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Abstract: Location privacy attacks based on a Markov
chain model have been widely studied to de-anonymize
or de-obfuscate mobility traces. An adversary can per-
form various kinds of location privacy attacks using a
personalized transition matrix, which is trained for each
target user. However, the amount of training data avail-
able to the adversary can be very small, since many
users do not disclose much location information in their
daily lives. In addition, many locations can be miss-
ing from the training traces, since many users do not
disclose their locations continuously but rather sporad-
ically. In this paper, we show that the Markov chain
model can be a threat even in this realistic situation.
Specifically, we focus on a training phase (i.e. mobil-
ity profile building phase) and propose Expectation-
Maximization Tensor Factorization (EMTF), which al-
ternates between computing a distribution of missing
locations (E-step) and computing personalized transi-
tion matrices via tensor factorization (M-step). Since
the time complexity of EMTF is exponential in the
number of missing locations, we propose two approxi-
mate learning methods, one of which uses the Viterbi
algorithm while the other uses the Forward Filtering
Backward Sampling (FFBS) algorithm. We apply our
learning methods to a de-anonymization attack and a
localization attack, and evaluate them using three real
datasets. The results show that our learning methods
significantly outperform a random guess, even when
there is only one training trace composed of 10 loca-
tions per user, and each location is missing with prob-
ability 80% (i.e. even when users hardly disclose two
temporally-continuous locations).
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1 Introduction
The number of GPS-equipped devices such as smart-
phones, tablets, and in-car navigation systems has
grown rapidly in recent years. As a consequence, many
people are now using location-based services (LBS) such
as Point-of-Interest (POI) search and route finding, and
location-based social networks (LBSN) such as location
check-in, tagging, and nearby friends [40]. In addition,
a great number of mobility traces (time-series location
trails), called Spatial Big Data [34], are stored in a data
center of the LBS provider. These data can be provided
to a third-party for analysis (e.g. finding culturally im-
portant places, commonly frequented public areas, or
fuel-efficient routes [34, 47]), or can be made public to
provide traffic information to users [16].

However, the disclosure of location information can
lead to inference of users’ sensitive locations such as
homes and hospitals that are visited regularly, and other
private information such as users’ properties (e.g. age,
occupation) and social relationship [9, 21]. There is also
a risk that robbers [30] or stalkers [41] exploit location
information of target users. This kind of privacy is called
location privacy, and numerous studies have addressed
this issue from various perspectives (e.g. attacks, de-
fenses, and privacy metrics) [13, 19].

In this paper, we focus on location privacy attacks
based on a Markov chain model, which have been widely
studied in the literature [11, 22, 24–27, 35, 36, 44]. In
this model, an adversary divides an area of interest into
regions (or POIs) x1, · · · , xM (M regions in total), and
partitions time at regular intervals (e.g. 30 minutes, one
hour). The adversary then assumes a Markov property
for the movement of target users u1, · · · , uN (N users
in total), and trains, for each target user un (1 ≤ n ≤
N), anM×M personalized transition matrix Pn, which
comprises the probability pn,i,j (1 ≤ i, j ≤M) that user
un moves from region xi to xj .

The adversary can perform various kinds of location
privacy attacks using personalized transition matrices
P1, · · · , PN . For example, the adversary can perform a
de-anonymization attack [11, 24, 26, 27, 35, 36], which
identifies users from anonymized traces whose user IDs
are replaced by pseudonyms. Another example is a local-
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ization attack [25, 35, 36], which infers an actual location
of a target user at a certain time based on his/her trace
that is obfuscated (e.g. by adding noise, deleting some
locations, merging regions). Many studies [11, 24, 36, 38]
showed that the Markov chain model can successfully be
used to de-anonymize traces or infer locations with very
high accuracy when the amount of training data avail-
able to the adversary is very large (see Section 6.1 for
more details).

However, the adversary has to address two major
problems to use this model in practice. First, many
users do not disclose much location information to the
public via LBSN such as location check-in and tagging
in their daily lives (unless they are heavy LBSN users
and do not care much about their privacy). As a result,
the amount of training data available to the adversary
can be very small. Second, many users do not disclose
their locations continuously but rather “sporadically”
(Shokri et al. [36] defined sporadic locations as ones that
are sparsely distributed over time; examples of sporadic
applications include POI search, location check-in, and
tagging). Therefore, many locations can be missing from
the available training traces.

In this paper, we refer to the first problem as the
sparse data problem (as also done in [25]), and the sec-
ond problem as the missing location problem. For exam-
ple, it is reported that more than half of LBS users are
worried about their loss of privacy [43], and more than
72% LBSN users have less than one check-in per day [6].
Since such users would not disclose many locations nor
two temporally-continuous locations, it is crucial for the
adversary to address the two problem explained above.
Despite the progress in the field of location privacy, no
studies have satisfactorily addressed the two problems
to our knowledge, as we describe in detail below.

1.1 Existing Learning Methods

Many studies [11, 24, 36, 44] computed transition ma-
trices using the Maximum Likelihood (ML) estimation
method. We illustrate that this learning method suf-
fers from the sparse data problem and the missing lo-
cation problem using the example shown in Fig. 1. In
this example, there is only one training trace composed
of four locations per user. Many locations are also miss-
ing, since the users disclose their locations sporadically.
Focusing on user u1, we can see that a transition pat-
tern from region x1, x3, x4, or x5 is not observed in
the training trace, and therefore transition probabili-
ties from region x1, x3, x4, or x5 cannot be estimated
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Fig. 1. Example of the sparse data problem and the missing lo-
cation problem (M = 5). “?” is an unobserved element. All
elements in matrices P2 and P3 are unobserved in this example.

using the ML estimation method. We refer to the corre-
sponding elements, which are marked with “?” in Fig. 1,
as unobserved elements. In addition, we can see that the
remaining elements are obviously overfitted to the train-
ing data (i.e. transition probabilities of user u1 from x2
are either 0 or 1). We refer to these elements as overfit-
ted elements. If there are many unobserved elements or
overfitted elements, the adversary cannot perform loca-
tion privacy attacks based on the ML estimation method
with high accuracy.

Shokri et al. [35] proposed a learning method that
considers a case where some locations are missing from
training traces. Specifically, their learning method al-
ternates between sampling a personalized transition ma-
trix P (l)

n and sampling missing locations using the Gibbs
sampling method until convergence (l = 1, 2, · · · ). Then
it computes an average of P (l)

n over all samples l as an
estimate of Pn. In this paper, we refer to this learn-
ing method simply as the Gibbs sampling method. The
Gibbs sampling method outperforms the ML estimation
method when the amount of training data is large and
some locations are missing (as described in Section 5.2).

However, since the Gibbs sampling method in [35]
estimates each personalized transition matrix Pn in-
dependently, it suffers from the sparse data problem.
Specifically, when none of the locations are missing from
training traces, the mode of the estimated distribu-
tion of Pn is equivalent to the ML estimate (see Ap-
pendix A). Thus, even if the adversary “perfectly” es-
timates missing locations, the Gibbs sampling method
performs almost as well as the ML estimation method
without missing locations. Consequently, it suffers from
the sparse data problem in the same way as the ML es-
timation method (e.g. since there are only four locations
per user in Fig. 1, there are many unobserved elements
and overfitted elements in Pn). In addition, since miss-
ing locations are sampled based on P

(l)
n , the adversary

cannot accurately estimate missing locations if P (l)
n is
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not accurate. Then, the adversary cannot accurately es-
timate P (l+1)

n , since the missing locations are not ac-
curate. Therefore, if P (1)

n is not accurate, the adversary
cannot accurately estimate P (2)

n , P
(3)
n , · · · . In this paper,

we show that this learning method performs worse than
the ML estimation method when the amount of training
data is very small and some locations are missing.

Murakami and Watanabe [25] proposed a learn-
ing method using tensor factorization [8, 32, 33]. This
learning method regards a set of personalized transition
matrices as a third-order tensor, and uses tensor fac-
torization, which decomposes a third-order tensor into
low-rank matrices, to accurately estimate the personal-
ized transition matrices from a small amount of training
data. Murakami et al. applied this learning method to
the de-anonymization attack and the localization attack
in [26, 27] and [25], respectively, and showed that it sig-
nificantly outperforms the ML estimation method when
the amount of training data is very small1.

However, since their learning method does not esti-
mate missing locations in training traces, it suffers from
the missing location problem. For example, we can see
from Fig. 1 that there are no temporally-continuous lo-
cations in the training traces of users u2 and u3, and
therefore all elements in matrices P2 and P3 are un-
observed. The adversary cannot de-anonymize traces of
users u2 and u3 using matrices P2 and P3, unless he/she
estimates missing locations (or more generally, a distri-
bution of missing locations) in the training traces. In
this paper, we show that this learning method also per-
forms almost as well as the ML estimation method in
the de-anonymization attack when many locations are
missing from the training traces.

1.2 Our Contributions

The goal of this paper is to quantify the risk of loca-
tion privacy attacks in a realistic situation where the
amount of training data is very small and many loca-
tions are missing from the training traces (i.e. training
locations are “sporadically” disclosed2). To achieve this

1 In [26, 27], they also proposed a learning method that incor-
porates group sparsity regularization into tensor factorization
to utilize the fact that spatial data can form group structure
(e.g. Many people are likely to go to an urban area, but Alice
likes a rural area). In this paper, we do not use group sparsity
regularization for simplicity.
2 Note the difference between this paper and [36]. Shokri et al.
[36] considered the case when “testing” locations are sporadically

goal, we focus on a training phase (i.e. mobility pro-
file building phase) and extend a learning method in
[25] to take account of missing locations. Specifically,
we propose a learning method that incorporates tensor
factorization into the Expectation-Maximization (EM)
algorithm [5], which we call Expectation-Maximization
Tensor Factorization (EMTF).

Our contributions are summarized as follows:
– We propose EMTF, which alternates between com-

puting a distribution of missing locations (E-step)
and computing personalized transition matrices via
tensor factorization (M-step) (Section 4.1). By do-
ing so, we can accurately estimate personalized
transition matrices from a small amount of train-
ing data that contain many missing locations. To
our knowledge, this is the first study to incorporate
tensor factorization into the EM algorithm to train
a third-order tensor while estimating missing val-
ues in times-series data such as mobility traces (see
Section 6.2 for more details).

– Since the time complexity of EMTF is exponential
in the number of missing locations, it is intractable
to perform EMTF in practice. Thus we propose two
approximate learning methods, one of which uses
the Viterbi algorithm [31] while the other uses the
Forward Filtering Backward Sampling (FFBS) al-
gorithm [28] (Sections 4.2 and 4.3).

– We apply our learning methods to two representa-
tive location privacy attacks: the de-anonymization
attack and the localization attack, and evaluate
them using three real datasets (Section 5). We first
show that the performance of the existing learning
methods is close to (or even worse than) that of a
random guess in many cases. We then show that our
learning methods significantly outperform a random
guess in all of the three datasets. In particular, we
show that our learning methods significantly outper-
form a random guess, even when there is only one
training trace composed of 10 locations per user, and
each location is missing with probability 80% (all
elements in a transition matrix are unobserved, as
matrices P2 and P3 in Fig. 1, in more than 70% of
the cases). This means that our learning methods
can be a threat even when users hardly disclose two
temporally-continuous locations.

disclosed. On the other hand, we propose a learning method in
the case when “training” locations are sporadically disclosed.
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1.3 Paper Organization

The rest of this paper is organized as follows. In Sec-
tion 2, we review the de-anonymization attack and the
localization attack. In Section 3, we review the learning
method using tensor factorization [25]. In Section 4, we
propose EMTF and two approximate learning methods.
In Section 5, we show experimental results. In Section 6,
we review the previous work closely related to this pa-
per. Finally, in Section 7, we conclude this paper.

1.4 Notations

We describe basic notations used in this paper. We de-
note the set of integers and real numbers by Z and
R, respectively. We also denote a set of natural num-
bers less than or equal to n (n: natural number) by
[n] (i.e. [n] = {1, · · · , n}). Let U = {un|n ∈ [N ]} and
X = {xm|m ∈ [M ]} be a set of target users and regions,
respectively. We assume that time is discrete, and ex-
press time instants as integers (i.e. a set of time instants
is Z). Let Pn be an M ×M personalized transition ma-
trix of user un, and pn,i,j be its (i, j)-th element (i.e.
probability that user un moves from region xi to xj).
An adversary uses a set of personalized transition ma-
trices {Pn|n ∈ [N ]} for his/her attack.

2 Location Privacy Attacks
In this paper, we evaluate the ability of our learning
methods to de-anonymize traces and to de-obfuscate
traces via the de-anonymization attack and the localiza-
tion attack, respectively. Thus, we briefly review the de-
anonymization attack and the localization attack based
on the location-privacy framework introduced by Shokri
et al. [35]. We review the de-anonymization attack in
Section 2.1, and the localization attack in Section 2.2.

2.1 De-anonymization Attacks

Fig. 2 shows a framework for de-anonymization attacks.
Consider a scenario where the LBS provider anonymizes
mobility traces, and provides them to a third-party for
analysis or makes them public. We assume that any-
one who obtains anonymized traces (except for the LBS
provider who has original traces) can be a malicious
adversary. For example, if the LBS provider provides
the anonymized traces to a third-party, the third-party
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Fig. 2. Framework for de-anonymization attacks.

can be an adversary. If the LBS provider makes the
anonymized traces public, an unspecified number of peo-
ple can be adversaries.

The adversary first trains personalized transition
matrices {Pn|n ∈ [N ]} using training traces. For train-
ing traces, we make a general assumption; target users
can disclose their location information via LBSN; the
adversary may obtain training traces of the target users
by observing them in person. However, users generally
disclose only a small amount of location information to
the public in their daily lives (as described in Section 1).
In addition, it is hard for the adversary to observe the
target users in person, unless he/she is in a close rela-
tionship with them. Therefore, the amount of training
data can be very small, and many locations can be miss-
ing from the training traces.

The adversary then obtains anonymized traces,
whose user IDs are replaced with pseudonyms. Here we
assume that all of the anonymized traces are from target
users u1, · · · , uN , as done in [11, 24, 27, 35, 36]3. We also
assume that multiple anonymized traces, each of which
is assigned to a different pseudonym, can exist per user
(e.g. “29356” for the first trace of u1, and “73092” for
the second trace of u1 in Fig. 2), as done in [26, 27]4.
The adversary determines, for each anonymized trace,
whether it is generated from user u1, u2, · · · , or uN (i.e.
N -class classification) using the personalized transition
matrices {Pn| n ∈ [N ]}.

In this paper, we focus on the de-anonymization at-
tack based on Bayesian decision theory [27], which min-
imizes the identification error probability in multi-class

3 A recent study [26] proposed a de-anonymization attack in an
open scenario, where many of the anonymized traces are from
“non-target” users. In this paper, we do not consider such a
scenario (i.e. we consider only a closed scenario) for simplicity.
4 This is because a user can use LBS from different devices or
on different days. The LBS provider may also divide a long trace
of the same user into multiple traces with different pseudonyms
for privacy reasons.
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Fig. 3. Framework for localization attacks. Gray rectangles repre-
sent obfuscated regions.

classification5. Consider an anonymized trace from time
1 to T . Let o = (o1, · · · , oT ) (ot ∈ X is a region at time
t) be the anonymized trace, and Hn (1 ≤ n ≤ N) be the
hypothesis that the anonymized trace o is generated
from user un. The Bayesian de-anonymization attack
computes a posterior probability that the hypothesisHn
is true, given o:

Pr(Hn|o) (1 ≤ n ≤ N) (1)

(Pr(Hn|o) can be computed using Bayes’ theorem; see
[27] for details), and chooses top N ′ (1 ≤ N ′ ≤ N)
users whose Pr(Hn|o) are the largest as candidates. This
attack minimizes the error probability that a correct
answer is not included inN ′ candidate users, if Pr(Hn|o)
is accurately estimated.

2.2 Localization Attacks

Fig. 3 shows a framework for localization attacks. For
example, consider a scenario where a user discloses
his/her locations via LBSN. To protect his/her privacy,
we assume the user (or a trusted third party [12]) ob-
fuscates his/her locations before these are disclosed. Ex-
amples of obfuscation include perturbation (adding noise
to locations) [4, 37], location generalization (merging re-
gions) [12, 35], and location hiding (deleting some loca-
tions) [15, 44].

The adversary trains personalized transition ma-
trices {Pn| n ∈ [N ]} in the same way as in the de-
anonymization attack. After obtaining an obfuscated
trace of user un, the adversary infers an actual loca-
tion of user un at a certain time using the personalized
transition matrix Pn.

As in the case of the de-anonymization attack, we
focus on the localization attack based on Bayesian de-

5 Shokri et al. [35] formulated this type of attack in a case
where there is one anonymized trace per user (they considered
N ! possible permutations). However, since we assume that mul-
tiple traces can exist per user, we consider an attack that de-
anonymizes each trace independently.

cision theory [25, 35]. Consider an obfuscated trace of
user un from time 1 to T . Let X ′ be a set of possible
obfuscated regions. For example, we can use a power set
of X , which includes an obfuscated region produced by
perturbation, location generalization, and location hid-
ing as X ′ (i.e. X ′ = P(X )). Let on = (on,1, · · · , on,T )
(on,t ∈ X ′ is a region of user un at time t) be the ob-
fuscated trace of user un, and Xn,t ∈ X be a random
variable that represents a region of user un at time t.
The Bayesian localization attack computes a posterior
probability that the region user un is in at time t is
xi ∈ X , given on:

Pr(Xn,t = xi|on) (1 ≤ i ≤M). (2)

Pr(Xn,t = xi|on) can be computed using the Forward-
Backward algorithm [31] (see [35] for details). Then it
chooses top M ′ (1 ≤M ′ ≤M) regions whose Pr(Xn,t =
xi|on) are the largest as candidates. This attack mini-
mizes the error probability that a correct answer is not
included in M ′ candidate regions, if Pr(Xn,t = xi|on) is
accurately estimated.

It should be noted that the adversary can perform
the localization attack using a population transition ma-
trix P∗, which is common to all target users. By using a
population matrix P∗ instead of the personalized matrix
Pn, the number of elements that need to be estimated is
reduced from NM2 to M2. However, since the number
of elements is still quadratic in M , the ML estimation
method [11, 24, 36, 44] and the Gibbs sampling method
[35] still suffer from the sparse data problem when M is
large. It is reported in [25] that both Pn and P∗ perform
only as well as a random guess in many cases when the
ML estimation method is used as a training method. On
the other hand, it is shown in [25] that Pn can outper-
form P∗ and a random guess when tensor factorization
is used, since the sparse data problem is solved by ten-
sor factorization and Pn further exploits unique features
of each user’s behavior (e.g. favorite places or routes).
Thus, we use Pn in our experiments in Section 5.

3 Learning Transition Matrices
Using Tensor Factorization
(Learning Method in [25])

Murakami and Watanabe [25] proposed a learning
method of personalized transition matrices using tensor
factorization. A tensor is a multidimensional array that
includes a vector as a first-order tensor and a matrix as
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a second-order tensor, and tensor factorization is a gen-
eralization of matrix factorization [18] to a third-order
tensor. We briefly review matrix factorization, tensor
factorization, and the learning method in [25] in Sec-
tions 3.1, 3.2, and 3.3, respectively.

3.1 Matrix Factorization

Matrix factorization is a well-known technique for item
recommendation [18]. It decomposes a large matrix into
two low-rank matrices to approximate the original ma-
trix, which can include unobserved elements (described
in Section 1.1), from a small amount of training data.

Let A ∈ RN×M be the original matrix (N and M

are large natural numbers). Matrix factorization decom-
poses A into two low-rank matrices U ∈ RN×K and
V ∈ RM×K (K � N,M) as follows: Â = UVT , where
Â is an approximation of A. Let ai,j (resp. âi,j) ∈ R be
the (i, j)-th element of A (resp. Â), and ui (resp. vj)
∈ RK be the i-th row of U (resp. the j-th row of V).
Then âi,j can be written as follows:

âi,j = 〈ui,vj〉 =
∑K
k=1 ui,kvj,k. (3)

U and V are called feature matrices, ui and vj are called
feature vectors, and ui,k and uj,k are called model pa-
rameters. By low-rank approximation, the number of
parameters that need to be estimated is reduced from
NM to K(N + M), and therefore elements (including
unobserved ones) in A can be effectively estimated from
a small amount of training data.

3.2 Tensor Factorization

Tensor factorization is a generalization of matrix factor-
ization to a third-order tensor [8]. Although there are
various methods to decompose a third-order tensor (e.g.
Tucker Decomposition, Canonical Decomposition [8]),
we focus on PITF (Pairwise Interaction Tensor Factor-
ization) [32, 33], which outperforms other methods, in
the same way as [25].

We explain PITF using a third-order tensor A ∈
RN×M×M (which is of the same size as a set of person-
alized transition matrices) as an example. Let an,i,j ∈ R
be the (n, i, j)-th element of A. PITF approximates
an,i,j by modeling the pairwise interactions between all
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Fig. 4. PITF applied to a third-order tensor A ∈ RN×M×M . It
factorizes three matrices that represent the pairwise interactions
between all the three modes.

the three modes as follows:

ân,i,j =〈u(a)
n ,v(a)

i 〉+ 〈u(b)
n ,v(b)

j 〉+ 〈u(c)
i ,v(c)

j 〉 (4)

=
∑K
k=1u

(a)
n,kv

(a)
i,k +

∑K
k=1u

(b)
n,kv

(b)
j,k +

∑K
k=1u

(c)
i,kv

(c)
j,k,

(5)

where ân,i,j is an approximation of an,i,j , and u(a)
n , v(a)

i ,

u(b)
n , v(b)

j , u(c)
i , v(c)

j ∈ RK are feature vectors. We denote
the corresponding feature matrices by U(a) ∈ RN×K ,
V(a) ∈ RM×K , U(b) ∈ RN×K , V(b) ∈ RM×K , U(c) ∈
RM×K , and V(c) ∈ RM×K , respectively (e.g. u(a)

n is the
n-th row of U(a)).

Then, we can see from (3) and (5) that PITF is a
generalization of matrix factorization in that U(a)V(a)T

models the pairwise interaction between the first mode
and the second mode, U(b)V(b)T models the pairwise
interaction between the first mode and the third mode,
and U(c)V(c)T models the pairwise interaction between
the second mode and the third mode (see Fig. 4). By
factorizing a tensor in this way, the number of parame-
ters is reduced from NM2 to (2N+4M)K, and elements
(including unobserved ones) in A can be effectively es-
timated from a small amount of training data.

3.3 Learning Algorithm

Murakami and Watanabe [25] proposed a learning
method of personalized transition matrices {Pn|n ∈
[N ]} using tensor factorization (PITF). This learning
method regards a set of personalized transition matrices
as a third-order tensor composed of the “User” mode,
the “From Region” mode, and the “To Region” mode,
which is called a transition probability tensor (see the
upper right side of Fig. 5). It should be noted here
that the summation of transition probabilities over “To
Region” is always 1, and it is difficult to decompose
the transition probability tensor under this constraint.
Thus, the learning method in [25] decomposes a transi-
tion count tensor, whose (n, i, j)-th element is a transi-
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Fig. 5. Learning method in [25]. After decomposing a transition
count tensor, it normalizes counts to probabilities (“?” is an un-
oberved element).

tion count of user un from region xi to xj that is com-
puted from training traces, and then normalizes tran-
sition counts to probabilities (so that the summation
over “To Region” is 1). Fig. 5 shows an overview of the
learning method in [25].

We now explain the learning method in [25] in
more details. They applied a transition count tensor to
A ∈ RN×M×M in Section 3.2, and considered an opti-
mization problem that minimizes the regularized sum
of squared errors:

Θ̂ = arg min
Θ≥0

∑
Ao

(an,i,j − ân,i,j)2 + λ||Θ||2F , (6)

where Θ = {U(a),V(a),U(b),V(b),U(c),V(c)} (i.e. a set
of model parameters) and Ao = {(n, i, j)|n ∈ [N ], i, j ∈
[M ],

∑M
j′=1 an,i,j′ ≥ 1} (i.e. a set of observed elements,

which are not marked with “?” in Fig. 5). The first term
in (6) is a summation of squared errors over Ao (note
that they computed Θ̂ using only observed elements,
and then computed ân,i,j for all elements including un-
observed ones using (5)). The second term in (6) is a
regularization term introduced to avoid overfitting the
observed elements. || · ||2F is the square of the Frobenius
norm (i.e. square sum of all elements), and λ (> 0) is
a regularization parameter, which is usually determined
by cross-validation [18]. The constraint Θ ≥ 0 means
that all parameters in Θ are non-negative, which guar-
antees the non-negativity of estimated transition counts
ân,i,j (see (5)).

Although the optimization problem (6) is not con-
vex, it is quadratic with regard to one parameter (and
is solved optimally). Thus, an approximate solution can
be found by using the Alternating Least Squares (ALS)
algorithm [8], which solves (6) for one parameter θ while
fixing the others Θ\{θ}, and iterates it in a cyclic man-
ner until convergence (for details of update formulae,
see [25]).

The learning algorithm in [25] is summarized as
follows:

Algorithm 1 (Learning Algorithm in [25]):
1. Compute a transition count tensorA (i.e. {an,i,j |n ∈

[N ], i, j ∈ [M ]}) from training traces.
2. Compute model parameters Θ from A (by solving

the optimization problem (6) using ALS).
3. Compute {ân,i,j |n ∈ [N ], i, j ∈ [M ]} from Θ us-

ing (5), and normalize them to probabilities (i.e.∑
j ân,i,j = 1).

4 Expectation-Maximization
Tensor Factorization

In location privacy attacks, the amount of training data
can be very small and many locations can be missing
from the training traces. To accurately estimate per-
sonalized transition matrices in this realistic situation,
we propose Expectation-Maximization Tensor Factor-
ization (EMTF), which incorporates tensor factoriza-
tion into the EM algorithm. We first propose an algo-
rithm for EMTF in Section 4.1. We then propose two
approximate learning methods in Sections 4.2 and 4.3.

4.1 The EMTF Algorithm

We begin by describing an overview of EMTF, which
is shown in Fig. 6. This learning method alternates be-
tween (i) computing a distribution of missing locations
(E-step) and (ii) learning personalized transition matri-
ces {Pn| n ∈ [N ]} (M-step) until convergence (or for
a fixed number of times). It is important to note here
that minimizing the regularized sum of squared errors
in (6) is equivalent to maximizing a log-posterior prob-
ability of model parameters Θ given training traces (as
will be described later in details). Based on this fact, we
incorporate tensor factorization into the M-step of the
EM algorithm.

We now describe EMTF in more details. Let x (resp.
z) be a vector that consists of observed locations (resp.
missing locations) in training traces of all target users,
and Z be a set of all possible values for z. Let further
Ltot be the total number of missing locations in training
traces of all target users. In an example shown in Fig. 6,
x can be expressed as x = (x2, x3, x1, x4, x4, x3, x5),
and there are MLtot = 59 possible values for z (i.e.
|Z| = MLtot = 59). We regard z as a latent variable
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Fig. 6. Overview of EMTF (M = 5). It alternates between (i)
computing a distribution of missing locations (E-step) and (ii)
learning personalized transition matrices via tensor factorization
(M-step).

(or hidden variable), and use the EM algorithm to learn
a set of model parameters Θ from x (while computing
a distribution of z).

The EM algorithm is an iterative method to find a
set of parameters Θ that maximizes a posterior proba-
bility Pr(Θ|x) given observed data x [5]6. To maximize
Pr(Θ|x), it repeatedly performs the following two steps
until convergence (we assume that Θ ≥ 0 in the same
way as in Section 3.3):

E-step: Compute a distribution of latent variables z:

Q(z) := Pr(z|x,Θ). (7)

M-step: Compute Θ̂ given by

Θ̂ = arg max
Θ≥0

∑
z
Q(z) log Pr(Θ|x, z). (8)

(Then, let Θ← Θ̂ and return to the E-step.)

Each EM cycle is guaranteed to increase Pr(Θ|x) [5]. In
the E-step, the distribution Q(z) in (7) can be computed
using the Forward-Backward algorithm [31] in the same
way as the localization attack in Section 2.2. Thus, the
remaining question is how to compute Θ̂ in (8), which
maximizes the expectation of the log-posterior proba-
bility log Pr(Θ|x, z), in the M-step.

Let Az ∈ RN×M×M be a transition count tensor
that can be obtained from “complete” training traces
{x, z}. For example, Fig. 7 shows the transition count
tensor Az in a case where z = (x4, x4, x3, x2, x3, x5, x4,

x2, x3). Similarly, let az
n,i,j ∈ R be the (n, i, j)-th el-

ement of Az, and Az
o = {(n, i, j)|n ∈ [N ], i, j ∈ [M ],

6 The EM algorithm is normally used to maximize a likelihood
L(Θ; x) (= Pr(x|Θ)). However, it can also be used to maximize
Pr(Θ|x) by introducing a prior over Θ [5].

∑M
j′=1 a

z
n,i,j′ ≥ 1} be a set of observed elements in Az

(which are not marked with “?” in Fig. 7). We assume
that a transition count az

n,i,j is represented as an ap-
proximation ân,i,j in (5) plus a Gaussian noise with zero
mean and variance σ2

1 . We also use a half-normal dis-
tribution with variance σ2

2 as a prior distribution over
each parameter θ ∈ Θ (we use a half-normal distribu-
tion, since θ ≥ 0).

Then, maximizing the log-posterior probability
log Pr(Θ|x, z) is equivalent to minimizing the regular-
ized sum of squared errors in (6):

arg max
Θ≥0

log Pr(Θ|x, z) (9)

= arg max
Θ≥0

log Pr(x, z|Θ) + log Pr(Θ) (10)

= arg max
Θ≥0

(
−

∑
Az

o
(az
n,i,j − ân,i,j)2

2σ2
1

−
||Θ||2F
2σ2

2

)
(11)

= arg min
Θ≥0

∑
Az

o

(az
n,i,j − ân,i,j)2 + λ||Θ||2F (12)

(λ is a constant greater than 0). Similarly, the optimiza-
tion problem (8) can be expressed as follows:

Θ̂ = arg max
Θ≥0

∑
z
Q(z) log Pr(Θ|x, z) (13)

= arg min
Θ≥0

∑
z
Q(z)

∑
Az

o

(az
n,i,j − ân,i,j)2 + λ||Θ||2F .

(14)

Since the optimization problem (14) is quadratic with
regard to one parameter (in the same way as [25]), we
use the ALS algorithm [8] to find an approximate solu-
tion to (14)7. For an initial value of Θ, we use a value
obtained using the learning algorithm in [25] (i.e. Al-
gorithm 1).

The EMTF algorithm can be summarized as fol-
lows:

Algorithm 2 (EMTF Algorithm):
1. Initialize model parameters Θ (using Algo-

rithm 1).
2. E-step: Compute a distribution of missing loca-

tions

Q(z) (= Pr(z|x,Θ))

using the Forward-Backward algorithm.

7 A recent study [20] proposed a better parameter estimation
method, which outperforms ALS. However, exploring the best
parameter estimation method is beyond the scope of this paper.
We use ALS, since it is simple to implement.



Expectation-Maximization Tensor Factorization for Practical Location Privacy Attacks 146

xi

Training TracesUser

x2 x3u1

x1u2 x4

u3 x4

u4 x5x3

x4 x4

x3 x2

x5 x4x3

x3x2

: estimated location

Transition Count Tensor

? ? ? ? ?
0 0 0 01

? ? ? ? ?

0 0 1 00
0 0 1 00

User u1

? ? ? ? ?

0 0 0 01

? ? ? ? ?

0 1 0 00
0 0 1 00

User u2
? ? ? ? ?

0 0 1 00
0 0 0 10

User u3
? ? ? ? ?
0 0 0 01

? ? ? ? ?
0 0 0 10

User u4

0 0 1 00

? ? ? ? ?

0 0 0 01

Fig. 7. Training traces with estimated locations (z = (x4, x4, x3, x2, x3, x5, x4, x2, x3)) and a transition count tensor Az (“?” is an
unoberved element).

3. M-step: Compute Θ̂ given by

Θ̂ = arg min
Θ≥0

∑
z
Q(z)

∑
Az

o

(az
n,i,j − ân,i,j)2 + λ||Θ||2F

using ALS. Then, let Θ ← Θ̂ and return to step 2
until convergence (or for a fixed number of times).

Since each EM cycle is guaranteed to increase the poste-
rior probability Pr(Θ|x), the estimates of Θ andQ(z) be-
come more and more accurate as the E-step and the M-
step are repeated. After running this algorithm, we can
obtain personalized transition matrices {Pn|n ∈ [N ]}
from Θ by normalizing transition counts to probabili-
ties (in the same way as the learning method in [25]).

Note that the Gibbs sampling method [35] also al-
ternates between sampling a personalized transition ma-
trix Pn and sampling missing locations. However, since
this learning method estimates each personalized transi-
tion matrix Pn independently, it suffers from the sparse
data problem (as described in Section 1.1). Specifically,
even if the adversary “perfectly” estimates missing lo-
cations, the Gibbs sampling method performs almost as
well as the ML estimation method without missing lo-
cations (see Appendix A). In addition, since missing lo-
cations are sampled based on P (l)

n , the adversary cannot
accurately estimate missing locations if P (l)

n is not accu-
rate. (Then, he/she cannot accurately estimate P (l+1)

n ,
since the missing locations are not accurate.)

A way to solve this problem is to estimate Pn with
the help of “other users” (instead of estimating Pn in-
dependently). Since EMTF trains transition matrices
{Pn|n ∈ [N ]} so that each matrix Pn influences the oth-
ers (via factorization), it can estimate Pn and missing
locations of user un with the help of other users. This
is the key to solving both the sparse data problem and
the missing location problem simultaneously.

4.2 Approximation Using the Viterbi
Algorithm

A major drawback of EMTF is its time complexity.
Since there are MLtot possible values for z (i.e. |Z| =
MLtot), both the E-step and M-step have time com-
plexity O(MLtot) if we do not assume independence of
missing locations. If we assume that missing locations
are independent from user to user (this assumption is
reasonable because each user generally produces traces
independently of the others), we can reduce the time
complexity to O(MLmax), where Lmax is the maximum
number of missing locations per user. However, since
MLmax is very large (e.g. ifM = 256 and Lmax = 8, then
MLmax = 264), it is still infeasible to perform EMTF.
Note that we cannot reduce the above time complexity
by assuming further independence, since there are cor-
relations between locations in the same user. To over-
come this drawback, we propose two approximate learn-
ing methods.

Our first approximate learning method is based on
the Viterbi algorithm [31]. This method approximates
a distribution of missing locations Q(z) (in both the E-
step and M-step) by the most probable missing location
vector z∗:

z∗ = arg max
z∈Z

Q(z). (15)

z∗ can be computed by using the Viterbi algorithm [31]
with time complexity O(M2Ltot) (we do not explain
the computation of (15) using the Viterbi algorithm; for
details, see [31]). We denote this approximate learning
method by EMTFViterbi.

The algorithm for EMTFViterbi is as follows:

Algorithm 3 (EMTFViterbi Algorithm):
1. Initialize model parameters Θ (using Algo-

rithm 1).



Expectation-Maximization Tensor Factorization for Practical Location Privacy Attacks 147

2. E-step: Compute z∗ given by

z∗ = arg max
z∈Z

Q(z)

using the Viterbi algorithm.
3. M-step: Compute Θ̂ given by

Θ̂ = arg min
Θ≥0

∑
Az∗

o

(az∗
n,i,j − ân,i,j)

2 + λ||Θ||2F

using ALS. Then, let Θ ← Θ̂, and return to step 2
until convergence (or for a fixed number of times).

Let η be the number of iterations in ALS. Then, the
time complexity of the E-step and M-step in this algo-
rithm can be expressed as O(M2Ltot) and O(ηK|Az∗

o |),
respectively (the latter is the same as the time complex-
ity of solving the optimization problem (6) using ALS
[25]).

4.3 Approximation Using the FFBS
Algorithm

Our second approximate learning method is based on
the Forward Filtering Backward Sampling (FFBS) algo-
rithm [28], which approximates a distribution of missing
locations Q(z) in a more accurate manner. Specifically,
this method takes S (> 0) samples from Q(z):

zs ∼ Q(z) (1 ≤ s ≤ S), (16)

and approximates Q(z) by these samples. The sampling
of z1 · · · , zS can be performed by using the FFBS algo-
rithm [28], which performs the Forward algorithm and
then performs sampling from Q(z) in a backward pass,
with time complexity O(SM2Ltot) (for more details of
the FFBS algorithm, see [28]). We denote this approxi-
mate learning method by EMTFFFBS.

The algorithm for EMTFFFBS is as follows:

Algorithm 4 (EMTFFFBS Algorithm):
1. Initialize model parameters Θ (using Algo-

rithm 1).
2. E-step: Sample z1 · · · , zS from Q(z) using FFBS:

zs ∼ Q(z) (1 ≤ s ≤ S).

3. M-step: Compute Θ̂ given by

Θ̂ = arg min
Θ≥0

1
S

S∑
s=1

∑
Azs

o

(azs
n,i,j − ân,i,j)

2 + λ||Θ||2F

using ALS. Then, let Θ ← Θ̂, and return to step 2
until convergence (or for a fixed number of times).

The time complexity of the E-step and M-step in this
algorithm can be expressed as O(SM2Ltot) and O(ηK
(
∑S
s=1 |A

zs
o |)), respectively (the latter increases almost

in proportion to S).
As the number of samples S becomes large, the em-

pirical distribution of the samples z1 · · · , zS approaches
Q(x). Thus, EMTFFFBS can provide a more accurate
approximation than EMTFViterbi. However, the time
complexity of EMTFFFBS increases almost in propor-
tion to the number of samples S. In other words, there is
a trade-off between the accuracy of approximation and
the time complexity.

In addition, the imputation of missing locations by
zs might cause the overfitting problem, since a transi-
tion count is generally very small (as shown in Fig. 7)
and zs might be sampled from a low-probability part of
Q(z). One way to solve this problem is to sample zs from
only a high-probability part of Q(z) (e.g. Q(z) ≥ αQ(z∗)
(0 ≤ α ≤ 1; z∗ is a maximizer of Q(z))). Another solu-
tion is to delete an estimated location in zs if it produces
a rare transition, whose count in Azs

o is very small (e.g.
one). In our experiments in Section 5, however, we do
not adopt such solutions for simplicity, and show that
EMTFFFBS can still provide the highest accuracy.

5 Experimental Evaluation

5.1 Experimental Set-up

We performed experiments to evaluate our learning
methods. To provide sufficient evidence for the effec-
tiveness of our learning methods, we used three real
datasets: the Geolife dataset [48], the Gowalla dataset
[7], and the Foursquare dataset in [45]. The details of
these datasets are as follows:
– Geolife dataset: The Geolife dataset [48] was

collected by Microsoft Research Asia from April
2007 to August 2012. This dataset contains mobility
traces of 182 users, and contains a variety of users’
movements such as going home, going to work, shop-
ping, dining, and cycling, mostly in Beijing. In our
experiments, we used traces in Beijing. We chose
80 users who had long traces (N = 80), and ex-
tracted, for each user, 10 traces each of which com-
prises 10 locations and has a time interval of more
than 30 minutes (locations in this dataset were sam-
pled with this interval). We eliminated the remain-
ing 102 users, because we had insufficient data to
extract such 10 traces for these users.
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– Gowalla dataset: The Gowalla dataset [7] was col-
lected from February 2009 to October 2010. It con-
tains 6442890 check-ins of 196591 users all over the
world. In our experiments, we used traces in New
York and Philadelphia. We chose 250 users who had
long traces (N = 250), and extracted, for each user,
10 traces each of which comprises 10 locations and
has a time interval of more than 30 minutes (in the
same way as the Geolife dataset).

– Foursquare dataset: The Foursquare dataset in
[45] was collected from April 2012 to February 2013.
It contains 573703 check-ins in Tokyo. In our ex-
periments, we chose 400 users who had long traces
(N = 400), and extracted, for each user, 10 traces
each of which comprises 10 locations and has a time
interval of more than 30 minutes.

We divided each of the above three areas into 16 × 16
regions (M = 256). In the de-anonymization attack, we
determined boundaries at regular intervals. In the lo-
calization attack, we determined boundaries so that all
of the traces were uniformly distributed along each axis
(i.e. 1/16 = 6.25% per each bin), in the same way as
[25], to reduce the size of regions in a crowded area.
The size of the smallest region (i.e. the region in the
most crowded area) in the Geolife dataset, the Gowalla
dataset, and the Foursquare dataset was as follows: [ver-
tical width, horizontal width] = [190m, 205m], [793m,
304m], [275m, 163m], respectively. We used, for each
user, one trace as a training trace, and the remaining
9 traces as testing traces. Here we attempted all the 10
ways to choose a training trace (all of the 10 training
traces are distinct), and performed, for each case, the
following experiments.

Using the training data, we trained personalized
transition matrices {Pn|n ∈ [N ]}. Here we randomly
deleted each location (i.e. created a missing location)
in the training data with probability (referred to as
missing probability) ψ = 0.4 or 0.8. The latter case
(i.e. ψ = 0.8) models a scenario where targets users
hardly disclose two temporally-continuous locations.
After deleting locations, we compared the following
learning methods:

ML: The ML estimation method [11, 24, 36, 44].

GS: The Gibbs sampling method [35].

TF: The learning method using tensor factorization
[25] (see Section 3.3).

x1 x2 x3 x4 x16
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Fig. 8. Example of a merged region (M = 256). LGLH(1, 0.8),
on input region x19, outputs {x3, x4, x19, x20} (gray area) with
probability 0.8 and deletes x19 with probability 0.2.

EMTFViterbi: The approximate EMTF method us-
ing the Viterbi algorithm (see Section 4.2).

EMTFFFBS: The approximate EMTF method us-
ing the FFBS algorithm (see Section 4.3).

In ML and GS, we set transition probabilities for
unobserved elements to be uniform (i.e. pn,i,j = 1/M),
and assigned a very small positive value (= 10−8) to an
element whose value was 0 in the same way as [24]. In
TF, EMTFViterbi, and EMTFFFBS, we set the di-
mensionality K of feature vectors to K = 16 (in the
same way as [25]), and determined the regularization
parameter λ using 10-fold cross-validation. In TF, we
initialized a set of model parameters Θ using the random
initialization method [2], which initializes each parame-
ter as a random value between 0 and 1. In EMTFViterbi
and EMTFFFBS, we iterated the E-step and the M-
step for three times (we confirmed the performance con-
verged after the three-time iteration). In EMTFFFBS,
we set the number of samples S to S = 10 (we increased
S from 1 to 20, and confirmed that the performance
converged around S = 10).

Using the testing data, we evaluated the perfor-
mance of the Bayesian de-anonymization attack (see
Section 2.1) and the Bayesian localization attack (see
Section 2.2). In the de-anonymization attack, we eval-
uated the performance in a case where the adversary
de-anonymized each testing trace (9N traces in total)
by choosing N ′ (1 ≤ N ′ ≤ N) users as candidates.
In the localization attack, we obfuscated each test-
ing trace using the location generalization and location
hiding method [35] with parameters b and φ (denoted
by LGLH(b, φ)). This method merges (generalizes) a
region by dropping lower b bit(s) for each of the x-
coordinate and y-coordinate represented as binary se-
quences, and deletes (hides) a region with probability
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Fig. 9. Frequency distribution of the number of observed rows
(whose elements are not marked with “?”) per transition matrix.

φ. For example, LGLH(1, 0.8), on input x19, outputs
{x3, x4, x19, x20} with probability 0.8 and deletes x19
with probability 0.2 (see Fig. 8). We set the parameters
b and φ to (b, φ) = (0, 0.5) or (2, 0.5) (LGLH(0, 0.5) is
a location hiding method). After obfuscating the test-
ing traces, we evaluated the performance in a case where
the adversary de-obfuscated each region by choosingM ′

(1 ≤M ′ ≤M) regions as candidates.
As a performance measure, we evaluated an attack

success rate, which is the ratio of the number of suc-
cessful attacks (i.e. attacks in which a correct answer is
included in the candidates) divided by the total number
of attacks (9N in the de-anonymization attack and 90N
in the localization attack). We averaged the attack suc-
cess rate over all the 10 ways to choose a training trace
to obtain stable performance.

5.2 Experimental Results

We firstly investigated a frequency distribution of the
number of observed rows, whose elements are not
marked with “?” (as the 2nd row of matrix P1 in Fig. 1),
per transition matrix. Fig. 9 shows the results (recall
that we deleted each location in the training traces with
probability ψ = 0.4 or 0.8). It can be seen that when the
missing probability is ψ = 0.8, there are no observed
rows (i.e. all elements are unobserved, as matrices P2
and P3 in Fig. 1) in more than 70% of the cases. We em-
phasize again that the adversary cannot de-anonymize
traces of the corresponding users, unless he/she esti-
mates missing locations in the training traces.
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Fig. 10. Relationship between the number of candidate users
N ′ and the attack success rate in the de-anonymization attack
(dashed line: random guess).

We secondly evaluated the relationship between the
number of candidate users N ′ and the attack success
rate in the de-anonymization attack. Fig. 10 shows the
results. We also show in Table 1 (i) the attack success
rate in the case when N ′ = 10. It can be seen that ML
and GS provide poor performance. In particular, they
perform worse than a random guess when N ′ is large.
This is because many testing traces had transition pat-
terns not in the training traces. Since the personalized
transition matrices {Pn|n ∈ [N ]} had many overfitted el-
ements (as described in Section 1.1), the posterior prob-
ability Pr(Hn|o) in (1) corresponding to the correct an-
swer became very small for these traces. In other words,
ML and GS suffered from the sparse data problem. It
can also be seen that GS performs worse than ML. This
is because GS did not accurately estimate missing lo-
cations, as described in Section 1.1. TF outperforms a
random guess when the missing probability is ψ = 0.4.
However, it provides almost the same performance as a
random guess when ψ = 0.8, since all elements in Pn are
unobserved in many cases, as shown in Fig. 9.

On the other hand, it can be seen that
EMTFViterbi and EMTFFFBS outperform the exist-
ing learning methods in all of the three datasets, and
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Fig. 11. Relationship between the number of candidate re-
gions M ′ and the attack success rate in the localization attack
(LGLH(0, 0.5)).

significantly outperform a random guess even when ψ =
0.8, which shows the effectiveness of our learning meth-
ods. It can also be seen that EMTFFFBS outperforms
EMTFViterbi in some cases (e.g. Fig. 10 (iv), (v), and
(vi)), since EMTFFFBS approximates a distribution of
missing locations Q(z) more accurately, as described in
Section 4.3. For example, when ψ = 0.8 and N ′ = 10,
the attack success rate of EMTFFFBS is 22.6% in the
Gowalla dataset (see Table 1(i)), which is 5.7 times as
much as that of a random guess (10/250 = 4%).

We thirdly evaluated the relationship between the
number of candidate regions M ′ and the attack suc-
cess rate in the localization attack. Fig. 11 and 12 show
the results in the case when the testing traces are ob-
fuscated using LGLH(0, 0.5) and LGLH(2, 0.5), re-
spectively. Note that the dashed line represents the per-
formance of a random guess that chooses M ′ regions
from a merged region (or all regions when the region
is deleted). For example, when M ′ = 10, the attack
success rate is 52.0% (= 0.5 + 0.5 × 10/256) and 33.2%
(= 0.5 × 10/16 + 0.5 × 10/256) in LGLH(0, 0.5) and
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Fig. 12. Relationship between the number of candidate re-
gions M ′ and the attack success rate in the localization attack
(LGLH(2, 0.5)).

LGLH(2, 0.5), respectively8. We also show in Table 1
(ii) and (iii) the attack success rate in the case when
M ′ = 10.

It can be seen that ML and GS provide poor per-
formance, while EMTFViterbi and EMTFFFBS out-
perform the existing learning methods in all of the
three datasets, and significantly outperform a random
guess even when ψ = 0.8, as in the case of the de-
anonymization attack. What is different from the case
of the de-anonymization attack is that EMTFViterbi
provides almost the same performance as EMTFFFBS
in all cases. This indicates that the Viterbi algorithm
provides a good enough approximation in the case of
the localization attack. It can also be seen that TF out-
performs a random guess even when ψ = 0.8 (unlike
the case of the de-anonymization attack). This is be-
cause TF trained feature vectors u(c)

i and v(c)
j in (4),

which are common to all of the target users, from all of

8 We included unobfuscated regions when computing the attack
success rate in LGLH(0, 0.5), because we would like to evaluate
the attack success rate using the same testing data as in the case
of LGLH(2, 0.5) (i.e. 90N regions).
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Table 1. Attack success rate [%] in the case when the number
of candidates is 10 (EV: EMTFViterbi, EF: EMTFFFBS). The best
performance is marked with an asterisk (*).

(i) de-anonymization attack (N ′ = 10)

ML GS TF EV EF
Geolife (ψ = 0.4) 26.2 23.4 23.6 36.3* 36.1
Geolife (ψ = 0.8) 16.3 14.2 14.1 22.1 26.0*

Gowalla (ψ = 0.4) 24.0 23.4 27.2 29.3 31.5*
Gowalla (ψ = 0.8) 11.0 9.54 5.59 17.8 22.6*

Foursquare (ψ = 0.4) 17.7 15.0 20.6 23.0 26.6*
Foursquare (ψ = 0.8) 7.18 5.60 4.62 11.3 13.5*

(ii) localization attack (LGLH(0, 0.5), M ′ = 10)

ML GS TF EV EF
Geolife (ψ = 0.4) 57.9 57.4 61.6 63.9 64.5*
Geolife (ψ = 0.8) 53.3 53.7 54.8 58.0 58.0*

Gowalla (ψ = 0.4) 66.0 66.4 72.6 74.2 74.9*
Gowalla (ψ = 0.8) 54.8 56.8 58.9 64.0* 63.8

Foursquare (ψ = 0.4) 63.2 63.1 66.3 68.2 69.1*
Foursquare (ψ = 0.8) 54.1 55.3 57.4 60.7 61.2*

(iii) localization attack (LGLH(2, 0.5), M ′ = 10)

ML GS TF EV EF
Geolife (ψ = 0.4) 40.1 39.3 47.7 53.2 54.0*
Geolife (ψ = 0.8) 34.2 34.4 37.4 43.0 44.4*

Gowalla (ψ = 0.4) 51.9 52.0 64.9 67.3 68.7*
Gowalla (ψ = 0.8) 37.2 37.9 44.4 54.0 55.5*

Foursquare (ψ = 0.4) 44.3 44.3 60.6 62.0 63.9*
Foursquare (ψ = 0.8) 35.5 35.4 43.3 53.1 54.0*

the training traces. Each transition matrix Pn captured
these common features, and the adversary utilized them
for specifying a region.

We have so far showed that our learning methods
are effective in both the de-anonymization attack and
the localization attack. It should be noted, however, that
tensor factorization is effective only when the amount of
training data is small. It is reported in [25] that ML out-
performed TF when there were 9 training traces (each
of which comprises 10 locations) per user. We also con-
firmed that GS outperformed ML, TF, and our learn-
ing methods when there were 9 training traces per user
and the missing probability was ψ = 0.49. However,

9 We also found that EMTFFFBS provided the worst perfor-
mance in the de-anonymization attack in this case due to the
overfitting problem described in Section 4.3. Specifically, since
there were many missing locations, many estimated locations
in zs produced a rare transition, whose count in Azs

o was only
one. By deleting these estimated locations from zs, the perfor-
mance of EMTFFFBS in the de-anonymization attack was sig-
nificantly improved (it was better than or almost equal to that
of EMTFViterbi). However, it was still worse than that of GS.

Table 2. Running time of the E-step and M-step in EMTFViterbi
and EMTFFFBS (second).

EMTFViterbi EMTFFFBS
E-step M-step E-step M-step

Geolife (ψ = 0.4) 0.063 78 0.031 1072
Geolife (ψ = 0.8) 0.11 79 0.078 1068

Gowalla (ψ = 0.4) 0.22 260 0.093 3761
Gowalla (ψ = 0.8) 0.36 263 0.22 3882

Foursquare (ψ = 0.4) 0.34 552 0.17 7019
Foursquare (ψ = 0.8) 0.59 550 0.34 7539

since many users do not disclose much location infor-
mation to the public in their daily lives, nor disclose
their locations continuously (but rather sporadically),
the amount of training data can be very small and many
locations can be missing from the training traces (as
described in Section 1). Our learning methods can be a
threat even in such a desperate situation for the adver-
sary (i.e. even when there is one training trace and the
missing probability is ψ = 0.8).

We finally measured the time required for run-
ning the E-step and M-step in EMTFViterbi and
EMTFFFBS on an Intel Xeon CPU E5-2620 v3 (2.40
GHz, 6 cores, 12 logical processors) with 32 GB RAM.
Table 2 shows the results in the case when there is one
training trace per user, and when we set the number
of iterations η in ALS to η = 50 (we confirmed that
model parameters converged before 50 iterations in most
cases). The running time of the E-step increases roughly
in proportion to the missing probability ψ, which is con-
sistent with our time complexity analysis in Sections 4.2
and 4.3. However, the running time of the E-step is neg-
ligibly small compared to that of the M-step. Regard-
ing the running time of the M-step, EMTFFFBS re-
quires about 10 times as much as EMTFViterbi, since
the number of samples S is S = 10. In other words,
there is a trade-off between the accuracy of approx-
imation and the running time, as described in Sec-
tion 4.3. Nonetheless, the running time of one EM cycle
in EMTFFFBS is only about two hours even in the
Foursquare dataset, which contains the largest number
of target users (N = 400) (note that it is computation-
ally infeasible to perform EMTF, as described in Sec-
tion 4.2). Thus we can say that our learning methods
successfully reduced the learning time.
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6 Related Work

6.1 Location Privacy

Location privacy has been widely studied in the litera-
ture (see [13, 19] for surveys on this field). In the fol-
lowing, we review the previous work closely related to
this paper.

One of the most popular approaches to location pri-
vacy attacks is based on a Markov chain model. Many
studies showed that this model de-anonymizes traces
or infers locations with very high accuracy when the
amount of training data is very large. For example, Mul-
der et al. [24] de-anonymized traces of 100 users at the
success rate of 77% to 88% when they used traces in a
period of one month as training data. Gambs et al. [11]
de-anonymized traces of 59 users in the Geolife dataset
[48] at the success rate of about 45% by using a half of
the dataset (over two years) as training data. Shokri et
al. [36] showed that an adversary who knows personal-
ized transition matrices {Pn|n ∈ [N ]} can de-anonymize
and de-obfuscate traces with higher accuracy than the
one who knows a stationary distribution over regions.
Song et al. [38] compared various location predictors,
which infer a future location based on disclosed loca-
tions10, and showed that a low-order Markov predic-
tor outperformed the others when more than 1000 lo-
cations were used as training data. In reality, however,
many users would not disclose many locations nor two
temporally-continuous locations, as described in Sec-
tion 1. Thus we proposed EMTF and two approximate
learning methods, and showed that the proposed meth-
ods can solve both the sparse data problem and the
missing location problem.

It is known that the adversary can de-anonymize
traces with very high accuracy if the traces contain
home/work locations or places where the users meet
their friends. Golle and Partridge [14] showed that a ma-
jority of the U.S. working population can be uniquely
identified from home/work location pairs at the gran-
ularity of census blocks. Freudiger et al. [10] extended
this work, and showed that home/work location pairs
can be identified from 20 LBS queries, most of which are
made from home/workplace, at the success rate of 65%
to 75%. Srivatsa and Hicks [39] deanonymized traces by
matching a contact graph, which represents a pattern of

10 Note that a location predictor can be used to infer a sensitive
location [22, 44], and such an attack can be regarded as a special
case of the localization attack [25].

meeting between users in the anonymized traces, against
a social network graph. Ji et al. [17] proposed a graph-
based de-anonymization attack that does not require a
mapping of landmark nodes. However, users who are
worried even a little about their privacy may not use
LBS from home/workplace, nor with their friends in a
social network graph, when they use LBS continuously.
We therefore did not use such auxiliary information, and
showed that location privacy attacks can be a threat
even in this case.

Another important work is the one presented by de
Montjoye et al. [23]. They studied how unique mobility
traces are, and showed that as few as four locations in
a “testing” trace were enough to uniquely characterize
95% of the traces amongst one and a half million people.
However, they (implicitly) assume that the adversary
has enough “training” traces, and the four locations are
included in the training traces. We emphasize again that
the amount of training data can be very small and many
locations can be missing (i.e. training locations can be
sporadically disclosed) in practice. This is the the reason
that we proposed EMTF and two approximate learning
methods.

Finally, a recent work by Narain et al. [29] proposed
a side-channel attack that infers actual locations of a
target user using only zero-permission mobile sensors
such as an accelerometer, gyroscope, and magnetome-
ter. They considered a scenario, in which the adversary
distributes a mobile app that is seemingly innocuous but
collects zero-permission sensor data continuously from
the victim. As a method to infer actual locations using
the sensor data, they proposed the maximum likelihood
route identification algorithm on a graph, and showed
that it can identify a route with high accuracy. Our
learning methods may be used to further de-anonymize
the route (i.e. link the route to the victim’s identity)
from a small number of sporadic training locations that
are made public (e.g. via LBSN).

6.2 Learning Algorithms (EM Algorithm
and Matrix/Tensor Factorization)

There are some studies that combined the EM algorithm
with matrix (or tensor) factorization. For example, some
studies used the EM algorithm to train model parame-
ters in matrix (or tensor) factorization while estimating
missing elements in a matrix (or a third-order tensor)
[1, 46]. Another example is the work of Wang et al. [42],
which expresses a Laplace distribution as a scaled mix-
ture of Gaussians and uses the EM algorithm to perform
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matrix factorization based on the l1 loss. However, all of
the above studies did not intend to estimate missing val-
ues in time-series data such as mobility traces. Anand-
kumar et al. [3] utilized the fact that low-order moments
in latent variable models (e.g. HMM) can be written as
low-rank tensors. However, this method does not con-
sider a multi-user scenario and estimates one transition
matrix via tensor factorization. Therefore, this method
needs to estimate each personalized transition matrix
independently, and suffers from the sparse data prob-
lem (in the same way as ML and GS).

In summary, no studies have incorporated tensor
factorization to the EM algorithm to solve the sparse
data problem and the missing location problem si-
multaneously. Thus in this paper, we firstly proposed
EMTF, which trains model parameters in tensor fac-
torization while estimating missing locations using the
Forward-Backward algorithm. Since the time complex-
ity of EMTF is exponential in the number of missing
locations, we proposed two approximate learning meth-
ods: EMTFViterbi and EMTFFFBS.

7 Conclusion
In this paper, we proposed EMTF and two approxi-
mate learning methods to solve both the sparse data
problem and the missing location problem. We applied
our learning methods to two representative location pri-
vacy attacks (i.e. the de-anonymization attack and the
localization attack), and evaluated them using three
real datasets. The experimental results showed that
our learning methods significantly outperform a ran-
dom guess in all of the three datasets, even when there
is only one training trace composed of 10 locations per
user, and each location is missing with probability 80%
(all elements are unobserved, as matrices P2 and P3 in
Fig. 1, in more than 70% of the cases).

Although we considered only missing locations in
training traces, our learning methods can be generalized
to a case where training traces are obfuscated (e.g. by
adding noise, deleting some locations, merging regions).
As future work, we would like to evaluate our learn-
ing methods in such a more general scenario. In addi-
tion, we would also like to evaluate a state-of-the-art ob-
fuscation method (e.g. perturbation method satisfying
geo-indistiguishability [4]) applied to sporadic training
locations as a countermeasure against location privacy
attacks using our learning methods.
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A The Gibbs Sampling Method
and the ML Estimation
Method

In this appendix, we discuss the relationship between
the Gibbs sampling method in [35] and the ML estima-
tion method [11, 24, 36, 44]. Shokri et al. [35] assumed
that all of the prior information available to the adver-
sary are encoded in one of two ways: in the form of
training traces or as a matrix of transition counts that
are not encoded as traces. Although we consider only the
first way of encoding (i.e. we assume that all of the prior
information are encoded in the form of training traces),
our discussion in this appendix can be extended to the
case when the adversary has, in addition to training
traces, transition counts that are not encoded as traces.

The learning method in [35] alternates between sam-
pling a personalized transition matrix P (l)

n and sampling
missing locations using the Gibbs sampling method un-
til convergence (l = 1, 2, · · · ). To sample P (l)

n , they as-
sumed that each row of Pn is independent of the others,
and assumed the Dirichlet prior distribution for each
row of Pn. Let pn,i = (pn,i,1, · · · , pn,i,M ) be the i-th
row of Pn. The probability density of the Dirichlet dis-
tribution for variables pn,i = (pn,i,1, · · · , pn,i,M ) with
parameters α = (α1, · · · , αM ) is given by

Dir(pn,i|α) =
Γ(
∑M
j=1 αj)

Γ(α1) · · ·Γ(αM )

M∏
j=1

(pn,i,j)αj−1, (17)

where Γ denotes the gamma function. It should be noted
that Dir(pn,i|α) in (17) is a probability density function

for pn,i = (pn,i,1, · · · , pn,i,M ) in the case when the event
that user un moves from region xi to xj is observed αj−1
times (1 ≤ j ≤M).

Let xn (resp. zn) be a vector that consists of ob-
served locations (resp. missing locations) in training
traces of user un. Let further {xn, z(l)

n } be “complete”
training traces of un at the l-th iteration of the Gibbs
sampling, and c(l)nij be the number of transitions from re-
gion xi to xj in the traces {xn, z(l)

n }. Based on the mean-
ing of Dir(pn,i|α) explained above, it would be natural
to set the parameters α = (α1, · · · , αM ) as follows11:

αj = c
(l−1)
nij + 1 (1 ≤ j ≤M). (18)

Then, the mode of the Dirichlet distribution is written
as follows:

αj − 1∑M
j=1 αj −M

=
c
(l−1)
nij∑M

j=1 c
(l−1)
nij

. (19)

We can discuss the relationship between the Gibbs
sampling method in [35] and the ML estimation method
[11, 24, 36, 44] based on (19). Consider the case when
none of the locations are missing from training traces,
and let cnij be the number of transitions from region xi
to xj in the training traces of user un. Then, it follows
from (19) that the mode of the Dirichlet distribution
can be written as cnij/(

∑M
j=1 cnij), which is equivalent

to the ML estimate. Since the mode is the value at which
its probability density function has a maximum value,
the Gibbs sampling method in [35] performs almost as
well as the ML estimation method [11, 24, 36, 44] in this
case.

Thus, even if the adversary “perfectly” estimates
missing locations, the Gibbs sampling method performs
almost as well as the ML estimation method without
missing locations. For example, even if the adversary
perfectly estimates missing locations in our experiments
in Section 5, the Gibbs sampling method in [35] per-
forms almost as well as the ML estimation with only
ten training locations for each user, and suffers from the
sparse data problem. In addition, the adversary cannot
accurately estimate missing locations in this case, since
P

(l)
n is not accurate. This is the reason that the Gibbs

sampling method performed worse than the ML estima-
tion method in our experiments.

11 In [35], they also added a mobility constraint parameter εij ,
which takes a very small positive number if it is possible to move
from region xi to xj in one time instant (otherwise, εij = 0).
However, we do not add εij to αj in this paper for simplicity.
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