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On MAC-BC Duality of Multihop MIMO Relay
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Abstract—In this paper, we establish the signal-to-interference-
noise ratio (SINR) duality between multiple access (MAC) and
broadcast (BC) multihop amplify-and-forward (AF) multiple-
input multiple-output (MIMO) relay systems under an imper-
fect channel state model, which is a generalization of several
previously established MAC-BC duality results. We show that
identical SINRs in the MAC and BC systems can be achieved
by two approaches. The first one is to use the Hermitian
transposed MAC relay amplifying matrices at the relay nodes in
the BC system, under the same total network transmission power
constraint. The second one is to use the scaled and Hermitian
transposed MAC relay amplifying matrices in the BC system,
under the transmission power constraint at each node of the
system, where the scaling factors are obtained by swapping the
power constraints of the nodes in the MAC system. Moreover, we
derive the MAC-BC mean-squared error (MSE) and achievable
sum-rate (or mutual information (MI)) duality properties based
on the SINR duality. Numerical results show the utility of the
duality results established.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) relays are impor-
tant for wireless communication networks because they can
be used to reduce the path loss, increase the power efficiency,
and improve the network coverage. MIMO relays can be used
for multiple access (MAC) – from multiple users to a base
station. They can also be used for broadcast (BC) – from a
base station to multiple users. In this paper, we consider a
chain of multihop amplify-and-forward (AF) MIMO relays for
either MAC or BC. To achieve a desired performance for such
a system, the transformation matrices applied at the source,
the destination, and the relays need to be chosen properly.
Our contribution in this paper is about MAC-BC duality
properties of the multihop MIMO relay system in terms of
these transformation matrices under an imperfect channel state
information (CSI) model. Due to the multihop topology and
imperfect CSI assumption, the achievable rate is a complicated
function of the source, relay and receiver matrices, which
makes both the proof of duality and the optimization problems
associated with multihop MIMO relay networks much more
challenging than the existing works with simpler network
topology and/or perfect CSI assumption. In other words, a
rigorous proof of the MAC-BC duality of multihop MIMO
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relay channel with imperfect channel knowledge is much more
complex than that of the existing MAC-BC duality results.

A. Literature Review of Existing MAC-BC Duality Properties

To the best of our knowledge, MAC-BC duality results
available in the literature can be divided into the following
three main categories (also summarized in Table I).

1) SINR Duality: The MAC-BC SINR duality for single-
hop multiple-input single-output (MISO) systems was de-
rived independently in [1] and [2]. Based on this SINR
duality, sum-power minimization problem subject to mini-
mum SINR requirements and the SINR balancing problem
were solved in [2]. The SINR duality result for MISO sys-
tems was extended to MIMO systems with multi-antenna
receivers/transmitters in [3] and [4]. Recently, the MAC-BC
SINR duality for single-hop MIMO systems has been extended
to two-hop amplify-and-forward (AF) MIMO relay systems,
where all nodes in the system are equipped with multiple
antennas [5]. It is shown in [5] that in a MAC system, SINRs
identical to that of the BC system can be achieved by employ-
ing a scaled Hermitian transpose of the relay amplifying matrix
used in the BC system, and the scaling factor is obtained
by swapping the transmission power constraints at the source
node and the relay node. This result generalizes the SINR
duality established for single-hop MIMO systems in [1]-[4].
The authors of [6] extended the two-hop MAC-BC SINR
duality results in [5] to multihop AF MIMO relay systems with
any number of hops and any number of antennas at each node.
Recently, a generalized multihop MIMO AF relay network,
which has multiple sources, multiple destinations and multiple
relays is considered in [7]. Dualities for this network under
single network linear constraint and per-hop linear constraint
are established.

The aforementioned SINR duality results are established by
assuming that the exact CSI is available in the system. How-
ever, in practical communication systems, the CSI knowledge
is obtained through channel training/estimation. Due to lim-
ited length of training sequences, channel noise, quantization
errors, outdated channel estimates, and/or time-varying nature
of wireless channels, there is mismatch between the estimation
and the exact CSI, which may substantially degrade the system
performance. Therefore, robust precoder/receive filter design
that explicitly takes into account the uncertainties in the
channel model should be considered in practical applications.
This motivates the authors of [8] to establish the SINR duality
under imperfect CSI for single-hop MISO systems, which
generalizes the SINR duality with perfect CSI in [1] and [2].
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TABLE I
EXISTING MAC-BC DUALITY RESULTS

MISO MIMO
SH TH MH SH TH MH

PCSI
SINR [1], [2] [5] [6], [7] [3], [4] [5] [6], [7]

MSE [9] [17] this paper [4], [10], [11] [17] this paper

Capacity/MI [18]/[1], [2] NA/[5], [21] NA/[6]-[7], [21] [19]-[20]/[3]-[4] NA/[5] NA/[6]-[7]

ICSI
SINR [8] this paper this paper this paper this paper this paper

MSE [8], [12] [17] this paper [13]-[16] [17] this paper

Capacity/MI NA/[8] NA/this paper NA/this paper NA/this paper NA/this paper NA/this paper

PCSI: Perfect channel state information, ICSI: Imperfect channel state information
MIMO: Multi-input multi-output, MISO: Multi-input single-output
SH: Single-hop, TH: Two-hop, MH: Multihop
NA: Not Available

2) MSE Duality: The MAC-BC MSE duality was first
derived for MISO systems with a sum power constraint in [9]
and then extended to MIMO systems in [4], [10], and [11]. It
was observed in [10] that under a total power constraint, any
MSE point that is achievable in the MAC system can also be
attained in the BC system.

The MSE duality results obtained in [4] and [9]-[11] are
based on the assumption that the exact CSI is available
in the system. For systems with imperfect CSI, the MSE
duality has been established in [8] and [12] for single-hop
MISO systems, and in [13] for single-hop MIMO systems.
However, channel correlation among antenna elements is not
considered in [8], [12], and [13]. The sum-MSE duality (based
on the Karush-Kuhn-Tucker conditions associated with the
optimization problems in the MAC and BC systems) and
three kinds of MSE duality (individual stream MSE, individual
user MSE, sum-MSE) have been established in [14] and [15],
respectively for single-hop MIMO systems with imperfect CSI
and antenna correlation only at the base station. The MSE
duality results in [15] is extended in [16] by considering the
antenna correlation at both the base station and the users. In
fact, the duality results obtained in [16] can be viewed as the
extension of those in [11] to the imperfect CSI case. Recently,
the sum-MSE MAC-BC duality in single-hop MIMO systems
under imperfect CSI has been extended to two-hop AF MIMO
relay systems in [17].

3) Capacity Duality: The MAC-BC rate-region duality for
single antenna terminals or single stream transmission with
multi-antenna terminals can be readily derived from the SINR
duality. In particular, the sum capacity duality was proven for
MISO systems in [1] by showing that the achievable sum-rate
with Costa precoding in the BC system is the same as the
maximum sum-rate in the MAC system. The rate regions of
the MAC and the BC under Gaussian signaling and nonlinear
interference cancellation have been proven to be the same, for
the single-antenna case [18], for the MIMO case supporting
an arbitrary number of data streams per user [19], and for the
overlap of the dirty-paper coding rate region and the capacity
region [20]. The authors of [21] derived the rate-region duality

for multihop AF MIMO relay systems with single antenna
source and destination nodes, which generalizes the MAC-BC
rate-region duality results of [1] and [19].

B. Contributions of Our Work

To the best of our knowledge, so far no work has been
done to prove the SINR (MSE, MI) duality for multihop
AF MIMO relay systems that consider imperfect CSI and
antenna correlation at all nodes (see Table I). In this paper, we
consider that the antennas of all the nodes in the system exhibit
spatial correlations and the CSI at each hop is imperfect. Due
to the coupling between multiple system parameters (source
and relay precoding matrices and receiver matrices) and the
mismatch between the exact and estimated CSI, a rigorous
proof of the duality results is much more complex than that
of the existing MAC-BC duality results. We show that under
imperfect CSI, stream-wise identical SINR (MSE, MI) can be
achieved in multihop AF MIMO MAC and BC relay systems
through two approaches. First, if there is only total network
transmission power constraint and no power constraint at
individual nodes, then duality can be achieved by employing
Fl and FH

L−l, l = 1, . . . , L − 1, as the relay amplifying
matrices at the lth relay node of the BC and the MAC MIMO
relay systems, respectively, where L is the number of hops of
the relay network. Second, with transmission power constraint
at each node of the relay network, duality can be established
when clFl and FH

L−l, l = 1, . . . , L − 1, are employed as
the amplifying matrices at the lth relay node of the BC and
the MAC relay systems, respectively. In this case, the scaling
factor cl > 0 is obtained by swapping the power constraints
at the lth node of the BC system and the (L+ 1− l)-th node
of the MAC system, l = 1, . . . , L.1

Furthermore, we prove that the two approaches developed
above are not only valid for MIMO relay systems with linear
transceivers at the source and the destination nodes, but also
hold if a receiver employing successive interference cancella-
tion (SIC) is used at the destination of the MAC MIMO relay

1There is no loss of generality in assuming cl to be a non-negative real
number [5].
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system, and a transmitter employing dirty paper coding (DPC)
is used at the source node of the BC MIMO relay channel. As
an application of this MAC-BC duality, the complicated robust
multihop MIMO BC system design problem under imperfect
CSI can be efficiently solved by focusing on an equivalent
multihop MIMO MAC problem.

As an application of the duality results established, we
consider the design of source precoding matrix and relay
amplifying matrices for multihop AF-MIMO relay systems
under sum-MSE optimization problem. Simulation results
demonstrate that both the MAC and BC systems achieve the
same sum-MSE and bit error rate (BER).

In this paper, we define the SINR as an estimated SINR
when only an estimate of the channel response is available.
An estimated SINR is a ratio of signal power coupled with
the estimated channel over interference-plus-noise power plus
the channel estimation error variance coupled with the signal
power. Such a definition of SINR is consistent with those
defined in prior works [22]-[25]. This estimated SINR is more
meaningful than an exact SINR when the channel knowledge
at a receiver is not exact. In fact, when there is only an
estimated channel response, the performance of the receiver is
directly governed by the estimated SINR instead of the exact
SINR, in the sense that the channel estimation error affects
the effective SINR as an additional noise.

The following notations are used in this paper. Matrices
and vectors are denoted as bold capital and lowercase letters,
respectively. For matrices, (.)T and (.)H denote transpose and
conjugate transpose, respectively. E [.] stands for the statistical
expectation; IN denotes an N × N identity matrix; tr{.}
stands for matrix trace; diag {a1, · · · , an} denotes a diagonal
matrix with the diagonal elements given by a1, · · · , an, and
‖.‖2 stands for the vector Euclidean norm. For matrices
Ai,

⊗k
i=l (Ai) , Al . . .Ak. For example,

⊗3
i=1 (Ai) ,

A1A2A3 and
⊗1

i=3 (Ai) , A3A2A1. bd(.) stands for a
block diagonal matrix, and <{.} denotes the real part.

II. SYSTEM MODEL

We consider a wireless communication system with one
base station (BS), L−1 (L ≥ 2) relay nodes and K user nodes,
where the BS is equipped with N1 antennas and the (l − 1)-
th relay node is equipped with Nl antennas, l = 2, . . . , L.
The ith user, i = 1, . . . ,K, transmits (receives) N (i)

b data
streams using N

(i)
L+1 antennas in the MAC (BC) system. We

denote Nb =
∑K

i=1N
(i)
b as the total number of independent

data streams from all users and NL+1 =
∑K

i=1N
(i)
L+1 as the

total number of antennas of all users. In order to support Nb

data streams simultaneously, Nb ≤ min(N1, N2, . . . , NL+1)
should be satisfied. However, if a nonlinear transmitter is
installed at the source node or a nonlinear receiver is installed
at the destination node of a MIMO relay system, Nb can be
greater than min(N1, N2, . . . , NL+1) [6]. We assume the or-
thogonality among different hops, also adopted in [5]-[7], [21],
meaning that the signal transmitted by the lth node can only
be received by the (l+1)-th node due to the propagation path-
loss and proper channel reuse. Thus, there are L hops between
the source and destination nodes. Each relay node works in

half-duplex mode and employs a linear AF (non-regenerative)
relay matrix to amplify and forward its received signals.

A. Multihop BC MIMO Relay System

In the multihop BC MIMO relay system shown in Fig. 1,

the source symbol vector sBi =

[
sBi,1, s

B
i,2, . . . , s

B

i,N
(i)
b

]T
of

size N (i)
b × 1 from the ith user is linearly precoded by matrix

UiQ
1
2
i ∈ CN1×N(i)

b , where Ui =

[
u
(1)
i ,u

(2)
i , . . . ,u

(N
(i)
b )

i

]
with

∥∥u(j)
i

∥∥
2
= 1 and Qi = diag

{
q
(1)
i , q

(2)
i , . . . , q

(N
(i)
b )

i

}
with q

(j)
i , j = 1, . . . , N

(i)
b , i = 1, . . . ,K, being the power

allocated to the jth data stream of the ith user. We assume
that user symbols are independent and have unit-power, i.e.,
E
[
sBi
(
sBi
)H]

= I
N

(i)
b

. The BS transmits the N1 × 1 linearly

precoded symbol vector xB
1 =

∑K
i=1 UiQ

1
2
i s

B
i = UQ

1
2 sB ,

where U = [U1,U2, . . . ,UK ], Q = bd (Q1,Q2, . . . ,QK),

and sB =
[(
sB1
)T
,
(
sB2
)T
, . . . ,

(
sBK
)T ]T

. The Nl×1 received
signal vector at the (l − 1)-th relay node of the BC system
can be written as

yB
l = Hl−1x

B
l−1 + nl, l = 2, . . . , L (1)

where Hl ∈ CNl+1×Nl , l = 1, . . . , L − 1, is the MIMO
channel matrix between the (l + 1)-th and the lth node,
xB
l−1 ∈ CNl−1×1 is the signal vector transmitted by the (l−1)-

th node, l = 2, . . . , L + 1, nl ∈ CNl×1 is the independent
and identically distributed (i.i.d.) additive white Gaussian noise
(AWGN) vector at the (l− 1)-th relay node, l = 2, . . . , L. We
assume that all noises are complex circularly symmetric with
zero mean and unit variance. The transmitted signal vector at
the (l − 1)-th relay node is written as

xB
l = cl−1Fl−1y

B
l , l = 2, . . . , L (2)

where cl−1Fl−1 ∈ CNl×Nl is the amplifying matrix at the
(l−1)-th relay node, and cl > 0 is a scaling coefficient which
is important for studying the MAC-BC duality [21]. Using (1)
and (2), the received signal vector at the first and lth relay
node is written, respectively as

yB
2 =H1UQ

1
2 sB + n2, (3)

yB
l+1 =Hl

1⊗
m=l−1

(cmFmHm)UQ
1
2 sB + nl+1

+

l∑
k=2

k⊗
m=l

(cm−1HmFm−1)nk, l = 2, . . . , L− 1. (4)

The received signal vector at the ith user node is given by

y
(i)B

L+1 = HLi
cL−1FL−1y

B
L + n

(i)
L+1, i = 1, · · · ,K (5)

where HLi
∈ CN

(i)
L+1×NL is the MIMO channel matrix

between the ith user node and the (L− 1)-th relay node and
n
(i)
L+1 ∈ C

N
(i)
L+1×1 is the i.i.d. AWGN vector at the ith user

node.
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Fig. 1. Multihop BC AF MIMO Relay System

A linear receiver matrix Vi ∈ CN
(i)
L+1×N

(i)
b is applied at

the ith user node to estimate the symbol vector sBi , where
the columns of Vi are assumed to satisfy

∥∥v(j)
i

∥∥
2
= 1, j =

1, . . . , N
(i)
b , i = 1, . . . ,K. The estimated symbol vector ŝBi is

expressed as
ŝBi = VH

i y
(i)B

L+1. (6)

Using (3)-(6), we have the decision variable of the jth data
symbol of the ith user as

ŝBi,j =
(
v
(j)
i

)H
HLi

1⊗
m=L−1

(cmFmHm)u
(j)
i

(
q
(j)
i

) 1
2

sBi,j︸ ︷︷ ︸
desired signal

+
(
v
(j)
i

)H
HLi

N
(i)
b∑

l=1,l 6=j

1⊗
m=L−1

(cmFmHm)u
(l)
i

(
q
(l)
i

) 1
2

sBi,l︸ ︷︷ ︸
intra-user interference

+
(
v
(j)
i

)H
HLi

K∑
k=1,k 6=i

N
(k)
b∑

l=1

1⊗
m=L−1

(cmFmHm)u
(l)
k

(
q
(l)
k

) 1
2

sBk,l︸ ︷︷ ︸
inter-user interference

+
(
v
(j)
i

)H
cL−1HLi

FL−1

(
L−1∑
k=2

k⊗
m=L−1

(cm−1HmFm−1)nk+nL

)
︸ ︷︷ ︸

noise propagated from previous hops

+
(
v
(j)
i

)H
n
(i)
L+1︸ ︷︷ ︸

noise at the destination

, j = 1, . . . , N
(i)
b , i = 1, . . . ,K. (7)

B. Multihop MAC MIMO Relay System

For the multihop MAC MIMO relay system shown in
Fig. 2, the roles of the BS and user nodes at the BC MIMO
relay system are swapped. The Hermitian transpose of the
channel matrices used in the BC system are employed in
the MAC system. The ith user node linearly precodes the

symbol vector sMi =

[
sMi,1, s

M
i,2, . . . , s

M

i,N
(i)
b

]T
using the matrix

ViP
1
2
i , where Pi = diag

{
p
(1)
i , p

(2)
i , . . . , p

(N
(i)
b )

i

}
with p

(j)
i ,

j = 1, . . . , N
(i)
b , i = 1, . . . ,K, being the power allocated to

the jth data stream of the ith user. The lth node, i.e. (l − 1)-
th relay node, l = 2, . . . , L, employs FH

L+1−l to amplify and
forward received signals. The received signal vector at the first
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Fig. 2. Multihop MAC AF MIMO Relay System

and the (L+ 1− l)-th receiving node of the MAC system is
given, respectively, by

yM
2 =HH

LVP
1
2 sM + nL (8)

yM
L+2−l =

L−1⊗
m=l

(
HH

mFH
m

)
HH

LVP
1
2 sM + nl

+

L−1∑
k=l

k⊗
m=l

(
HH

mFH
m

)
nk+1, l = 1, . . . , L− 1. (9)

Here, we defined sM =
[(
sM1
)T
,
(
sM2
)T
, . . . ,

(
sMK
)T ]T

,
V = bd (V1,V2, . . . ,VK), P = bd (P1,P2, . . . ,PK), and
HH

L =
[
HH

L1
,HH

L2
. . . ,HH

LK

]
. A linear receiver matrix Ui is

used at the BS to estimate the transmitted symbol vector of
user i, and the estimated symbol vector ŝMi is expressed as

ŝMi = UH
i yM

L+1. (10)

Using (8)-(10), we have the decision variable of the jth data
symbol of the ith user as

ŝMi,j =
(
u
(j)
i

)H L−1⊗
m=1

(
HH

mFH
m

)
HH

Li
v
(j)
i

(
p
(j)
i

) 1
2

sMi,j︸ ︷︷ ︸
desired signal

+
(
u
(j)
i

)H N
(i)
b∑

l=1,l 6=j

L−1⊗
m=1

(
HH

mFH
m

)
HH

Li
v
(l)
i

(
p
(l)
i

) 1
2

sMi,l︸ ︷︷ ︸
intra-user interference

+
(
u
(j)
i

)H K∑
k=1,k 6=i

N
(k)
b∑

l=1

L−1⊗
m=1

(
HH

mFH
m

)
HH

Lk
v
(l)
k

(
p
(l)
k

) 1
2

sMk,l︸ ︷︷ ︸
inter-user interference

+
(
u
(j)
i

)H L−1∑
k=1

k⊗
m=1

(
HH

mFH
m

)
nk+1︸ ︷︷ ︸

noise propagated from previous hops

+
(
u
(j)
i

)H
n1.︸ ︷︷ ︸

noise at the destination

(11)

III. CHANNEL MODEL

Unlike [5], [6], and [21], where the exact CSI is perfectly
known, in this paper, we investigate the MAC-BC duality
under imperfect CSI at each hop. There are two classes of
models frequently used to model imperfect CSI: the Bayesian
(stochastic) and the deterministic (or worst-case) models. In
the stochastic model, the channel is usually modeled as a
complex random matrix with normally distributed elements.
The system design is then based on optimizing the stochastic
measure of the system performance, such as the mean or
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outage performance under the assumption that the transmitter
knows the mean and/or the covariance. On the other hand,
the worst-case model assumes that the instantaneous channel,
though not exactly known, lies in a known set of possible
values. The error belongs to a predefined uncertainty region
(with no inherent statistical assumption). In this case, the final
objective is to optimize the worst system performance in this
error region, which leads to a maximin formulation. In this
paper, we consider the stochastic model, where the true CSI
at each hop is modeled as

Hl = R̂
1
2

l Hw,lT
1
2

l , l = 1, . . . , L− 1 (12)

HLi = R̂
1
2

Li
Hw,LiT

1
2

Li
, i = 1, . . . ,K (13)

where the elements of Hw,l and Hw,Li are i.i.d. zero mean
circularly symmetric complex Gaussian random variables all
with unit variance, Tl ∈ CNl×Nl and R̂l ∈ CNl+1×Nl+1

are (from the perspective of BC system) antenna correlation
matrices at the transmitter end of the lth node and the receiver
end of the (l + 1)-th node, respectively [26], [27]. Similarly,
TLi

∈ CNL×NL and R̂Li
∈ CN

(i)
L+1×N

(i)
L+1 are antenna

correlation matrices at the transmitter end of the (L − 1)-th
relay node and the ith user node, respectively.

We assume that channel estimation is performed on Hw,l

and Hw,Li
using the orthogonal training method developed in

[26]. Based on (12) and (13), the true channels Hl, HLi ,
and their minimum mean-squared error (MMSE) estimates
H̃l, H̃Li

are related as [26]

Hl = H̃l +R
1
2

l Ew,lT
1
2

l = H̃l +El, l = 1, . . . , L− 1

HLi
= H̃Li

+R
1
2

Li
Ew,Li

T
1
2

Li
= H̃Li

+ELi
, i = 1, . . . ,K

where Rl ,
(
INl+1

+ σ2
e,lR̂

−1
l

)−1
, El , R

1
2

l Ew,lT
1
2

l is the

estimation error of Hl, RLi
,
(
I
N

(i)
L+1

+ σ2
e,Li

R̂−1Li

)−1
and

ELi
, R

1
2

Li
Ew,Li

T
1
2

Li
is the estimation error of HLi

. Here,
the entries of Ew,l and Ew,Li

are i.i.d. with CN (0, σ2
e,l) and

CN (0, σ2
e,Li

), respectively. For the ease of explanation, let us
take the BC system as an example. We assume that the lth node
((l − 1)-th relay node), l = 2, . . . , L, estimates its backward
channel Hl−1 through channel training and feeds the estimated
CSI back to the (l− 1)-th node without any error. Thus, both
the lth and the (l− 1)-th nodes have the same CSI mismatch
on Hl−1. Similarly, the ith user node estimates its backward
channel HLi

through channel training and feeds the estimated
CSI back to the (L − 1)-th relay node without any error. In
this paper, we assume that Ew,l is unknown, but H̃l,Rl,Tl,
and σ2

e,l are available at the lth and the (l + 1)-th nodes, l =
1, . . . , L − 1. Similarly, we assume that Ew,Li

is unknown,
but H̃Li

,RLi
,TLi

, and σ2
e,Li

are available at the (L− 1)-th
relay node and ith user node, i = 1, . . . ,K.

IV. MAC-BC DUALITY

In this section, we establish the duality between the MAC
and BC multihop AF MIMO relay systems under imperfect
CSI and antenna correlation at each hop. We define duality as
the achievement of identical stream-wise SINR (MSE, MI) at

the MAC and the BC systems with the same amount of total
network transmission power under imperfect CSI.2 In order to
establish this duality, given a MAC MIMO relay system, we
need to determine the scaling factors cl, l = 1, . . . , L− 1, of
the relay amplifying matrix Fl and the source power allocation
matrix Q in the BC system.

Note that for the simplicity of presenting the proof of
the duality results in this paper, we analyze the duality for
the single user case. Let us group all users together in BC
and MAC to form one “super” destination node and one
“super” source node with NL+1 antennas, respectively. The
BC system and the MAC system can be equivalently viewed
as a single-user downlink and uplink multihop MIMO relay
system, respectively. The following theorem establishes the
MAC-BC duality of multihop MIMO relay communication
system under imperfect channel model.

Theorem 1: Let FH
l and clFl be the relay amplifying matri-

ces at the multihop MIMO MAC and BC systems, respectively.
Under imperfect CSI, stream-wise identical estimated SINRs
(duality) in the MAC and BC systems can be achieved through
the following two approaches:

1) With transmission power constraint at individual nodes,
duality holds by setting PM

L+1−l = PB
l , l = 1, . . . , L,

where PB
l and PM

l are the total transmitted powers at
the lth BC and MAC node, respectively. The values
of cl, l = 1, . . . , L − 1, can be obtained from relay
transmission power constraints of the BC. In other
words, duality can be achieved by employing FH

L−l and
clFl respectively as the relay amplifying matrix at the
lth relay node of the MAC system and the BC system,
l = 1, . . . , L − 1, and the scaling factor cl is obtained
by switching the power constraints at the lth node of
the BC system and the (L+1− l)-th node of the MAC
system, l = 1. . . . , L.

2) Under a total network power constraint, MAC-BC du-
ality holds when Fl and FH

l , l = 1, . . . , L − 1 are the
relay amplifying matrices used in the BC and MAC,
respectively. In other words, MAC-BC duality holds
when cl = 1, l = 1, . . . , L− 1.

Proof: See Appendix A.
Theorem 1 includes the SINR duality results in [1]-[6], [8]

as special cases. It extends the MAC-BC SINR duality results
to multihop AF MIMO relay systems under imperfect CSI,
and thus generalizes all previous SINR duality results. Note
that Theorem 1 holds for any linear transceiver matrices U,V,
and linear relay amplifying matrices Fl, l = 1, . . . , L− 1.

Theorem 2: If the source node of the BC MIMO relay
system employs DPC and the destination node of the MAC
MIMO relay system employs SIC, then under imperfect CSI,
stream-wise identical estimated SINRs (duality) in the MAC
and BC systems can be achieved through the same two
approaches in Theorem 1.

Proof: See Appendix B.

2As described in the Introduction, in this paper we define the SINR as an
estimated SINR, which is a ratio of signal power coupled with the estimated
channel over interference-plus-noise power plus the channel estimation error
variance coupled with the signal power. See (28) and (32) of Appendix A for
BC and MAC, respectively.
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Theorem 2 extends the duality results in Theorem 1 to
the scenario where nonlinear transceivers are used at the
source node of the BC system and the destination node of
the MAC system. Similar to Theorem 1, Theorem 2 holds for
any transceiver matrices U,V, and relay amplifying matrices
Fl, l = 1, . . . , L−1. By choosing V (the destination receiving
matrix in the BC and the source precoding matrix in the MAC)
as a block diagonal matrix, i.e., V = bd (V1,V2, . . . ,VK),
both Theorem 1 and Theorem 2 are applicable to multiuser
MIMO relay scenario. Moreover, the two duality results are
proved under the fair condition that MAC and BC systems
consume the same amount of total transmission power.

We can also derive the MSE duality based on the SINR
duality by using the relation of MSEB

i = 1/(1 + SINRB
i ),

i = 1, . . . , Nb, as shown in Appendix C, where MSEB
i and

SINRB
i stand for the MSE and SINR of the ith data stream

in the BC system, respectively. Thus identical SINR values
in the MAC and BC systems imply identical MSE values.
Therefore, it can be concluded from Theorem 1 that each MSE
point achievable in the MAC system can be attained in the BC
system. Clearly, the converse holds as well.

Based on the SINR duality SINRM
i = SINRB

i , i =
1, . . . , Nb, where SINRM

i is the SINR of the ith data stream
of the MAC system. we can prove the MAC-BC MI (or
achievable sum-rate) duality as

CM =

Nb∑
i=1

log2
(
1 + SINRM

i

)
=

Nb∑
i=1

log2
(
1 + SINRB

i

)
=CB (14)

where CM and CB are the MI of the MAC and BC systems,
respectively.

V. NUMERICAL RESULTS

The implication of the two duality results is that the achiev-
able SINR (MSE, MI) regions in both MAC and BC systems
are the same, i.e. the set of SINR (MSE, MI) is achievable
in the BC if and only if it is achievable in the MAC. As
a direct application of these duality results, the complicated
BC MIMO multihop relay system optimization problems can
be carried out efficiently by focusing on an equivalent MAC
MIMO multihop relay system. For example, the optimal source
precoding matrix and the optimal relay amplifying matrices for
MAC multihop MIMO AF relay system with a linear receiver
at the destination node is considered in [28]. The multihop
AF-MIMO relay system with a nonlinear receiver (SIC) at the
destination node is considered in [29]. Although [28] and [29]
focus on MAC (uplink) system, an optimal design of the
source precoding matrix and relay amplifying matrices for BC
(downlink) multihop AF-MIMO relay systems can be designed
by exploiting the MAC-BC duality results for multihop MIMO
AF relay systems established in this paper.

The optimal multihop MIMO relay design problem for BC

can be formulated as

min
U,Q,{clFl}

f
(
SINRB

i

)
(15)

s.t PB
l ≤ ρBl , l = 1, . . . , L (16)

or s.t PB
T ≤ ρB (17)

where f(.) stands for a unified objective function [30],
and SINRB

i highlighting the imperfect CSI assumption is
a function of U,Q, {clFl} given in (28) of Appendix A.
PB
l , l = 1, . . . , L and PB

T are the power consumed by the
lth node and the total power consumed in the BC system
given by (24)-(26) and (27) of Appendix A, respectively. Here
ρBl , l = 1, . . . , L and ρB are the individual power constraint at
the lth node and the total power constraint of the BC system,
respectively. Function f(.) includes a broad class of frequently
used objective functions in MIMO system design such as the
negative source-destination mutual information, and the MSE
of the signal waveform estimation at the destination.

We apply the theorems established in this paper to optimize
BC MIMO multihop relay system. The optimization problem
for the dual MAC MIMO multihop relay system can be written
as

min
V,P,{FH

L−l}
f
(
SINRM

i

)
(18)

s.t PM
l ≤ ρMl , l = 1, . . . , L (19)

or s.t
L∑

l=1

PM
l ≤ ρM (20)

where SINRM
i highlighting the imperfect CSI assumption is

a function of V,P, {FH
L−l} given in (32) of Appendix A.

PM
l , l = 1, . . . , L is the power consumed by the lth node

in the MAC system given by (21)-(23) of Appendix A. Here
ρMl , l = 1, . . . , L and ρM are the individual power constraint
at the lth node and the total power constraint of the MAC
system, respectively.

As an example of the duality results established here, we
consider the sum-MSE optimization problem for multihop
MIMO relay systems under imperfect CSI through numerical
simulations. We simulate a flat Rayleigh fading environment
where all channel matrices have entries with zero mean. The
variance of entries in HLi is 1/N

(i)
L+1, i = 1, · · · ,K, and

the variance of entries in Hl is 1/Nl, l = 1, · · · , L − 1. All
noises are complex circularly symmetric with zero mean and
unit variance.

All simulation results are averaged over 1000 independent
channel realizations. We use the iterative algorithm in [31] to
design the optimal MAC parameters FH

l , l = 1, . . . , L − 1,
Vj , j = 1, . . . ,K, Pj , j = 1, . . . ,K and use the proposed
duality theorem to obtain the dual BC parameters clFl, l =
1, . . . , L − 1, Uj , j = 1, . . . ,K, Qj , j = 1, . . . ,K3. For
all examples, we set PM

L = PB
1 = 20dB and assume that

PB
l = PM

L−l+1 = P, l = 2, . . . , L for simplicity.
We simulate five-hop multiuser MIMO relay systems in our

examples. Since there are many parameters on the system

3The proposed algorithm in [31] holds for both the cases with and without
perfect CSI.
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setup for multihop relays, for simplicity, we consider relay
systems where all users have the same number of antennas
(i.e., N (i)

L+1 = M, i = 1, · · · ,K) and all relay nodes and the
destination node in the MAC have the same number of anten-
nas (i.e., Nl = N, l = 1, · · · , L). The extension to systems
where different nodes have different number of antennas is
straightforward. Moreover, we assume that channel estimation
errors have the same variance, i.e., σ2

e,l = σ2
e,Li

= σ2
e ,

l = 1, · · · , L − 1, i = 1, · · · ,K. Fig. 3 shows the MSE
performance of the MAC and BC systems versus P with
K = 3, M = 2, and N = 10. It can be clearly seen from
Fig. 3 that the curves overlap, indicating that both the MAC
and BC systems achieve the same sum-MSE under both perfect
CSI and imperfect CSI. The BER performance of both systems
with QPSK constellations is illustrated in Fig. 4 versus P . It
can be clearly seen from Fig. 4 that under perfect CSI the
curves overlap, indicating that both the MAC and BC systems
achieve the same BER. However, under imperfect CSI, the
curves diverge slightly when P is large. The reason for the
divergence is explained in [8] and [17] that the derivations of
SINRs or MSEs depend largely on the first-order and second-
order statistics of transmitted signal, fading, channel noise and
channel estimation error, which are the same for both BC
and MAC systems. Therefore, it is expected that the MSEs of
both links seem to be the same. On the other hand, the BERs
depend on the interference-plus-noise distributions, which vary
with the relative strengths of the interferences. When there is
channel estimation error, the interference strengths depend on
P and this dependence is possibly different for the MAC and
BC. Therefore, the BERs become noticeably unequal when P
is relatively large (and thus channel estimation error becomes
the dominant source of errors). Similar results can also be
obtained for other transceiver design approaches.

VI. CONCLUSION

We have investigated the MAC-BC SINR (MSE, MI) duality
in a multihop AF MIMO relay system under imperfect CSI and
antenna correlation at each hop, which is a generalization of
several previously established results. We proved that identical
stream-wise SINR (MSE, MI) in the MAC and BC systems
can be achieved by two approaches. Firstly, under the same
total network transmission power constraint, the relay nodes of
the BC system employ the Hermitian transposed MAC system
relay amplifying matrices. Secondly, under the individual
transmission power constraint at each node of the system,
the relays of the BC system use the scaled and Hermitian
transposed MAC system relay amplifying matrices, where the
scaling factors are obtained by swapping the power constraints
of the nodes of the MAC system.

APPENDIX A
PROOF OF THEOREM 1

In order to establish the SINR duality for multihop AF
MIMO relay systems under imperfect CSI, we have to show
the conditions on P, Q, and cl, l = 1, . . . , L − 1, that
identical estimated SINRs are achieved in both the MAC and
BC systems. The proof consists of the three main steps.

1) We write the total transmission power and the estimated
SINR of each stream for both the MAC and BC systems
using (8)-(11) and (3)-(7), respectively.

2) We rewrite the total transmission power of the BC sys-
tem obtained in Step 1 based on the definition of duality
that both channels should achieve identical SINRs.

3) Using the final expression of the total transmission
power of the BC system obtained in Step 2, we find
the conditions on P, Q, and cl, l = 1, . . . , L− 1, such
that both the MAC and BC systems consume the same
amount of total transmission power.

A. Step 1

In this step, we first write the total required transmission
power for the MAC and BC systems. For this purpose, we first
express the transmitted power at each node of both systems.

Using (8) and (9), the individual transmission power for all
the transmitting nodes in the MAC system can be written as

PM
1 = tr{P} (21)

PM
2 = E

[
tr{FH

L−1

(
HH

LVPVHHL + INL

)
FL−1}

]
= tr{FH

L−1FL−1}+ tr
{(

H̃LFL−1F
H
L−1H̃

H
L

+ σ2
e,Ltr{TLFL−1F

H
L−1}RL

)
VPVH

}
(22)

PM
L+2−l = E

[
tr
{
FH

l−1y
M
L+2−l

(
yM
L+2−l

)H
Fl−1

}]
(23)

= tr
{(

H̃LFL−1B
(l)
L FH

L−1H̃
H
L

+ σ2
e,Ltr

{
TLFL−1B

(l)
L FH

L−1

}
RL

)
VPVH

}
+

L−1∑
k=l

tr
{
FH

l−1D
(k)
l−1Fl−1

}
︸ ︷︷ ︸

propagated noise power

+ tr{FH
l−1Fl−1}︸ ︷︷ ︸

noise power

, l = 2, . . . , L− 1
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where B
(n)
m and D

(n)
m are recursive functions and given by

B(n)
m =


INn , if m = n

H̃m−1Fm−2B
(n)
m−1F

H
m−2H̃

H
m−1

+σ2
e,m−1tr

{
Tm−1Fm−2B

(n)
m−1F

H
m−2

}
Rm−1, o.w.

D(n)
m =


INn+1

, if m = n

H̃H
m+1F

H
m+1D

(n)
m+1Fm+1H̃m+1

+σ2
e,m+1tr

{
Rm+1F

H
m+1D

(n)
m+1Fm+1

}
Tm+1, o.w.

The total transmission power of the MAC system PM
T can be

calculated with the summation of all individual powers (21)-
(23). We would like to note that since the exact CSI is
unknown, the transmission power is averaged over the im-
perfect CSI through the expectation operations in (22) and
(23) with respect to Ew,l. Here, we have used the result of
E
[
EAEH

]
= σ2

etr{A}I, when the entries of E are i.i.d. with
CN (0, σ2

e) and A is a given matrix [26].
Using (3) and (4), the individual transmission power PB

l of
the lth node, l = 1, . . . , L, in the BC system can be written
as

PB
1 = tr{Q} (24)

PB
2 = E

[
tr{c21F1

(
H1UQUHHH

1 + IN2

)
FH

1 }
]

= tr{c21F1F
H
1 }+ c21tr

{(
H̃H

1 FH
1 F1H̃1

+ σ2
e,1tr{R1F

H
1 F1}T1

)
UQUH

}
(25)

PB
l+1 = E

[
c2l tr

{
Fly

B
l+1

(
yB
l+1

)H
FH

l

}]
=

(
l∏

m=1

c2m

)
tr
{(

H̃H
1 FH

1 D
(l)
1 F1H̃1

+ σ2
e,1tr

{
R1F

H
1 D

(l)
1 F1

}
T1

)
UQUH

}
+

l∑
k=2

(
l∏

m=k−1

c2m

)
tr
{
FlB

(k)
l+1F

H
l

}
︸ ︷︷ ︸

propagated noise power

+ tr{c2lFlF
H
l }︸ ︷︷ ︸

noise power

, l=2, . . . , L− 1. (26)

Note that the expectations in (25) and (26) are taken with
respect to Ew,l. The total transmission power of the BC system
can be calculated using (24)-(26) and given by

PB
T

= PB
1 + PB

2 +

L−1∑
l=2

PB
l+1

= tr{UQUH}+
L−1∑
l=1

(
l∏

m=1

c2m

)
tr
{(

H̃H
1 FH

1 D
(l)
1 F1H̃1

+ σ2
e,1tr

{
R1F

H
1 D

(l)
1 F1

}
T1

)
UQUH

}
+

L−1∑
l=1

tr{c2lFlF
H
l }

+

L−1∑
l=2

l∑
k=2

(
l∏

m=k−1

c2m

)
tr
{
FlB

(k)
l+1F

H
l

}
. (27)

Then we write the estimated SINR of each stream for the
MAC and BC systems. Estimated SINR is defined as the ratio
of the signal power to the summation of the interference power
(interference from all other data streams), total noise power
(propagated noise from previous hops plus the thermal noise
at the destination node), and the residual power of the signal
due to the channel estimation error. By using (7), the estimated
SINR of the ith data stream, i = 1, . . . , Nb at the destination
node of the BC system is given by4

SINRB
i =

qi

(∏L−1
m=1 c

2
m

)∣∣∣vH
i H̃L

⊗1
l=L−1

(
FlH̃l

)
ui

∣∣∣2
PB
Ii

(28)

where PB
Ii

is the total interference plus noise power of the ith
stream, i = 1, . . . , Nb, in the BC system, and is shown at the
bottom of the following page.

The first term RB
Ii

in PB
Ii

is the residual interference power
of the desired signal in (7) stemming from the mismatch
between the true and estimated CSI, and is given by

RB
Ii (30)

= qi

L−1∏
m=1

c2mvH
i

[
σ2
e,Ltr

{
TLFL−1A

(i)
L−1F

H
L−1

}
RL

+ H̃L

(
L−2∑
k=1

σ2
e,k tr

{
TkFk−1A

(i)
k−1F

H
k−1

}
k+1⊗

m=L−1

(
FmH̃m

)
FkRkF

H
k

L−1⊗
m=k+1

(
H̃H

mFH
m

)
+ σ2

e,L−1tr
{
TL−1FL−2A

(i)
L−2F

H
L−2

}
FL−1RL−1F

H
L−1

)
H̃H

L

]
vi

where A
(j)
k are recursively defined as

A
(j)
k =


F−10 uju

H
j F−H0 , if k = 0

H̃1uju
H
j H̃H

1 + σ2
e,1tr{T1uju

H
j }R1, if k = 1

H̃kFk−1A
(j)
k−1F

H
k−1H̃

H
k

+σ2
e,ktr

{
TkFk−1A

(j)
k−1F

H
k−1

}
Rk, if k ≥ 2.

(31)
Here we introduced the matrix F0 in (31) for the simplicity
of presentation. In particular, F0 is an invertible matrix that
is canceled by F−10 in A

(i)
0 when k = 1 in the second term

of (30).
By using (11), the estimated SINR of the ith data stream,

i = 1, . . . , Nb at the destination node of the MAC MIMO
relay channel is given by

SINRM
i =

pi

∣∣∣uH
i

⊗L−1
l=1

(
H̃H

l FH
l

)
H̃H

L vi

∣∣∣2
PM
Ii

(32)

where PM
Ii

is the total interference plus noise power of the
ith stream, i = 1, . . . , Nb, in the MAC system, and is shown
at the bottom of the next page. The first term RM

Ii
in PM

Ii
is

4For the stochastic channel estimation error model adopted in Section III,
the channel estimation error is seen as noise [8], [26], [32].
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the residual interference power of the desired signal in (11)
stemming from the channel estimation error and is given by

RM
Ii = piu

H
i

[
σ2
e,1tr

{
R1F

H
1 C

(i)
L−2F1

}
T1

+

L∑
l=2

σ2
e,ltr

{
RlF

H
l C

(i)
L−l−1Fl

}
l−1⊗
k=1

(
H̃H

k FH
k

)
Tl

1⊗
k=l−1

(
FkH̃k

)]
ui (34)

where C
(j)
k are given by

C
(j)
k =


F−HL vjv

H
j F−1L , if k = −1

H̃H
L vjv

H
j H̃L + σ2

e,Ltr{RLvjv
H
j }TL, if k = 0

H̃H
L−kF

H
L−kC

(j)
k−1FL−kH̃L−k

+σ2
e,L−ktr

{
RL−kF

H
L−kC

(j)
k−1FL−k

}
TL−k, if k≥1.

Similar to F0 in (31), here we introduced the matrix FL for
the simplicity of presentation. In particular, FL is an invertible
matrix that is canceled by F−1L in C

(i)
−1 when l = L in the

second term of (34).

B. Step 2
In this step, we rewrite the total transmission power of the

BC system obtained in Step 1 based on the definition of the
SINR duality.

In order to achieve identical estimated SINRs at the MAC
and BC systems, SINRB

i = SINRM
i , i = 1, . . . , Nb must be

satisfied. Using (28) and (32), such SINR equality leads to∏L−1
m=1 c

2
mqiP

M
Ii

= piP
B
Ii

. Summing this over all Nb streams,
i.e.,

∑Nb

i=1 SINR
B
i =

∑Nb

i=1 SINRM
i , we have

Nb∑
i=1

(
L−1∏
m=1

c2m

)
qiP

M
Ii =

Nb∑
i=1

piP
B
Ii . (35)

By substituting (29) and (33) into (35), it can be seen that
only the last terms (noise terms) in (29) and (33) remain and
the other terms related to interference are canceled out, since5

Nb∑
i=1

L−1∏
m=1

c2mqi

RM
Ii +

Nb∑
j=1,j 6=i

pju
H
i

[
H̃H

1 FH
1 C

(j)
L−2F1H̃1

+ σ2
e,1tr

{
R1F

H
1 C

(j)
L−2F1

}
T1

]
ui

)
=

Nb∑
i=1

pi

RB
Ii +

Nb∑
j=1,j 6=i

qj

(
L−1∏
m=1

c2m

)
vH
i

×
[
H̃LFL−1A

(j)
L−1F

H
L−1H̃

H
L

+ σ2
e,Ltr

{
TLFL−1A

(j)
L−1F

H
L−1

}
RL

]
vi

)
. (36)

In other words, (35) can be written as

Nb∑
i=1

L−1∏
m=1

c2mqi

(
uH
i

[
L−1∑
l=1

(
H̃H

1 FH
1 D

(l)
1 F1H̃1

+ σ2
e,1tr

{
R1F

H
1 D

(l)
1 F1

}
T1

)]
ui + 1

)
=

Nb∑
i=1

pi

(
vH
i

[
L∑

l=2

L−1∏
m=l−1

c2m

(
H̃LFL−1B

(l)
L FH

L−1H̃
H
L

+ σ2
e,Ltr

{
TLFL−1B

(l)
L FH

L−1

}
RL

)]
vi + 1

)
. (37)

5The relation in (36) was used for single-hop, two-hop and multihop
channels in [33], [5] and [6], respectively.

PB
Ii = RB

Ii +

Nb∑
j=1,j 6=i

qj

(
L−1∏
m=1

c2m

)
vH
i

[
H̃LFL−1A

(j)
L−1F

H
L−1H̃

H
L + σ2

e,Ltr
{
TLFL−1A

(j)
L−1F

H
L−1

}
RL

]
vi︸ ︷︷ ︸

interference power

+vH
i

[
L∑

l=2

(
L−1∏

m=l−1

c2m

)(
H̃LFL−1B

(l)
L FH

L−1H̃
H
L + σ2

e,Ltr
{
TLFL−1B

(l)
L FH

L−1

}
RL

)
+ INL

]
vi.︸ ︷︷ ︸

propagated noise power + noise power at the destination

(29)

PM
Ii = RM

Ii + uH
i

Nb∑
j=1,j 6=i

pj

[
H̃H

1 FH
1 C

(j)
L−2F1H̃1 + σ2

e,1tr
{
R1F

H
1 C

(j)
L−2F1

}
T1

]
ui︸ ︷︷ ︸

interference power

+uH
i

[
L−1∑
l=1

(
H̃H

1 FH
1 D

(l)
1 F1H̃1 + σ2

e,1tr
{
R1F

H
1 D

(l)
1 F1

}
T1

)
+ IN1

]
ui︸ ︷︷ ︸

propagated noise power + noise power at the destination

, uH
i Miui. (33)
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Substituting (37) back into (27), PB
T can be written as

PB
T

= tr{UQUH}+
L−1∑
l=1

(
l∏

m=1

c2m

)
tr
{(

H̃H
1 FH

1 D
(l)
1 F1H̃1

+ σ2
e,1tr

{
R1F

H
1 D

(l)
1 F1

}
T1

)
UQUH

}
+

L−1∑
l=2

l∑
k=2

(
l∏

m=k−1

c2m

)
tr
{
FlB

(k)
l+1F

H
l

}
+

L−1∑
l=1

tr{c2lFlF
H
l }

−

(
L−1∏
m=1

c2m

)
tr{UQUH} −

L−1∑
l=1

(
L−1∏
m=1

c2m

)
× tr

{(
H̃H

1 FH
1 D

(l)
1 F1H̃1

+ σ2
e,1tr

{
R1F

H
1 D

(l)
1 F1

}
T1

)
UQUH

}
+

L∑
l=2

(
L−1∏

m=l−1

c2m

)
tr
{(

H̃LFL−1B
(l)
L FH

L−1H̃
H
L

+ σ2
e,Ltr

{
TLFL−1B

(l)
L FH

L−1

}
RL

)
VPVH +P

}
where the first four terms are from (27) and the last three
terms are from (37).

After some simple manipulations, PB
T can be written as

PB
T =

L∑
l=2

(
L−1∏

m=l−1

c2m

)
tr
{(

H̃LFL−1B
(l)
L FH

L−1H̃
H
L

+ σ2
e,Ltr

{
TLFL−1B

(l)
L FH

L−1

}
RL

)
VPVH +P

}
+

L−2∑
l=1

(
1−

L−1∏
m=l+1

c2m

)
tr

{(
l∏

m=1

c2m

)(
H̃H

1 FH
1 D

(l)
1 F1H̃1

+ σ2
e,1tr

{
R1F

H
1 D

(l)
1 F1

}
T1

)
UQUH

}
+

(
1−

L−1∏
m=1

c2m

)
tr
{
UQUH

}
+

L−1∑
l=1

tr
{
c2lFlF

H
l

}
+

L−1∑
l=2

l∑
k=2

(
l∏

m=k−1

c2m

)
tr
{
FlB

(k)
l+1F

H
l

}
. (38)

For notational simplicity, for l = 2, . . . , L− 1, we denote

al ,
l∑

k=2

(
l∏

m=k−1

c2m

)
tr
{
FlB

(k)
l+1F

H
l

}
. (39)

Using (39) and with some manipulations, we have
L−1∑
l=2

al

=

L−1∑
l=2

(
L−1∏

m=l+1

c2m

)
al +

L−1∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
al

=

L−1∑
l=2

l∑
k=2

(
L−1∏

m=k−1

c2m

)
tr
{
FlB

(k)
l+1F

H
l

}
+

L−1∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
al

=

L−1∑
l=2

L−1∑
k=l

(
L−1∏

m=l−1

c2m

)
tr
{
FkB

(l)
k+1F

H
k

}
+

L−1∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
al

=

L−1∑
l=2

(
L∏

m=l

c2m−1

)
L−1∑
k=l

tr
{
FH

l−1D
(k)
l−1Fl−1

}
+

L−1∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
al (40)

where we have used the fact that tr
{
FkB

(l)
k+1F

H
k

}
=

tr
{
FH

l−1D
(k)
l−1Fl−1

}
. We can also write

L−1∑
l=1

tr{c2lFlF
H
l }

=

L−1∑
l=1

tr{c2lFlF
H
l }

+

L∑
l=2

L∏
m=l

c2m−1tr{FH
l−1Fl−1} −

L−1∑
l=1

(
L−1∏
m=l

c2m

)
tr{FlF

H
l }︸ ︷︷ ︸

equal to zero

=

L∑
l=2

L∏
m=l

c2m−1tr{FH
l−1Fl−1}

+

L−1∑
l=1

(
1−

L−1∏
m=l+1

c2m

)
tr{c2lFlF

H
l }. (41)

Substituting (40) and (41) back into (38) and after rearranging
terms, PB

T is shown at the bottom of the next page.

C. Step 3

In this step, using the final expression of the total transmis-
sion power of the BC system in (42), we find the conditions on
P, Q, and cl, l = 1, . . . , L− 1, such that both the MAC and
BC systems consume the same amount of total transmission
power.

Using the expressions of PM
l in (21)-(23) and PB

l in (24)-
(26), l = 1. . . . , L, (42) can be written as

PB
T (43)

=

L−1∑
l=2

(
L∏

m=l

c2m−1

)
PM
L+2−l + c2L−1P

M
2 + PM

1

+

L−2∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
PB
l+1 +

2∑
l=1

(
1−

L−1∏
m=l

c2m

)
PB
l

=

L−1∑
l=1

(
L−1∏
m=l

c2m

)
PM
L+1−l + PM

1 +

L−1∑
l=1

(
1−

L−1∏
m=l

c2m

)
PB
l .

By adding and subtracting
(∑L−1

l=1 PM
L+1−l

)
to and from (43),

which is the total relay transmission power for the MAC
system, we obtain6

PB
T − PM

T =

L−1∑
l=1

(
L−1∏
m=l

c2m − 1

)(
PM
L+1−l − PB

l

)
. (44)

6PM
T on the left hand side of (44) is obtained by adding

∑L−1
l=1 PM

L+1−l

and PM
1 in (43).
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Since the MAC and BC systems should consume the same
amount of total transmission power, we need to find the
conditions such that PB

T −PM
T = 0. Obviously, for any L ≥ 2,

the condition PB
T − PM

T = 0 is true if
∏L−1

m=l c
2
m = 1 for l =

1, . . . , L− 1, which is equivalent to cl = 1, l = 1, . . . , L− 1.
Thus, the first part of Theorem 1 (without transmission power
constraint at each node) is proven. Moreover, the condition
PB
T −PM

T = 0 also holds if PM
L+1−l = PB

l , l = 1, . . . , L−1.
Then we have PM

1 = PB
L due to the fair assumption

PB
T = PM

T . Thus, we have PM
L+1−l = PB

l , l = 1, . . . , L
and the second part of Theorem 1 (with transmission power
constraint at individual nodes) is proven.

APPENDIX B
PROOF OF THEOREM 2

When the destination node of a MAC MIMO relay system
employs SIC, the source symbols are detected successively
with the last symbol detected first and the first symbol detected

PB
T =

L−1∑
l=2

L∏
m=l

c2m−1tr
{(

H̃LFL−1B
(l)
L FH

L−1H̃
H
L + σ2

e,Ltr
{
TLFL−1B

(l)
L FH

L−1

}
RL

)
VPVH

}
︸ ︷︷ ︸

part of first term in (38)

+ c2L−1tr
{(

H̃LFL−1F
H
L−1H̃

H
L + σ2

e,Ltr{TLFL−1F
H
L−1}RL

)
VPVH

}
+ tr{P}︸ ︷︷ ︸

part of first term in (38), particularly when l = L

+

L−2∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
tr

{
l∏

m=1

c2m

(
H̃H

1 FH
1 D

(l)
1 F1H̃1 + σ2

e,1tr
{
R1F

H
1 D

(l)
1 F1

}
T1

)
UQUH

}
︸ ︷︷ ︸

part of second term in (38)

+

(
1−

L−1∏
m=2

c2m

)
tr
{
c21

(
H̃H

1 FH
1 F1H̃1 + σ2

e,1tr{R1F
H
1 F1}T1

)
UQUH

}
︸ ︷︷ ︸

part of second term in (38), particularly when l = 1

+

(
1−

L−1∏
m=1

c2m

)
tr{UQUH}︸ ︷︷ ︸

third term in (38)

+

L−1∑
l=2

L∏
m=l

c2m−1tr{FH
l−1Fl−1}+ c2L−1tr{FH

L−1FL−1}︸ ︷︷ ︸
first part of the fourth term in (38) given in (41)

+

L−2∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
tr{c2lFlF

H
l }+

(
1−

L−1∏
m=2

c2m

)
tr{c21F1F

H
1 }︸ ︷︷ ︸

second part of the fourth term in (38) given in (41)

+

L−1∑
l=2

L∏
m=l

c2m−1tr

{
L−1∑
k=l

FH
l−1D

(k)
l−1Fl−1

}
+

L−2∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
tr

{
l∑

k=2

l∏
m=k−1

c2mFlB
(k)
l+1F

H
l

}
︸ ︷︷ ︸

last term in (38)

=

L−1∑
l=2

L∏
m=l

c2m−1tr

{(
H̃LFL−1B

(l)
L FH

L−1H̃
H
L + σ2

e,Ltr
{
TLFL−1B

(l)
L FH

L−1

}
RL

)
VPVH

+

L−1∑
k=l

FH
l−1D

(k)
l−1Fl−1 + FH

l−1Fl−1

}

+ c2L−1tr

{(
H̃LFL−1F

H
L−1H̃

H
L + σ2

e,Ltr{TLFL−1F
H
L−1}RL

)
VPVH + FH

L−1FL−1

}
+ tr{P}

+

L−2∑
l=2

(
1−

L−1∏
m=l+1

c2m

)
tr

{
l∏

m=1

c2m

(
H̃H

1 FH
1 D

(l)
1 F1H̃1 + σ2

e,1tr
{
R1F

H
1 D

(l)
1 F1

}
T1

)
UQUH

+

l∑
k=2

l∏
m=k−1

c2mFlB
(k)
l+1F

H
l + c2lFlF

H
l

}
+

(
1−

L−1∏
m=1

c2m

)
tr{UQUH}

+

(
1−

L−1∏
m=2

c2m

)
tr

{
c21

(
H̃H

1 FH
1 F1H̃1 + σ2

e,1tr{R1F
H
1 F1}T1

)
UQUH + c21F1F

H
1

}
. (42)
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last, and thus the interference from the previously detected
symbols is subtracted to detect the current symbol. Therefore,
the estimated SINR of the ith data stream, i = 1, . . . , Nb at
the MAC MIMO relay system is written as

SINRM
i =

pi

∣∣∣uH
i

⊗L−1
l=1

(
H̃H

l FH
l

)
H̃H

L vi

∣∣∣2
PM
Ii

(45)

where PM
Ii

is the total interference plus noise power of the
ith stream, i = 1, . . . , Nb, in the MAC system, and can be
expressed as

PM
Ii = RM

Ii + uH
i

i−1∑
j=1

pj

[
H̃H

1 FH
1 C

(j)
L−2F1H̃1 (46)

+ σ2
e,1tr

{
R1F

H
1 C

(j)
L−2F1

}
T1

]
ui

+ uH
i

[
L−1∑
l=1

(
H̃H

1 FH
1 D

(l)
1 F1H̃1

+ σ2
e,1tr

{
R1F

H
1 D

(l)
1 F1

}
T1

)
+ IN1

]
ui

where RM
Ii

is defined in (34).
When the source node of a BC MIMO relay system employs

DPC, the source symbols are encoded successively with the
first symbol encoded first and the last symbol encoded last,
and thus the interference from previously encoded symbols
is subtracted to encode the current symbol. Therefore, the
estimated SINR of the ith data stream, i = 1, . . . , Nb at the
BC MIMO relay system is written as

SINRB
i =

qi

(∏L−1
m=1c

2
m

)∣∣∣vH
i H̃L

⊗1
l=L−1

(
FlH̃l

)
ui

∣∣∣2
PB
Ii

(47)

where PB
Ii

is the total interference plus noise power of the ith
stream, i = 1, . . . , Nb, in the BC system, and can be written
as (using the definition of RB

Ii
in (30))

PB
Ii =

Nb∑
j=i+1

qj

(
L−1∏
m=1

c2m

)
vH
i

[
H̃LFL−1A

(j)
L−1F

H
L−1H̃

H
L

+ σ2
e,Ltr

{
TLFL−1A

(j)
L−1F

H
L−1

}
RL

]
vi +RB

Ii

+ vH
i

[
L∑

l=2

(
L−1∏

m=l−1

c2m

)(
H̃LFL−1B

(l)
L FH

L−1H̃
H
L

+ σ2
e,Ltr

{
TLFL−1B

(l)
L FH

L−1

}
RL

)
+ INL

]
vi.(48)

Using (45) and (47), and the identity below (similar to (36)),

Nb∑
i=1

L−1∏
m=1

c2mqi

RM
Ii +

i−1∑
j=1

pju
H
i

[
H̃H

1 FH
1 C

(j)
L−2F1H̃1

+ σ2
e,1tr

{
R1F

H
1 C

(j)
L−2F1

}
T1

]
ui

)
=

Nb∑
i=1

pi

RB
Ii +

Nb∑
j=i+1

qj

(
L−1∏
m=1

c2m

)
vH
i

[
H̃LFL−1A

(j)
L−1F

H
L−1H̃

H
L

+ σ2
e,Ltr

{
TLFL−1A

(j)
L−1F

H
L−1

}
RL

]
vi

)
(49)

we obtain PB
T as in (38) from

∑Nb

i=1 SINRB
i =

∑Nb

i=1 SINR
M
i ,

and the steps in (39)-(44) are still the same. Thus Theorem 2
is proven.

APPENDIX C
SINR-MSE RELATION

To prove the MSE duality, we first rewrite SINRM
i in (32)

as

SINRM
i =

pi

∣∣∣uH
i

⊗L−1
l=1

(
H̃H

l FH
l

)
H̃H

L vi

∣∣∣2
uH
i Piui

(50)

≤ pivH
i H̃L

1⊗
l=L−1

(
FlH̃l

)
P−1i

L−1⊗
l=1

(
H̃H

l FH
l

)
H̃H

L vi

where Mi is defined in (33), and the inequality comes
from Cauchy-Schwarz’s inequality [34]. The upper bound is
achieved by

uSINR
i = αiM

−1
i

L−1⊗
l=1

(
H̃H

l FH
l

)
H̃H

L vi. (51)

Here αi 6= 0 is an arbitrary scalar.
Using (11), we can express the MSE of the ith data stream

for the MAC channel as7

MSEM
i = E

[
|ŝMi − sMi |2

]
(52)

= E

pi
∣∣∣∣∣uH

i

L−1⊗
l=1

(
HH

l FH
l

)
HH

L vi

∣∣∣∣∣
2
+ uH

i ui

+

Nb∑
j=1,j 6=i

E

pj
∣∣∣∣∣uH

i

L−1⊗
l=1

(
HH

l FH
l

)
HH

L vj

∣∣∣∣∣
2


+

L−1∑
k=1

E

[
uH
i

k⊗
m=1

(
HH

mFH
m

) 1⊗
m=k

(FmHm)ui

]

− 2p
1
2
i <

{
E

[
uH
i

L−1⊗
l=1

(
HH

l FH
l

)
HH

L vi

]}
+ 1.

Using Mi defined in (33), (52) can be written as

MSEM
i = pi

∣∣∣∣∣uH
i

L−1⊗
l=1

(
H̃H

l FH
l

)
H̃H

L vi

∣∣∣∣∣
2

+ uH
i Miui

− 2p
1
2
i <

{
uH
i

L−1⊗
l=1

(
H̃H

l FH
l

)
H̃H

L vi

}
+ 1. (53)

The optimal receive vector ui minimizing (53) is the Wiener
filter [35] and given by

uMSE
i = (Mi + ṽiṽ

H
i )−1ṽi

=
M−1i ṽi

1 + ṽH
i M−1i ṽi

(54)

where ṽi , p
1
2
i

⊗L−1
l=1

(
H̃H

l FH
l

)
H̃H

L vi and the matrix in-

version lemma, which is given by (A+BCD)
−1

= A−1 −
7Since we consider single-user downlink and uplink multihop MIMO

relay system in our proof, the inter-user interference term from (11) can
be eliminated. In other words, the inter-user interference becomes intra-user
interference when we treat multiple users as a “super” node as in Section IV.
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A−1B
(
DA−1B+C−1

)−1
DA−1, is applied to obtain the

second equation in (54).
Comparing (51) with (54), we find that uMSE

i in (54) also
maximizes the SINR with αi = p

1
2
i /(1 + ṽH

i M−1i ṽi). By
substituting (54) back into (53), the MSE of the ith data stream
of the MAC system is given by

MSEM
i =

1

1 + ṽH
i M−1i ṽi

=
1

1 + SINRM
i

. (55)

REFERENCES

[1] P. Viswanath and D. Tse, “Sum capacity of the vector Gaussian broadcast
channel and uplink-downlink duality,” IEEE Trans. Inf. Theory, vol. 49,
pp. 1912-1921, Aug. 2003.

[2] M. Schubert and H. Boche, “Solution of the multiuser downlink beam-
forming problem with individual SINR constraints,” IEEE Trans. Veh.
Technol., vol. 53, pp. 18-28, Jan. 2004.

[3] D. Tse and P. Viswanath, “On the capacity of the multiple antenna
broadcast channel,” in Proc. Multiantenna Channels: Capacity, Coding
and Signal Process., DIMACS Workshop Amer. Math. Soc. 2003, Oct.
2002, vol. 62, pp. 87-105.

[4] A. Khachan, A. J. Tenenbaum, and R. Adve, “Joint transmitter-receiver
optimization for downlink multiuser MIMO communications,” IEEE
Trans. Wireless Commun., 2006, submitted for publication.

[5] K. S. Gomadam and S. A. Jafar, “Duality of MIMO multiple access
channel and broadcast channel with amplify-and-forward relays,” IEEE
Trans. Commun., vol. 58, pp. 211-217, Jan. 2010.

[6] Y. Rong and M. R. A. Khandaker, “On uplink-downlink duality of
multihop MIMO relay channel,” IEEE Trans. Wireless Commun., vol.
10, pp. 1923-1931, Jun. 2011.

[7] A. Liu, V. K. N. Lau, and Y. Liu, “Duality and optimization for
generalized multi-hop MIMO amplify-and-forward relay networks with
linear constraints,” IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2356-
2365, May 2013.

[8] M. Ding and S. D. Blostein, “Uplink-downlink duality in normalized
MSE or SINR under imperfect channel knowledge,” in Proc. IEEE
Global Telecommun. Conf., Washington, DC, Nov. 26-30, pp. 3786-
3790, 2007.

[9] S. Shi and M. Schubert, “MMSE transmit optimization for multi-user
multi-antenna systems,” in Proc. IEEE Int. Conf. Acoustics, Speech, and
Signal Process., Philadelphia, PA, Mar. 18-23, vol. 3, pp. 409-412, 2005.

[10] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver
optimization for multiuser MIMO systems: Duality and sum-MSE
minimization,” IEEE Trans. Signal Process., vol. 55, pp. 5436-5446,
Nov. 2007.

[11] R. Hunger, M. Joham, and W. Utschick, “On the MSE-duality of the
broadcast channel and the multiple access channel,” IEEE. Trans. Signal
Process., vol. 57, pp. 698-713, Feb. 2009.

[12] M. B. Shenouda and T. Davidson, “On the design of linear transceivers
for multiuser systems with channel uncertainty,” IEEE J. Sel. Areas
Commun., vol. 26, pp. 1015-1024, Aug. 2008.

[13] P. Ubaidulla and A. Chockalingam, “Robust joint precoder/receive filter
designs for multiuser MIMO downlink,” in Proc. 10th IEEE Workshop
Signal Process. Advances Wireless Commun., pp. 136-140, Jun. 2009.

[14] M. Ding and S. D. Blostein, “Relation between joint optimizations for
multiuser MIMO uplink and downlink with imperfect CSI,” in Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Process., Las Vegas, NV,
pp. 3149-3152, Apr. 2008.

[15] T. Endeshaw, B. Chalise, and L. Vandendorpe, “MSE uplink-downlink
duality of MIMO systems under imperfect CSI,”’ in 3rd IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), Aruba, 13 16 Dec. 2009, pp. 384 387.

[16] T. E. Bogale, B. K. Chalise, and L. Vandendorpe, “Robust transceiver
optimization for downlink multiuser MIMO systems”, IEEE Trans.
Signal Process., vol. 59, pp. 446-453, Jan. 2011.

[17] J. Liu and Z. Qiu, “Sum MSE uplink-downlink duality of multiuser
amplify-and-forward MIMO relay systems,” IEEE Veh. Technol. Conf.,
San Francisco, CA, Sep. 5-8, 2011.

[18] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of Gaussian
multiple-access and broadcast channels, IEEE Trans. Inf. Theory, vol.
50, no. 5, pp. 768-783, May 2004.

[19] S. Vishwanath, N. Jindal, and A. J. Goldsmith, “Duality, achievable
rates, and sum-rate capacity of Gaussian MIMO broadcast channels,”
IEEE Trans. Inf. Theory, vol. 49, pp. 2658-2668, Oct. 2003.

[20] H. Weingarten, Y. Steinberg, and S. S. Shamai, “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936-3964, 2006.

[21] S. A. Jafar, K. S. Gomadam, and C. Huang, “Duality and rate opti-
mization for multiple access and broadcast channels with amplify-and-
forward relays,” IEEE Trans. Inf. Theory, vol. 53, pp. 3350-3370, Oct.
2007.

[22] S. Han, S. Ahn, E. Oh, and D. Hong, “Effect of channel estimation
error on BER performance in cooperative transmission,” IEEE Trans.
Veh. Technol., vol. 58, pp. 2083-2088, May 2009.

[23] O. Amin, S. S. Ikki, and M. Uysal, “On the performance analysis of
multirelay cooperative diversity systems with channel estimation errors,”
IEEE Trans. Veh. Technol., vol. 60, pp. 2050-2059, June 2011.

[24] A. S. Ibrahim and K. J. R. Liu, “Mitigating channel estimation error via
cooperative communications,” in Proc. IEEE ICC, 2009.

[25] S. S. Ikki and S. Aı̈ssa, “Impact of imperfect channel estimation and
co-channel interference on dual-hop relaying systems,” IEEE Commun.
Lett., vol. 16, pp. 324-327, Mar. 2012.

[26] M. Ding and S. D. Blostein, “MIMO minimum total MSE transceiver
design with imperfect CSI at both ends,” IEEE Trans. Signal Process.,
vol. 57, pp. 1141-1150, Mar. 2009.

[27] T. Yoo, E. Yoon, and A. Goldsmith, “MIMO capacity with channel
uncertainty: Does feedback help?” in Proc. IEEE Global Telecommun.
Conf., Dallas, TX, vol. 1, pp. 96-100, Nov. 29-Dec. 3, 2004.

[28] Y. Rong, “Simplified algorithms for optimizing multiuser multi-hop
MIMO relay systems,” IEEE Trans. Commun., vol. 59, pp. 2896-2904,
Oct. 2011.

[29] Y. Rong, “Optimal linear nonregenerative multihop MIMO relays with
MMSE-DFE receiver at the destination,” IEEE Trans. Wireless Com-
mun., vol. 9, pp. 2268-2279, Jul. 2010.

[30] Y. Rong, X. Tang, and Y. Hua, “A unified framework for optimizing
linear non-regenerative multicarrier MIMO relay communication sys-
tems,”IEEE Trans. Signal Process., vol. 57, pp. 4837-4851, Dec. 2009.

[31] M. R. A. Khandaker and Y. Rong, “Joint transceiver optimization for
multiuser MIMO relay communication systems,” IEEE Trans. Signal
Process., vol. 60, pp. 5977-5986, Nov. 2012.

[32] B. Hassibi and B. M. Hochwald, “How much training is needed in
multiple-antenna wireless link?,” IEEE Trans. Inf. Theory, vol. 49, no.
4, pp. 951-963, Apr. 2003.

[33] L. Zhang, R. Zhang, Y.-C. Liang, Y. Xin, and H. V. Poor, “On Gaussian
MIMO BC-MAC duality with multiple transmit covariance constraints,”
IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2064-2078, Apr. 2012.

[34] D. Palomar, J. Cioffi, and M. Lagunas, “Joint Tx-Rx beamforming
design for multicarrier MIMO channels: A unified framework for convex
optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2381-
2401, Sep. 2003.

[35] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

Ali Cagatay Cirik received the B.S and M.S.
degrees in telecommunications and electronics en-
gineering from Sabanci University, Istanbul, Turkey,
in 2007 and 2009, respectively, and Ph.D. degree in
electrical engineering from University of California,
Riverside in 2014. Currently, he is working as a
research scientist at Centre for Wireless Communi-
cations, University of Oulu, Finland.

His industry experience includes internships at
Mitsubishi Electric Research Labs, Cambridge, MA,
in 2012 and at Broadcom Corporation, Irvine, CA,

in 2013. His primary research interests are full-duplex communication, MIMO
signal processing, and convex optimization.



14

Yue Rong (S’03-M’06-SM’11) received the Ph.D.
degree (summa cum laude) in electrical engineer-
ing from the Darmstadt University of Technology,
Darmstadt, Germany, in 2005.

He was a Post-Doctoral Researcher with the
Department of Electrical Engineering, University
of California, Riverside, from February 2006 to
November 2007. Since December 2007, he has been
with the Department of Electrical and Computer
Engineering, Curtin University, Bentley, Australia,
where he is currently an Associate Professor. His

research interests include signal processing for communications, wireless
communications, underwater acoustic communications, applications of linear
algebra and optimization methods, and statistical and array signal processing.

Dr. Rong was a recipient of the Best Paper Award at the 2011 International
Conference on Wireless Communications and Signal Processing, the Best
Paper Award at the 2010 Asia-Pacific Conference on Communications, and
the Young Researcher of the Year Award of the Faculty of Science and
Engineering at Curtin University in 2010. He is an Editor of the IEEE WIRE-
LESS COMMUNICATIONS LETTERS, a Guest Editor of the IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS special issue on theories and
methods for advanced wireless relays, and was a TPC Member for the IEEE
ICC, WCSP, IWCMC, and ChinaCom.

Yiming Ma is a hardworking PhD candidate and
looking forward to graduating. He received the B.E.
degree of Electrical Engineering from China Univer-
sity of Mining and Technology, Xuzhou, Jiangsu,
China, the M.S. degree of technology from West-
ern Carolina University, Cullowhee, North Carolina,
USA, and the M.S. degree of electrical engineering
from University of California, Riverside, USA, in
2008, 2010 and 2011, respectively. He is currently
working towards the Ph.D. degree in electrical en-
gineering at University of California, Riverside. His

research interests include wireless communications and multiuser multicarrier
optimization.

Yingbo Hua (S’86-M’88-SM’92-F’02) received a
B.S. degree (1982) from Southeast University, Nan-
jing, China, a M.S. degree (1983) and a Ph.D. degree
(1988) from Syracuse University, Syracuse, NY.
He was a Lecturer (1990-1992), a Senior Lecturer
(1993-1995), and a Reader and Associate Professor
(1996-2000) with the University of Melbourne, Aus-
tralia. He was a Visiting Faculty Member with Hong
Kong University of Science and Technology (1999-
2000), and a Consultant with Microsoft Research,
WA (summer 2000). Since 2001, he has been with

the University of California at Riverside, where he is a Senior Full Professor.
Dr. Hua has served as Editor, Guest Editor, Member of Editorial Board and/or
Member of Steering Committee for IEEE Transactions on Signal Processing,
IEEE Signal Processing Letters, EURASIP Signal Processing, IEEE Signal
Processing Magazine, IEEE Journal of Selected Areas in Communications,
and IEEE Wireless Communication Letters. He has been a Member of IEEE
Signal Processing Society’s Technical Committees for Underwater Acoustic
Signal Processing, Sensor Array and Multichannel Signal Processing, and
Signal Processing for Communication and Networking. He has served as
member of Technical and/or Advisory Committees for over forty international
conferences and workshops. He has authored over three hundreds of articles
and coedited three volumes of books, with more than six thousands of
citations, in the fields of Sensing, Signal Processing and Communications.
He is a Fellow of IEEE and AAAS.


