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Abstract
With the rapid development of advanced media technology, especially the popularization
of digital cameras and image editing software, digital images can be easily forged without
leaving visible clues. Therefore, image forensics technology for identifying the accuracy,
integrity, and originality of digital images has become increasingly important. Photo-
response non-uniformity (PRNU) noise, a unique fingerprint of imaging sensors, is a
valuable forgery detection tool because of its consistently good detection performance. All
kinds of forgeries, including copy-move and splicing, can be dealt with in a uniform
manner. This paper addresses the problem of forgery localization based on PRNU estima-
tion and aims to improve the resolution of PRNU-based algorithms. Different from
traditional overlapping and sliding window-based methods, in which PRNU correlations
are estimated on overlapped patches, the proposed scheme is analyzed based on nonover-
lapping and irregular patches. First, the test image is segmented into nonoverlapped
patches with multiple scales. Second, correlations of PRNU are estimated on
nonoverlapped patches to obtain the real-valued candidate tampering probability map
for each individual scale. Then, all of the candidate maps are fused into a single and more
reliable probability map through an adaptive window strategy. In the final step, the final
decision map is obtained by adopting a conditional random field (CRF) to model neigh-
borhood interactions. The contributions of this work include the following: a novel PRNU-
based forgery localization scheme using multi-scale nonoverlapping segmentation is
proposed for the first time. Furthermore, the adaptive fusion strategy involves selecting
the best candidate tampering probability individually for each location in the image.
Additionally, the experimental results prove that the proposed scheme can achieve much
better detection results and robustness compared with the existing state-of-the-art PRNU-
based methods.
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1 Introduction

Today’s advanced media technology, such as digital image processing, video coding [38], high-
efficiency video coding (HEVC) [24, 35], Internet of Things (IoT) [36, 45], and cloud computing
(CC) [39], represents a fascinating time that will considerably affect daily life. In particular, digital
images are being used in many applications such as the military, medical diagnosis, art pieces, and
photography. The reliability of digital images is thus becoming an important issue. However,
currently, it is very easy to manipulate digital images without leaving visible traces using photo
editing software. Therefore, it is important to focus on the image forensics field. One of the principal
problems in image forensics is determining whether a particular image is authentic and, if manip-
ulated, to localize which parts have been altered. Since forgery localization requires pixel-level
analysis rather than image-level analysis, it faces more challenges compared to forgery detection.

1.1 Related works

Instead of using digital watermarks [3] and signatures [47], many passive methods have been
proposed for image forgery detection. Copy-move and splicing forgery are the most common
forms to manipulate digital images. For copy-move forgery, there are mainly two classes of
detection algorithms [11]. One is based on blockwise division, such as discrete wavelet transform
(DWT) [43], principal component analysis (PCA) [34], and Zernike moments [42], and the other
is based on keypoint extraction, such as scale-invariant feature transform (SIFT) [4, 27, 41] and
speeded-up robust features (SURF) [37]. For splicing forgery, the spliced region from another
image has a significantly different intrinsic noise variance. The method in [33] exposes region
splicing by revealing inconsistencies in local noise levels. However, the spliced region and the
target image differ under many more aspects than just noise. In [13], a feature-based algorithm to
detect image splicing was proposed. Local features were computed from the co-occurrence of
image residuals and used to extract synthetic feature parameters. The authors in [14] regarded
features coming from the spliced area as anomalies and iterated autoencoder-based modeling and
discriminative labeling to distinguish them. Noise discrepancies inmulti-scales are used for image
splicing forgery detection in [40]. Similarly, Yao et al. [46] explored possible noise level
inconsistency using a noise level function (NLF) to detect image splicing.

Recently, a multitask fully convolutional network (MFCN) was proposed to localize image
splicing attacks [44]. Since JPEG format is widely used and image splicing usually involves
the operation of double JPEG compression, Bianchi et al. [5] exploited the artifacts arising
from double JPEG compression. The illumination environment in pictures also presents some
consistency: directions of lights [21], shadows [30] and illumination colors [6] can be
estimated and used as cues. However, the methods mentioned above are intrinsically sensitive
only to specific manipulations.

In addition, some methods rely on machine learning [12, 16, 18] and have reported good
performance. However, these methods essentially depend on the availability and quality of
training data, which is not always guaranteed.

An interesting approach for forgery detection relies on the characteristics of the digital camera,
such as the color filter array (CFA) interpolation artifacts [17], lens aberration [22] and sensor
pattern noise (SPN) [32], which has drawn considerable attention due to the uniqueness of
individual cameras and the stability against environmental conditions. Photo-response non-
uniformity (PRNU) noise is the dominant component of SPN. PRNU is the result of imperfections
caused by the manufacturing process and the inhomogeneity of silicon wafers. Lukas et al. [32]
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initially developed a PRNU-based technique for image forgery detection and camera identifica-
tion. The camera PRNU noise is estimated by averaging noise residues extracted from images
acquired by the camera. Given an image, they obtained the pattern noise from the image using a
smoothing filter and identified the camera model by comparing with candidate reference patterns.
In [7], the maximum likelihood estimator (MLE) was used to estimate the camera PRNU. In view
of the good performance of the PRNU-based algorithm, many studies have made improvements
under several aspects. Since denoising filtering contributes significantly to the accuracy of PRNU
estimation, denoising filters, such as predictors based on the eight-neighbor context-adaptive
interpolation (PCAI) algorithms [23] and block matching and 3D filtering (BM3D) algorithms
[15], have been discussed. Since the PRNU is a very weak signal, Lin et al. [28] believed that
some components of SPN have been severely contaminated by the errors introduced by denoising
filters and that the quality of PRNU can be improved by abandoning those components. To reduce
undesirable nonunique noise components, Lin et al. [29] proposed the method of equalizing the
magnitude spectrum of the reference SPN to decrease the false identification rate. Later, a three-
stage enhancement of the PRNU was proposed in [26]. More recently, PRNU has been used to
detect forgeries caused by hue modification [20]. However, these methods mainly aim to
discriminate whether a given image is pristine or fake. In practice, we are more interested in
determining the tampered regions, which are called tampering localization.

In this paper, we focus on tampering localization based on the PRNU algorithm. The core of
PRNU-based tampering localization involves the correlation of a known noise pattern with its
estimate from the investigated image. The operation is often performed in a sliding window
manner. To detect small-sized manipulations, Chierchia et al. proposed segmentation-based
analysis [9] and a spatially adaptive filtering technique [8]. In addition, the authors in [10] cast
the problem in terms of Bayesian estimation and adopted a Markovian prior to model the strong
spatial dependences of the source, which allows for the propagation of reliable decisions into
ambiguous areas. More recently, a multi-scale analysis was adopted to improve the localization
resolution in [25]. Although the above methods can improve the resolution dramatically, these
methods are all based on overlapped sliding windows, which can lead to many false decisions
when the sliding window falls near the boundary between tampered and authentic regions. Lower
localization accuracy near the boundary of tampered objects is still a major problem to be solved
in tampering localization. Therefore, obtaining accurate image segmentation is necessary to
improve the localization resolution.

Image segmentation aims to partition an image into several parts automatically or with simple
interactions. It is a key step in image analysis. Graph cut technology is one of the leading
algorithms for interactive segmentation [2], which is suitable for delineating a boundary of one
or multiple objects from images. A multilevel banded heuristic for computation of graph cuts is
proposed in [31] for fast image segmentation. Recently, an efficient hierarchical graph cut method
was proposed for interactive RGB-D image segmentation, which can generate high-quality
segmentation results and real-time interactions [19]. In recent years, researchers have focused
on superpixels in the field of image segmentation. A new superpixel algorithm, simple linear
iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate
superpixels, was proposed [1].

1.2 Contributions

To address the abovementioned problems, in this study, we propose a novel PRNU-based
forgery localization scheme using multi-scale nonoverlapping segmentation. The main
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contributions of this work are as follows: 1) the test image is segmented into nonoverlapping
superpixels of multiple scales by the SLIC algorithm. This is the first time that a multi-scale
SLIC strategy is proposed in the framework of PRNU-based algorithms. 2) In each individual
scale, unlike existing sliding window-based algorithms in which PRNU correlations are
estimated on overlapped sliding windows, our algorithm directly computes correlations on
nonoverlapped irregular patches, which can accurately delineate boundaries of contrasting
objects with lower complexity. 3) An adaptive fusion strategy is used to combine multi-scale
tampering probability maps. 4) Compared with existing state-of-the-art PRNU-based methods,
the proposed algorithm retains better experimental results in diverse situations.

The rest of this paper is organized as follows. Section 2 introduces the PRNU-based localization
method. Section 3 describes the proposed strategy in detail. Section 4 shows a series of experiments
and comparisons with state-of-the-art methods. Finally, conclusions are drawn in section 5.

2 Background

This section mainly introduces basic analysis strategies in PRNU-based tampering localiza-
tion. Let y ∈ RN be a digital image taken from a given camera, yi indicates the value at site i,
either the grayscale or a single color component from a color image. Let us consider a
simplified model [32] in which y can be written as:

y ¼ xþ kxþ θ ð1Þ
where x is the acquired noise-free image, θ an additive noise term, and k is the camera PRNU.
For the purpose of forgery detection, k is the signal of interest, while all the rest can be
considered undesired disturbances. Therefore, to eliminate the original signal x, the noise
residual r is estimated as follows:

r ¼ y−x̂̂¼ yk þ x−x̂̂ð Þ þ x−yð Þk þ θ ¼ yk þ n ð2Þ
where x̂ ¼ D yð Þ is an estimate of the noise-free image x by applying a denoising filter D and n
is the ensemble of all disturbances.

The main steps of the PRNU-based algorithm are as follows.
As the preliminary step, the camera PRNU is estimated by a large number of photos taken

by the target camera. The noise residuals are extracted using Eq. (2) from a number of low-
contrast images taken by the target camera; then, the camera PRNU k is obtained by maximum
likelihood estimation of noise residuals [7]. That is

k̂̂ ¼
∑
m

i¼1
WiI i

∑
m

i¼1
I2i

i ¼ 1;⋯;m ð3Þ

where m is the number of images involved in the calculation, Ii is the ith image taken by the
target camera, and Wi is the corresponding noise residual extracted from Ii. Note that the
multiplication operation in Eq. (3) is element wise.

Then, the image PRNU is estimated by Eq. (2) in the second step. Since there is only one
image to be detected, the noise residual r is often used to approximate its image PRNU.

Third, tamper detection was based on sliding window analysis. Let wi denote the sliding
analysis window of size w ×w centered around pixel i. For each analysis window wi, the
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normalized cross-correlation qi is used to compare the image PRNU against the camera PRNU
in Eq. (4).

qi ¼ corr rwi ; zwið Þ ¼
rwi−rwi

� �
⊙ zwi−zwi

� �
‖rwi−rwi‖⋅‖zwi−zwi‖

ð4Þ

Note that rwi is the noise residual and zwi ¼ ywi
⋅kwi is an estimate of the camera PRNU in Eq. (4).

Given k, the detection problem can be formulated as a binary hypothesis test between
hypothesis H0 that the camera PRNU is absent and hypothesis H1 that the PRNU is present:

H0 : qi ∼Ν 0;σ0ð Þ
H1 : qi ∼Ν q̂̂i;σ1ð Þ

�
ð5Þ

where the expected correlation predictor q̂i account for special situations such as saturated
image regions where PRNU cannot be detected. σ0, σ1 are the variances of the detection
statistics for H0 and H1, respectively.

Then, Korus et al. [25] converted the measured correlation qi into tampering probability map ci:

ci ¼ P qijσ0;σ1; q̂̂ið Þ ¼ 1þ e
−log σ1=σ0ð Þ− qi−q̂̂ið Þ2

2σ2
1

þ q2
i

2σ2
0

 !−1

ð6Þ

In the last step, the final decision map is obtained by a conditional random field (CRF)
model [25].

3 The proposed PRNU-based multi-scale tampering localization
algorithm

This section describes the proposed multi-scale segmentation strategies in PRNU-based image
tampering localization. Figure 1 shows the framework of the proposed algorithm. First, a
multi-scale segmentation method is proposed to segment the test image into successive scales.
The segmentation result for each scale is composed of nonoverlapping and irregular patches.
For each scale, PRNU correlations are computed on nonoverlapped patches to obtain a real-
valued candidate tampering probability map. Subsequently, the candidate tampering probabil-
ity maps of all scales are fused into a single, more reliable map by the adaptive fusion method.
Finally, we use CRF modeling to obtain the final decision map.

The SLIC algorithm is applied to segment the input image onmultiple scales. SLIC adopts a k-
means clustering approach to efficiently generate superpixels and adheres to boundaries as well as
better than other similar segmentation methods [1]. At the same time, it is fast, memory efficient
and simple to use. In most cases, one image with a size of 1920 × 1080 can be segmented into
thousands of patches in 2 s using a personal computer with a 3.60GHzCPUwith 16GB of RAM.
By default, the only parameter of the algorithm is J, the desired number of superpixels.

Assume the size of the test image is M × N, in the segmentation stage, the computational
complexity of overlapping segmentation is O(MN), and the nonoverlapping segmentation is
O(J), which is much lower than the former. Compared with the existing sliding window-based
analysis, superpixel segmentation by SLIC can significantly reduce the complexity of the
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subsequent image processing. Furthermore, the irregular and meaningful regions can adhere to
the boundary better than the regular blocks.

Figure 2 gives an example of image segmentation obtained by SLIC. The man dressed in
red in the middle of the image is in the tampered regions. We segment the image by means of
the SLIC algorithm with the initial number of superpixels J = 100 (left) and 1000 (right).

However, the initial number of superpixels in SLIC is difficult to determine. It is difficult to
detect and locate tampered objects of various sizes with one fixed initial segmentation number.
Different initial numbers of superpixels can produce different forgery detection results.When J is
too small, the average size of superpixels is too large. Reliable statistics can be obtained for large
superpixels. However, the small tampered regions will occupy only a small part of the
superpixels, and thus it may cause false detection in the following steps. In contrast, if J is large
enough to decompose all possible tampered areas, the average size of superpixels is too small.
Smaller tampered regions can be accurately detected on smaller scales, while smaller superpixels
yield more noise and uncertainty. Hence, to combine the benefits of small-scale and large-scale
analysis, we propose to segment the test image into multiple scales. Therefore, the proposed
multi-scale segmentation method plays an important role in detecting various size forgeries.

3.1 Multi-scale segmentation

In the first step of the proposed algorithm, we segment the test image I into S scales, and the
segments satisfy:

Fig. 1 Framework of the proposed multi-scale tampering localization scheme
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∪
j¼1

J s

T s
j ¼ I

T s
i∩T

s
j ¼ Φ i≠ j; i; j ¼ 1;⋯; J sð Þ

for s ¼ 1;⋯; S

8<
: ð7Þ

where Ts
j indicates the jth patch, and there are Js total segments on the sth scale. S is the total

number of scales.
Note that segments for each scale s (s = 1,…, S) are nonoverlapped and segments from

different scales should not be intentionally the same, that is:

Tp≠Tq for p≠q ð8Þ

3.2 Obtaining a tampering probability map based on PRNU analysis across each scale

In contrast to sliding window-based analysis [25, 32], the proposed nonoverlapped regions of
irregular shape are expected to accurately delineate boundaries of contrasting objects with
lower complexity. The image PRNU and the camera PRNU are estimated by Eq. (2) and Eq.
(3), respectively. Then, a PRNU-based analysis is conducted across each scale s (s = 1,…, S) to
obtain a tampering probability map. In the rest of this section, unless specified, all operations
are performed on the same scale s. For each patch Ts

j j ¼ 1;⋯; J sð Þ, the correlation between

the image PRNU and the camera PRNU is computed only for pixels that belong to the jth
patch, that is:

qj ¼ corr Rs
j; Z

s
j

� �
¼

Rs
j−R

s

j

� �
⊙ Zs

j−Z
s

j

� �
‖Rs

j−R
s

j‖⋅‖Z
s
j−Z

s

j‖
j ¼ 1;⋯; J sð Þ ð9Þ

whereRs
j and Zs

j ¼ Ts
j⋅K

s
j are the image PRNU and camera PRNU, respectively, of the patch

Ts
j.

The problem can be cast as a binary test between hypothesis H0 that the camera PRNU is
absent and hypothesis H1 that the camera PRNU is present. We define ∑Ts

j as the number of

actual pixels of the patch Ts
j. Thus, ω j ¼

ffiffiffiffiffiffiffiffiffi
∑Ts

j

q� �
represents the equivalent square window

size and [⋅] represents the rounding function. Since the test image is divided into
nonoverlapped regions of irregular shape, the distribution models for the hypothesis in Eq.
(5) are adjusted according to the number of actual pixels used in the correlation calculation:

Fig. 2 An example of image segmentation using SLIC. The initial number of superpixels a J= 100 and b J=1000
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H0 : qj∼Ν 0;σ0 ω j
� 	� 	

H1 : qj∼Ν q̂̂j ω j
� 	

;σ1 ω j
� 	� �(

ð10Þ

where σ0(ωj), q̂ j ω j
� 	

and σ1(ωj) are obtained by cubic spline interpolation between the original

value σ0(ωs), q̂ j ωsð Þ and σ1(ωs) used in multi-scale square window analysis. Note that the

square window {ωs}(s ∈ {1,⋯, S}) used for spline interpolation is the same as [25].
To prevent excessive degradation of the correlation statistic, at least ω2

min pixels are required
for the computation in the proposed scheme. If the segmentation yields a smaller region, we
expand it with morphological dilation.

Then, candidate tampering probability maps cs for each scale s(s = 1,⋯, S) are obtained by
Eq. (6). The detailed steps of the proposed PRNU-based nonoverlapping segmentation
algorithm are shown in Algorithm 1.

3.3 Fusion of the multi-scale tampering probability maps

With the analyses of PRNU-based multi-scale nonoverlapping segmentation, a set of tamper-
ing probability maps cs(s = 1,⋯, S) of the test image can be obtained. The next task is to fuse
multi-scale tampering probability maps using an adaptive fusion approach to obtain a single,
more reliable tampering probability map. It can combine the benefits of both small-scale and

Multimedia Tools and Applications



large-scale analyses. The analysis starts by evaluating the tampering probability csi according
to Eq. (6) for the smallest scale (e.g., s = 1 in our experiment). Note that i denotes the location
of the ith pixel. If the patch is too small and a confident decision cannot be reached, the patch
size is increased to the next available scale s + 1. Such an approach uses smaller patches in
more confident, bright and flat areas and larger patches are used in darker, more textured
regions of the image. In our experiments, we proceed to the next patch size if
jcsi−0:5j < 0:5−Δc1. The new tampering probability estimate is accepted if it is more confi-
dent than the previous one. If the next (larger) scale reinforces a previous, reasonably confident
detection (jcsi−0:5j > Δc2), we stop increasing the scale. The described algorithm is summa-
rized as pseudocode in Algorithm 2.

An example of the effect of using the adaptive fusion algorithm can be seen in Fig. 3, with
color bars from 1 to 7 representing 7 scales. In this case, noisier and more uncertain regions are
replaced by another region taken from a different scale.

3.4 Obtaining the final decision map

Based on the obtained tampering probability map, the final decision map is adopted by a
CRF model. The tampering probability map c can be formulated in terms of CRF and
resolves to find the optimal labeling of authentication units (with labels ti = 1 denotes
tampered regions) that minimizes the following energy function [25]:

E tjcð Þ ¼ ∑
N

i¼1
Eτ ci; tið Þ þ α ∑

N

i¼1
ti þ ∑

N

i¼1
∑
j∈Δi

βijjti−t jj ð11Þ
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where N is the number of pixels in the test image. The decision is controlled by a decision
threshold τ and parameterized by tampering penalty α and interaction parameter β.
Readers can refer to [25] for more details. To speed up processing, the tamper probability
map is resized to a smaller size (e.g., 240 × 135 in our experiment) before using CRF in the
proposed scheme.

4 Experimental results

In this section, we discuss the performance of the proposed technique. The proposedmethod was
implemented usingMATLAB2015a on a computer with a 3.4 GHzCPU and 16 GB of RAM. In
this section, the forgery localization performance is evaluated with the F1-score as follows:

F1 ¼ 2⋅TP
2⋅TP þ FN þ FP

ð12Þ

Table 1 Parameters used in the experiments

Symbol Parameter Value

S The total number of scales 7
ωmin Minimum window size 64
ωs(s = 1,⋯, S) The square window used for interpolation {32, 48, 64, 96, 128, 192, 256}
Js(s = 1,⋯, S) The number of initial segment patches for S scales {2025, 900, 506, 225, 127, 56, 32}
Δc1
Δc2

Parameters used in adaptive fusion 0.1
0.25

Fig. 3 An example of an adaptive fusion method. Color bars from 1 to 7 represent 7 scales
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where TP, FN, FP denote statistics of the detected true positives, false negatives, and false
positives, respectively. In addition, we also generate the corresponding receiver operation
characteristics (ROC) curve by sweeping the decision threshold τ over 24 values, uniformly
distributed in (0, 1).

4.1 Dataset selection

Experiments are conducted on a realistic tampering dataset proposed by Korus et al. [25],
which contains a total of 136 tampered images originating from four cameras: a Sony α57, a
Canon 60D, a Nikon D90, and a Nikon D7000. The cameras contain 52, 27, 31 and 26
tampered images, respectively. All images have the same size of 1920 × 1080 pixels RGB
uint8 bitmaps stored in the TIFF format. The forgeries are of various sizes and characters and
include object insertion, object removal and more subtle changes to existing content, such as
subtle shadows or reflections, which are unlikely to be detected with PRNU analysis. The
experiment was performed separately for each camera.

4.2 Parameter selection

Table 1 shows the parameter values used in the experiments. The square window ωs(s = 1,⋯,
S) used for interpolation includes {32, 48, 64, 96, 128, 192, 256}. Parameter J is related to the
number of segmentation patches. Note that, in our experiment, the relationship between ωs and
Js satisfies Eq. (13):

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � N

Js

r� �
ð13Þ

where M ×N represents the size of the test image and [⋅] indicates the rounding function. The
parameters used in the camera model and CRF decision are the same as in [25].

4.3 Localization performance and comparisons

To validate the effectiveness of the proposed multi-scale SLIC (M-SLIC) algorithm, we
compare the proposed scheme with the 7 single-scale ({2025, 900, 506, 225, 127, 56, 32})
SLIC methods. ROC curves and the average F1-score are plotted in Fig. 4 when changing
the decision threshold τ on each of the camera datasets separately. Figure 4a shows the ROC
curves for four cameras. To improve readability, we show only a close-up of the most relevant
region. Compared with all 7 single scales, the proposed M-SLIC strategy delivered superior
performance for all four cameras. Similar results can be observed in Fig. 4b, where the average
F1-score plotted when changing the decision threshold τ on each of the datasets. The
maximum average F1-score of the M-SLIC method performed better than all 7 single scales
for all cameras. This confirmed that the proposed fusion strategy could effectively combine the
benefits of both small-scale and large-scale analyses.

To assess the performance of the proposed PRNU-based M-SLIC algorithm, we also
compare it with two other PRNU-based methods. One is the sliding window-based segmen-
tation-guided (SW-SG) strategy [25], and the other is the sliding window-based single scale
(SW-SS) detectors with the standard 128 × 128 pixel window [32]. For these two methods, we
use the source codes provided by the authors with default parameters to generate the results. In
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Fig. 4 Comparison of the proposed M-SLIC algorithm with individual single-scale SLIC algorithm. a ROC
curve comparison. b Average F1-score comparison
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addition, we also compare the proposed M-SLIC algorithm with the single-scale SLIC (S-
SLIC) algorithm proposed in our previous paper.

In our previous study, it was confirmed through experiments that the average F1-scores all
reached the maximum, with the parameter J = 700 for all four cameras. Therefore, in the
following comparison, J is fixed to 700 in the S-SLIC algorithm. The obtained results are
shown in Figs. 5 and 6. It can be seen that for the Sony α57, Canon 60D and Nikon D7000
cameras, the most stable improvement can be seen for the proposed M-SLIC strategy, which
performs better than the SW-SG, SW-SS and S-SLIC methods. For the Nikon D90 dataset, M-
SLIC has similar performance as the SW-SG method and is better than the other two methods.
Similar tendencies can be observed from the average F1-score plotted in Fig. 6.

To clearly show which methods perform better, the maximum average F1-score is shown in
Table 2. The maximum value of each camera is highlighted in bold. As shown in Table 2, most
of the bold numbers appear in the proposed scheme (the last column), indicating the effec-
tiveness of the proposed M-SLIC algorithm. The insignificant performance decline appears in
the Nikon D90 camera. The reason is that in the dataset of the Nikon D90 camera, there are
many subtle object removal forgeries.

We also present some examples of tampering localization results in Fig. 7 for the strategies
mentioned above. It can be observed that the proposed algorithm can detect small size and
large size forgeries. At the same time, the proposed algorithm can not only detect additive

Fig. 5 Comparison of the ROC curves between the proposed M-SLIC algorithm and the SW-SG, SW-SS and S-
SLIC (J = 700) algorithms for the four cameras
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tampering (2th and 4th rows), but also detect object removal tampering (1th and 3th rows).
Besides, compared with the SW-SG and SW-SS algorithms, the proposed scheme can achieve
much better localization accuracy.

4.4 JPEG compression robustness test

The tampered image may undergo JPEG compression after manipulation. The following
experimental results demonstrate the performance of the proposed method when the images
are JPEG compressed. We used the Nikon D7000 dataset for this experiment. Photoshop is
used to compress the TIFF images into JPEG format images with quality factors varying from
100 to 70 in steps of −10. That is, each picture in the original forgery dataset is altered to four
versions. We used the same camera models and predictors as in the previous experiments.

Fig. 6 Comparison of the average F1 scores between the proposed M-SLIC algorithm and the SW-SG, SW-SS
and S-SLIC (J = 700) algorithms for the four cameras

Table 2 Maximum average F1-scores for the four cameras

Method

Camera SW-SS [32] SW-SG [25] S-SLIC Proposed M-SLIC

Sony α57 0.5870 0.5983 0.6384 0.6521
Canon 60D 0.4578 0.4740 0.5500 0.5775
Nikon D90 0.4935 0.5634 0.5516 0.5622
NikonD7000 0.5331 0.5777 0.6347 0.6671
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The impact of JPEG compression on tampering localization performance is shown in Fig. 8.
As the quality factor decreases, the detection result deteriorates. The proposed multi-scale
fusion strategy delivers the best maximum average F1-score for all JPEG quality factors.

5 Conclusion

This paper introduced a novel PRNU-based multi-scale fusion method to expose copy-move
and splicing forgery in digital images. Different from existing sliding window-based algo-
rithms, in which correlations of PRNU are estimated on overlapped patches, the proposed

Fig. 7 Example of tampering localization results. The pixels in white, black, red, and green indicate true positive,
true negative, false positive, and false negative, respectively. Here, positive means fake pixels, while negative
means pristine pixels. a Original image. b Tampered image. c Ground truth. d SW-SS [32] method. e SW-SG
[25] method. f Proposed M-SLIC method

Fig. 8 JPEG compression test for the Nikon D7000 dataset. Note that 70, 80, 90 and 100 are the compression
quality factors and TIFF present uncompressed TIFF format images. a Comparison of the average F1-scores
between the proposed algorithm with SW-SS and SW-SG algorithms. b Comparison of the average F1-scores
between the proposed algorithm with the 7 single scale (J∈{2025, 900, 506, 225, 127, 56, 32}) SLIC algorithms
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algorithm directly segments the test image into nonoverlapping and irregular blocks of
multiple scales and computes correlations on nonoverlapped segmentation patches.

The merits of the proposed approach are as follows. The proposed algorithm is particularly
good at identifying the location and shape of the object insertion forgeries. It uses
nonoverlapped irregular segmentation, which can accurately delineate boundaries of contrast-
ing objects with lower computational complexity. In addition, multi-scale analysis can detect
as many types of forgery as possible.

Despite the present advances, there is still considerable room for improvement. Although
subtle object removal forgeries can be detected by the proposed scheme, the localization
accuracy needs to be further improved in future work. Since PRNU can be contaminated
mainly by image content and non-unique artefacts of JPEG compression, how to improve the
estimated quality of PRNU is one of the major research orientations in the future. In addition,
as a future study, we suggest that we need to design a better and more robust correlation
predictor for the PRNU detector.
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