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To protect data in cloud storage, fault tolerance and efficient recovery become very important. Recent studies have developed
numerous solutions based on erasure code techniques to solve this problem using functional repairs. However, there are two
limitations to address. The first one is consistency since the Encoding Matrix (EM) is different among clouds. The other one is
repairing bandwidth, which is a concern for most of us. We addressed these two problems from both theoretical and practical
perspectives. We developed BMCloud, a new low repair bandwidth, low maintenance cost cloud storage system, which aims to
reduce repair bandwidth and maintenance cost. The system employs both functional repair and exact repair while it inherits
advantages from the both. We propose the JUDGE_STYLE algorithm, which can judge whether the system should adopt exact
repair or functional repair. We implemented a networked storage system prototype and demonstrated our findings. Compared

with existing solutions, BMCloud can be used in engineering to save repair bandwidth and degrade maintenance significantly.

1. Introduction

With the rapid growth of data production in companies, the
requirement of storage space grows very largely as well. This
growth leads to the emergence of cloud storage. Cloud storage
is a concept which is an extension and development from
cloud computing. This system collects application software in
order to work together and provide systems of data storage
and business access features through grids or distributed
file systems [1]. Cloud storage is produced by distributed
storage technology and virtualization technology, and it is the
latest development of distributed storage technology. Cloud
storage provides effective solutions for network mass data
storage. Also this system provides on-demand pay services,
which reduces not only the threshold for the user but also
the payment. Some companies have been involved in cloud
storage systems, such as Amazon, Sun, Google, and Yahoo.

According to forecasts from the International Data Cor-
poration (IDC), the size of the global cloud computing and
cloud storage market has increased from $16 billion in 2008
to $42 billion in 2012 [2], which is the proportion of the
total IT investment from 4.2% to 5%. In addition, the IDC
predicts that cloud computing and cloud storage investments
will be 25% of the annual IT investment in 2012, and that
will rise to 30% or more in 2013. The advisory body Merrill
(MerriliLynch) foresees that this will be $160 billion market
by 2011.

In order to improve the reliability of cloud storage, some
companies have developed their own solutions, such as HDFS
[3] and GEFS [4]. The two cloud storage systems use duplicate
technology to have reliability guaranteed. Of course, this
method can solve the problem of data loss and data error. But
there is a lot of storage space wasted by using this method
and this will bring consistency issues. For these reasons, the



erasure code has become one of the most popular choices
for storage to improve its utilization and avoid the problem
of consistency. A good erasure code technology can not only
improve the availability and reliability of the system but can
also improve the efficiency of data access.

We hereby focus on the recovery problem for a family of
network coding. In the current situation, cloud coding is a
popular direction to prevent large-scale cloud node failure.
While bandwidth consumption is an important performance
signal in cloud storage system, we always want to repair data
using the minimum bandwidth and the fastest repair speed.
The model for a cloud file system using erasure codes is
inspired by NCCloud [5], which is the implementable design
for the functional minimum-storage regenerating code [6].
Other cloud file systems such as Khan et al. [7] are also
function repair systems. In functional repair, the system
needs to keep the value of the repair matrix to ensure
consistency. Following each functional repair, that matrix
needs to be synchronized to each cloud in order to ensure
the consistency across the system. The number of recovery
matrices increases with the number of recoveries, which will
affect the overall system reliability and consistency. Therefore
we should establish a system with an exact repair in case the
system experiences data loss or data error.

In this paper, we have proposed Bandwidth and Main-
tenance minimum Cloud system (BMCloud) which has
low bandwidth consumption and low overhead in terms of
maintenance. The system has both functional repair and exact
repair when data loss or data error are experienced. When
a part of data in cloud is lost, the system can recover with
exact repair to degrade the overhead of maintenance for the
future. More importantly, it has the ability to consume less
bandwidth when recovering. While almost all the data in
the cloud breaks, the system can recover it with a functional
repair. We have developed a JUDGE_STYLE rule to judge
whether the system should use exact repair to recover or not.

The system includes a proxy which can calculate and
transfer data through the clouds and can maintain the system
consistency. In the exact repair function, the proxy itself does
not require arithmetic processing of the data or the data
cache, and it does not need to provide calculation and storage
capabilities. Since most of the calculation work is loaded on
the cloud nodes in this function, which will be described
in Section 4 with more details, the proxy would not be a
bottleneck in terms of calculation and storage.

The contributions of this paper are described as follows.

(i) We have developed E Code algorithm to recover data
in exact repair. It can improve recovery bandwidth
performance and ensure data integrity.

(ii) We have developed the JUDGE_STYLE algorithm,
which can judge whether the system should use exact
repair or functional repair.

(iii) We have implemented the system BMCloud. When
the number of the fail strips in the cloud is less than or
equal to 4, or between 4 and 10 but we can recover data
in exact repair, BMCloud could significantly improve
repair bandwidth by 53.9% and 41.8% compared to
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current solutions (RDP, NCCloud, etc.). In addition,
it can degrade maintenance cost.

The rest of this paper is organized as follows. Section 2
describes related work in erasure code. The architecture and
the design of BMCloud are introduced in Section 3. Section 4
is the prototype and algorithms. Section 5 is the experimental
result and evaluation. Section 6 is the conclusions.

2. Related Works and Motivation

2.1. RAID Code. Since Patterson et al. [8] brought the concept
of RAID into storage systems, erasure coding has been one
of the most popular choices to supply high reliability and
high performance storage services with acceptable spatial
and monetary cost. Examples such as LAN, RAIDO, RAID],
and RAID5 are very small and their integration versions
are widely used. These can be used to recover systems
when a disk error occurs. With the reliability requirements
improved, single-fault-tolerant could not meet the needs of
the consumers, so two-fault-tolerant comes into play. There
are a lot of two-fault-tolerant codes storage systems, such as
EVENODD [9], RDP [10], and X-code [11]. A typical RAID-
6 storage system is composed of k + 2 disk drives. The first
k disk drives are used to store original data, and the last two
are used as parity disk drives. All the disk drives are in two
check chains. When one or two disk drives lose data, we can
recover data from the two check chain. Wan et al. [12] have
used the raid code to improve the system performance and
save the energy.

Maximum Distance Separable (MDS) can tolerate maxi-
mum failures with a given amount of redundancy. It is widely
used in RAID-6 code, so that most of the RAID-6 codes are
MDS codes. The most important feature of MDS is the ability
to verify that the length of the chain is equal to the length of all
the disks, which means that all disks are involved in checking,
so you can reach the maximum disk utilization. But there is
another coding which is different to MDS. In these cases, the
length of the chain is less than the length of all the disks, such
as in M-code [13]. Therefore due to careful design of the parity
chain arrangement, the length of its check chain is shorter
than that of the conventional RAID-6 code, which makes its
I/O consumption smaller.

2.2. Network Coding. With the development of the network,
especially the development of the cloud in recent years,
erasure code is also transferred from the disk array level to
the cloud level. In network coding, there are three versions of
repair which include exact repair, functional repair, and exact
repair of systematic parts.

Functional repair has been researched to the greatest
extent of the three [14-16]. Dimakis et al. [17] have proposed
regenerating codes for functional repairs. They have created
a serial theory of the threshold function with informational
flow graph. This function describes the relationship between
node numbers, surviving nodes numbers, communicating
bits, and repair bandwidth. They also studied two extremal
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points on the optimal trade-off curve between Minimum-
Bandwidth Regenerating (MBR) Codes [18] and minimum-
storage regenerating (MSR) codes [19, 20]. In MSR codes, the
system stores the average bits at each node while ensuring the
MDS-code property, so that they are equivalent to standard
MDS codes. While in MBR codes, because we are concerned
with the minimum bandwidth, MDS codes and non-MDS
codes can be used.

After Rashmi et al. [21] had deeply researched MBR
and MSR codes, they proposed the model of twin-code
framework, which is the trade-off between MBR codes and
MSR codes. Under this framework, the nodes are partitioned
into two types and encoded using two codes in a manner
that reduces the problem of node repair to that of erasure-
decoding of the constituent codes. Depending upon the
choice of the two codes, the framework can be used to
avail one or more of the following advantages: simultaneous
minimization of storage space and bandwidth repair, low
complexity of operation, fewer disk reads at helper nodes
during repair, and error detection and correction.

Exact repair is also proven theoretically. With the idea of
interference alignment [22, 23], the exact repair also includes
Exact-MBR Codes and Exact-MSR Codes as does functional
repair. The idea is to align multiple interference signals in
a signal subspace whose dimensions are smaller than the
number of interferers.

Different from the theory analysis above, NCCloud has
proposed the implementable design for the functional repair.
The system has divided each cloud into two parts and uses its
algorithm, so that time for data reads can be reduced by 25%
compared to time taken to reconstruct the whole file. There
are cloud storage systems that provide a scalable platform for
storing massive data over multiple storage nodes via erasure
coding [24, 25].

3. BMCloud

3.1. Design Goals. In this paper, we want to develop a
cloud system applied as a deep archive and make some
progress on the base of an existing system. We specifically
design BMCloud under a thin cloud assumption—that the
remote data center storing the backups does not provide any
special backup services, as Cumulus [26] has proposed. The
following factors are taken into account.

3.1.1. Low Bandwidth Consumption. Due to the importance of
bandwidth consumption, we put it first on this list. Network
code has made some advancements on this issue, but we
believe that there is still plenty of room for improvement.
That is why the bandwidth is one of the most important
factors to consider. We wanted to develop an extra layer on
functional repair to create a hybrid system, and so finally
we chose E Code, which is a RAID-6 code and has excellent
1/0O properties. In BMCloud, we elaborately apply E Code on
the cloud platform and reserve its excellent properties in I/O
(see details in Section 3). E Code can also help the system in
locating errors and repairing them efficiently. This creation
fills in the blanks in the cloud storage system. In BMCloud,

cloud nodes are required to have computing abilities, limited
to XOR operations, which could easily compute concurrently.
However, the response time will not increase due to the
reduction in the size of the file’s need to transport.

3.1.2. Low Overhead of Maintenance. In BMCloud, we want
to improve the functional repair model in some aspects, such
as bandwidth and computing cost.

Existing systems such as NCCloud, which use functional
repair models, need to regenerate EM to repair failed nodes
and that may cause some problems that we should not ignore.
Since each fault will lead to whole node data regeneration
and EM updates, the maintenance overhead of EM may rise
significantly, because it will take many computing resources
to generate new EM. After a certain number of faults, the
maintenance overhead of the whole system may become
unacceptable.

In BMCloud, E Code can deal with faults with size of one
or two F-MSR blocks and repair them exactly. Every fault
repaired by E Code will not need to regenerate and update
EM. This property guarantees that the EM will stay stable
for a relatively long time. Furthermore, repairing computing
cost of E Code is much less than F-MSR. So the system will
not incur cost as high as that for computing and bandwidth
resources to maintain stability. Since faults in small scale
constitute to the majority of regular faults, E Code can be very
helpful.

From that, we know that even though we added an extra
layer in our system, there is still room for improvement in
terms of better computing and bandwidth performance.

3.1.3. Preservation of Regenerating Code Properties. Though
faults on a large scale seldom occur, cloud systems must have
a mechanism to deal with these lethal problems. F-MSR code
is an excellent approach to a solution and has an acceptable
bandwidth cost. We preserve the fault tolerance requirement
and repair traffic with F-MSR (with up to a small constant
overhead) as compared to the conventional repair method in
erasure codes.

In BMCloud, we improve the performance of bandwidth,
stability, and other aspects on the premise of the preservation
of the properties of F-MSR code.

3.1.4. Flexibility. In BMCloud, we elaborately designed the
repair model which made it capable to provide the most
economical and stable solutions for faults on different scales.
Furthermore, BMCloud has excellent expandability. The
number of nodes in E Code can be any number larger than
4, and this property helps the E Code layer connect to F-
MSR seamlessly. If a better system using the functional repair
model came up, it would be very convenient to deploy E Code
on it, so the mechanism of BMCloud can be applied in many
situations.

3.2. Notations. For an (n, k)-F-MSR code, we define the
n*(n—k) code chunks encoded from k* (n—k) native chunks as
F-MSR chunks. Normally, an F-MSR chunk would be placed
on a different cloud node. The encode coefficient matrix in
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TABLE 1: Notations of BMCloud.

Notations Description

F-MSR chunk A data unit in F-MSR code

Stripe A coding group containing a collection of strips in E Code

Strip A data unit of a stripe in E Code

E Code area Two neighboring cloud nodes in one stripe

Encode matrix (EM) Coeflicient matrix in the F-MSR code

Extended F-MSR chunk

An code chunk after E Code encoding and extension

the F-MSR is defined as the encoding matrix (EM), which is
the main part in F-MSR metadata. Each F-MSR chunk will be
divided into (n — 1) n strips.

In E Code, we define any two cloud nodes adjacent to
each other as an E Code area. An exception occurs for the
first cloud node, which is grouped with the last node in an
E Code area. To a specific file, an E Code area contains two
F-MSR chunks.

A stripe is a concept borrowed from traditional RAID
codes, and they are an independent coding group of strips.
Any stripe in E Code belongs to specific E Code area.

After E Code coding, an additional strip would be
appended to a stripe and more strips in each F-MSR chunk.
We define the code chunk after extension as an extended F-
MSR chunk. Table 1 shows the notations of BMCloud.

3.3. The Design of BMCloud

3.3.1. Software Architecture of BMCloud. In order to solve the
concerns mentioned in Section 3.1, we developed BMCloud.
BMCloud is a dual-layer system based on F-MSR shown
as Figure 1. The first layer contains the classic F-MSR code,
providing the tolerance ability on a cloud level. The second
layer implements E Code. Data on every cloud node is firstly
encoded by F-MSR code and then encoded by E Code before
unloading to the cloud node.

BMCloud consists of three modules as coding, storage,
and protocol, and defines four workflows as download,
update (upload), delete, and repair. Basic functions in file
systems and data structure definitions, as well as consistency
control and other utility functions, are also included in the
system.

BMCloud is mounted on Linux with FUSE (filesystem
in userspace). Basic functions in a filesystem are supported
by user-defined codes. Our system implements reading and
writing, rename, link, creating a new folder, changing file
attributes, and other basic functions only because a perfectly
functioned filesystem is not BMCloud’s point. BMCloud
applies Hadoop zookeeper distributed applications to provide
coordination services and ensure the system’s strict consis-
tency. In the part of workflows, the system mainly defines the
encoding, decoding, update (upload), download, repair, and
delete operation workflows. This part is the implementation
section about encoding and decoding operation and repair
strategy in FMSR and E Code. The underlying part has
three modules. Coding module provides a variety of basic
encoding methods, including FMSR, RAIDO, RAID], and RS

coding, in which we focused on the use of FMSR, a functional
repair coding method. Storage module is designed to adapt
to different network environments and cloud vendors to
provide an interface for basic I/O. Protocol module is a
specialized extension module for E Code, defining generation
and transmission of the parity blocks in E Code.

3.3.2. E Code Algorithm. Figure 2 is an example of an E Code
encoded process. The deep gray squares are the parity strips of
E Code. The other 12 strips are data strips which are partitions
of F-MSR chunks. In Figure 2, we can see that every data strip
belongs to two data links. If # is the number of the nodes,
when n > 3, E Code can provide double-fault tolerance to
protect data in nodes.

Define the row sequence and the column sequence in a
strip in the left cloud node as x and y, respectively. So all the
left strips in a stripe are equal to (x + y) mod (n + 1), which is
defined as L. When r represents the row sequence in the right
cloud node, we see that L = (2n— 1 — r) mod (n + 1).

Therefore, we know that

L=(x+y)mod(n+1)=Q2n-1-r)mod (n+1). (1)

We use an algorithm to improve recovery bandwidth
performance and ensure data integrity. The details are given
in Algorithm 1.

3.3.3. The Design of Functional Repair. F-MSR code is a code
using the functional repair method, which is an important
foundation of BMCloud. In F-MSR code, the system utilizes
EM to record the mathematical relation between the original
data and encoded data. From the EM, the system can retrieve
the original data. When faults occur, the system can repair
them by calculating a linear transformation on EM and
regenerating new encoded data on the cloud nodes.

The encoding process preserves the F-MSR code block. It
just adds a parity block of E Code to the data, so that in daily
use, there is no need for the system to decode the block twice.
The added parity block will only be used in the repair process.

The reason why we choose E Code is that it introduces
abundance by adding parity blocks. This method maintains
the contents of the data.

The E Code layer can improve the stability of the system
while not delaying the response time of the system.

3.3.4. The Design of Exact Repair. The deep gray squars are
the parity strips of E Code. The other 12 strips are data strips
which are partitions of F-MSR chunks. In Figure 2, we can
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Requirements:

Native chunks;

Encoding request;

Main parameters (n, k, s) in F-M
5: Step 1. System initialization
6: Step 2. F-MSR (n, k) encoding

1:
2:
3:
4:

8:  (b): If MDS is satisfied
else return to a;

chunks as F-MSR chunk;
13: Step 3. E Code (1, s) encoding

7. (a): Generate random encoding coefficient vectors;
9: then generate an encoding matrix from then coding coefficient vectors;

(c): Compute the product of encoding matrix and native

14:  (a): Divide each F-MSR chunk into stripes and strips;
15:  (b): For stripe A in F-MSR chunks

16: Calculate the parity strip of this stripe;

17: Save the parity strip in certain position

18:

(c): Consolidate the strips into extended F-MSR chunks

SR code and E Code;

AvrcoriTHM I: Algorithm E Code: encode algorithm of the exact layer.

Linux

System interface of FUSE

Fuse
v Config analysis,
T BMCloud functions in filesystem:
Utilities read, write, mk@ir, m_knod,
f rename, symlink, link,
Info chmod, trung, etc.
Check Workflow Consistency
service

Clear
Config

it

Workflows of download,
update, repair, and delete

application

. Protocol
Codings Storages
—
Other codings Azure
RAIDO |[RAID1
EMBR ,ml
Coding Storage Protocol

Encoding, decoding,
repairing, and updating
metadata

Sync, update,
download.

, check, wait,
delete, etc.

download, partial ~ Data block partition, parity
block generation, and parity block

transmission

FIGURE 1: Software architecture of BMCloud.

see that every data strip belongs to two data links. If n is
the number of the nodes, when n > 3, E Code can provide
double-fault tolerance to protect data in nodes.

The dividing method provides system repair abilities in
smaller granularity. That enables BMCloud to avoid repairing
whole nodes in most situations. In other words, BMCloud
avoids the cost of calculating the data of a whole node and
updating bandwidth costs of EM.

3.3.5. Proxy Architecture. The prototype system of BMCloud
is constructed of a proxy and several cloud servers (cloud
nodes) in heterogeneous environments. Figure 3 shows a
coding group of clouds, which provides storage capacities,
redundancy, and computing.

As a controller, a proxy functions to coordinate data
transmission between several cloud nodes and to maintain
the system’s consistency. In the idealized mode, the proxy
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Native strip

- Parity strip

FIGURE 2: An example of an E Code encoded process.

Y

Cloud server 3

Cloud server 1

P1 P5
P2 P6
Proxy
123 P7
P4 P8

Cloud server 2 \_/\ Cloud server 4

FIGURE 3: The communication ring of cloud servers.

has no need to compute or store any data, which strengthens
the system’s scalability. In a large-scale archive environment,
proxy process requests remain limited and affordable to
current servers or cloud servers, Therefore proxy will not
become the bottleneck in this prototype.

Data packages could be directly transmitted between
cloud nodes, cutting the bandwidth cost from multiple
transmissions. Cloud nodes may need computing capacity to
encode and decode the data, undertake the recoveries, and
respond to instructions from proxies or requests from other
cloud nodes.

We employ a distributed structure in which all the
cloud nodes and proxy functions have ability to calculate
independently, so that it is necessary to arrange a unified
protocol to control and maintain the system.

As with single-fault recovery, there are two equivalent
strategies, recovery with the last node or recovery with the
next node. In the former case, there will be two kinds of
orders from the proxy, the ones to the previous node and
the ones to the recovering node. In order to prompt this,
we will send an order formatted as follows for prenode
(k):0 < k < n—-2ork = n. K is the stripe sequence. This order

will trigger a repeated XOR operation in the corresponding
stripe and the result will be sent to the next node, as the
recovery node. Before this order, the proxy should send an
order to the recovering node, defined as recnode (x, y). x and
y are, respectively, the row and column sequence of the fault.
When the recovering node receives this order, it will wait for
the coming strips from the previous node. After it is received,
the recovering node will operate XOR on the strip and other
strips in the row with fault and the result will be the strip
needing recovery.

4. The Implement Algorithms

4.1. Encode Algorithms

4.1.1. Encode with F-MSR. Encode the original data with F-
MSR code. In this process, the encoded data is divided and
distributed to several cloud nodes.

4.1.2. Divide the F-MSR-Encoded Data into E Code Chunks
and Add Parity Chunks. Every F-MSR chunk is divided into
(n — 1)*n strips in this step. The strips will be mapped into
certain positions. Strips on the diagonal will be reserved for
parity strips in step 3.

4.1.3. Calculate Parity Blocks and Upload Data. Calculate the
data of the parity strips and insert it into the reserved space
in the second step. Figure 2 is an example of a block location.
After the calculation, the extended F-MSR chunk will be
uploaded to the cloud.

Furthermore, since BMCloud is developed on the foun-
dation of F-MSR code, the system has the cloud level fault
tolerance ability. When one cloud node fails, the system can
repair the data from the surviving node.

Every neighboring cloud node pair is defined as an E
Code area. Any stripe belongs to one and only one E Code
Area. In an E Code area, the cloud node on the left owns
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(n — 1) strips in the stripe, which is leaning towards the top-
right corner and the right cloud node has n strips in the stripe
showing as a row in Figure 2.

4.2. JUDGE_STYLE Algorithm. In BMCloud, most strips are
located on two data-links. In order to improve the recovery
ability of BMCloud, we added a parity strip S, which is the
checksum of all the parity blocks on each node (in order
to make the Figures more clear, we have hidden S, in the
following figures.). When a fault occurs, the system can
search the data link which owns the failed strip and repairs
it with the surviving part of the data link. We now take an
overview of the related work on the recovery of faults in
different scales. We propose the JUDGE_STYLE algorithm,
which can judge what kind of style the system will be used.
We classify existing recovery solutions into three families,
namely exact recovery, enumeration recovery, and functional
recovery. Respectively, they are designed for faults of small,
medium, and large scales.

4.2.1. Exact Recovery. E Code in our system has excellent
recovery abilities. When the number of the failed strips is less
than or equal to 4, BMCloud will recover the data with an
exact recovery policy. All faults in this scale can be repaired
by the E Code layer exactly. In extended-F-MSR chunks,
we divide the strips into two families: data strips and parity
strips. In these cases, we use vectors (m, n) to represent the
situation where there are m failed data strips and n failed
parity strips.

(a) (0, 4). Since there are 4 failed parity strips for different
data links, which all have only one failed strip, it is obvious
that these 4 parity strips can be easily repaired. In the
following situations, we will skip all similar relationships.

(b) (1, 3). In this case, there are 3 failed parity strips and 1
failed data strip. If the one failed data strip is in the same
data link with the one parity strip, then the other two parity
strips can be repaired and the system can repair the rest of
the parity strip by using a SI parity strip. Finally only the data
strips can be repaired.

(c) (2, 2). In this situation, we will give an example of every
possible approach. We use the symbol S(, n) to represent
the nth strip in the mth cloud.

(1) S(1,3), S(1,6), S(1,10), S(1,13): they can be easily
repaired because they are all in a data link, which has
only one failed strip.

(i) S(1,3), S(1,6), S(1,7), S(1,10): S(1,3) and S(1,10) can be
repaired first then, the recovery trace of S(1,6) and
S(1,7) is obvious.

(iii) S(1,2), S(1,3), S(1,4), S(1,7): S(1,7) first, and from S1
we can repair S(1,4), then S(1,2) can be recovered
by a data-link-square, and S(1,3) can by a data-link-
upside-down triangle.

(iv) S(1,3), S(1,4), S(1,6), S(1,7): from four involved data-
links, we get the equitation set as follows:

S(1,3)+S(1,4) = R,,

$(1,3) +S(1,6) = R,,

(2)
S(1,4)+S(1,7) = Rs,

S(1,6) +S(1,7) = R,.

R,_, is the result the system calculates from survived
strips in the involved data links. So from the equitation set
we can calculate the data of the four failed strips.

(d) (3,1) and (4,0). These situations are similar to the situations
in (0,4) and (1,3), the repair trace is simple and easy to find so
we will not introduce it in detail.

4.2.2. Enumeration Recovery. When the numbers of the failed
strips are between 4 and 10. The E Code layer can handle these
faults except for in some special situations. So first, BMCloud
will scan all the failed strips and check their relationships.
Then, the system will try to use a greedy algorithm to repair
the fault. The details are in Algorithm 2.

4.2.3. Functional Recovery. When the number of failed strips
is larger than 10, the scale of the fault overcomes the upper
bound of repair ability of the E Code layer. So BMCloud will
repair the fault by the F-MSR layer. The data of the whole
node will be regenerated by F-MSR code from the data on
surviving cloud servers. After regenerating the new F-MSR
chunk, BMCloud will recalculate the parity strips and add
them into the F-MSR chunk to restore and extend the F-MSR
chunk onto a new cloud sever. In the meanwhile, the related
parity strip on the related cloud server will be updated.

5. Evaluation Methodology

5.1. Cost Analyze. Table 2 shows the monthly price plans for
three major vendors of cloud storage as of January 2013. We
used the price of Azure [27] and assume that the storage usage
was within 1 TB/month; data transferred out was more than
1 GB/month but less than 10 TB/month. From the analysis in
Section 4, we can save 33.33% of the download traffic during
storage repair when n = 4. The storage size and the number
of chunks being generated per file object of BMCloud are
33.33% larger than RAID-6 when n = 4. Since the price of
storage is much lower than the bandwidth, the redundancy
of BMCloud is acceptable to the user.

However, in the analysis, we have ignored three practical
considerations: the computing cost, the size of metadata,
and the number of requests issued during repair, because we
considered these values negligible in real-life applications.

Computing cost: in real-life applications, the MTTF
(99.999999999%) of the Business Cloud is very long, so it will
cost few computing resources to guarantee high availability.

Metadata size: in BMCloud, regardless of the size of the
data files, the F-MSR metadata size is always within 160 B.
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Requirements:
Native chunks;
Repair request;

Step 2. Greedy repair

1:
2:
3:
4:  Main parameters (1, k, s) in F-MSR code and E Code;
5:  k stands for the number of fail strips

6: Step 1. Basic information collection

7

8:

(a): Scan failed strip S; (1 < i < k);
9:  (b): If S;can be recovered by a simple data-link

10: then restore S;, go to Step 1.

11: elsei =i+ 1;

12:  (c): List the equation set of the rest of the failed strips
13: from the related data-links

14:  (d): If the equation set is soluble

15: then restore all the failed strips

16: else got Step 3.

17: Step 3. Functional Repair

18:  (a): Repair the whole node with F-MSR code;

19:  (b): Recalculate the related parity strip and update all
20: the EMs on every cloud server;

ALGORITHM 2: Algorithm enumeration recovery.

TaBLE 2: Monthly price plans (in US dollars) for Amazon S3 (US
Standard) and Windows Azure Storage, as of January, 2013.

S3 Azure
Storage (per GB) $0.064 $0.062
Data transfer in (per GB) free free
Data transfer out (per GB) $0.120 $0.119
PUT, POST (per 10 K requests) $0.100 $0.010
Get (per 10 K requests) $0.010 $0.010

In evaluation, we used a 512 MB file to test the response time
of BMCloud, and compared to the size of the test file, the
metadata size will usually negligible. In real-life applications,
the size of the data file usually overcomes 1 GB, so the effects
caused by metadata on system are too small and do not need
evaluation.

Number of Requests. From Table 2, we know that the charge of
requests is relatively low compared to storage and bandwidth.
RAID-6 and F-MSR differ in the number of requests when
recovering data during repairs. Suppose that we store a file of
size 4 MB with n = 4 and k = 2. BMCloud may need special
protocol to support this function. When we repair cloud data,
there is an agreement that it is merged before the data is
transferred over. But if you do not follow these steps, the Get
Operation will put all the data transmitted over a result of the
flow rate increase.

5.2. Response Time Analysis. In this part, we deploy our
BMCloud prototype in a real local cloud environment to
evaluate the system performance of the response time. This
cloud storage environment is chosen to carry out this analysis
in order to evaluate the performance without the effects
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FIGURE 4: File upload response times of BMCloud on a local cloud.

of network fluctuations. We may continue the analysis on
commercial clouds as a future work. All results are averaged
over 50 runs.

The experiment is implemented on a storage platform
based on OpenStack swift. The proxy of the system is
installed on a laptop with Intel Core i5-580 and 8 GB RAM.
This machine is connected to an OpenStack swift platform
attached to a number of storage servers with Xeon E5606
CPU and 8 GB DDR3 RAM. We create 6 containers on this
platform, and 4 containers act as 4 cloud nodes and other
2 containers act as spare nodes, to constitute the testing
environment of F-MSR (n = 4, k = 2) and BMCloud system.
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FIGURE 5: File download response times of BMCloud on a local
cloud.

We test the response time of the three most important
operations in the workflow of BMCloud: file upload, file
download, and file recovery. For each operation workflow,
we keep a record of the detailed time costs in every type of
operation. We use random files sized from 1MB to 512 MB
as the test data set. RAID-6 Reed-Solomon code is chosen as
a control group. There are two types of recovery situations,
considering whether the failed node is native or parity.

Figures 4, 5 and 6 show response time in 3 main
operations workflows, upload, download, and recovery in
BMCloud and RAID-6 RS code. BMCloud performs over
RAID-6 on response time in file upload and file download.

Figures 7 and 8 show detailed component of the response
time in the case of the 512MB file. We can clearly see
that the data transfer time contributes to the main part of
the response time for all 3 operation workflows and time
costs in both methods are quantitatively similar. In contrast
to RAID-6 code, F-MSR code properties make BMCloud
present a significant encoding/decoding overhead when a
file is uploaded or downloaded. When uploading a 500 MB
file, RAID-6 takes 2.496s to encode and BMCloud takes
12.065s; when downloading a 500 MB file, BMCloud takes
4.512 s to decode and RAID-6 needs no decoding when native
nodes are available. However, uploads and downloads are
infrequent operations in an archive storage environment.
Moreover, network fluctuation in real environments will
balance the difference between RAID-6 and BMCloud.

In the recovery process, BMCloud shows a shorter
response time than RAID-6. BMCloud needs to download
less data during repairs than RAID-6 and NCCloud. There
are two kinds of recovery methods in BMCloud, exact repair,
and functional repair. Exact repair sharply curtails repair
bandwidth and hence repair response time, showing our
main advantage. In repairing a 512 MB file, NCCloud spends

50
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B RAID-6(parity chunk repair)
B RAID-6(native chunk repair)
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FIGURE 6: Recovery response times of BMCloud on a local cloud.
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FIGURE 7: 512 MB file response time detailed analysis (Functional).

9.593 s in download; the native-chunk repair while RAID-
6 spends 12.124 s and BMCloud spends only 5.583 s for all
the data. The response time of BMCloud is 41.8% and 53.9%
better than that of NCCloud and Raid-6, respectively. On the
other hand, BMCloud spends 11.467 s in functional repair,
which is a little less than NCCloud and RAID-6.
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FIGURE 8: 512 MB file response time detailed analysis (exact).

We have not tested our system on a commercial cloud
since our test environment is limited. But from NCCloud
[5], we can see that network fluctuation plays a bigger role
in determining the response time. So it will be proved that
BMCloud will have no performance in functional repair and
have good performance when it is in exact repair.

6. Conclusions

In this paper, we developed a low repair bandwidth, low
maintenance cost cloud storage system named BMCloud.
It has the exact repair algorithm E Code to degrade repair
bandwidth and it also provides functional repair to recover
data in any condition. The JUDGE_STYLE algorithm can
help BMCloud decide in which cases exact repair will be used
and in which cases functional repair will be used.

We implemented the system and conducted experiments
which prove that BMCloud is effective in degrading repair
bandwidth and maintenance costs. The result shows that the
response time of BMCloud is 41.8% and 53.9% better than
those of NCCloud and Raid-6 when the system operates in
the recovery methods of exact repair.

There are still much more work to be done in the future
which mainly take two directions. First, we will focus on the
recovery of a single-disk failure and do some experiments to
verify the performance of BMCloud. Second, we will take a
twin-code model into account and make the system more
suitable for cloud storage.

In conclusion, we believe that BMCloud is an attractive
cloud storage system: one that offers low repair bandwidth,
while achieving low maintenance cost.
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