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Abstract—This paper proposes a new scheme to secure the
transmissions in an untrusted decode-and-forward (DF) relaying
network. A legitimate source node, Alice, sends her data to a
legitimate destination node, Bob, with the aid of an untrusted
DF relay node, Charlie. To secure the transmissions from Charlie
during relaying time slots, each data codeword is secured using
a secret-key codeword that has been previously shared between
Alice and Bob during the perfectly secured time slots (i.e.,
when the channel secrecy rate is positive). The secret-key bits
exchanged between Alice and Bob are stored in a finite-length
buffer and are used to secure data transmission whenever needed.
We model the secret-key buffer as a queueing system and analyze
its Markov chain. Our numerical results show the gains of our
proposed scheme relative to benchmarks. Moreover, the proposed
scheme achieves an upper bound on the secure throughput.

Index Terms—Buffer, full duplex, security, untrusted DF relay.

I. I NTRODUCTION

Physical layer security (PLS) is a promising layer of de-
fense envisioned to meet the advanced requirements of future
communication systems with confidentiality guarantees [1]–
[3]. The use of secret keys to enhance the security has been
adopted in many works [4]–[6]. The authors of [4] proposed
to use a key queue in a single-user system where the queue
is kept at both the legitimate source, Alice, and the legitimate
destination, Bob, and its content is perfectly hidden from the
eavesdropping node, Eve. The key idea of this approach is to
use a portion of the secrecy rate of the legitimate channel
to send randomly-generated key bits. The stored key bits
at the secret-key queue can be used later to achieve secure
communication between Alice and Bob when the Alice-Bob
link is not secured (i.e., when the link’s instantaneous secrecy
rate is lower than the target secrecy/data rate). Based on this
promising idea, the authors of [5] investigated the wiretap
channel and showed that a constant long-term secrecy rate
is achievable and they further addressed the queueing delay
problem without considering random data arrivals at Alice. In
[6], under fixed data and key packet rates, the authors proposed
two schemes to secure Alice’s transmissions when she has a
data buffer and investigated the data queueing delays.

Unlike all the above-mentioned works, we consider an
untrusted DF relaying network. Despite being a legitimate
entity in the network and willing to faithfully carry out the
designed relaying scheme, the relay node may have a lower
security clearance than the legitimate nodes and, hence, is
untrusted with the confidential information it is relaying.
That is, a cooperative untrusted relay is defined as a relay
which is trusted at the service level and untrusted at the
data level.1 Therefore, it should not be able to decode the
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1As mentioned in [7], this is the case in, e.g., a government intelligence
network or the network of a financial institution where not every node in the
network is supposed to have the same level of access to information.

messages between the source and destination. Hence, it has
been stated that it is not possible to ensure secure decode-and-
forward (DF) relay-assisted transmissions [8]. Consequently,
the amplify-and-forward (AF) is the most commonly used
relaying protocol in untrusted cooperative communications.
The results in [9] showed that the untrusted AF relay node
has better channel conditions to the source than the destination
and, hence, can successfully decode the transmitted informa-
tion.

Cooperative jamming techniques have been widely used
in untrusted AF relaying systems [10]–[13]. The secrecy
performance of destination-based jamming techniques in two-
hop untrusted relay system was analyzed in [10]. In [11], to
keep its information secret from the relay, the source allocates
a part of its transmit power to send a jamming signal. In [12],
joint destination-based jamming and precoding at both the
source and the relay was studied for a multi-antenna untrusted
AF relay system. Unlike the works where the destination node
sends a jamming signal as in, e.g., [12] and the references
therein, we assume that the destination can share a secret-
key with the source node since this can increase security due
to the ability of the keys to achieve the link rate (instead
of the secrecy rate). In the presence of the direct source-
destination link, the authors in [14] proposed an opportunistic
transmission scheme based on the achievable secrecy capacity
for AF untrusted relay network.

Different from the aforementioned works, we propose a
secret-key-aided scheme to secure a dual-hop communication
network with an untrusted DF relay. The untrusted relay
node participates in the transmission only when the Alice-
Bob link is not secure. In this case, secrecy can be guaranteed
if the legitimate nodes have exchanged enough secret-key
bits without being eavesdropped on by the relay node. We
consider the general case of full-duplex (FD) Bob and use
of limited-size key queues at both Alice and Bob. The stored
key bits will be used to secure data transmissions whenever
needed. We model the secret-key buffer as a queueing system
and analyze its Markov chain (MC). We derive new results
for the achievable rates of FD nodes under a block-fading
self-interference channel model, where the self-interference
channel is parameterized by a block-fading channel model that
can be used to study all residual self-interference (RSI) cases
including slow-RSI and fast-RSI models.

Notation: Unless otherwise stated, lower- and upper-
case bold letters denote vectors and matrices, respectively.
CN (x, y) denotes a complex circularly-symmetric Gaussian
random variable with meanx and variancey. IN denotes the
identity matrix whose size isN ×N . CM×N denotes the set
of all complex matrices of sizeM ×N . (·)⊤, (·)∗, and(·)H

denote the transpose and Hermitian (i.e., complex-conjugate
transpose) operations, respectively.⌊·⌋ denotes the floor of the
value in brackets.| · | denotes the absolute of the value in
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brackets andE{·} denotes statistical expectation.0M×N and
1M×N denote the all-zero and all-ones matrices, respectively,
with sizeM×N . diag={·} denotes a diagonal matrix with the
enclosed elements as its diagonal elements.[·]+ = max{·, 0}
denotes the maximum between the argument and zero.

II. SYSTEM MODEL

We consider a two-hop wireless network with a source
node (Alice), an untrusted relay node (Charlie), and an FD
legitimate receiver (Bob). Alice tries to send her data to Bob
without any information leakage at Charlie. Since Charlie is
a part of the network, his CSI is available at both Alice and
Bob. We assume a direct link between Alice and Bob. All
nodes are assumed to be equipped with single antennas. Both
Alice and Bob maintain a secret-key buffer (queue) to store
the exchanged keys. Once a key is used, it leaves the buffer.
This buffer is assumed to be size limited. LetLmax denote the
maximum buffer size, andQA denote the number of key bits
queued in the buffers of Alice and Bob at the beginning of
the transmission slot. We assume that the time is partitioned
into slots where each slot has a duration ofT and the channel
bandwidth isW . A data packet is assumed to containb bits.
Hence, the spectral efficiency of a data packet transmission is
Rd = b/(WT ). To secure a data packet of sizeb bits, a key of
sizeb should be used. Hence, the minimum value ofLmax is b
bits. The transmit power of nodei is Pi. In the mathematical
notation, we use the subscriptA, B, andR to denote Alice,
Bob, and the relay (Charlie), respectively.

We assume a quasi-static flat-fading channel model. The
channel coefficient fromi, (i ∈ {A,B,R}), to j, (j ∈
{A,B,R}), is denoted byhij and distributed asCN (0, σ2

ij).
The channel gain, squared-value of the channel coefficient, of
the i − j link is gij . We assume channel reciprocity so that
hij = hji. The thermal noise at nodek is modeled as additive
white Gaussian noise (AWGN) with zero mean and powerκk.

Even when the wireless channels are not experiencing
fading, the RSI channel is time-varying [15], [16]. The in-
stantaneous variations of the RSI channel are due to the
cumulative effects of various distortions originating from
noise, carrier frequency offset, oscillator phase noise, analog-
to-digital/digital-to-analog (AD/DA) conversion imperfections,
in-phase/quadrature (I/Q) imbalance, imperfect channel esti-
mation, etc. These impairments cannot be completely elim-
inated. Furthermore, since the variations are random, they
cannot be accurately estimated at the FD terminal [15]. Un-
like most of the literature which assumes slow-RSI model2

that captures only the long-term, i.e., codeword-by-codeword,
statistical properties of the RSI channel, we assume the general
case of block-fading RSI channel. As explained in Appendix
A, this model is parameterized with a block-fading parameter
M with M = 1 for the fast-RSI channel andM → ∞ for the
slow-RSI channel.

III. PROPOSEDSCHEME AND RATE EXPRESSIONS

In our proposed scheme, there are two possible transmission
modes: (1) the direct transmission (DT) mode, where Alice

2Typically, slow-RSI model is assumed in the literature (e.g., [17]–[19]),
which represents an optimistic assumption.

sends the data to Bob over the entire time slot duration without
the need for Charlie, or (2) the relaying transmission (RT)
mode, where the time slot is divided into two non-overlapping
phases and Charlie decodes and forwards Alice’s transmission.
When the Alice-Bob link is not secured without using a secret
key packet, the RT mode is favorable over the DT mode
since, in addition to data, it allows for extra key bits sharing
between Alice and Bob by virtue of Bob’s FD capability as
explained below. Hence, the RT mode is used whenever the
achievable end-to-end (e2e) rate of the Alice-Bob link is higher
than Rd. In both transmission modes, Alice uses a secret
key with rateRd since Alice transmits one data packet with
that size. During the second phase of the RT mode, Alice is
silent, Charlie transmits, and Bob receives. Since Bob is an FD
terminal, he can receive data from Charlie and simultaneously
send a new key to Alice, who operates in a receive mode.
Since Charlie is busy with information forwarding, he will
not intercept the key. We note that, as will be shown in
Appendix A, in the case of a slow-RSI channel, the self-
interference can be completely eliminated at Bob due to the
fact that Bob knows what he sends (i.e., knows the transmitted
key’s codeword prior to transmission). Hence, the legitimate
system achieves interference-free rates for all links with no
loss. If the data sent from Charlie is in connection outage
under the FD transmission mode, the half-duplex (HD) mode
is used and only the data will be sent. Note that Charlie causes
interference at Alice. However, since Alice knows the signal
sent by Charlie (because Alice sent this data signal to Charlie
in the first phase), she will be able to remove it prior to data
decoding. Accordingly, the received key codeword from Bob
is interference free. In the following, we provide some useful
definitions that will be used subsequently.

A. Rate Expressions
In this section, we state the various rates of the wireless

links when utilizing our proposed scheme in different commu-
nication phases. The rate of the Alice-Bob and Alice-Charlie
links in bits/channel use are given, respectively, by

RDT
AB = log2 (1 + γABgAB) , RAR = log2 (1 + γARgAR) (1)

whereγij = Pi

κj
. If the DT mode is utilized, the secrecy rate

using the entire time slot length is

Rsec
AB = [RDT

AB −RAR]
+ (2)

Similarly, when Bob sends a key to Alice, the secret-key
length, which is equal to the secrecy rate of the Bob-Alice
link, is given by

Rsec
BA = [RBA −RBR]

+ (3)

The secrecy rates in Eqns. (2) and (3) are achieved using the
random binning coding scheme [20]. We emphasize here that
the secrecy rate expression of the Alice-Bob link isnot equal
to the secrecy rate expression of the Bob-Alice link because
the rate of the Bob-Charlie (eavesdropping’s) link is different
from the rate of the Alice-Charlie link since the two links
experience different channel realizations.

If Charlie is asked to help Alice, the e2e data rate of the
Alice-Bob link when Bob does not send a key (i.e., operates
in an HD receiving mode) is given by

RRT,HD
AB = 0.5min {RAR, log2 (1 + gRBγRB + gABγAB)} (4)
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If Bob decides to send a key while receiving Charlie’s
transmission, the achievable e2e data rate of the Alice-Bob
link, RRT

AB, when he combines the two received signals from
Alice (during the first phase) and from Charlie (during the
second phase) is given by (14) in Appendix A. We assume
that Bob adjusts his power level to make the e2e rate of the
Alice-Bob link greater than the target data rate,Rd. That is,
Bob’s transmit power is set to equal to its maximum value that
makesRRT

AB ≥ Rd. By doing this, the HD mode is guaranteed
to be used when there is no positive power level that can be
used by Bob to achieve the target rateRd. Moreover, selecting
the maximum value will allow Bob to send more secret-key
bits to Alice.

B. Proposed Scheme

Our proposed scheme is summarized as follows in order:

• If the instantaneous secrecy rate of the DT mode supports
the secure transmission rate, Alice sends a data packet to
Bob with rateRd. If Rsec

AB > Rd, key bits with rate
Rsec

AB −Rd are also transmitted.
• If Rsec

AB < Rd, depending on the secret-key queue state,
we distinguish here among the following three cases:

– If the secret key queue has no sufficient bits to
secure a data packet (i.e., its state is less thanRd

bits/sec/Hz), either Alice sends a key to Bob or Bob
sends a key to Alice based on the instantaneous
secrecy rates of the Alice-Bob link and the Bob-Alice
link. That is, a secret key with ratemax{Rsec

AB,R
sec
BA}

should be shared between Alice and Bob.
– If the secret-key queue is not full but has sufficient

bits to secure a data packet (i.e., its state is at leastb
bits), Alice checks whether the rate of the Alice-Bob
or Alice-Charlie-Bob links (not secrecy rate) is not in
connection outage (i.e., the rate is higher thanRd).
If any of the two links is not in connection outage,
Alice sends a data packet to Bob either directly or
through Charlie after XORing it with the secret-key
bits (which is known as the one-time pad technique).
Otherwise, either Alice sends a key to Bob or Bob
sends a key to Alice based on the instantaneous
secrecy rates of the Alice-Bob link and the Bob-Alice
link. That is, a secret key with ratemax{Rsec

AB,R
sec
BA}

should be shared between Alice and Bob.
– If the secret-key queue is full of key bits, Alice and

Bob cannot share/exchange any new secret-key bits.
Alice checks whether the rate of the Alice-Bob or
Alice-Charlie-Bob links is not in connection outage.
If both links are in connection outage, all nodes
remain silent. Otherwise, Alice sends a data packet to
Bob either directly or through Charlie after XORing
it with the secret-key bits.

It should be emphasized here that if the number of transmitted
secret-key bits exceeds the buffer size, the extra bits will be
discarded at both Alice and Bob buffers.

C. Secret-Key MC

We model the secret-key buffers as an MC where each
state represents the number of bits in the queue. LetT m

and T −m denote the transition probabilities that the queue
size increases and decreases bym bits, respectively. Letζb
denotes an indicator which is equal to one if at leastb bits
are stored in the queue and zero otherwise. In particular, if
the queue is full,ζb = 1. To simplify the notation, we define
a function R̃ = ⌊WTR⌋ to represent the number of bits in
a transmission over bandwidthW and time durationT with
rateR bits/sec/Hz. Based on the proposed description, during
any time slot, each buffer status can be modified as follows

• The non-full queue remains unchanged: The queue size
remains unchanged in three cases: 1) if the DT mode is
secure and can support onlyb bits transmissions, 2) if the
FD mode is used andb key bits are exchanged between
Alice and Bob; or 3) in case of secrecy outage (i.e.,
all the nodes remain silent). In this case, the transition
probability is given by

T 0 = Pr{R̃sec
AB ≥ b, R̃sec

AB < b+ 1}

+ ζbPr{R̃sec
AB < b, R̃RT

AB ≥ b, b ≤ 0.5R̃sec
BA < b+ 1}

+
[

(1− ζb)Pr{R̃sec
AB = 0, R̃sec

BA = 0}

+ζbPr{max
(

R̃DT
AB, R̃

RT
AB

)

< b, R̃sec
AB = 0, R̃sec

BA = 0}
]

(5)
• The queue remains full: With full queue, Alice and Bob

cannot store more key bits. Moreover, if both DT and RT
transmission modes do not support the transmission rate
b, they remain silent.

T 0 = Pr{R̃sec
AB < b, R̃

RT
AB ≥ b, b ≤ 0.5R̃sec

BA < b+ 1}

+ Pr{R̃sec
AB < b,max

(

R̃
DT
AB , R̃

RT
AB

)

< b}
(6)

• The non-full queue size increases: As long as the queue
is not full, some key bits could be shared between Alice
and Bob. The probability that the queue size increases
with m bits is given by (7) at the top of the next page.

• The non-empty queue size decreases: The queue size
is decreased only when the secret-key queue contains
sufficient bits to secure a data packet and either the DT or
RT mode is not in connection outage. If either the DT or
HD-RT mode is used, the queue size decreases byb bits.
In this case, the transition probability can be evaluated as

T −b = ζbPr{R̃sec
AB < b, R̃

RT
AB ≥ b, R̃

sec
BA = 0}

+ ζbPr{R̃sec
AB < b, R̃

RT
AB < b, R̃

DT
AB ≥ b}

(8)

On the other hand, if FD-RT mode is used,b bits leaves
the queue to secure the data transmission while Bob
shares some key bits with Alice in the second phase. In
this case, if Bob sendsm key bits (m < b), the transition
probability is given by
T −(b−m)=ζbPr{R̃sec

AB<b, R̃RT
AB≥b,m≤0.5R̃sec

BA<m+1}
(9)

After constructing the MC transition probabilities matrix,
denoted byTA, the steady-state distribution vector for the
given transitions is computed by calculating higher powers of
the matrix [21]

πππ = πππ
(0) × (TA)

∞ (10)

since the MC is irreducible with ergodic (i.e., aperiodic
positive-recurrent) states. Note that all initial distributions,
πππ(0), will eventually lead to the same steady-state [21].
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T m = Pr{R̃sec
AB − b ≥ m, R̃sec

AB − b < m+ 1}+ ζbPr{R̃sec
AB < b, R̃RT

AB ≥ b, 0.5R̃sec
BA ≥ b+m, 0.5R̃sec

BA < b+m+ 1}

+
[

(1−ζb)Pr{R̃sec
AB < b,m ≤ max

(

R̃sec
AB, R̃

sec
BA

)

< m+ 1}+ζbPr
{

max
(

R̃DT
AB, R̃RT

AB

)

<b, R̃sec
AB < b,m ≤ max

(

R̃sec
AB, R̃

sec
BA

)

<m+ 1
}] (7)
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Fig. 1. Average e2e rate of the Alice-Bob link.

The secure throughput in packets/slot is given by
µsec = Pr{Rsec

AB ≥ Rd}

+ Pr{QA ≥ b}

(

Pr{Rsec
AB < Rd,R

RT
AB ≥ Rd}

+ Pr{Rsec
AB < Rd,R

RT
AB < Rd,R

DT
AB ≥ Rd}

)

(11)

IV. SIMULATION RESULTS

We assume that each channel coefficient is a complex
Gaussian random variable with zero mean and unit variance.
The parameters used to generate the figures arePA = 10
dBm, WT = 1000, b = 2000 bits, PB = PR = 20 dBm,
κk = κ = 0 dBm (for all k), and σ2

BB = 0.2. In Fig. 1,
we evaluate the average e2e achievable rate of the Alice-Bob
link when the relay is utilized. The figure shows that the new
proposed achievable rates are higher than those proposed in the
literature for FD communications which ware evaluated under
the impractical assumption of known RSI channel coefficient
and unknown data. In our approach, we exploit the fact that
Bob knows the transmitted key (since he randomly generates
it) and hence can do better in decoding the received signal
from the relay node. The figure also verifies the closed-form
expressions for the achievable rates in the fast-RSI case given
in Eqn. (19) and the slow-RSI case given in Eqn. (21).

In Fig. 2, we plot the secure throughput versus the maximum
buffer sizeLmax in packets, where a packet is composed of
b = 2000 bits andPA = 20 dBm. The secure throughput
is a non-decreasing function ofLmax. For the given system’s
parameters,Lmax ≥ Lo = 7 packets achieves the same secure
throughput whenRd = 2 bits/sec/Hz. This means that Alice
and Bob can make the buffer maximum size equal to7 without
loss of optimality. As discussed in the system model,Lmax ≥ b
bits (2 packets) is necessary for the proposed scheme to be
effective. The minimum Fig. 2 also shows the gain of relaying
using an untrusted relay relative to the benchmark that the
relay is not utilized. It can be shown that the upper bound
that 1 data packet per time slot is securely received at Bob is
attained under our proposed scheme. We emphasize that this
upper bound is an upper bound on both throughput without
eavesdropping and secure throughput.

V. CONCLUSIONS

We showed that DF relaying can be used for untrusted
relaying networks. We derived closed-form expressions for the
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Fig. 2. Throughput in packets/slot versus maximum secret-key buffer size.

achievable rates. We showed that increasing the buffer size
of the secret-key queue can increase the achievable secure
throughput. We also showed that, for a given target secrecy
rate, there is a limited buffer sizeLo such that the secure
throughput will become saturated (constant). All our analytical
findings have been verified numerically.

APPENDIX A
THE E2E ACHIEVABLE RATE OF THE ALICE-BOB LINK

We derive the e2e achievable rate of the Alice-Bob link us-
ing the same approach in [16] since Bob knows his transmitted
signal/codeword. The received signal at Bob during the second
phase is

yB=[yB(1), . . . , yB(n)]
⊤=hRBxR+diag{xB}hBB+zB (12)

where n is number of symbols in a codeword,xR =
[xR(1), . . . , xR(n)]

⊤, xR(t) is the relay’s transmit signal at
symbol durationt, hBB(t) is the RSI channel coefficient at
symbol durationt, hBB = [hBB(1), . . . , hBB(n)]

⊤, xB =
[xB(1), . . . , xB(n)]

⊤, xB(t) is Bob’s transmit signal at symbol
durationt, zB = [zB(1), . . . , zB(n)]

⊤, andzB(t) is the AWGN
signal at symbol durationt. Since the vectorxB is known at
Bob, the mutual information betweenyB andxR should be
computed givenxB. Without using this information, if Bob
decides to send a key while receiving Charlie’s transmission,
the achievable e2e data rate of the Alice-Bob link isconven-
tionally given by

RRT
AB=0.5min

{

RAR, log2

(

1+
gRBγRB

1+gBBγBB
+gABγAB

)}

(13)

which is the widely-used rate expression in the FD communi-
cations literature (see, e.g., [18], [19]).

Based on the equation model in (12), and given that Bob
knows his transmitted packetxB and that he does employ a
maximum ratio combiner to decode both received data signals
from Alice and Charlie, the e2e achievable rate of the Alice-
Bob link, denoted byRRT

AB, is given by

RRT
AB=

1

2
log2

(

1 + |hAB|
2PA

κB
+ |hRB|

2PR

κB

)

+
1

2n
log2 det (γ1diag{xB}ChBB

diag{x∗
B}+In)

−
1

2n
log2 det (γ2diag{xB}ChBB

diag{x∗
B}+ In)

(14)

whereChBB
= E{hBBh

∗
BB}, γ1 = 1+|hAB|2PA

(κB+|hAB|2PA+|hRB|2PR)

and γ2 = 1
κB

. Next, we evaluate the term
log2 det (γqdiag{xB}ChBB

diag{x∗
B}+ In) with q ∈ {1, 2}.
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Assume that the RSI channel is block-faded with block
size M ≤ n. Since the channel is fixed forM consecutive
symbol durations (i.e.,hBB(t + 1) = · · · = hBB(t +M) for
t ∈ {0,M, 2M, . . .}), the covariance matrixChBB

, assuming
block-fading, is given byChBB

=
{

hBB(1)1M×M , hBB(M+
1)1M×M , . . . , hBB(⌊

n
M
⌋)1M×M , hBB(⌊

n
M
⌋ + 1)1m̂×m̂

}

where⌊n/M⌋+ 1 is the number of block per data codeword
of lengthn andm̂ = n−M⌊ n

M
⌋. The second and third terms

in the rate expression in (14) can be rewritten as
Xq = log2 det (γqdiag{xB}ChBB

diag{x∗
B}+ In)

= log2 det (γqdiag{x
∗
B}diag{xB}ChBB

+ In)
(15)

where q ∈ {1, 2}. The last equality in (15)
holds from Sylvester’s determinant identity.
The matrix ΛxB

= diag{x∗
B}diag{xB} =

diag{|xB(1)|2, |xB(2)|2, . . . , |xB(n)|2} is diagonal with
|xB(t)|2 as its t-th diagonal entry, andChBB

is a block-
diagonal matrix. The product of the two matrices results
in a block-diagonal matrix with block sizeM × M . The
determinant of a block-diagonal matrix is the product of the
determinant of each block. Hence,

Xq =

(

log2

(

1 + γqσ
2
BB

M
∑

t=1

|xB(t)|
2

)

+ log2

(

1 + γqσ
2
BB

2M
∑

t=M+1

|xB(t)|
2

)

+ . . .

+ log2



1 + γqσ
2
BB

n
∑

t=n−M⌊n/M⌋

|xB(t)|
2









(16)

1) Fast RSI: In the case of fast fading whereM = 1 and
the RSI changes each symbol duration, we have the following

Xq=

n
∑

t=1

log2
(

1 + γq|xB(t)|
2
)

(17)

Since n is very large, from the strong law of large
numbers, 1

2n

∑n

t=1 log2
(

1 + γq|xB(t)|2
)

will almost surely
converge to E

{

log2
(

1 + γq|xB(t)|2
)}

. Since |xB(t)|2 is
exponentially-distributed random variable, the average of
log2

(

1 + γq|xB(t)|2
)

is given by

E
{

log2

(

1 + γq |xB(t)|
2
)}

=
1

ln(2)
exp

(

1

γqσ2
BB

)

Ei

(

1

γqσ2
BBPB

)

(18)

where Ei(x) =
∫∞

x

exp(−u)
u

du is the exponential integral.
Substituting in the rate expression in (14), we get

RRT
AB =

1

2
log2

(

1 + |hAB|
2PA

κB
+ |hRB|

2PR

κB

)

+
1

2 ln(2)
exp

(

1

γ1σ2
BB

)

Ei

(

1

γ1σ2
BBPB

)

−
1

2 ln(2)
exp

(

1

γ2σ2
BB

)

Ei

(

1

γ2σ2
BBPB

)

(19)

2) Slow RSI: In the case of slow fading whereM = n and
the RSI changes once per codeword, we have the following

log2 det (γqΛxB
ChBB

+In)=log2

(

1+γqσ
2
BB

n
∑

t=1

|xB(t)|
2

)

(20)

where 1
2n log2

(

1 + γqσ
2
BB

∑n

t=1 |xB(t)|2
)

= 0 almost
surely when n → ∞. Taking the limit of (14) when
n goes to infinity, 1

2n log2
(

1 + γqσ
2
BB

∑n

t=1 |xB(t)|2
)

=

1
2n log2

(

γqσ
2
BBnPB + 1

)

= 0. Hence, the data rate becomes

RRT
AB = 0.5 log2

(

1 + |hAB|
2PA

κB
+ |hRB|

2PR

κB

)

(21)

which is the rate of the e2e Alice-Bob channel with no
interference. This implies that the RSI can be completely
mitigated in the case of slow RSI.
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