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Abstract: Human motion tracking could be viewed as a multi-target tracking problem towards
numerous body joints. Inertial-measurement-unit-based human motion tracking technique stands
out and has been widely used in body are network applications. However, it has been facing the
tough problem of accumulative errors and drift. In this paper, we propose a multi-sensor hybrid
method to solve this problem. Firstly, an inertial-measurement-unit and time-of-arrival fusion-based
method is proposed to compensate the drift and accumulative errors caused by inertial sensors.
Secondly, Cramér–Rao lower bound is derived in detail with consideration of both spatial and
temporal related factors. Simulation results show that the proposed method in this paper has both
spatial and temporal advantages, compared with traditional sole inertial or time-of-arrival-based
tracking methods. Furthermore, proposed method is verified in 3D practical application scenarios.
Compared with state-of-the-art algorithms, proposed fusion method shows better consistency and
higher tracking accuracy, especially when moving direction changes. The proposed fusion method
and comprehensive fundamental limits analysis conducted in this paper can provide a theoretical
basis for further system design and algorithm analysis. Without the requirements of external anchors,
the proposed method has good stability and high tracking accuracy, thus it is more suitable for
wearable motion tracking applications.

Keywords: Cramér–Rao lower bound (CRLB); human motion; Inertial Measurement Unit(IMU);
Time of Arrival (TOA); wearable sensors

1. Introduction

Human Motion Tracking (HMT) [1,2] has been a hot topic in the area of body area network
(BAN) [3,4] during the last decade. It aims to obtain human body movement information via
quantitative methods to capture and analyze human motion. The information obtained by HMT are
mainly relative positions in 2D/3D space of various joints and limbs. With the booming of BAN [5–7],
human-centric applications have been raising in both academic and industrial areas, such as interactive
games, computer cinematography, animation, etc. [1]. Many entrepreneurial firms have been formed
in these areas [8,9]. Besides, HMT also plays a big role in medical field [5], and military and security
applications [6].

HMT systems could be classified into two categories: computer vision (CV)-based [10] and
wearable sensor (WS)-based [6]. CV-based technology takes advantages of deployed web-depth
cameras to monitor human activities, and has been applied in practical applications, such as film
shooting [11], security monitoring [6] and so on. Many technology companies have also been
working on the research and development of professional human motion tracking systems, such
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as Vicon [12] and Optotrak [13]. They perform with high accuracy when operated in controlled
scenario, however they rely heavily on environment factors, such as shooting angle and lights [10].
These inevitable defects make it only suitable for smaller and controllable situations. WS-based
HMT systems, by contrast, do not need to deploy devices in scenarios and are less sensitive to the
environment. Thus, they are more suitable for large-scale and dynamic applications [14].

In the present stage, WS-based HMT systems are mainly composed of inertial measurement
units (IMUs), such as accelerometers and gyroscopes. The basic principle is to measure the triaxial
acceleration and angular velocity of the motion by these sensors, and obtain the trajectory of monitoring
points through integral operations [15–18]. However, inertial sensors may inevitably throw off errors
that accumulate over time [19–21]. The accumulative and drift error is the biggest challenge faced by
WS-based HMT systems.

For better solving the drift error problem and improving HMT accuracy, the most common
methods are as follows:

1. The hardware aspect uses inertial sensors with high precision, such as XSens [15] and Invensense [16]
tracking units.

2. The algorithm aspect enhances the system by using multi-sensor data fusion means [1,19,22,23].

However, the above-mentioned methods cannot fundamentally solve the drift problem. High
precision hardware used by wearable tracking systems is usually very expensive, and the cost of
a single suit could be hundreds of thousands or even millions of dollars [15–18]. In the aspect of
algorithms, filtering methods, such as Kalman and particle filter [24], can somehow slow down the
accumulation process, but cannot eliminate it completely. Thus, the inevitable drift problem of inertial
sensors has become a crucial constraint for wearable HMT systems, which limits its use in long term
or large space applications.

In essence, human motion tracking can be viewed as a local multi-target real-time high-precision
three-dimensional positioning problem [23]. Ultra-Wideband (UWB)-based time-of-arrival (TOA)
ranging is the most commonly used high-precision localization technology, its measurement accuracy
can reach the centimeter level, and it does not have the drawback of accumulative errors, compared
with inertial-sensor-based HMT systems [23,25]. The size of TOA chip is small enough to be integrated
into wearable devices. Thereinto, IMU/TOA fusion is an effective way to overcome the accumulative
errors of drifting problem faced by solo IMU method [26].

Some achievements on IMU/TOA fusion have been reported in many studies (e.g., [20,21,23,25])
However, state-of-the-art studies, (e.g., [23,27]), mainly face the following two drawbacks:

1. Requirements of fixed external anchors: They need to be deployed in certain scenarios; for
example, Zihajehzadeh et al. [23] introduced a magnetometer-free algorithm for human
lower-body motion tracking by fusing inertial sensors with an UWB localization system. However,
it is hard to realize wearable systems, and is not suitable for BAN applications.

2. State-of-the-art studies seldom concentrate on the fundamental limits of IMU/TOA fusion
methods, and the error correction effects are not satisfying. For example, Nilsson et al. [27]
proposed a cooperative localization method by fusion of dual foot-mounted inertial sensors and
inter-agent UWB ranging, but the experiment results show that, compared with the performance
lower bounds [22], there is still a lot of room for improvement.

Based on these considerations, we propose an external-anchor-free IMU/TOA fusion method,
and analyze its fundamental limits to lay a theoretical foundation for realizing low cost and high
precision motion tracking system that is suitable for medium and long term use in large space.

The rest of the paper is organized as follows: Section 2 briefly introduces the related works about
human motion tracking techniques and Cramér–Rao lower bound (CRLB). Section 3 describes the
problem definition, IMU/TOA fusion-based model and its error sources. Section 4 introduces our
external-anchor-free IMU/TOA fusion method, and analyzes its fundamental limits. Sections 5 and 6,
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respectively, verify the spatial and temporal performance of proposed fusion-method. Section 7 presents a
practical use case to verify the feasibility of proposed method when compared with state-of-the-art
methods. Finally, Section 8 presents the conclusion.

2. Related Work

The development of HMT has been rising with the booming of Internet of Things (IoTs) and
the rapid progress of human-centric applications [28–31] in the last decades. Particularly, HMT has
become an essential task within the fields, such as clinical, military and security applications. In this
section, we present a brief literature review on the following aspects: human motion tracking systems
and applications, multi-sensory fusion methods and CRLB.

2.1. HMT Systems and Applications

HMT has shown a tremendous potential in the areas of industrial applications. Benefiting from the
development of various systems, HMT has permeated into every aspect of social life, including clinical
areas, emergency and rescue areas, security and entertainment, to name a few [5–9]. The most widely
used HMT systems could be mainly classified into two categories: CV-based [10] and WS-based [6].
Next, we give a brief introduction and discussion about their merits and demerits.

Computer-vision-based systems, such as Vicon [12] or Optotrak [13], have a high accuracy when
operating in controlled environments, e.g., several fixed cameras calibrated and correlated in a specific
place and capturing configuration. Famous TV shows and movies, such as The Walking Dead, Game
of Thrones and Guardians of the Galaxy, are all powered by human motion animators [15]. CV-based
systems can provide a large amount of redundant data. Ambulatory systems, such as those using
a Kinect [32] to capture human motion, are set in relatively uncontrolled environments and have a
restricted field of view. These systems have a restricted margin of maneuverability and are more
suitable for indoor use.

In contrast, a very promising frontier for reliable human motion tracking is WS-based [6] system,
especially using IMUs. Iyengar et al. [33] defined a framework that managed common tasks for
healthcare monitoring applications to aid development of BAN. Anwary et al. [34] utilized a pressure
sensor array and IMU for gait analysis. Ghasemzadeh et al. [35] introduced a novel classification
model that identified physical movements from body-worn inertial sensors while considering the
collaborative nature and limited resources of the system. Inertial sensors are integrated with UWB
localization system in [23] for simultaneous 3-D trajectory tracking and lower body motion capture
(MoCap) under various dynamic activities such as walking and jumping.

WS-based HMT systems do not need to deploy devices in scenarios and are less sensitive
to the environment. Thus, they are more suitable for large-scale and dynamic applications [2,6].
Currently, WS-based HMT systems [6] are mainly composed of inertial sensors, such as accelerometers
and gyroscopes. However, inertial sensors may inevitably throw off errors that accumulate over
time [8,15,25]. The accumulative and drift error is the biggest challenge faced by WS-based
HMT systems.

2.2. Sensor Fusion and Filtering

Despite the advantages mentioned above, there still exist challenges when wearable sensors are
applied to human motion tracking. As human motion tracking could be viewed as a multiple-target
localization issue of human body joints, tracking accuracy is the most important consideration.
However, sensor drift errors and distortion (especially in long time monitoring) are the main
problems [8,15,25].

Kalman filter and calibration algorithms are the most widely adopted method to overcome drift
errors. They are both used to overcome the instantaneous error problem and multiple sensor fusion
problem. Yun et al. [36] realized a method to measure the orientation of human body segments using
Kalman filter that takes into account the spectra of the signals, as well as a fluctuating gyroscope offset,
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and thereby improves the estimation accuracy. Zhao et al. [37] proposed a Kalman/UFIR filtering
method for state estimation with uncertain parameters and noise statistics. Briese et al. [38] presented
an adapting covariance Kalman filter based on the fusion of Ultra-Wideband (UWB) and inertial
measurements. Since both sensor results are separately used in the Kalman filter, no registration
between the implemented sensors is needed. Kim et al. [39] proposed a fusion algorithm based
on a particle filter using vertical and road intensity information for robust vehicle localization in
a large-scale urban area. However, filtering methods lack in terms of dynamic behavior and the
algorithm performance varies with the change of state matrixes [38,39]. They can somewhat slow
down the error accumulation process, but not eliminate it completely [40,41]. With the booming of
artificial intelligence, deep neural networks [42] have been applied in the fusion of multi-sensors, while
the requirement of a large scale of data still remains a big challenge in practical applications.

2.3. Cramér–Rao Lower Bound

The location of a target node is uncertain due to the influence of random factors, such as
noise, fading, multi-path, and non-line-of-sight propagation, which ultimately affects the positioning
accuracy [1,8]. Cramér–Rao lower bound (CRLB) defines the theoretical lower bound of the unbiased
estimator variance and is used as a general criterion and benchmark for evaluating the performance of
a positioning system [8].

Tichavsky et al. [43] provided the formulation of recursive posterior CRLB for nonlinear filters
based on the Bayesian framework. For range-based wireless localization system, many research studies
have provided CRLB results for different scenarios. Qi et al. [44] proposed a generalized CRLB
(G-CRLB) of the wireless system for non-line-of-sight (NLOS) environment. Other similar works
also give CRLB for different ranging techniques [45]. Although some other methods can be used for
performance analysis [14], CRLB is still popular for wireless localization research due to its simplicity
and general expression.

However, CRLB only focuses on the influence of the relationship between relative positions in
spatial state on the accuracy of the positioning target, neglecting the time information, thus cannot
meet the requirements of the time evaluation in the positioning system. The posterior Cramér–Rao
lower bound (PCRLB) considers the time domain information [46] and can be used as another criterion
for the performance evaluation of the positioning system. PCRLB has recently been used as the basis
for determining optimal observer trajectories in bearings-only tracking (e.g., [47]). Recent interest in the
PCRLB is primarily a result of an excellent paper [43] in which a computationally efficient (and general)
formulation of the bound is derived. This has led to a number of further developments, including
derivations of the bound and associated information reduction factors in cluttered environments [14]
and the establishment of PCRLBs in multi-target tracking with either preprocessed [1,5] or raw sensor
data [8,15].

To better comprehend HMT problems and provide a theoretical basis for the system verification
and algorithm design, in this paper, we conduct a comprehensive analysis on performance evaluation
of HMT system based on IMU/TOA fusion. By the derivation of CRLB and PCRLB, we present a
feasible assessment means to evaluate IMU/TOA fusion system in both temporal and spatial aspects.

3. Problem Definition

The body can be viewed as an interconnected whole, and each movement is done in collaboration
with a number of body parts. The part of body that is connected to each other is called the joint. We call
this chain of rigid limbs and joints the “chain of motion”. Therefore, HMT can be considered as a
collaborative tracking process of the motion chain composed of multiple human joints.

3.1. Model Description

Generally speaking, a 3D human motion is considered as a set of multiple joints and limbs
movement, which can be described using mathematical expressions of coordinates and direction.
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As shown in Figure 1, the whole body is divided into five connected parts, namely left upper limb,
right upper limb, trunk, left lower limb and right lower limb. We use dots to represent joints and lines
for limbs. The whole human body acts as a unity of these limbs and joints.

Figure 1. Human skeleton model, and the key distance and angle parameters related with human
motion tracking. (a) the entire human body and (b–f) the distances and angles between joint and limbs.

As shown in Figure 1, the human body consists of 15 joints and 14 limbs. To better describe the
complicated human body movements, Denavit–Hartenbe (D-H) equation [22,25] is generally used
in the description of HMT features and parameters. Its measurement parameters mainly include the
distances between joints (Figure 1b,c) joint and limbs (Figure 1d) and the relative angles between limbs
(Figure 1e,f). To simplify the above tracking problem, we abstract the HMT serialization process as
shown in Figure 1, representing the target’s coordinate and measurement parameters in time sequence
T = {t0, t1, · · · , tn}.

Figure 2. The definition of Gauss–Markov random process towards human motion tracking and its
key parameters.
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On the basis of random motion model [25], we assume a Gauss–Markov process to describe the
movement of the joints of the body, as shown in Figure 2. Thanks to Inertial Measurement Unit (IMU),
acceleration and angular data can be obtained and, furthermore, the rotation angle of the target position
within the history frames can be calculated by means of Attitude and Heading Reference System
(AHRS) [20]. In addition, distance-related information can be obtained using the TOA technique [19],
after a few simple calculations. Compared with IMU-based dead reckoning method [25], TOA-based
tracking method does not have to face the problem of drifting.

3.2. Error Sources

As mentioned above, the measurement parameters of the system are derived from IMU and TOA.
The measurement error sources can be divided into two aspects: distance measurement error and
angle measurement error. Thereinto, target node’s distance parameter d̂t at time t is defined as:

d̂t = dt + nd (1)

where dt is the actual distance value and nd is Gauss distributed measurement noise whose variance
is σ2

d , namely nd ∼ N (0, σ2
d ). Vector d̂t = [d̂1, d̂2, · · · , d̂n+m−1]

T is introduced to collect distance
information, namely the distance between target node and reference nodes, respectively, standing for
one body joint.

Horizontal heading estimates from inertial-sensor-based approach α reads:

α̂t = αt + ut, ut ∼ N(0, ε2
t ) (2)

where αt is the true value of actual horizontal heading. ut is uncorrelated zero-mean Gaussian
random variable with variance ε2

t , which is independent from z direction and is also uncorrelated
with d̂. The horizontal heading is an instantaneous measurement parameters, which may introduce
cumulative error by the characteristics of IMU. Namely, α̂t is a time-dependent parameter. Vector
αt = [α1, α2, · · · , αNα ]

T is introduced to collect αt, i.e., the angular cumulative information in the past
Nα frames.

Vertical elevation estimates from inertial-sensor-based approach β reads:

β̂t = βt + vt, vt ∼ N(0, ξ2
t ) (3)

where βk is the actual vertical elevation. vt is uncorrelated zero-mean Gaussian random variable
with variances ξ2

t , which is independent from z direction and is also uncorrelated with both α̂ and d̂.
β̂t is also a time-independent parameter. Vector βt = [β1, β2, · · · , βNβ

]T is introduced to collect βk,
i.e., the angular cumulative information in the past Nβ frames. As above mentioned angles α and β

are all measured from IMU, thus, for ease of expression, we take σIMU as the variance of both these
two parameters.

3.3. Model Presentation

In continuous human motion tracking process, some body parts remain relatively steady in
comparison to the end joints or limbs of the human body, such as the trunk. Thus, these positions may
be set as reference nodes, defined as Pa = {1, ..., m}, in which the kth reference node’s coordinate is
defined as ak. m indicates the number of reference nodes. In addition, the position state of the target is
denoted by pt = [pX

t pY
t pZ

t ]
T , where pX

t , pY
t and pZ

t are the coordinates in the 3-D positioning system,
and T is the transpose operator. The target nodes set is represented as Px = {1, 2, ..., n}, and the ith
target node’s coordinate is defined as pi. n indicates the number of target nodes.

According to the Bayesian theorem [22,25], at time t, the state estimation xt−1 could be
represented as:

pt = ft(pt−1) + qt (4)
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where Equation (4) is the prediction equation, and ft(·) is the transition equation, and the noise of xt

follows standard normal distribution with variance Qt, namely qt ∼ N (0, Qt).
To describe the measurement parameters of human motion in a more general way, we define the

measurement parameters of the system as:

zt = ht (d(pt, k),ϕ) + rt (5)

where the measurement vector zt, whose noise follows normal distribution, i.e., rt ∼ N (0, Rt),
contains two parts, namely TOA measurement parameter (distance) and IMU measurement parameter
(acceleration, angular velocity, etc.). ht(·) is nonlinear observation equation, which is related with
actual measurement values of target pt, including d(pt, k) (the distance vector at time t), and ϕ (the
angle vector at time t). k = [k1, · · · , k j, · · · , km+n−1] is distance measurement indicator, such as
line-of-sight (LOS)/non-line-of-sight (NLOS), the reference node accuracy indicator, etc. m + n− 1
is the total number of both reference and target nodes. ϕ = [ϕ1, · · · , ki, · · · , ϕs] is the vector of angle
measurement values, whose amount is s. k and ϕ are auxiliary parameters that are not essential but
may help increase the localization accuracy and could be calculated in real time. The effects of these
parameters can be verified in subsequent simulation experiments.

4. IMU/TOA Fusion Based HMT Method

Our analysis considers the possible unknown random factors that may influence the human
motion tracking. Considering the characteristics of sequential human motion tracking, we define the
measuring variable at time slot t as θt (for simplicity, it is abbreviated as θ), namely

θ ,
[

pT
t pT

t−1 kT ϕT
]T

(6)

where pt is the target position vector at the moment, and pt−1 is historical target location information
at the former time slot.

Cramér–Rao lower bound (CRLB) [22] is defined as the inverse of Fisher Information Matrix (FIM)
and represents the theoretical lower bound of the observed variance of unbiased estimators [22,25].
Suppose that p(θ, zt) represents the joint probability density function of observation vectors zt and θ,
then FIM could be derived as the variance of its log likelihood function gradient, namely

J(θ) , E[∆θ
θ ln p(θ, zt)] (7)

where E{·} represent the expectation of parameters. ∇θ = [ ∂
∂θ1

, · · · , ∂
∂θn

], ∆β
α = ∇β∇T

α . Thus,

Covθ(θ̃) � {J(θ)}−1 (8)

where A ≥ B for the sake of simplicity, represents that matrix A− B is non-negatively defined.
According to the Bayesian theorem, p(θ, zt) = p(zt |θ)p(θ), then J(θ) could be divided into two

parts, namely
J(θ) = JD(θ) + JP(θ) (9)

where JD is the information matrix obtained by measuring parameters. JP is the information matrix
obtained by prior information. We describe the representation of these two variables separately in the
following section.

4.1. Measurement Parameter Information Matrix

Due to the measurement equation, we get h = ht (d(pt, k),ϕ), and then, based on the chain
rules [48], JD could be represented as:

JD = H · Jh ·HT (10)
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where H = [∇θh], Jh is the FIM of h, namely

Jh = E
{
∇h ln p(zt|θ) [∇h ln p(zt|θ)]T

}
(11)

where transition matrix H could be further decomposed into four components

H =
[
Ht Ht−1 K Φ

]T
(12)

where Ht = [∇pt h], Ht−1 = [∇pt−1 h], K = [∇kh], Φ = [∇ϕh]. Because the distance is a instantaneous
measurement parameter, it has no error accumulation problems. Thus, d has no relationship with prior
information pt−1, namely Ht−1 = 0. Then,

H =
[
Ht 0 K Φ

]T
(13)

For Jh, we can use diagonal matrices of order n to represent it,

Jh = Λ = diag(λ1, . . . , λj, . . . , λn) (14)

where λj stands for the jth measurement value. Then, JD is represented as a (4 + m + n + s)× (4 +

m + n + s) matrix,
JD = H ·Λ ·HT

=


D11 0 D13 D14

0 0 0 0
DT

13 0 D33 D34

DT
14 0 DT

34 D44

 (15)

where
D11 = HtΛHT

t D13 = HtΛKT

D14 = HtΛΦT D33 = KΛKT

D34 = KΛΦT D44 = ΦΛΦT

(16)

4.2. State Parameter Information Matrix

It could be known by the whole probability formula, for the variable θ, the probability
p(θ) = p(pt|pt−1)p(k)p(ϕ). Then, log-likelihood function could be represented as:

ln p(θ) = [ln p(pt|pt−1)] + ln p(k) + ln p(ϕ) (17)

where p(k) and p(ϕ) are corresponding independent information of pt and pt−1. We decompose the
vector θ into two components, namely state vector [pt pt−1]

T and observation vector [k ϕ]T . Thus,
JP could be represented as:

JP = E[∆θ
θ ln p(θ)]

=

[
JP11 JP12

JT
P12

JP22

]
(18)

where JP11 could be obtained with the recursion of vectors pt and pt−1, which, according to
Tichavsky et al. [43], could be described as:

JP11 =

[
M11 M12

MT
12 M22 + J(pt−1)

]
(19)
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where
M11 = Q−1

t

M12 = ∇pt−1ft(pt−1)Q−1
t

M22 = ∇pt−1ft(pt−1)Q−1
t
[
∇pt−1ft(pt−1)

]T

(20)

J(pt−1) is the FIM of pt−1. As p(k) and p(ϕ) are independent from pt and pt−1, JP12 is 0, namely

JP12 =

[
0 0
0 0

]
(21)

Similarly, the prior probability p(pt|pt−1) are independent from k and ϕ. Thus,
JP12 =JT

P21
= 0. Finally,

JP22 =

[
JK 0
0 JΦ

]
(22)

where JK and JΦ are, respectively, the FIM of vectors k and ϕ:

JK = E[∆k
k ln p(k)]

Jφ = E[∆φ
ϕ ln p(ϕ)]

(23)

4.3. Integral Information Matrix

Due to the analysis above, substituting Equations (15) and (18) into Equation (9), the FIM of
variable θ could be represented as:

J(θ)=


M11+D11 M12 D13 D14

MT
12 M22+J(xt−1) 0 0

DT
13 0 D33+JK D34

DT
14 0 DT

34 D44+JΦ

. (24)

However, only the lower bound of pt is of interest, namely a small submatrix of J(θ), J−1(pt) =

[J−1(θ)]2×2.
Furthermore, due to the Schur complement theorem [49], J(pt) could be divided into two

components, namely state matrix JS and measurement matrix JC, then

J(pt) = JS − JC (25)

where
JS = M11 + D11 −M12 (M22 + J(pt−1))

−1 MT
12

JA=
[
D13 D14

][D33+JK D34

DT
34 D44+JC

]−1[
D13 D14

]T (26)

As mentioned above, we demonstrate a comprehensive analysis of how distance and angle
measurements are related with human motion tracking accuracy in IMU/TOA fusion systems.
The detailed calculation process is shown in Algorithm 1. In the next two sections, we further
evaluate the overall performance of the fusion system from two aspects, namely spatial and temporal
performance, in theory.
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Algorithm 1 Proposed IMU/TOA fusion-based human motion tracking method.

0: Initialization:
1: Define measuring variable at time slot t as θt ,

[
pT

t pT
t−1 kT ϕT

]T
. Set the time slot index

t = 0. Choose an initial value for pt−1 of variable θt, generally as 0.

Part 1: measurement parameter information
2: Calculate parameter matrix Ht, K, Φ.
3: Update the matrix parameters H =

[
Ht Ht−1 K Φ

]T
.

4: Calculate parameter matrix D11, D13, D14, D33, D34 and D44.
5: Update the matrix parameter Jh.
6: Update the information matrix obtained by measuring parameters, i.e., JD(θ) = H · Jh ·HT

Part 2: state parameter information
7: Calculate parameter matrix M11, M12, M22, JK and JΦ.
8: Update the matrix parameters JP11 , JP12 and JP12 .

9: Update the information matrix obtained by prior information, i.e., JP =

JP11 JP12

JT
P12

JP22

.

Part 3: integral information
10: Update the FIM matrix by J(θ) = JD(θ) + JP(θ)

11: Update Schur complement parameters of J(θ), namely state matrix JS and measurement matrix JC

12: Update the estimation result pt = J(pt) = JS − JC

Part 4: recursive computation
13: t + 1→ t, go to step 2.

5. Spatial Performance Analysis

When it comes to spatial performance, we suppose that the tracking system has time
independence, namely J(pt) and J(pt−1) are independent from each other. Thus, M12, M22, Jpt−1 , JK ,
D13, D33 and D34 are all 0, namely

J(pt) = M11 + D11 −D14[D44 + JΦ]
−1DT

14 (27)

Movement characteristics of each body part should be taken into consideration. Because of the
spatial features of human motion sensing, it could be classified into two categories: 2-D and 3-D
conditions. 2D motions refer to the body movements that can be captured by a plane, such as raising
one’s arms into Y pose or T pose. 3D motions refer to stereoscopic movements such as walking,
running or swing hands. The different relative positions may contribute to various capture accuracy.
Therefore, both the CRLB of human body in 2D and 3D scenarios are taken into consideration. CRLB
of each location is derived as following demonstration and performance of proposed fusion method is
verified. See Appendix A for the detailed derivation process of CRLB for spatial performance analysis.

5.1. Scenario Setup

As mentioned above, the trunk remains relatively steady in comparison to the end joints or limbs
of the human body. In consideration of end-effector problem, we set the joints of neck, chest, left
and right hip as reference nodes for error bounds estimation. A constrained scenario of 2 m × 2 m
is set up for further experiments. The entire human body is supposed to located in the center of
this region. In contrast, two sequences of reference nodes combination are considered, namely
Case1 = {Neck, Chest, LHip, RHip} and Case2 = {Neck, LShoulder, RShoulder, Chest, LHip, RHip}.
The body is allowed to move freely in this space.
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5.2. Performance Analysis

To demonstrate the typical calculation results, CRLB, when the variance of distance measurement
σd is 0.2 and σIMU is 0.1, is selected upon common commercial motion sensing systems, such as Xsens.
From the experiment results, as shown in Figure 3, the following conclusions could be obtained:

1. In the aspect of two-dimensional condition, shown in Figure 3a,b, lower CRLB is shown when the
position is closer to the trunk. It is also lower in the lower limb than the upper, which is possibly
due to the selection of reference nodes. To verify this, a comparison experiment was conducted
when the reference nodes were chosen differently. Results shown in Figure 3a,b indicate that
the relative position of the reference nodes cause different CRLB of human motion and the more
uniform the nodes distribute, the relative lower CRLB it achieves. The same result can also be
seen in Figure 3c,d when only distance measurement is applied in the human motion sensing process.

2. Since human motion is a three-dimensional process, stereoscopic presentation is shown in Figure 3e,f.
The human is assumed to be placed in the XOZ plane when the y is set as zero. The 3D version of
CRLB is likely to be a 2D one that stretches along the Z-axis. Similar results could be seen in 3D
condition that, the closer to the trunk, the lower the CRLB that could be achieved.

3. For comparison, the CRLB under two measurement method were calculated, respectively, independent
distance measurement and the fusion of IMU and distance measurement. Comparison results are
shown in Figure 3a,c (also in pair of Figure 3b,d).
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(e) (f)

Figure 3. CRLB comparison in two-dimensional and three-dimensional condition: (a,b,e) CRLB
in condition that both distance and IMU information are considered using proposed model; and
(c,d,f) CRLB considered with distance information solely. σd is set as 0.2 and σIMU is 0.1.

To clearly show the different capture capability of distance measurement and IMU, Figure 4 is
presented. As shown, under different σ2

d , CRLB increases along with the increase of σ2
IMU . When σ2

IMU
is fixed, CRLB also increases along with the increase of σ2

d . However, the change is more apparent
when σ2

d is fixed. It means that the accuracy of IMU measurement matters more in the fusion process,
but the distance measurement helps restrain the bounds of CRLB. It is worth mentioning that, for a
given σ2

IMU , CRLB shows little variation with the increase of σ2
d if it is larger than 0.2. It indicates that

the distance measurement may be not the main limiting factor of CRLB, but σ2
IMU is.
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6. Temporal Performance Analysis

We suppose that the tracking system has cumulative recursion characteristics, namely J(pt) and
J(pt−1) are not independent from each other. Based on [22], Equation (26) could be simplified into a
recursive form, namely Posterior Cramér–Rao Lower Bound (PCRLB) [22,25].

J(xt) = M11 + D11 −M12 [M22 + J(xt−1)]
−1 MT

12 (28)

See Appendix B for the detailed derivation process of PCRLB for temporal performance analysis.

6.1. Scenario Setup

Even though there are elegant expressions to recursively calculate the FIM, Equation (27) usually
does not have analytical close-form solution. To deal with that, we employ the Monte Carlo
approach [50] to convert those continuous integrals into discrete summations, and finally work
out the PCRLB. The root-mean-square of PCRLB is given by 1

L ∑L
i=1 Pi

k, where Pi
k is the PCRLB on the

Root-Mean-Square Error (RMSE) of joint at step k in the ith Monte Carlo trial. L is the total Monte Carlo
trial number (L = 1000 was used in this study). Note that, for each Monte Carlo trial, we randomly
selected the initial location for PCRLB calculation to get a fair average of the entire human body
moving process.

6.2. Performance Analysis

We mainly analyzed the influence of different factors on PCRLB from the following two perspectives:
fusion method factor and topology factor.

(1) Fusion method factor: Considering different Qt and Rt in IMU/TOA fusion methods, as well
as using sole TOA or IMU method, may lead to different results of human motion tracking accuracy.

Figure 5 shows in IMU/TOA fusion methods, the lower bounds under different Qt and Rt as well
as in the use of sole TOA or IMU method. As shown in the figure:

1. When only inertial sensors are adopted in the tracking system, as indicated by the black solid line
in Figure 5, the accumulative errors may tend to be diverging. Theoretically, this confirms that
IMU based HMT system faces the problem of accumulative errors. However, IMU/TOA fusion
method can avoid this divergence. The performance curves of proposed approaches achieve
stability after certain steps, i.e., their errors converge.
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Figure 5. Temporal performance as a function of step index.
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2. Compared with sole TOA tracking method, IMU/TOA fusion-based method can significantly
increase the accuracy of human body motion tracking. The lower bound of proposed fusion
method could drop below 8 cm.

3. With increase of Qt and Rt, PCRLB also increases, which means that the accuracy is inversely
proportional to these two parameters.

(2) Topology factor: As already indicated in Section IV-B, topologies have much influence on the
performance of certain tracking systems. We work out the PCRLB of different topologies shown in
Figure 6, where Qt is 0.1 and Rt is 0.05. As shown in Figure 7, we could draw the following conclusions:

1. Under different topologies, the theoretical accuracy lower bounds of the tracking system
are different.

2. The different topological conditions tend to be stable after the same iteration number (around 15),
which means the convergence rate is roughly the same under various topologies.

3. Topology 3 suffers the largest RMSE, which may be due to the dense reference nodes.
The minimum RMSE is less than 8 cm, as shown in Topology 4, which makes it a better choice for
practice applications.

4. The proposed fusion HMT systems with TOA integrated share identical trend results with that of
solely TOA ranging.
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Figure 6. Topologies configuration. ◦ represents free joints, and4 represents selected anchors.
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Figure 7. Root mean square of PCRLB as a function of index of steps. Different receiver topologies
are considered.

7. Practical Use Case

In above sections, the theoretical effectiveness of our proposed human motion tracking method is
verified in terms of both spatial and temporal performances. The introduced IMU/TOA fusion method
utilizes both distance and IMU information to lower the expected error bounds in theory. In this section,
we take advantage of this method in 3D practical application scenarios to verify its performance.

7.1. Platform Overview and Experiment Setup

A minimized wearable sensing platform was specially designed for the tracking of human motion
in 3D scenario. It aimed to collect spatial and temporal information during the human motion process.
Sensing nodes were designed and intended to be put on joints to capture the movement conditions.
Target data included accelerated velocity, angular velocity and the distances between joints and
body parts. Among these, distance information was especially different when compared with other
platforms, such as Xsens and Invensense. We sampled data using above-mentioned platform at 10 Hz.
All processing work were performed online in Matlab with PC (Intel Core i7-6700M CPU, 16GB RAM).
The communication between wearable nodes and the PC was via Bluetooth.

Our integrated wearable sensor system was composed of two parts: one control unit and several
data acquisition units. The control unit worked as a gateway to control the whole operation process
via Bluetooth communication. Data acquisition unit was mainly responsible for data sensing. Each
data acquisition unit had a six-axis sensor (MPU6050, which integrated a triaxial accelerometer and a
triaxial gyroscope), a barometer sensor (MS5611) and a UWB-TOA ranging module (DWM1000) [19].
The MEMS sensors were connected to a micro-controller (STM32F103) for the sake of sampling
efficiency at a rate of 10 Hz. Data were transferred to the control unit in real-time and also written into
its SD card as backups for other offline analysis and applications. Three sensing nodes were mounted
onto the ankle, knee and hip joint. Distance measurements were conducted between these nodes.
The whole system architecture is demonstrated in Figure 8.
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Figure 8. Experimental Platform Settings. Three sensing nodes were mounted onto the ankle, knee
and hip joint. Each node mainly consisted of micro-controller unit (STM32), IMU unit (MPU6050 and
MS5611) and TOA unit (UWB module).

We proposed an IMU/TOA fusion method for human motion tracking applications, introducing
distance information into inertial systems. However, one of the most obvious difference between the
proposed method and that in [23] is: the algorithm in [23] needs to take advantage of external UWB
stations as reference nodes, namely anchors. However, in our method, we simply utilized internal tags
(mounted onto body joints) to range and conduct the fusion process, which can significantly reduce
the complexity of tracking systems.

Based on above considerations, human lower limb movement analysis in 3D scenario was chosen
as a typical verification experiment, for better demonstrate the performance of proposed method when
it is applied to human motion tracking.

7.2. Practical Use Case in 3D Scenario

A spiral-stairs (between two floors) scenario Was selected as a 3D use case and four UWB anchors
were located at each floor (totally eight anchors were used), as shown in Figure 9. The location of
anchors in each floor are referred to those in [23] and only used in comparative experiments. Three
comparative algorithms were also tested:

(1) Only IMU was used for human lower limb tracking. Zero velocity update (ZUPT) algorithm [51]
was applied. For simplicity, we denoted it as “IMU” method.

(2) IMU and TOA fusion method in [23] was applied. UWB based TOA tag nodes were mounted
to the right lower limb and communicated with external anchor nodes, implementing TOA
localization algorithm. For simplicity, and to separate it from our proposed method, we denoted
it as “IMU/ex-TOA” method.

(3) Optimal Enhanced Kalman Filter (OEKF)-based method in [52] was applied. The cumulative
errors in attitude and velocity were corrected using the attitude fusion filtering algorithm and
ZUPT, respectively. For simplicity, and to separate it from our proposed method, we denoted it as
“IMU-OEKF” method.

Experiment results are shown in Figures 9 and 10.
For better comparison, ground truth and tracking trajectories applying all mentioned methods

(the proposed method and three comparative ones) are drawn in Figure 9. It is clearly seen that, when
applying the proposed method, the experiment results were far closer to the ground truth, while the
results when applying methods of IMU [51], IMU/ex-TOA [23] and IMU-OEKF [52] were drifting
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away as time accumulates. The result remained similar at the very beginning; however, the gap became
larger over time.

Figure 9. Walking trajectory when climbing a spiral-stairs with our proposed method and two
comparative methods.
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Figure 10. The accumulative distribution function (CDF) curve in 3D scenario when algorithms
were applied.

Detailed accumulated errors are shown in Figure 10. IMU, IMU/ex-TOA and IMU-OEKF faced
the problem of drift error, especially when the experimenter turned around at stair corners. Time
accumulated errors were more likely to be caused when moving direction changes. With IMU/ex-TOA
and IMU-OEKF methods applied into the algorithm, localization errors to some extent could be fixed,
but still existed and were critical at turns. On the contrary, our proposed human motion tracking
method showed a good stability and no clear drift errors were observed in our experiment. This is
because, with the use of proposed method, body connections are considered and temporal transitions
are estimated. Especially at turns, body constraints could to some extent fix time accumulated errors.
The results suggest that our proposed method performed well while applied in human lower limb
analysis. This also confirmed the conclusion obtained in theoretical simulation (Sections 4 and 5).
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Methods with only inertial sensors faced the problem of drift errors, but our proposed model could fix
time accumulative errors.

From above analysis, our proposed method had significantly higher accuracy, as well as little drift
problem. Besides, compared with IMU/ex-TOA method [23] and IMU-OEKF method [52], our method
did not need external anchors and had higher tracking accuracy, thus is more suitable for wearable
motion tracking applications.

8. Conclusions

A IMU/TOA fusion-based human motion tracking method is proposed in this paper. IMU based
HMT technique faces the tough problem of accumulative errors and drift. Time of Arrival (TOA) is
considered to compensate the drift and accumulation caused by IMU. On this basis, Cramér–Rao lower
bound (CRLB) is derived in detail with consideration of both temporal and spatial related factors.
Simulation results show that the IMU/TOA fusion-based HMT method proposed in this paper has
significantly higher accuracy, as well as little drift problem, compared with the traditional independent
IMU or TOA tracking methods. The comprehensive fundamental limits analysis conducted in this
paper can provide a theoretical basis for further system design and algorithm analysis. In the practical
use case, proposed IMU/TOA fusion method also shows obvious performance advantages when
compared with state-of-the-art methods. Besides, it does not need external anchors, thus it is more
suitable for wearable motion tracking applications.
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Appendix A. Derivation of the CRLB

CRLB is represented as a theoretical lower limit for any unbiased estimation and is widely used
to assess localization performance. Thus, we comprehensively derive the CRLB for 3D localization
of IMU/TOA fusion method in WSNs to evaluate its spatial performance. The following are some
definitions. If pk is an unbiased estimate of pk, then

E( p̂k − pk)
2 ≥ CRLB = tr

{
J(pk)

−1
}

(A1)

where J(pk) is the Fisher information matrix [43,46]. Before solving the Fischer information matrix, we
need to first define the joint probability density function as

p(d̂k, α̂k, β̂k, p̂k)

=

{
N

∏
n=1

p(d̂n,k|pk)

}
p(α̂k|pk−1, pk)p(β̂k|pk−1, pk)

(A2)

where p(α̂k|pk−1, pk), p(β̂k|pk−1, pk) and p(d̂n,k|pk) can be obtained according to Equations (1)–(3).
According to the joint probability density function, we can define the Fischer information matrix as

J(pk)i,j = −E

[
∂2lnp(d̂k, α̂k, β̂k, p̂k)

∂pk,i∂pk,j

]
, i, j = 1, 2, 3 (A3)
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Bringing Equation (A2) into Equation (A3) can calculate each element of the Fischer Information
Matrix, and further obtain CRLB.

Appendix B. Derivation of the PCRLB

Sequential tracking problem is a temporal as well as spatial problem. This continuous information
could be used to evaluate the performance of given algorithms. Thus, we extend the above CRLB to
PCRLB by considering posterior information.

Before the derivation, we redefine the joint probability density function as

p(d̂, α̂, β̂, p̂)

=p(d̂0| p̂0)
K

∏
k=1

p(α̂k|pk−1, pk)p(β̂k|pk−1, pk)p(d̂k|pk)
(A4)

To calculate the Fischer information matrix at state k, we define

pk = p(d̂0:k, α̂0:k, β̂0:k, p̂0:k, ) (A5)

where d̂0:k, α̂0:k, β̂0:k, and p̂0:k represent ranging, vertical angle, horizontal angle and target coordinate
vector from the start state to state k, respectively.

Therefore,
J(p0:k)

=

E
{
−∆p0:k−1

p0:k−1 lnpk

}
E
{
−∆p0:k

p0:k−1 lnpk

}
E
{
−∆p0:k−1

p0:k lnpk

}
E
{
−∆p0:k

p0:k lnpk

} 
=

[
Ak Bk
BT

k Ck

] (A6)

According to Tichavsky et al. [43], the sub-matrix Jk can be obtained by pseudo-inverse of the
matrix J(p0:k), i.e.,

Jk = Ck − BT
k A−1

k Bk (A7)

According to Equations (A5) and (A6), the joint probability density for the k + 1 state is

pk+1 =pk p(α̂k+1|pk, pk+1)p(β̂k+1|pk, pk+1)p(d̂k+1|pk, pk+1) (A8)

According to the joint probability density of state k + 1, we can find that

J(p0:k+1) =

Ak Bk 0
BT

k Ck + H11
k H12

k
0 H12

k γk+1 + H12
k

 (A9)

where H11
k , H12

k , and H22
k reflect the posterior information from state k to state k + 1, and γk+1 reflects

the location information based on TOA ranging [19].
From J(p0:k+1) and Jk, we can get the Fischer information matrix for state k + 1, i.e.,

Jk+1

=γk+1 + H22
k −

[
0 H12

k

] [Ak Bk
BT

k Ck + H11
k

] [
0

H12
k

]
=γk+1 + H22

k − H12
k (Jk + H11

k )−1H12
k

(A10)

Due to the step error and the directional error obey Gaussian distribution, H11
k = H12

k = H22
k = Hk

can be calculated.
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The solution of Hk can be found in [53]. In summary, the posterior Fisher information matrix is

Jk+1 = γk+1 + Hk − Hk(Jk + Hk)
−1Hk (A11)

According to the SMW (Sherman–Morrison–Woodbury) formula [54], it can be further
simplified as

Jk+1 = γk+1 + (H−1
k + J−1

k )−1 (A12)

where γk+1 reflects the information based on TOA, Hk reflects information based on IMU.
Then, sequential simulation can be conducted by Monte Carlo methods [50].
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