
sensors

Article

Secure Smart Cameras by Aggregate-Signcryption
with Decryption Fairness for Multi-Receiver
IoT Applications

Subhan Ullah 1,2,* , Lucio Marcenaro 2 and Bernhard Rinner 1

1 Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt,
Universitätsstraße 65-67, 9020 Klagenfurt, Austria; bernhard.rinner@aau.at

2 Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture,
University of Genova, Via all’Opera Pia 11, 16145 Genova, Italy; lucio.marcenaro@unige.it

* Correspondence: subhan.ullah@aau.at

Received: 15 December 2018; Accepted: 10 January 2019; Published: 15 January 2019
����������
�������

Abstract: Smart cameras are key sensors in Internet of Things (IoT) applications and often capture
highly sensitive information. Therefore, security and privacy protection is a key concern. This paper
introduces a lightweight security approach for smart camera IoT applications based on elliptic-curve
(EC) signcryption that performs data signing and encryption in a single step. We deploy signcryption
to efficiently protect sensitive data onboard the cameras and secure the data transfer from multiple
cameras to multiple monitoring devices. Our multi-sender/multi-receiver approach provides
integrity, authenticity, and confidentiality of data with decryption fairness for multiple receivers
throughout the entire lifetime of the data. It further provides public verifiability and forward secrecy
of data. Our certificateless multi-receiver aggregate-signcryption protection has been implemented
for a smart camera IoT scenario, and the runtime and communication effort has been compared with
single-sender/single-receiver and multi-sender/single-receiver setups.

Keywords: smart cameras; data security; elliptic-curve signcryption; multi-receiver aggregate-
signcryption; Internet of Things; resource efficiency

1. Introduction

Smart cameras are real-time computer vision systems that combine sensing, processing,
and communication capabilities on an embedded device [1]. These devices have undergone tremendous
advances over the last decade and play an important role in several Internet of Things (IoT)
applications [2–4]. Smart cameras may capture sensitive data and reveal the identities as well as
clues about the habits, preferences, and social interests of the captured persons [5]. Thus, security
and privacy has become a major concern due to their widespread deployment, the sensitive nature of
the captured data and the open infrastructure [6]. The effectiveness and efficiency of the protection
techniques is a particular challenge due to the resource limitations of the smart-camera devices.

This paper addresses this challenge and introduces a lightweight security approach for smart
camera IoT applications. Our approach is based on EC-based signcryption which performs data
signing and encryption in a single step [7]. In our previous work, we deployed individual- and
aggregate-signcryption for protecting sensitive data onboard the cameras and secure the transfer from
a single camera or clusters of cameras to a single monitoring device [8,9]. In this paper, we generalize
this approach to efficiently protect the data from multiple cameras to multiple monitoring devices.
This multi-sender/multi-receiver approach provides integrity, authenticity and confidentiality of
data with decryption fairness for multi-receiver throughout the entire lifetime of the data. It further

Sensors 2019, 19, 327; doi:10.3390/s19020327 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3925-621X
http://www.mdpi.com/1424-8220/19/2/327?type=check_update&version=1
http://dx.doi.org/10.3390/s19020327
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 327 2 of 22

provides public verifiability (i.e., any trusted party can verify the authenticity) and forward secrecy
(i.e., the confidentiality of incoming data is not compromised, if someone has compromised the current
or past session keys) of data.

The contribution of this paper includes the deployment of EC-based aggregate-signcryption for
multi-receiver in an IoT scenario. We adopt a certificateless approach by using a key generation center
(KGC) and avoid the key escrow [10] problem of key sharing and authentication. This certificateless
multi-receiver aggregate-signcryption approach has been implemented and evaluated in a
smart-camera IoT scenario. The proposed approach saves 32.89% and 28.90% of computational
time as compared to individual- and aggregate-signcryption in a multi-sender/multi-receiver scenario.

The rest of the paper is organized as follows: Section 2 discusses the state-of-the-art. Section 3
introduces the system architecture, assumptions, and threat model. Sections 4 and 5 describe the
proposed solution and experimental evaluation, respectively. Finally, Section 6 concludes the paper.

2. State-of-the-Art

In the following subsections, we discuss first the protection of data onboard smart cameras,
second the protection within a network of smart cameras and third the use-cases of smart cameras.
Finally, we discuss the efficiency of the proposed signcryption technique and provide a comparison
with other security approaches.

2.1. Onboard Protection on Smart Cameras

A smart camera [1] is a key sensor for IoT applications (e.g., video surveillance), performs onboard
analysis of the captured image and video data and only shares the meaningful information with
intended devices or end-users. Najjar et al. [11] briefly introduced some basic visual sensor networks
(VSN) platforms (Cyclops, MeshEye, Vision Mote, MicrelEye), related architectures and challenges.
They further highlighted the need for image processing lightweight algorithms and identified the
trade-off between algorithm performance and resource consumption (memory, processing, and power).
Winkler and Rinner [12] presented the novel platform TrustEYE.M4 with embedded data security
and privacy protection techniques for VSN applications [13]. Birem et al. [14] introduced another
FPGA-based smart-camera prototype called DreamCam which was proposed for real-time detection
and extraction of visual information.

A stand-alone smart camera performs sensing, processing and communication on a single
platform, and various resource-efficient security techniques [6] have been used for data protection.
A desirable approach for the protection of the sensed data on a smart camera is the implementation of
security techniques close to the sensing unit [15]. The feasibility of data protection at the sensor level is
demonstrated with the custom-designed TrustEye.M4 prototype which provides sensor-level privacy
protection [16]. The authors further integrated a trusted platform module (TPM) into the camera
node and implemented RSA and AES following a sign-then-encrypt approach to ensure security and
privacy of data onboard. The limitations of their approach are the significant hardware overhead
for resource constrained sensors using TPM and the computational complexity by implementing the
security techniques in the sign-then-encrypt way using 2048-bit RSA keys. Another limitation of the
TPM-based approach is the invalidation of security proofs if the data modified by an authentic entity
for the sake of communication or computation efficiency on the host unit of the smart camera or any
later stages.

Haider et al. [17] presented a FPGA-based prototype exploiting physical unclonable functions
(PUF) for identity-based signature (IBS) at the sensor level. They further used a certificate-based
approach for key generation and implemented the AES-128 and HMAC-SHA256 using the
encrypt-then-sign approach to ensure the security of data. The limitations of their approach
are the key escrow problem [18] and the overhead of identity-based certification. It is also
computationally expensive due to the implementation of encryption and signature in two steps.

Sensors 2019, 19, 327 3 of 22

The AES implementation with a 128-bit key might be vulnerable to attacks. Zhang et al. [19] also
proposed a PUF-based CMOS image sensor for sensor-level authentication of the data.

2.2. Protection in Smart Camera Networks

The security approaches discussed in the previous section are only applicable to a single smart
camera platform (stand-alone node), which entails onboard protection of the sensed data before it
leaves the device. In IoT applications usually more than one smart camera is used for the surveillance
of a target location. Various efficient techniques [20] for the compression and communication of
multimedia data have been proposed for resource constrained environments. For cryptographic
approaches [21,22], advanced encryption standard (AES) is considered to be a lightweight security
algorithm which is suitable for hardware and software implementation in such environments.

The complexity of security techniques is increasing with increasing size of the smart camera
network. A centralized model of the camera network requires large bandwidth and sufficient amount
of energy to transfer high volume of data (images/videos) and limits the scalability [23]. An alternative
model is a distributed network which reduces the data transfer requirements to a dedicated node, while
it does not exploit the advantages of multi-camera networks [24]. A cluster-based model overcomes
the limitations of centralized and distributed networks and provides scalability without the risk of
single-point failures [25,26]. In a cluster-based network the smart cameras are grouped in distinct
clusters, each with a local cluster head. From a security perspective, a cluster head acts like a firewall
for the rest of the cluster nodes and reduces the risk of external attacks [27]. In our previous work [9],
we proposed aggregate-signcryption for securing cluster-based camera networks while reducing
computation and communication overheads.

2.3. Use-Cases of Secure Smart Cameras

In video surveillance, a smart camera captures large volumes of data in the form of images or
videos and requires efficient security techniques for data protection. Chien et al. [28] used a special
node for aggregation of data from video sensors in the IoT-based video surveillance and recommended
lightweight algorithms and system-on-chip (SoC) approaches to further improve the computation
power of sensors. Alsmirat et al. [29] presented a framework for a secure surveillance system [30].
They used AES for confidentiality and RSA for key distribution. The session key was further secured by
HMAC-MD5 hashing and provided authentication and integrity of the video streams. This approach
was implemented with the NS-3 simulator and the trade-off between communication delay and
security was evaluated. The computation and communication overhead was reduced by encrypting
the whole video frame instead of encrypting each data packet. Mora et al. [31] proposed an IoT-based
framework for healthcare monitoring and proposed scheduling techniques for sharing the resources
among the nodes to reduce the computation costs. This approach preserved local resources for critical
processing only. A secure remote authentication of the user was also performed for smart cities
applications [32].

A secure and privacy-preserving (SecSPS) IoT framework for smart parking [33] was proposed
to find vacant parking places in a city center and monitor the incoming and outgoing vehicles
in the parking spots. The SecSPS framework provided the detection and availability of vacant
parking locations with real-time guidance to the driver for its reservation. The authors proposed
certificate-based RSA key establishment techniques and 128-bit AES encryption with CBC mode
for the confidentiality and hashing for data integrity using a sign-then-encrypt approach. Their
proposed framework is resilient to various security attacks and ensures data protection and device
security for the users. They suggested EC-based certification as alternative for resource limited devices.
The SecSPS framework using RSA with 2048 bit and AES with 128 bit in a sign-then-encrypt way is not
appropriate for IoT applications due to the large RSA key and security concerns of the weak AES key.
Baran et al. [34] used a smart camera for the identification and recognition of vehicles in transportation
systems to help law enforcement authorities. Huang et al. [35] presented a security scheme to preserve

Sensors 2019, 19, 327 4 of 22

privacy of parking reservation in an automated valet parking (AVP) application. Their scheme protects
the privacy of location and the identity of drivers, and prevents double reservation attacks, where the
users can only make a single reservation at the same time. The users can choose the vacant parking
place by themselves and the location obfuscation mechanism easily provides location privacy for
this use-case. They used a cryptographic approach based on elliptic curve with bilinear pairing and
simulated their scheme in Java for comparing the communication and computation overheads with
state-of-the-art use-cases.

Won et al. [36] presented a certificateless multi-receiver hybrid encryption scheme for drone-based
monitoring services in a one-to-multi-receiver communication scenario, where the drone sends the
sensitive data privately to multiple smart objects. The sender re-used a proposed random number
to generate the symmetric key used for each receiver. Drones are equipped with a GPU to reduce
execution time and optimize the batch verification of signature to speed up the verification procedure.
The authors implemented the secure communication protocols on two kinds of medium (equipped
with moderate-speed CPU) and high capacity (equipped with CPU as well as GPU) drones for the
smart parking and traffic monitoring applications.

Anoop [37] proposes an elliptic curve (EC) cryptosystem with comparatively small key sizes
which is more secure than an integer factorization-based RSA cryptosystem. The combination of the
public key infrastructure (PKI)-based signing and encryption approach is usually used to guarantee
the security properties (e.g., authentication, integrity, freshness and confidentiality) of images or video
data in a holistic way. The combination in a sign-then-encrypt way is a two steps process, and its
disadvantage is the extra overhead involved in the separate processing of the signature and encryption
procedure. Signcryption [7] performs the implementation of signature and encryption in a single step
and provides the same level of security with reduced computation and communication overheads.

2.4. Signcryption: An Efficient Certificateless Security Approach

In the PKI-based cryptosystem, the certification management for public key authentication is
a challenge. Boneh et al. [38] used an identity-based cryptographic approach and eliminated the
need for certification, but the limitations of their scheme was the key escrow problem caused by the
secret keys generated by a third party such as private key generator (PKG). The key escrow problem
was then eliminated by using bilinear pairing-based certificateless cryptography [18]. However, the
computation of pairing was not efficient for resource limited devices, so a pairing free approach [39] has
been proposed and implemented in a drone-based surveillance application. However, this approach
also faces the user revocation problem if a physical attack occurs on the device. In such cases the
attackers can access current and future information of the devices.

Pang et al. [40] presented a novel multi-receiver signcryption scheme, and they claimed the
complete anonymity preservation of receivers and senders. They also provided public verification and
decryption fairness of the data. They multiplied the public key of the sender by a random value to hide
the identity of the sender and avoided the cross-comparison and joint conspiracy attacks. Their scheme
protects the data from both external and internal attacks. Their scheme is based on the security
assumptions of decision bilinear Diffie-Hellman (DHBP) and Gap-BDH approaches. They theoretically
evaluated the efficiency of this scheme and proved its security by using a random oracle model.

Niu et al. [41] presented hybrid signcryption which secures multiple messages for multi-receiver
in heterogeneous environments. They used different master keys and sent multiple messages from
a sender using identity-based cryptography to multiple receivers in a certificateless system. They
used hybrid encryption based on a key encapsulation mechanism (KEM) and a data encapsulation
mechanism (DEM) to secure the one-time symmetric key along with data. Their approach provides
insider security by generalizing the KEM to signcryption KEM and included authentication. They
used a PKG and a KGC to calculate the pseudo-identities for the users in their system and generated
the partial private keys. They implemented the scheme in the C-programming language by using

Sensors 2019, 19, 327 5 of 22

pairing-based cryptographic library (Libpbc). They proved confidentiality and unforgeability in a
random oracle model.

2.5. Comparisons with our Approach

Table 1 summarizes the state-of-the-art regarding algorithms, implementation procedures, security
properties as well as computational and communication efficiency. In our preliminary work [8], we
proposed signcryption and implemented EC-based signature and AES-based encryption in a single
step onboard the smart cameras. We then introduced aggregate signcryption [9] to merge signcrypted
data within a cluster of smart cameras and to extend the protection to a multi-sender/single-receiver
setup. The objective of our proposed work is to generalize protection to multi-sender/multi-receiver
setups while maintaining resource efficiency.

Table 1. Comparison with state-of-the-art approaches. Legend: CL: certificateless, A: authenticity,
I: integrity, C: confidentiality, DF: decryption fairness, PV: public verifiability, Au: authorization, CP:
computation, CM: communication, Sc: scalability, PA: proposed approach.

Ref. Algorithms Implementation Procedure Security Properties M-to-M Efficiency

Approach CL A I C DF PV Au CP CM Sc
[36] eCLSC, CLDA agg.signc, TKEM/DEM 3 3 3 3 1 3 1 7 7 M-1
[42] KCDSA, SKE signcryption 3 3 3 3 1 3 1 7 7 1-1
[43] ECDSA, SKE IBC, DH, signcryption 7 3 3 3 1 7 1 7 7 1-1
[44] AES, BLS abf-agg.signcryption 7 3 3 3 1 3 1 7 7 M-1
[45] RSA, AES sign-then-encrypt 7 3 3 3 1 7 1 7 7 1-1
[17] HMAC, AES encrypt-then-sign 7 3 3 3 1 7 1 7 7 1-1
[33] RSA, AES sign-then-encryp 7 3 3 3 1 7 1 7 7 1-1
[8] ECDSA, AES signcryption 7 3 3 3 1 3 1 7 7 1-1
[9] ECDSA, AES agg-signcryption 7 3 3 3 1 3 1 7 7 M-1
PA EC-ShDSA, AES agg-signcryption 3 3 3 3 > 1 3 > 1 3 3 M-M

We adopted a multi-receiver encryption scheme [46,47] with a sign-then-encrypt approach and
customized it to aggregate-signcryption with decryption fairness for multiple receivers. The proposed
approach avoids the key escrow problem and does not require a certification for public key
authentication. The small key size of EC [48] and the implementation as a signcryption [7] supports
real-time data security directly on the smart-camera sensing unit. To the best of our knowledge, our
approach is the first deployment of aggregate signcryption for a multi-receiver setup in an IoT context.

3. System Architecture

Figure 1 presents the system architecture and their key components in a typical IoT environment.
The key components are smart cameras, cluster heads, monitoring devices, a backup server and a
KGC. The smart cameras can detect predefined events due to their local processing capabilities. Once
an event has been detected, the camera triggers a description of the event and identifies a region of
interest. We group the co-located smart cameras into distinct clusters [25] with a predefined cluster
head, which works as a gateway [49] and connects the smart cameras with the rest of the system.
The cluster heads and their corresponding smart cameras are labeled as CHi and Cj where i and j
represent the identifiers for the cluster head and camera, respectively. Typically, a smart camera has
insufficient storage for all captured data due to its resource limitations, so we use a backup server (BS)
to permanently store the protected data transferred by the cluster heads for the intended monitoring
devices. The backup server provides an authorized access to that stored data for the corresponding
monitoring devices (Mh). A third-party trusted entity KGC is responsible for the partial key generation
and public key authentication in our system architecture. The KGC initiates the system setup and
key sharing, where the shared keys are used for secure communication in the operational phase of
the system.

Sensors 2019, 19, 327 6 of 22

Figure 1. The IoT system architecture. The cluster-based multi-camera network merges
individual-signcryptexts into aggregated-signcryptext and provides access to them for multiple
monitoring devices. Aggregated-signcryptexts are permanently stored on a backup server. A key
generation center provides public parameters and partial private keys for all components of the
system architecture.

This architecture generalizes and extends our previous work on securing smart-camera networks
for IoT applications [8,9] to a multi-source/multi-receiver scenario, where a group (cluster) of smart
cameras provides secure data of detected events to multiple monitoring devices. The key processing
steps for such scenario can be summarized as follows: (i) onboard detection of predefined events on
the smart cameras within a cluster, (ii) aggregation of the information on the cluster head, (iii) storage
of the aggregated information on a backup server and (iv) download of the information which are
already stored on the backup server for the respective multiple monitoring devices to complete the
surveillance procedure.

Each communicating entity of the system architecture chooses their private key and generates a
public value. These entities securely store their private keys and share the public value with the KGC
for requesting a partial key. The KGC verifies the request of each entity and then generates a partial
key for them. As the requesting entity receives its partial key from the KGC it verifies its authenticity
and then generates its full public key. The key generation procedure using the KGC for a smart camera
and a monitoring device is shown as in Figure 2.

3.1. Requirements and Assumptions

The detail description of the basic requirements for the authentication, integrity, confidentiality,
freshness and public verifiability are present in our previous work [8,9], and we extended that for the
complex multi-sender/multi-receiver scenarios. We added techniques of exclusive protection and
decryption fairness for the decryption and exclusive access of the same data by multiple receivers and
further added forward secrecy to maintain the confidentiality of incoming or past data from smart
cameras in the case of compromising of a specific session key by an attacker at any stage. We can
summarize the requirements for the proposed system architecture as follows: (i) authentication and
sharing of the public keys in advance, (ii) exclusive protection of data on smart cameras for different
receivers using symmetric keys (exclusive protection on the sender side), (iii) optimization of aggregate
signcryption to the multi-receiver scenario, (iv) exclusive access to the received signcrypted data

Sensors 2019, 19, 327 7 of 22

by multi-receiver (exclusive access on the receiver side), (v) maintaining decryption fairness, which
is the exclusive decryption of data by monitoring devices using their own session keys, (vi) public
verifiability of the data by any trusted or untrusted party and (vii) forward secrecy when session keys
are compromised by an attacker.

Figure 2. Key generation and distribution in the deployment phase. First, the KGC chooses public
parameters and the master secret key and then generates the master public key based on the chosen
private key. The smart camera and monitoring device choose their private keys and generate their
respective public values. They share their public values with KGC in steps 1 and 3 to request partial
private keys. They receive the requested relevant partial private keys in steps 2 and 4 from the KGC,
respectively. The smart cameras and monitoring devices generate their full public keys based on their
relevant private and partial private keys and share them with each other through a public channel in
steps 5 and 6.

We assume that each smart camera consists of a trusted sensing unit and a camera host unit [16].
The camera host unit is not explicitly trusted and is responsible for the configuration, management
and running of the application and system libraries. The protection of the sensing unit is built upon
our previous work [17,45] and has exclusive access to the raw data (images and videos). We assume no
explicit protection against denial of service (DoS) attacks on the other components of the system but
we can verify the authenticity of incoming requests by using the public parameters and public keys,
which is called public verifiability (a property of the signcryption technique). The public verifiability
of data can reduce incoming requests of an attacker and only forward authentic requests.

Moreover, we assume that the monitoring device is trustworthy and will generate its private
key and keep it secret. Public keys are generated by the smart cameras based on their private and
partial private keys and securely share them with the monitoring devices and other components of the
system architecture. The KGC generates the partial private keys for all components and can verify and
authenticate the public keys of all components within the system architecture.

Sensors 2019, 19, 327 8 of 22

3.2. Threat Model

Smart cameras in IoT applications (e.g., smart home monitoring) have several
vulnerabilities [6,50,51], which can be exploited by attackers to gain root access to the smart
camera nodes and compromise the security and privacy of data. In such applications the important
assets to protect from unauthorized access are the captured sensitive information (images/videos), the
secret keys (e.g., private keys and encryption keys) of smart cameras and the camera node itself. The
open infrastructure (e.g., Internet) in IoT applications pose a challenge to mitigate such attacks and to
secure the smart cameras from unauthorized access. In the proposed system architecture (Figure 1) an
attacker may get access to the camera host part, cluster head, communication channel and backup
server. The attacker can compromise the integrity and alter the data while remain undetected. Another
capability of the attackers is to compromise the authenticity of source and insert their own information
by using the identity of smart cameras. In a multi-receiver scenario any trusted monitoring device can
verify the protected data which are intended for another monitoring devices.

We consider all these security threats and present a cluster-based secure approach for the
system architecture to reduce the risks of attacks in open infrastructure. We present certificateless
multi-receiver aggregate-signcryption techniques with public verifiability, decryption fairness, and
forward secrecy to avoid the key escrow problem and guarantee the protection, verification, and
exclusive access to the data only by authentic/intended users. The details of the proposed solution are
presented in the following section.

4. Proposed Solution

In this section, we present lightweight security techniques to protect and secure the sensitive
information in the proposed system architecture. The design goals of the security techniques are
mainly derived from the considered case studies and can be summarized as: (i) to allow only the
authentic requests, (ii) to reduce the transmission of unnecessary data, (iii) to protect the captured
information from unauthorized access throughout its lifetime, and (iv) to prove the authentication and
integrity of the information on the intended monitoring devices. The scheme provides data security and
decryption fairness to multiple monitoring devices in the proposed system architecture. The proposed
techniques can also be used to provide data security for related smart camera applications such as
intelligent surveillance (e.g., [52,53]) or safety monitoring (e.g., the automatic detection of cracks in
buildings, bridges and subways tunnels [54]).

4.1. Overview of Security Techniques

We implement our proposed security techniques in two phases. The deployment phase performs
the key generation and key sharing with authentication for smart cameras and monitoring devices.
In this phase the KGC defines the system setup, chooses the public parameters, and generates the
partial keys for all participating devices (Figure 2). The full private and public keys are defined by the
smart cameras and monitoring devices themselves to avoid the key escrow problem.

In the operational phase, the smart camera uses their private key, the public keys of receiving
devices and the public parameters which are already defined by the KGC to execute the signcryption
(Figure 3). We adopt the multi-receiver encryption approach [46,47] to perform the signcryption
procedure. We then apply aggregation on the cluster head to merge the signcrypted data into a single,
compact packet. The aggregate-signcryptext data is then sent to the backup server, from where the
monitoring device can access and download it. The monitoring devices first check the authenticity and
verification of data and then proceed with the decryption by using their relevant decryption keys. The
decryption keys are extracted from the received aggregate-signcryptext packet by each monitoring
device exclusively.

Sensors 2019, 19, 327 9 of 22

Figure 3. Operational phase depicting the processing flow of aggregate-signcryption for smart cameras
in cluster i sending protected data to multiple monitoring devices (multi-receiver). The left side
shows multi-cameras (sender devices) and right side shows the monitoring devices (multi-receiver).
The distribution of keys and public parameters is shown by dotted lines, and the transfer of
actual data is shown by solid lines, where d and X represent the partial keys and ϑ represents the
aggregate-signcryptext data for multi-receiver (monitoring devices).

4.2. Deployment Phase

In the deployment phase, the KGC defines the system architecture and security parameters (e.g.,
EC type, keys length and parameters) in advance, which reduce the load on the resource constrained
devices during the operational phase. The KGC is also responsible for the generation of partial private
keys for all participating devices. In the deployment phase, the smart cameras are grouped into
distinct clusters, and the numbers of relevant monitoring devices for each cluster are defined. The KGC
initializes the system setup and generates the partial private keys for all participating devices on
request, where each device further defines their full public key which is partially depending on the
partial private key which is already received from the KGC. The processing steps of key generation
and distribution are shown in Figure 2 and explained in the following section.

4.2.1. Preliminary Setup for Generation of Security Parameters by KGC

A KGC generates and shares the public parameters of the system, which are used by the
participating devices to define their own security setup. The EC base point P, finite field Fq, prime
number q, and the required characteristics (e.g., the type and length of keys) are included as public
parameters in the preliminary setup [37]. These security parameters are fixed and generated in
advance by the KGC during the deployment phase. The KGC shares these security parameters with
all participating devices of the system for further use in the operational phase. A KGC defines the
preliminary setup as follows:

The KGC takes k ∈ Z+
q as input and generates the public parameters and chooses its master secret

key. An EC over the finite field Fq is represented by E(Fq) with a base point P ∈ Fq. The parameter q is
a prime number specifying the finite field Fq. The KGC generates its master secret key and the public
parameters for the system as follows:

• Use the preliminary setup and determine the public parameters
• Choose the master key x ∈ Z∗q uniformly at random and compute the system public key Pukgc = xP

Sensors 2019, 19, 327 10 of 22

• Choose the cryptographic hash functions H1 : {0, 1}∗ × G1 × G1 → Zq, H2 : G1 → {0, 1}k0 , H3 :
{0, 1}∗ → Zq and H4 : {0, 1}k0 → {0, 1}k, where k shows the fixed key length of a symmetric key
and G1 is a cyclic group generated by using the EC base point P.

• Keep the master key x as secret and publish the public parameters along with Pukgc .

In the proposed system architecture, the smart cameras (senders) and the monitoring devices
(receivers) share their public parameters with each other. We only present the key generation algorithms
of smart cameras for the sake of simplicity. The same key generation procedure applies for the
monitoring devices. We also provide a description of the used symbols in Table A1.

4.2.2. Request of Partial Private Key by a Smart Camera

Each smart camera j in the system architecture randomly chooses a secret value sk j ∈ Z∗q and
generates two public values using the base point P and the master public key Pukgc of KGC, e.g.,
Pj = xj.P and Pjkgc = xj.Pukgc . Then the smart camera sends the identity and public values (j, Pj, Pjkgc)
to the KGC to request a partial private key.

4.2.3. Partial Private Key Generation by KGC

Once the KGC receives the request from the smart camera for partial key generation, it first
verifies its validity by checking if Pjkgc = xPj. If the validity is true then the KGC generates a partial
private key, otherwise it rejects the request. The KGC generates the partial key by using its master
secret key x, the identity j of the smart camera and the public parameters with permitted time period
tj as follows:

• Choose rj ∈ Z∗q randomly for each smart camera,
• Compute Xj = rj.P, Px = Pj + Xj and
• Compute dj = H1(j, Pj, Px)x + rj mod q.

The KGC sends the partial private key (dj, Xj) to smart camera j via a secure channel.

4.2.4. Public Key of Smart Camera

As the smart camera receives its partial private key (dj, Xj) from the KGC, it first verifies its
validity and then generates the full public key as follows:

• Compute P′j = Pj + Xj
• Compute Hj = H1(j, Pj, P′j) and check if djP = HjPukgc + Xj according to the Schnorr digital

signature [55,56]. Otherwise, reject the partial private key
• Compute P′′j = H−1

j P′j

The smart camera j chooses the full public key as Pk j = (j, Pj, P′j , P′′j).

4.3. Operational Phase

In the operational phase each smart camera initiates the signcryption process for the intended
monitoring devices. The smart camera uses its private key sk j for the signature part, generates a
session key for the encryption part and performs signcryption on the captured data as described in the
following subsections.

4.3.1. Session Keys Generation

Each smart camera of a cluster participating in the surveillance of a specific area generates the
symmetric keys for the encryption of data intended for the distinct monitoring devices as follows.

• The smart camera j chooses the public parameters and the list l of the identities of the
monitoring devices.

Sensors 2019, 19, 327 11 of 22

• The smart camera j generates the symmetric key Kenc and the internal state information (e.g.,
firmware version and timestamp of the health status) represented by ω, using the public keys and
other identity information of the monitoring devices.

The identity of smart camera j, the full public key pk j, the full private key sk j, the monitoring
device identity h, the permitted time period th and the full public key pkh are given as inputs to the
session key generation. The smart camera performs the following steps to get the symmetric key Kenc

for all monitoring devices of a list l:

• The smart camera chooses sj ∈ Z∗q and σ ∈ {0, 1}k randomly
• The smart camera then generates the session key as Kenc = H4(σ)

4.3.2. Multi-Receiver Signcryption by Smart Cameras

Each smart camera signcrypts the region of interest (RoI f rames(f)) of frames f for the list l of
monitoring devices with the relevant encryption key Kenc as follows:

• The region of interest is encrypted as $(l) = EncKenc(l)
(RoI f rames(f)).

• The output of the required ciphertext for list l of monitoring devices is given as θ =

($(1), $(2), $(3), · · · $(l)).

Each smart camera uses the ciphertext data θ to complete the signcryption procedure with the
following steps:

kl = v.P (1)

r = H3(θ‖tj‖kl‖ωl‖l) (2)

aj = (H−1
j dj + rsk j + sj) mod q (3)

R = r.P (4)

Hh = H1(h, Ph, P
′
h) (5)

Uh = rHh(Pukgc + P
′′
h) (6)

V = σ⊕ H2(R) (7)

Signcryptextj = (aj, U1, U2 . . . , Uh, V, θ, l, kl , ωl , tj) (8)

4.3.3. Multi-Receiver Aggregate-Signcryption

For multi-receiver aggregate-signcryption, the cluster head CHi performs the aggregation of
all signcryptexts [9] from the smart cameras with other parameters for the sorting of relevant data.
The sorting of signcryptextj is perform according to the identities h with relevant public keys pkh of
the list l of monitoring devices. The cluster head verifies each signcryptexts with the public verification
method as described in Section 4.3.4 and then uses the public keys of the smart cameras and monitoring
devices to generate the aggregate-signcryptext as follows:

• Compute S = ∑n
j=1 aj and parse the θ according to the l, Kl , ωl , tj in a specific order.

• Merge the signcrypted data (θ(1) · · · θ(l), U1 · · ·Uh, l, kl , ωl , tj, S) to the aggregate-signcryptext
(ϑ) form.

4.3.4. Unsigncryption by Monitoring Devices

Unsigncryption is performed on the monitoring devices of the aggregate-signcryptexts after
sorting them according to the list l. If the authentication and integrity of the data is verified, the
decryption procedure is then applied to the given ciphertexts θ = ($(1), $(2), $(3), · · · $(l)) on
each monitoring device. The decryption algorithm requires the full private and public keys of the
monitoring devices with the public keys of the smart cameras to retrieve the decryption keys of

Sensors 2019, 19, 327 12 of 22

intended monitoring devices. The monitoring devices use the public keys of the smart camera
Pk j = (j, Pj, P′j , P′′j) for the acceptance and verification of the signcrypted data.

• Find the corresponding Uh from the list l of the signcryptextj.
• Compute r

′
= H3(θ‖tj‖kl‖ωl‖l).

• Compute k
′
l = ajP− ((r

′ − H−1
j)Pj + P

′′
j + Pukgc).

• Accept the signcrypted data, if k
′
l = kl and then verify the integrity of data (Uh = r

′
Hh(Pukgc +

P
′′
h)).

• Proceed with the decryption if the data acceptance and verification was successful.
• Compute R

′
= (dh + skh)

−1Uh.
• Compute σ

′
= V ⊕ H2(R

′
).

• Compute decryption key Kdec(l) = H4(σ
′
).

• Decrypt the ciphertext data to plaintext RoI f rames f
= Deckdec(l)

(θ) or apply decryption to the
parsed ciphertexts e.g., Deckdec(l)

(θ(l))= Deckdec(l)
($(1), $(2), $(3), · · · $(l)) data.

4.3.5. Correctness of the Scheme

As described in the unsigncryption process in Section 4.3.4, the R
′

value is needed to recover the
relevant decryption keys on the monitoring devices for the decryption of the authentic ciphertexts.
Only those monitoring devices can recover the decryption keys whose public information were already
used in the aggregate-signcryption process, i.e., for the computation R in Equation (4). Therefore,
now only those monitoring devices can use their associated private keys. The recovery of the correct
decryption keys is based on the authentication and integrity of the aggregate-signcryptexts and on the
associated private keys of the monitoring devices. These R

′
and R values should be equal to recover

the correct decryption keys for the decryption of ciphertexts θ. The relevant monitoring devices prove
the data integrity and authentication during unsigncryption by computing k

′
l and then r

′
. The r

′
value

is further used in the computation of Uh which provides R
′

(e.g., R
′
= (dh + skh)

−1Uh). Therefore, the
proof of R

′
= R can be described as follows:

R
′
= (dh + skh)

−1Uh

=
Uh

(dh + skh)

=
rHh(Pukgc + P

′′
h)

(H1(h, Ph, P′h)x + xh) + skh

=
r(Hh(Pukgc) + Hh.H−1

h P
′
h)

(H1(h, Ph, P′h)x + xh) + skh

=
r(Hh(Pukgc) + (PKh + Ph))

(H1(h, Ph, P′h)x + xh) + skh

=
r(H1(h, Ph, P

′
h)xP + (skh + xh)P)

H1(h, Ph, P′h)x + xh + skh

=
r(H1(h, Ph, P

′
h)x + skh + xh)P

H1(h, Ph, P′h)x + skh + xh

= rP

The R
′

value is further used in the computation of σ
′

that should be equal to the value of σ (which
was already computed for the generation of encryption keys on smart cameras side). The correctness
can thus be shown as follows:

Sensors 2019, 19, 327 13 of 22

σ
′
= V ⊕ H2(R

′
)

= σ⊕ H2(R)⊕ H2(R
′
)

= σ⊕ H2(rP)⊕ H2(rP)

= σ

Hence, the list of decryption keys can be recovered on each monitoring device according to their
own information as follows:

Kdec(l) = H4(σ
′
)

= H4(σ)

= Kenc(l)

Data authentication and replay attack prevention can be checked as follows: First, calculate the
value of ajP.

hj = H1(j, Pj, P
′
j)

ajP = H−1
j djP + Pukgc P + vP

= H−1
j (HjsP + xjP) + rPj + vP

= xP + H−1
j xjP + rPj + vP

= Pukgc + H−1
j xjP + rPj + vP

Second, calculate the value of (r
′ − H−1

j)Pj + P
′′
j + Pukgc :

(r
′ − H−1

j)Pj + P
′′
j + Pukgc = (r

′ − H−1
j)Pj + H−1

j (Pj + xjP) + Pukgc

= r
′
Pj + H−1

j xjP + Pukgc

Finally, the value of (r
′ − H−1

j)Pj + P
′′
j + Pukgc must be subtracted from ajP resulting in kl , which

shows the authenticity and proof of the prevention of the replay attack:

ajP− [(r
′ − H−1

j)Pj + P
′′
j + Pukgc] = vP

= vP

= kl

4.4. Security Analysis

The multi-receiver aggregate-signcryption scheme for the proposed system architecture (Figure 1)
provides the basic security properties, e.g., public verifiability, authentication, integrity, freshness,
confidentiality, decryption fairness and forward secrecy for the captured data received from smart
cameras. These properties are briefly analyzed in the following sections.

4.4.1. Public Verification

The security technique of multi-receiver aggregate-signcryption provides the public verifiability
of the data by any trusted or untrusted entity in the system without decryption of the data. The public
verifiability proves, if Uj = r

′
Hj(Pukgc + P

′′
j) is true for the smart camera j. The advantage of the public

Sensors 2019, 19, 327 14 of 22

verifiability is that the authenticity of the data received from the source can be proven at any stage by a
trusted or untrusted entity. The public verification does not require the private keys of smart cameras,
the verification is possible with the relevant public information of the devices.

4.4.2. Authentication and Integrity

The authentication can be checked by the intended receiver by computing k
′
l = ajP − ((r

′ −
H−1

j)Pj + P
′′
j + Pukgc) and then comparing it with the received value of kl from the smart camera. k

′
l = kl

means that the data comes from an authentic smart camera. The integrity of the received data can also
be verified by k

′
l = k1 because in the computation of kl the value of r = H3(θ‖t‖kl‖ωl‖l) is required,

which is the hashed valued of the ciphertext data θ along with the other information. The r value is
further multiplied with the secret key of smart camera (sk j), as its public key is used for the verification
purpose in the computation of k

′
l . Therefore, the proof for k

′
l = kl provides both the properties of

integrity and authenticity of the received data. The attacker cannot compromise the integrity and
authenticity without the private key of smart camera sk j and guessing of a private key from public key
is hard problem because of the elliptic-curve-based discrete logarithm problem (ECDLP) assumption.

4.4.3. Decryption Fairness and Confidentiality

The decryption fairness is the capability of the monitoring device to extract the decryption key
from shared information using their own credentials. Confidentiality of data is the prevention of access
from unauthorized users and the guarantee of exclusive access for the intended receivers. Only the
intended receivers can exclusively access the shared information for their own decryption key recovery
with the help of their private keys. None of the monitoring devices other than intended can recover
the decryption key to access the data for another monitoring device, because the private key associated
with the public keys is hard to guess due to the assumption of ECDLP.

4.4.4. Freshness

The smart camera uses the hash of the timestamp in the computation of r along with the
concatenated value of the ciphertext. This guarantees the freshness of the ciphertext data. If the
timestamp value is compromised by an attacker, then the computation of r

′
on monitoring device

results in an incorrect value, and the authenticity and integrity proof fails.

5. Experimental Evaluation

In this section, we present the experimental setup and investigate the computational effort. In the
deployment phase, we measure the computation time of key generation and verification. In the
operational phase, we measure and compare the computation times and communication overheads for the
individual-signcryption, aggregate-signcryption and multi-receiver aggregate-signcryption approaches.

5.1. Experimental Setup

We have prototypically implemented our system architecture (Figure 1), where standard laptops
(Intel core i5 with 2.6 GHz and 8 GB RAM) running Windows 10 serve as platform for the key devices
(e.g., smart cameras, cluster head, monitoring devices and KGC). We used a standard laptop for
ease of implementation and fair comparisons of the different approaches. Runtime measurements for
individual- and aggregate-signcryption have been performed on embedded platforms in our previous
work [8,9].

In our experiments each camera signcrypts 25 images, where each image has a predefined QVGA
resolution (320× 240 pixels) and a size of 30 kB. The open source library BouncyCastle [57] is used for
the implementation of the EC-based signcryption algorithm and used the EC-finite field of P-384 and a
256 bit AES key. The proposed techniques are implemented in Java due to readily available libraries for
the main cryptographic building blocks. We run the application with the same configuration ten times

Sensors 2019, 19, 327 15 of 22

for key generation, signcryption, aggregate-signcryption and multi-receiver aggregate-signcryption
for each device and recorded their average running time.

5.2. Deployment Phase

In the deployment phase, the KGC initiates the system setup and shares the public parameters
among all participating devices (i.e., the smart cameras and monitoring devices). Each device uses
those public parameters, chooses a private key, and sends a request for partial key generation to the
KGC. The KGC verifies the request and generates a partial key for the requesting device. After the
KGC has sent the partial key to the requesting device, it first verifies its authenticity. The requesting
device further generates a full public key based on their partial private key and public parameters.
The computation times of these steps are summarized in Table 2. The KGC only requires 20.2 ms for
its public key generation while the smart cameras and monitoring devices require more time because
of their full public key generation based on their partial and private keys. The total computation time
required to generate a full public key with the help of the KGC using a certificateless approach is
217.8 ms on a smart camera, 217.2 ms on a monitoring device and 99.5 ms on the KGC platform.

Table 2. Keys generation and verification time (in ms) in the deployment phase. Legend: SC: smart
camera, MD: monitoring device, KGC: key generation center, Pa: partial, Pu: public, TT: total time. The
symbol—indicates that the required action is not performed on the corresponding device for the key
generation or verification.

Computational Time (all in [ms])

Devices Generation Algorithm Verification Algorithm TT
Pa-Key-Request Pu-key Pa-Key Pa-Key Pa-Key-Request

SC 100.7 85.2 – 31.9 – 217.8
MD 100.3 84.7 – 32.2 – 217.2
KGC – 20.2 47 – 32.3 99.5

5.3. Operational Phase

In the operational phase, the smart cameras monitor a specific area, capture relevant information
in the form of images and perform signcryption to secure it for a single device or multiple monitoring
devices. We evaluate the computation time and communication overheads for individual-, aggregate-
and multi-receiver aggregate-signcryption with different numbers of senders (m smart cameras) and
receivers (n monitoring devices). We measure the computation times of the individual steps of each
approach and compare the total runtimes based on three scenarios: single-sender/single-receiver (1-1),
multiple-sender/single-receiver (m-1) and multiple-senders/multiple-receivers (m-n).

5.3.1. Computation Time of Individual-Signcryption

Table 3 depicts the measured computational times for the key steps of individual-signcryption:
signcryption, verification and decryption. These times have been measured for five different cases
(C1 to C5). Here each camera individually signcrypts the captured images and transfers them to the
monitoring device where each signcrypted data is verified and decrypted sequentially. In the case
of multiple senders, the cameras operate in parallel, thus the maximum signcryption time limits the
total time on the sender. On the receiver, the received signcrypted data must be processed sequentially.
In the case of multiple receivers, each camera must separately signcrypt the images for each receiver.
The total time for individual-signcryption can be estimated as follows

TT = n · (maxm(ST)) + maxn(m · (VT + DT)) (9)

where maxm and maxn represent the longest time among m smart cameras and n monitoring
devices, respectively.

Sensors 2019, 19, 327 16 of 22

Table 3. Computational time for individual-signcryption. Legend: SC: smart camera, MD: monitoring
device, ST: signcryption time, VT: verification time, DT: decryption time.

Id SC MD

ST [ms] VT [ms] DT [ms]

C1 320.5 155.4 283.8
C2 321.0 154.7 285.0
C3 319.8 156.0 284.7
C4 321.3 155.3 286.2
C5 320.7 154.8 283.9

5.3.2. Computational Time of Aggregate-Signcryption

Table 4 depicts the measured computational times for the key steps of aggregate-signcryption:
signcryption, aggregation, verification and decryption. These times have been measured in a cluster
of five cameras that send their signcrypted images to the cluster head for aggregation. The cluster
head then transfers the aggregated data to the monitoring device where only a single verification is
necessary. In the case of multiple receivers, still each camera separately signcrypts the images for each
receiver. Thus, the total time for aggregate signcryption can be estimated as follows

TT = n · (maxm(ST) + AT) + maxn(VT + m · DT). (10)

Table 4. Computational time for aggregate-signcryption. Legend: SC: smart camera, CH: cluster
head, MD: monitoring device, ST: signcryption time, AT: aggregation time, VT: verification time, DT:
decryption time.

Id SC CH MD

ST [ms] AT [ms] VT [ms] DT [ms]

C1 320.7

145.5 160.3

284.9

C2 321.2 285.0

C3 319.9 286.3

C4 321.1 284.9

C5 322.0 285.4

5.3.3. Computational Time of Multi-Receiver Aggregate-Signcryption

Table 5 depicts the measured computational times for the key steps of multi-receiver
aggregate-signcryption: signcryption, aggregation, verification and decryption. These times have
also been measured in a cluster of five cameras. Please note that in this approach, signcryption and
aggregation is more complex than in the other approaches but no separate signcryption is required
for each receiver in the case of multiple monitoring devices. Thus, the total time can be estimated as
follows

TT = maxm(ST) + AT + maxn(VT + m · DT). (11)

Sensors 2019, 19, 327 17 of 22

Table 5. Computational time for multi-receiver aggregate-signcryption. Legend: SC: smart camera,
CH: cluster head, MD: monitoring device, ST: signcryption time, AT: aggregation time, VT: verification
time, DT: decryption time.

Id SC CH MD

ST [ms] AT [ms] VT [ms] DT [ms]

C1 345.4

166.2 172.4

288.3

C2 346.0 287.7

C3 345.2 286.9

C4 344.9 288.5

C5 345.5 287.6

5.3.4. Performance Comparison

Table 6 compares the total times of our three approaches based on three scenarios: one sender and
one receiver (1-1), five senders and one receiver (5-1) and five senders and three receivers (5-3). The total
times are based on the measured run times of the corresponding approaches and Equations (9)–(11).
We highlighted the most efficient approach for each scenario in gray.

Table 6. Comparisons of total times (in ms) of different approaches for one smart camera/one
monitoring device (1-1), five smart cameras/one monitoring device (5-1) and five smart cameras
and three monitoring devices (5-3).

Scenario Individual-Signcryption Aggregate-Signcryption Multi-Receiver Aggregate-Signcryption
1-1 759.7 911.4 972.3
5-1 2521.1 2054.3 2123.6
5-3 3166.6 2989.0 2124.9

As expected, individual-signcryption is most efficient for the 1-1 scenario due to the low
overhead. Aggregate-signcryption is superior for the 5-1 scenario, since it avoids multiple verifications
on the receiver. Finally, multi-receiver aggregate-signcryption is the best option for scenario 5-3,
where it shows a reduction of 32.89% and 28.90% as compared to individual-signcryption and
aggregate-signcryption, respectively.

5.4. Communication Efficiency

Table 7 presents the communication efficiency of our three approaches by comparing the total
amount of transferred data and the number of necessary data transfers. In our experimental setup,
each smart camera signcrypts 25 images which a total size of 750 kB. We use the AES 256 bit encryption
scheme in CBC mode which results in a ciphertext of same size as the input data.

In the 1-1 scenario, the individual-, aggregate- and multi-receiver aggregate-signcryption transfer
750 kB of ciphertext data. The individual- and aggregate-signcryption require extra data of 72 Bytes for
the signature part, while multi-receiver aggregate-signcryption requires extra data of 340 Bytes, because
additional parameters are needed for the verification of the signature to enable the multi-receiver setup.
Aggregate-signcryption and multi-receiver aggregate-signcryption require an additional transfer to
the cluster head.

In the 5-1 scenario, the five smart cameras send their protected data to a single monitoring
device, so the individual-, aggregate-, and multi-receiver aggregate-signcryption send the same
amount of ciphertext data (e.g., 3750 kB), while the size of the extra data varies for each case.
Individual-signcryption requires 360 Bytes for the individual verification of the signcryptexts.
Aggregate-signcryption performs only a single verification and reduces the extra data to 168 Bytes.
Multi-receiver aggregate-signcryption requires 340 Byte to enable the decryption of same data for
multiple monitoring devices (which are actually not required in a single-receiver scenarios). Aggregate-

Sensors 2019, 19, 327 18 of 22

and multi-receiver aggregate-signcryption require five transfers to the cluster head and one transfer to
the monitoring device or backup server.

In the 5-3 scenario, the individual- and aggregate-signcryption protect the same data three
times for the three different monitoring devices which aggregates to 11,250 kB of ciphertext data.
Similarly, extra data must be separately included for each receiver. However, multi-receiver
aggregate-signcryption sends the same ciphertext to all monitoring devices and needs only 24 Bytes
for each monitoring device in addition to the single-receiver extra data. Similar to the computational
efficiency, individual-signcryption is most communication efficient for the 1-1 scenario due to the low
overhead. Aggregate-signcryption is superior for the 5-1 scenario, since it avoids multiple signatures
and verifications. Finally, multi-receiver aggregate-signcryption is the best option for scenario 5-3.

Table 7. Comparisons of communication efficiency in terms of transferred data and number of
data transfers of different approaches for one smart camera/one monitoring device (1-1), five smart
cameras/one monitoring device (5-1) and five smart cameras/three monitoring devices (5-3). Legend:
SD: signcryptext data, CD: ciphertext data, ED: extra data for signature and verification, NT: number
of transfers.

Scenario

Individual-Signcryption Aggregate-Signcryption Multi-Receiver Aggregate-Signcryption

SD NT SD NT SD NT
CD [kB] ED [B] CD [kB] ED [B] CD [kB] ED [B]

1-1 750 72 1 750 72 2 750 340 2
5-1 3750 360 5 3750 168 6 3750 340 6
5-3 11,250 1080 15 11,250 504 18 3750 388 8

6. Conclusions

In this paper, we investigated certificateless key generation technique and lightweight
multi-receiver aggregate signcryption for cluster-based smart camera IoT applications. First, we
adopted EC-based signcryption for each smart camera to achieve end-to-end lifetime data security.
Second, we implemented aggregation on cluster heads to merge the signcryptexts as a multi-receiver
aggregate-signcryptext packet and to avoid the transfer of unnecessary extra data. Third, we
performed unsigncryption on each monitoring device with public verifiability and exclusive access
to the encrypted data. Finally, in our experimental evaluation we explored the computation and
communication effort of individual-, aggregate- and multi-receiver aggregate-signcryption on three
different sender/receiver scenarios.

We foresee several directions for future work including investigating alternative encryption
approaches for signcryption, implementation on embedded smart camera platforms and deployment
in smart home case study.

Author Contributions: Conceptualization, S.U., L.M. and B.R.; methodology, S.U., L.M. and B.R.; software, S.U.;
investigation, S.U. and B.R.; writing–original draft preparation, S.U.; writing–review and editing, S.U., L.M. and
B.R.; supervision, L.M. and B.R.; funding acquisition, L.M. and B.R.

Funding: This work was supported in part by the Erasmus Mundus Joint Doctorate in Interactive and Cognitive
Environments, which is funded by the Education, Audiovisual & Culture Executive Agency. This work was also
supported by the research initiative Mobile Vision Austria with funding from the Austrian Federal Ministry of
Science, Research and Economy and the Austrian Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2019, 19, 327 19 of 22

Appendix A

Table A1. Notation.

Symbol Description

k, k0 Bit length of security parameters
q Large prime number
P Base point of EC of order q
Fq Finite field over prime number q
E(Fq) Elliptic curve over Fq
Z+

q Set of additive integers over mod q
Z∗q Set of multiplicative integers over mod q
x ∈ Z∗q Master secret key chosen by KGC
Pukgc Master public key of KGC
G1 Group field generated by EC with base point P
H1, H2, H3, H4 One-way and collision resistant hash functions
{0, 1}∗, {0, 1}k Input space of arbitrary and fixed length, respectively
xj, xh Secret value of smart camera and monitoring device, respectively
rj ∈ Z∗q Secret value chosen by KGC for partial key generation of smart camera j
(dj, Xj) The concatenated value of dj and Xj represent partial private key of smart camera j
tj, th Time period chosen for smart camera j and monitoring device h
Cj.i Represent the smart camera j in cluster i
Pj, Ph Part of public values chosen by smart camera and monitoring device
Pjkgc

, Phkgc
Part of public values generated by smart camera and monitoring devices using Pukgc

SKj, SKh Private keys of smart camera and monitoring device
j, h Identities of smart cameras and monitoring devices
dj, dh partial keys of smart cameras and monitoring devices
pkj, pkh Public key of smart camera and monitoring device
skcj.i Secret keys of smart cameras in cluster i
sj ∈ Z∗q Secret value chosen by smart camera during symmetric key generation
V ∈ {0, 1}n Value computed by smart camera during signcryption
Kenc, Kdec One-time encryption and decryption keys
l List of the monitoring devices
$(l) Individual-ciphertext for h monitoring devices in l
θ The combined data of individual-ciphertexts
σ Random number chosen by smart camera j
S The sum of the signature part
f Number of frames for the region of interest (RoI)
ϑ Represent aggregate-signcryptext data
Hj, Hh Hash values generated by smart cameras and monitoring devices

References

1. Wolf, W.; Ozer, B.; Lv, T. Smart cameras as embedded systems. Computer 2002, 35, 48–53. [CrossRef]
2. Obraczka, K.; Manduchi, R.; Garcia-Luna-Aveces, J.J. Managing the information flow in visual

sensor networks. In Proceedings of the 5th International Symposium on Wireless Personal Multimedia
Communications, Honolulu, Hl, USA, 27–30 October 2002; Volume 3, pp. 1177–1181. [CrossRef]

3. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

4. Reisslein, M.; Rinner, B.; Roy-Chowdhury, A. Smart Camera Networks [Guest editors’ introduction].
Computer 2014, 47, 23–25. [CrossRef]

5. Fernandes, E.; Jung, J.; Prakash, A. Security Analysis of Emerging Smart Home Applications. In Proceedings
of the IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 636–654.
[CrossRef]

6. Winkler, T.; Rinner, B. Security and privacy protection in visual sensor networks: A survey. ACM Comput.
Surv. 2014, 47, 2. [CrossRef]

http://dx.doi.org/10.1109/MC.2002.1033027
http://dx.doi.org/10.1109/WPMC.2002.1088364
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/MC.2014.134
http://dx.doi.org/10.1109/SP.2016.44
http://dx.doi.org/10.1145/2545883

Sensors 2019, 19, 327 20 of 22

7. Mohamed, E.; Elkamchouchi, H. Elliptic curve signcryption with encrypted message authentication and
forward secrecy. Int. J. Comput. Sci. Netw. Secur. 2009, 9, 395–398.

8. Ullah, S.; Rinner, B.; Marcenaro, L. Smart cameras with onboard signcryption for securing IoT applications.
In Proceedings of the IEEE Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017;
pp. 1–6. [CrossRef]

9. Ullah, S.; Russo, F.; Marcenaro, L.; Rinner, B. Aggregate-Signcryption for Securing Smart Camera IoT
Applications. In Proceedings of the IEEE Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June
2018; pp. 1–6. [CrossRef]

10. Xiong, H.; Qin, Z.; Vasilakos, A.V. Introduction to Certificateless Cryptography; CRC Press, Inc.: Boca Raton, FL,
USA, 2016.

11. Al Najjar, M.; Ghantous, M.; Bayoumi, M. Visual Sensor Nodes. In Video Surveillance for Sensor Platforms;
Springer: New York, NY, USA, 2014; pp. 17–35. [CrossRef]

12. Winkler, T.; Rinner, B. Demo: TrustEYE.M4—A Novel Platform for Secure Visual Sensor Network
Applications. In Proc. of the International Conference on Distributed Smart Cameras; ACM: New York, NY, USA,
2014; p. 45. [CrossRef]

13. Erdelyi, A.; Barat, T.; Valet, P.; Winkler, T.; Rinner, B. Adaptive Cartooning for Privacy Protection in Camera
Networks. In Proceedings of the IEEE International Conference on Advanced Video and Signal-Based
Surveillance (AVSS), Seoul, Korea, 26–29 August 2014; pp. 44–49.

14. Birem, M.; Berry, F. DreamCam: A modular FPGA-based smart camera architecture. J. Syst. Architect.
2014, 60, 519–527. [CrossRef]

15. Winkler, T.; Rinner, B. Sensor-level security and privacy protection by embedding video content analysis.
In Proceedings of the 18th International Conference on Digital Signal Processing (DSP), Fira, Greece, 1–3 July
2013; pp. 1–6.

16. Winkler, T.; Erdelyi, A.; Rinner, B. TrustEYE.M4: Protecting the sensor Not the camera. In Proceedings of the
11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Seoul, Korea,
26–29 August 2014; pp. 159–164.

17. Haider, I.; Rinner, B. Private Space Monitoring with SoC-Based Smart Cameras. In Proceedings of the
IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA,
22–25 October 2017; pp. 19–27. [CrossRef]

18. Boneh, D.; Lynn, B.; Shacham, H. Short Signatures from the Weil Pairing. J. Cryptol. 2004, 17, 297–319.
[CrossRef]

19. Cao, Y.; Zhang, L.; Zalivaka, S.S.; Chang, C.H.; Chen, S. CMOS Image Sensor Based Physical
Unclonable Function for Coherent Sensor-Level Authentication. IEEE Trans. Circuits Syst. I Regul. Pap.
2015, 62, 2629–2640. [CrossRef]

20. Ma, T.; Hempel, M.; Peng, D.; Sharif, H. A Survey of Energy-Efficient Compression and Communication
Techniques for Multimedia in Resource Constrained Systems. IEEE Commun. Surv. Tutor. 2013, 15, 963–972.
[CrossRef]

21. Kong, J.H.; Ang, L.M.; Seng, K.P. A comprehensive survey of modern symmetric cryptographic solutions for
resource constrained environments. J. Netw. Comput. Appl. 2015, 49, 15–50. [CrossRef]

22. Mohd, B.J.; Hayajneh, T.; Vasilakos, A.V. A survey on lightweight block ciphers for low-resource devices:
Comparative study and open issues. J. Netw. Comput. Appl. 2015, 58, 73–93. [CrossRef]

23. Grgic, K.; Mendelski, V.; Zagar, D. Security framework for visual sensors and smart camera networks.
In Proceedings of the 14th International Conference on Telecommunications (ConTEL), Zagreb, Croatia,
28–30 June 2017; pp. 131–138. [CrossRef]

24. Aghajan, H.; Cavallaro, A. Multi-Camera Networks: Principles and Applications; Academic Press: Cambridge,
MA, USA, 2009.

25. Zarezadeh, A.A.; Bobda, C.; Yonga, F.; Mefenza, M. Efficient network clustering for traffic reduction in
embedded smart camera networks. J. Real-Time Image Process. 2016, 12, 813–826. [CrossRef]

26. Goshorn, R.; Goshorn, J.; Goshorn, D.; Aghajan, H. Architecture for Cluster-Based Automated Surveillance
Network for Detecting and Tracking Multiple Persons. In Proceedings of the First ACM/IEEE International
Conference on Distributed Smart Cameras, Vienna, Austria, 25–28 September 2007; pp. 219–226. [CrossRef]

http://dx.doi.org/10.1109/GIOTS.2017.8016279
http://dx.doi.org/10.1109/GIOTS.2018.8534434
http://dx.doi.org/10.1007/978-1-4614-1857-3_2
http://dx.doi.org/10.1145/2659021.2669476
http://dx.doi.org/10.1016/j.sysarc.2014.01.006
http://dx.doi.org/10.1109/MASS.2017.15
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1109/TCSI.2015.2476318
http://dx.doi.org/10.1109/SURV.2012.060912.00149
http://dx.doi.org/10.1016/j.jnca.2014.09.006
http://dx.doi.org/10.1016/j.jnca.2015.09.001
http://dx.doi.org/10.23919/ConTEL.2017.8000049
http://dx.doi.org/10.1007/s11554-015-0498-2
http://dx.doi.org/10.1109/ICDSC.2007.4357527

Sensors 2019, 19, 327 21 of 22

27. Dietzel, S.; Peter, A.; Kargl, F. Secure Cluster-Based In-Network Information Aggregation for Vehicular
Networks. In Proceedings of the IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK,
11–14 May 2015; pp. 1–5. [CrossRef]

28. Chien, S.; Chan, W.; Tseng, Y.; Lee, C.; Somayazulu, V.; Chen, Y. Distributed computing in IoT,
System-on-a-chip for smart cameras as an example. In Proceedings of the 20th Asia and South Pacific Design
Automation Conference, Chiba, Japan, 19–22 January 2015; pp. 130–135. [CrossRef]

29. Alsmirat, M.A.; Obaidat, I.; Jararweh, Y.; Al-Saleh, M. A security framework for cloud-based video
surveillance system. Multimed. Tools Appl. 2017, 76, 22787–22802. [CrossRef]

30. Alsmirat, M.A.; Jararweh, Y.; Obaidat, I.; Gupta, B.B. Internet of surveillance: a cloud supported large-scale
wireless surveillance system. J. Supercomput. 2017, 73, 973–992. [CrossRef]

31. Mora, H.; Gil, D.; Terol, R.M.; Azorín, J.; Szymanski, J. An IoT-Based Computational Framework for
Healthcare Monitoring in Mobile Environments. Sensors 2017, 17. [CrossRef] [PubMed]

32. Sharma, G.; Kalra, S. A secure remote user authentication scheme for smart cities e-governance applications.
J. Reliable Intell. Environ. 2017, 3, 177–188. [CrossRef]

33. Alqazzaz, A.; Alrashdi, I.; Aloufi, E.; Zohdy, M.; Ming, H. SecSPS: A Secure and Privacy-Preserving
Framework for Smart Parking Systems. J. Inf. Secur. 2018, 9, 299–314. [CrossRef]

34. Baran, R.; Rusc, T.; Fornalski, P. A Smart Camera for the Surveillance of Vehicles in Intelligent Transportation
Systems. Multimed. Tools Appl. 2016, 75, 10471–10493. [CrossRef]

35. Huang, C.; Lu, R.; Lin, X.; Shen, X. Secure Automated Valet Parking: A Privacy-Preserving Reservation
Scheme for Autonomous Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 11169–11180. [CrossRef]

36. Won, J.; Seo, S.H.; Bertino, E. Certificateless Cryptographic Protocols for Efficient Drone-Based Smart City
Applications. IEEE Access 2017, 5, 3721–3749. [CrossRef]

37. Anoop, M. Elliptic Curve Cryptography. Infosecwriters 2015, 1–11. [CrossRef]
38. Boneh, D.; Franklin, M. Identity-Based Encryption from the Weil Pairing. In Advances in Cryptology—CRYPTO

2001; Kilian, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 213–229.
39. Seo, S.H.; Won, J.; Bertino, E. pCLSC-TKEM: A Pairing-free Certificateless Signcryption-tag Key

Encapsulation Mechanism for a Privacy-Preserving IoT. Trans. Data Priv. 2016, 9, 101–130.
40. Pang, L.; Yan, X.; Zhao, H.; Hu, Y.; Li, H. A novel multi-receiver signcryption scheme with complete

anonymity. PLoS ONE 2016, 11, e0166173. [CrossRef] [PubMed]
41. Niu, S.; Niu, L.; Yang, X.; Wang, C.; Jia, X. Heterogeneous hybrid signcryption for multi-message and

multi-receiver. PLoS ONE 2017, 12, e0184407. [CrossRef] [PubMed]
42. Nguyen, K.T.; Oualha, N.; Laurent, M. Lightweight Certificateless and Provably-Secure Signcryptosystem

for the Internet of Things. In Proceedings of the IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22
August 2015; Volume 1, pp. 467–474. [CrossRef]

43. Ting, P.Y.; Tsai, J.L.; Wu, T.S. Signcryption Method Suitable for Low-Power IoT Devices in a Wireless Sensor
Network. IEEE Syst. J. 2017, 1–10. [CrossRef]

44. Shi, Y.; Han, J.; Wang, X.; Gao, J.; Fan, H. An Obfuscatable Aggregatable Signcryption Scheme for Unattended
Devices in IoT Systems. IEEE Internet Things J. 2017, 4, 1067–1081. [CrossRef]

45. Winkler, T.; Rinner, B. Secure embedded visual sensing in end-user applications with TrustEYE.M4.
In Proceedings of the IEEE International Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), Singapore, 7–9 April 2015; pp. 1–6. [CrossRef]

46. Win, E.K.; Yoshihisa, T.; Ishi, Y.; Kawakami, T.; Teranishi, Y.; Shimojo, S. A Lightweight Multi-receiver
Encryption Scheme with Mutual Authentication. In Proceedings of the IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 2, pp. 491–497. [CrossRef]

47. Win, E.K.; Yoshihisa, T.; Ishi, Y.; Kawakami, T.; Teranishi, Y.; Shimojo, S. Lightweight and Secure
Certificateless Multi-receiver Encryption based on ECC. J. Inf. Process. 2018, 26, 612–624. [CrossRef]

48. Lenstra, A.K.; Verheul, E.R. Selecting cryptographic key sizes. J. Cryptol. 2001, 14, 255–293. [CrossRef]
49. Venkatesan, V.P.; Devi, C.P.; Sivaranjani, M. Design of a smart gateway solution based on the exploration of

specific challenges in IoT. In Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 22–31. [CrossRef]

50. Alharbi, R.; Aspinall, D. An IoT analysis framework: An investigation of IoT smart cameras’ vulnerabilities.
In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT, IET, London, UK, 28–29
March 2018; pp. 1–10.

http://dx.doi.org/10.1109/VTCSpring.2015.7146074
http://dx.doi.org/10.1109/ASPDAC.2015.7058993
http://dx.doi.org/10.1007/s11042-017-4488-1
http://dx.doi.org/10.1007/s11227-016-1857-x
http://dx.doi.org/10.3390/s17102302
http://www.ncbi.nlm.nih.gov/pubmed/28994743
http://dx.doi.org/10.1007/s40860-017-0046-x
http://dx.doi.org/10.4236/jis.2018.94020
http://dx.doi.org/10.1007/s11042-015-3151-y
http://dx.doi.org/10.1109/TVT.2018.2870167
http://dx.doi.org/10.1109/ACCESS.2017.2684128
http://dx.doi.org/10.1172/JCI28232.contemporaneous
http://dx.doi.org/10.1371/journal.pone.0166173
http://www.ncbi.nlm.nih.gov/pubmed/27832105
http://dx.doi.org/10.1371/journal.pone.0184407
http://www.ncbi.nlm.nih.gov/pubmed/28886125
http://dx.doi.org/10.1109/Trustcom.2015.408
http://dx.doi.org/10.1109/JSYST.2017.2730580
http://dx.doi.org/10.1109/JIOT.2017.2677977
http://dx.doi.org/10.1109/ISSNIP.2015.7106934
http://dx.doi.org/10.1109/COMPSAC.2017.20
http://dx.doi.org/10.2197/ipsjjip.26.612
http://dx.doi.org/10.1007/s00145-001-0009-4
http://dx.doi.org/10.1109/I-SMAC.2017.8058352

Sensors 2019, 19, 327 22 of 22

51. Pacheco, J.; Hariri, S. IoT Security Framework for Smart Cyber Infrastructures. In Proceedings of the
International Workshops on Foundations and Applications of Self* Systems (FAS*W), Augsburg, Germany,
12–16 September 2016; pp. 242–247. [CrossRef]

52. Shao, Z.; Cai, J.; Wang, Z. Smart Monitoring Cameras Driven Intelligent Processing to Big Surveillance Video
Data. IEEE Trans. Big Data 2018, 4, 105–116. [CrossRef]

53. Albano, P.; Bruno, A.; Carpentieri, B.; Castiglione, A.; Castiglione, A.; Palmieri, F.; Pizzolante, R.; You, I.
A Secure Distributed Video Surveillance System Based on Portable Devices. In Multidisciplinary Research
and Practice for Information Systems; Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 403–415.

54. Zhang, W.; Zhang, Z.; Qi, D.; Liu, Y. Automatic Crack Detection and Classification Method for Subway
Tunnel Safety Monitoring. Sensors 2014, 14, 19307–19328. [CrossRef]

55. Freeman, D.M. Schnorr Identification and Signatures. October 2011, 2–5. [CrossRef]
56. Ionut, A. Elliptic curves differentiation with application to group signature scheme. Electron. J. Differ. Equat.

2017, 2017, 1–21.
57. The Legion of the Bouncy Castle. Available online: https://www.bouncycastle.org/ (accessed on 15

December 2018).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/FAS-W.2016.58
http://dx.doi.org/10.1109/TBDATA.2017.2715815
http://dx.doi.org/10.3390/s141019307
http://dx.doi.org/10.1145/1536414.1536440
https://www.bouncycastle.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State-of-the-Art
	Onboard Protection on Smart Cameras
	Protection in Smart Camera Networks
	Use-Cases of Secure Smart Cameras
	Signcryption: An Efficient Certificateless Security Approach
	Comparisons with our Approach

	System Architecture
	Requirements and Assumptions
	Threat Model

	Proposed Solution
	Overview of Security Techniques
	Deployment Phase
	Preliminary Setup for Generation of Security Parameters by KGC
	Request of Partial Private Key by a Smart Camera
	Partial Private Key Generation by KGC
	Public Key of Smart Camera

	Operational Phase
	Session Keys Generation
	Multi-Receiver Signcryption by Smart Cameras
	Multi-Receiver Aggregate-Signcryption
	Unsigncryption by Monitoring Devices
	Correctness of the Scheme

	Security Analysis
	Public Verification
	Authentication and Integrity
	Decryption Fairness and Confidentiality
	Freshness

	Experimental Evaluation
	Experimental Setup
	Deployment Phase
	Operational Phase
	Computation Time of Individual-Signcryption
	Computational Time of Aggregate-Signcryption
	Computational Time of Multi-Receiver Aggregate-Signcryption
	Performance Comparison

	Communication Efficiency

	Conclusions
	
	References

