Figure 3.

4.1.2. General Processing Element. The other Processing
Elements are different from PE1 because they have a word
from the S result as output and they also transmit and
receive carry signals of the multi-precision multiplications
and additions. Each Processing Element is activated by the
previous Processing Element when the latter finishes its
calculation and sends out its carry signals, which means that
the architecture works with a pipeline behaviour. Only the
last Processing Element provides two words of the S result as
a response at each iteration of Algorithm 1 because the Sm−1

word is obtained with a sum of carry signals. By avoiding
a new Processing Element instantiation juts to perform this
sum, it is calculated in the last Processing Element. Figure 4
presents the internal architecture of the general Processing
Elements.

4.1.3. Quotient Block. At each iteration of Algorithm 1, line 3
presents the qi quotient computation so that S + ai ∗ B +
qi ∗N becomes a multiple of 2k. The internal architecture of
the quotient block is shown in Figure 5. This structure has a
combinational behaviour where the qi result is obtained in
one clock cycle. S0, ai, B0, and N ′ are k bits words which are
provided for this block at each iteration of Algorithm 1.

The zero index of B and S means that these words contain
the k least significant bits (LSBs) of B and S operands,
respectively. As we can see in the right side of Figure 5, a
multiplication between ai and b0 will provide a 2k bits result.
Just the LSB part of this result is used in the next operation.
Another input of the quotient block, S0, is then added to
the LSB part obtained from the first multiplication. Again,
we only need the LSB part of this addition, which is finally
multiplied by N ′, which corresponds to the modular inverse
of N modulo 2k. The LSB part of this last multiplication is
the qi desired result. As seen in Algorithm 1, the numerical
basis is power of 2, so for hardware architecture, the mod 2k

operation is simply performed by a right shift operation (LSB
selection).

So, the complexity of the quotient block relies on two
single precision multiplications and one single precision
addition. To evaluate the number of clock cycles for a
modular multiplication, we have to consider the first m
cycles to read the A and B operands from RAM memories
for a square or modular multiplication, respectively. The
first iteration of Algorithm 1 also needs m clock cycles. The
remaining iterations of Algorithm 1 are performed in 4 ∗m
clock cycles.

4.2. The Multiplexed Systolic Architecture. As seen in the
previous section, the systolic architecture presents a one-
dimensional array of Processing Elements, and each PE is
responsible for operations of addition and multiplication.
When the numerical basis (2k) is high (216, 232), the
internal multiplications become more complex, mainly if
the design is applied to an FPGA or an ASIC. So, as the
number of multipliers increases, the physical limitations will
increase proportionally, for example, in the maximum clock
frequency, area, (etc.).
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Based on these constraints, a multiplexed and systolic
architecture with multiplier blocks working parallel to the
Processing Elements is presented in this section. It provides
a migration of k × k bits multipliers from the Processing
Elements to the multipliers blocks. Each multiplier block,
together with the four Processing Elements, forms an
arithmetic core. The one-dimensional arrangement of these
arithmetic cores forms the structure of the modular multi-
plication architecture. Figures 6 and 7 show the multiplexed

and systolic architecture and the arithmetic core structure,
respectively.

The multiplexed architecture is composed of exactly
k/4 arithmetic cores, and the first one is managed by a
control block designed by a finite state machine. According
to Figure 7, each arithmetic core contains four Processing
Elements, a multiplier, and an 8 × k bits RAM memory.
Being a multi-precision arithmetic architecture, the number
of Processing Elements is equivalent to the number of words
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in each input operand. So, the RAM memory placed in each
arithmetic core stores four words of B and N operands.

The multiplier block performs the qi × Ni and ai ×
Bi multiplications. The least significant bits of qi × Ni

multiplication are added to a k bits word of previous Si
result. The least significant bits of this add operation and
the least significant bits of the ai × Bi multiplication are
sent to the Processing Elements to be added. The Processing
Elements provide the S words of the current iteration result.
Figure 8 illustrates the executions performed by Arithmetic
Core 1. By analysing this illustration, we can realize that
instead of having two single precision multiplications in
each Processing Element, there is a multiplier block that
performs all single precision multiplications for a total of
four Processing Elements. In other words, the quantity
of single precision multiplications is reduced four times.
With these improvements, each Processing Element needs to
perform just one addition.

The calculation of the quotient qi is performed by a block
with architecture that is identical to that of the quotient block
presented in the systolic architecture.

The Montgomery Algorithm’s multiplications are made
by a multiplier block that utilizes the multipliers available in
the FPGA. The internal architecture of the multiplier blocks
is shown in Figure 9.

The carry signals propagated inside the multiplexed
architecture are the k most significant bits of the qi · N
and Si + ai · B operations presented in Algorithm 1 and are
propagated between the multiplier blocks. The last multiplier
block sends its carry signals to the fourth and final Processing
Element placed in the last arithmetic core. The other carry
signal, CPE, is the most significant bits of the result of the
addition between the qi · N and Si + ai · B terms. This last
addition is performed by the Processing Elements.

At the end of the m − 1 iteration, the Si+1 = A · B ·
R−1 modN is sent out by an m : 1 k bits multiplexer. This
result is sent to the memory that is part of the modular
exponentiation architecture (described in the next section).

LSB

LSB
+

+

+

First PE of arithmetic core 1

ai × B

CPE

MSB

MSB

MSB

REG

REG

REG

qi ×N + Si

ai × B

qi ×N + Si

General processing elements

Si

CPE

Si

CPE

Last PE of arithmetic core k/4

Carry

Carry

Figure 10: General PE with the carry propagation.

In terms of clock cycles for the Montgomery modular
multiplication, we can define the following: initially, m clock
cycles are reserved for B operand internal storage. This
operand is read from RAM memories. Considering that the
N modulus is already available on internal RAM memories
placed in arithmetic cores, the first iteration also takes m
clock cycles and, it takes the architecture 6×m clock cycles to
perform the remaining iterations of Montgomery Algorithm.
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Thus, the total number of clock cycles, for a modular (or
squared) multiplication is nMM = m + m + 6×m = 8m.

4.2.1. The Processing Elements PEs. The proposed modular
multiplication architecture is composed of m Processing
Elements (where m is the number of words of the operands
and also the number of iteration on Algorithm 1). Due to
the placement of a multiplier block in each arithmetic core,
each Processing Element needs to perform just one addition
between two 2k bits words and sends out a word of Si+1 result
at each iteration of the Algorithm 1. The first Processing
Element must discard the least significant bits of its first
addition in order to perform the right shift operation, which
corresponds to the division of (Si + qi ×N + ai × B) by 2k.

The remaining Processing Elements perform the addition
between (Si + ai × B) and qi × N terms and the resultant
k least significant bits word of this addition are sent out as
a word of the S result. The k + 1 most significant bits are
sent to the next Processing Element as a carry signal. The last
Processing Element (PEm) is responsible for providing two
words of S result (Sm−2 and Sm−1), considering that the input
words for Sm−1 calculus are the carry signals from the last
multiplier block. Figure 10 shows the first, general case and
the last Processing Elements.

4.3. Modular Exponentiation. For a real cryptographic appli-
cation concerning the RSA algorithm, a modular exponenti-
ation structure that incorporates the modular multiplication

Require: E =∑n−1
i=0 ei2i, ei ∈ {0, 1}.

retun: A = XE mod N
A = R mod (N)
X = mont(X ,R2 mod (N))
for i = n− 1 to 0 do
A = mont(A,A)
if ei = 1 then

A = mont(A,X)
end if

end for
A = mont(A, 1)

Algorithm 2: Montgomery modular exponentiation—square and
multiply.

architecture is proposed in this section. The modular expo-
nentiation algorithm used in this work is left-to-right square
and multiply [13], and thus in average 1.5∗ n modular mul-
tiplications (including squares and multiplies executions)
are performed to achieve the final exponentiation result,
which n is the operand’s precision. Algorithm 2 shows the
Montgomery modular exponentiation algorithm.

Four Block RAM memories generated through Xilinx
Coregen tool were placed to store the input operands of
size n. These input operands are the N modulus, the
E exponent, the message X in the Montgomery domain



International Journal of Reconfigurable Computing 9

Table 1: Proposed architectures synthesis.

Virtex-4

n k Slices Clock cycles DSP48 Freq. (MHz) BRAM (Bytes)

Systolic architecture

512 16 3322 192 68 110 128

512 32 4199 96 36 78 128

1024 16 7012 384 130 110 256

Multiplexed architecture

512 16 2199 256 32 120 256

512 32 2499 128 32 80 256

1024 16 4876 512 64 120 512

1024 32 5118 256 64 80 512

Virtex-5

Systolic architecture

512 16 3205 192 68 130 128

512 32 3876 96 36 95 128

1024 16 6642 384 130 130 256

Multiplexed architecture

512 16 2078 256 32 120 256

512 32 2370 128 32 90 256

1024 16 4876 512 64 120 512

1024 32 5005 256 64 90 512

Table 2: RSA application (Virtex-5).

n Freq. (MHz) RSA decryption Clock cycles

Systolic Architecture

1024 130 3.23 ms 491520

Multiplexed Architecture

1024 90 4.36 ms 393216

Table 3: State-of-art implementations of modular multiplication
architectures.

Design FPGA Clock Area Mod exp

Systolic XC5VLX110T 130 MHz 6642 Slices 3.23 ms

Multiplexed XC5VLX110T 90 MHz 5005 Slices 4.36 ms

[5] XV2VP70 101.86 MHz 5709 Slices 3.01 ms

[12] XC5VLX110T 95 MHz 3044 Slices 6 ms

[4] XC2V2000 248 MHz 4051 Slices 9.4 ms

[1] Virtex-4 150.5 MHz 2613 Slices 13.94 ms

(X = X · R mod N), and an auxiliary term A = R mod N ·A
control block with a finite state machine manages the read
and write operations from the memories (see Figure 11).

The results of the successive modular multiplications are
stored in the RAM memory that previously has stored the
A = R mod N operand, because this operand is necessary
just in the first square execution.

5. Results

Table 1 summarizes the FPGA synthesis results of two
proposed modular multiplication architectures. The designs
were described in hardware description languages (VHDL
and Verilog) and synthesized for Virtex-4 and Virtex-5 Xilinx
FPGAs. All results are postimplementation, and no area or
speed optimizations were set for the synthesis. The results
presented in this paper are improvements when compared
with our previous work [12]. The multiplexed architecture
is implemented with a reduced number of slices registers
and DSP48s. However, synthesis for the systolic architecture
presented high clock frequencies.

Table 2 presents an RSA encryption and decryption
applications of the proposed architectures. Since the mod-
ular exponentiation is performed by successive modular
multiplication executions, the left-to-right (MSB) binary
square and multiply algorithm was employed in the mod-
ular exponentiation. The results show that, considering
the amount of clock cycles for a modular multiplication
execution, the multiplexed architecture is faster than the
systolic implementation. On the other hand, the systolic
architecture has a clock frequency higher than the clock
frequency presented by the multiplexed architecture.

Table 3 shows a state-of-art comparison with our results.
Every work referred in this table used the Montgomery
Algorithm for their hardware modular multiplication archi-
tectures, and for a direct comparison with our approaches
just 1024 bits applications are exposed. The time of mod-
ular multiplications, when not explained in the references,
are estimated considering a modular exponentiation of
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n = 1024 bits through the Square and Multiply algorithm,
running 1.5n modular multiplications.

6. Conclusion

This paper presented two Montgomery modular multiplica-
tion architectures and the results of their synthesis for Xilinx
Virtex-4 and Virtex-5 FPGAs. A systolic implementation and
a multiplexed implementation, suitable for RSA public-key
cryptosystem, were developed, and the designs were carefully
matched with features of the FPGAs, utilizing embedded
DSP48Es Slices and Block RAM. The designs are improve-
ments of a previous work. The multiplexed implementation
presented a good performance considering time × area
efficiency. The systolic architecture can run the 1024 bits
RSA decryption process in 3.23 ms, and the multiplexed
implementation executes the same operation in 4.36 ms.
Because of the multiplexed approach, the architecture is
scalable. If the key size increases, the architecture can be
easily modified by adding arithmetic cores, keeping the
performance. Another speed improvement can be achieved
by using a parallel modular exponentiation algorithm, for
example, the Montgomery Powering Ladder [18] where a
full modular exponentiation would be performed in exactly
n × nMM clock cycles, that is, 33% faster than square and
multiply algorithm.
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