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This study proposes a nonlinear min-cost-pursued swapping dynamic (NMSD) system to model the evolution of selfish routing
games on traffic network where travelers only swap from previous costly routes to the least costly ones. NMSD is a rational behavior
adjustment process with stationary link flow pattern being the Wardrop user equilibrium. NMSD is able to prevent two behavioral
deficiencies suffered by the existing min-cost-oriented models and keep solution invariance. NMSD relaxes the homogeneous user
assumption, and the continuous-time NMSD (CNMSD) and discrete-time NMSD (DNMSD) share the same revision protocol.
Moreover, CNMSD is Lyapunov-stable. Twonumerical examples are conducted.Thefirst one is designed to characterize theNMSD-
conducted network traffic evolution and test the stability of day-to-day NMSD. The second one aims to explore the impacts of
network scale on the stability of route-swaps conducted by pairwise and min-cost-pursed swapping behaviors.

1. Introduction

Smith [1] proposed the classical proportional-switch adjust-
ment process (PAP) to describe the evolution of network
traffic. PAP assumes traffic swaps from the previous costly
routes to less costly ones with swapping rate being propor-
tional to the pairwise absolute cost differences. PAP is viewed
as (perhaps) the most natural route-swapping process [2].
It has a simple mathematic formulation and an intuitive
behavior basis; in addition, PAP explicitly addresses the
original micromechanism of network traffic evolution, that
is, how and how much traffic will swap from the being-
used routes to the other ones. Based on PAP, Cho and
Hwang [3, 4] presented a stimulus-reaction dynamic, where
an artificial constraint was added to prevent negative path
flows. However, the revision protocol had no change and
the artificial constraint lacks reasonable behavior basis. More
extensions and applications can be found in [2, 5–8] and so
forth.

Walting and Hazelton [11] mentioned the superiorities
of day-to-day traffic modeling method; however, they also
summarized two major limitations for the continuous (PAP
included) models, that is, the continuous-time trip adjust-
ment and homogeneous user assumption. Recently, Zhang
et al. [9] pointed out another two behavior deficiencies

of PAP, namely, the weak robustness and over-swapping,
and developed a nonlinear pair-wise swapping dynamic
(NPSD)whichwas able to overcome the abovementioned two
limitations and two behavior deficiencies. Moreover, NPSD
inherited the advantages of PAP.

Different from PAP and NPSD, this study investigates
another route-swapping behavior; that is, travelers only swap
from the previous costly routes to the least costly alternatives.
This kind of greedy route-swapping behavior (compared with
the pair-wise swapping behavior) was studied byMounce and
Carey [2]. In their dynamic model, the swapping traffic from
a costly route to one of the least costly ones was proportional
to the absolute difference, just analogous to PAP. Therefore,
it still suffered from the PAP shortcomings. Considering this,
this study develops a nonlinear min-cost-pursued swapping
dynamic (NMSD). Since NMSD is revised from NPSD, it
avoids those shortcomings suffered by the existing PAP-
revised min-cost-pursued models.

The remainder of this paper is organized as follows. In
Section 2, NMSD system is comprehensively illustrated. In
Section 3, the proof of Lyapunov stability for continuous-
timeNMSD (CNMSD) is presented. Applying the day-to-day
NMSD, two numerical examples are conducted in Sections 4
and 5 to characterize the NMSD-conducted network traffic
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evolution and explore the impacts of network scale on the
route-swaps. Section 6 concludes the whole study.

2. Nonlinear Min-Cost-Pursued
Route-Swapping Dynamic

Firstly, we present four assumptions for NMSD: (a) a traveler
only changes his route to the least costly one, and at least some
travelers, if not all, will do so unless all the travelerswere all on
the least costly routes the previous day; (b) the travel demand
is inelastic; (c) every driver has perfect information on the
previous and current traffic networks; (d) the route-swap
decision is based on the travel experiences of the previous
day. The latter three assumptions are also contained in PAP
and NPSD.

Based on the above four assumptions, define
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further. Recalling (2), Property 2 is proved.

Property 3 (solution invariance). For NMSD, if the initial
flow pattern lies in feasible set Ω, then so do the remaining
route flow patterns.

Proof. Given a feasible initial route flow pattern, Property 3
requires that the remaining route flows are still nonnegative
and the travel demands are still conservative. Define a small
real number 𝜏 > 0. Firstly, we prove that Property 3 is
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Then the nonnegativity of path flow is proved.

Conservation. According to (2), we have
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Then the conservation for travel demand is proved.
For the previous proof when 𝜏 and 𝑡 orderly takes

1 and integers, solution-invariance will hold for DNMSD.
Accordingly, Property 2 is owned by NMSD.
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Definition 1 (stationary path-flow pattern). The stationary
path-flow pattern of NMSD is a set of network path-flow
states; starting from these path-flow states, NMSD repro-
duces them.
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Proof. Since NMSD is a determined one-to-one dynamic
model (i.e., an input produces a single determined output),
then the sufficiency of Corollary 2 can be easily proved
by recurrence. The necessity can be concluded by Defini-
tion 1.

Subsequently, we present the relationship between sta-
tionary path flow pattern of NMSD and Wardrop user
equilibrium.
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flow.
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then we obtain the proof of Theorem 5 for DNMSD.

Corollary 6. For NMSD, the stationary link flow pattern is
also equivalent to Wardrop user equilibrium.

Proof. SinceNMSD is a rational behavior adjustment process,
Corollary 6 holds (according to [14]).

As it is known to all, without imposing extra behavioral
conditions, Wardrop user equilibria are not unique for path
flow pattern but only for link flow pattern. However, accord-
ing to Theorem 5 and Corollary 6, we can judge whether
NMSD has arrived at equilibrium state or not by detecting
the states of link flows.

3. Lyapunov Stability

Lyapunov method is an acknowledged methodology to ana-
lyze the stability of a dynamic system [15].The essence of this
method is to identify a proper Lyapunov function. Peeta and
Yang [7] introduced (7) to analyze the stability of continuous-
time PAP, namely,

𝑉 (𝑓) = ∫

Δ𝑓

0

𝑐 (𝑦) 𝑑𝑦, (7)

where 𝑦 is the integration variable, Δ is the path-link
incidencematrix, and vectors𝑓 and 𝑐(⋅) group path flows and
link travel times, respectively.

In this study, we still employ the Lyapunov function
defined by (7) to analyze the stability of the present CNMSD
system. By this way, we can obtain the following theorem.

Theorem7. All solutions of CNMSD systemdefined by (2)–(4)
together are bounded and converge toWardrop user equilibria.
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Proof. Since 𝑐(⋅) in (7) is non-negative and 𝑉(𝑓) → ∞

if 𝑓 → ∞, then 𝑉(𝑓) is non-negative and radically
unbounded. According to (6), taking derivative of 𝑉(𝑓) with
respect to 𝑡, we have �̇�(𝑓) = 𝑉



(𝑓)Δ ̇𝑓 = 𝑐Δ ̇𝑓 = 𝐶 ̇𝑓 ≤ 0,
where vector 𝐶 groups route flows. Let 𝑍 = {𝑓 | �̇�(𝑓) =

0} and let 𝐸 be the largest invariant set contained in set 𝑍,
according to LaSalle’s theorem [15]; all solutions of CNPSD
system will be bounded and converge to set 𝐸. Then, to prove
that Theorem 7, we only need to prove 𝐸 is equivalent to
Wardrop user equilibria.

Since �̇�(𝑓) = 𝐶 ̇𝑓 = ∑
𝑤
∑
𝑘
𝐶
𝑤𝑡

𝑘

̇𝑓
𝑤𝑡

𝑘
≤ 0, according to (6),

we have �̇�(𝑓) = 0 if and only if

(𝐶
𝑤𝑡

𝑘
− 𝐶
𝑤𝑡

∗
) 𝑓
𝑤𝑡

𝑘
𝜌
𝑤𝑡

𝑘
= 0 ∀𝑘, 𝑤, 𝑡. (8)

According to (8), we have 𝐶𝑤𝑡
𝑘

= 𝐶
𝑤𝑡

∗
if and only if 𝑓𝑤𝑡

𝑘
> 0

and𝐶𝑤𝑡
𝑘

≥ 𝐶
𝑤𝑡

∗
if and only if𝑓𝑤𝑡

𝑘
= 0, whichmeans those used

paths have the same and the minimum cost, concluding that
𝑍 is equivalent to Wardrop user equilibria. From Property 3,
the invariant set of CNMSD system is the feasible setΩ itself.
Hence, the largest invariant set 𝐸 = Ω ∩ 𝑍 = 𝑍. Then
Theorem 7 is proved.

Note that Theorem 7 only promises the stability of
CNMSD. However, we cannot conclude that DNMSD is
also Lyapunov-stable from Theorem 7. For DNMSD, we
will demonstrate it through the numerical experiment in
Section 4.

4. Numerical Study I

In this section, using the day-to-dayNMSD,we conduct some
numerical sensitivity analyses on a hypothetical network
to analyze the impacts of reaction sensitivity on traffic
evolutions and test the stability of DNMSD. For this, various
levels of one-day capacity reductions are imposed on the
present network.

4.1. Testing Network and Scenarios. The present network
(Figure 1) has 12 nodes, 17 links, 2 OD-pairs, and 8 paths,
where OD-pair (1, 11) is connected by Path 1 (1 → 9 → 14),
Path 2 (1 → 5 → 10), Path 3 (2 → 6 → 10), and
Path 4 (2 → 11 → 15); OD-pair (2, 12) is connected by
Path 5 (3 → 11 → 16), Path 6 (3 → 7 → 12), Path 7
(4 → 8 → 12), and Path 8 (4 → 13 → 17).

The travel demands for both OD-pairs are 90 (pcu/min).
In Figure 1, the bracketed numbers in each link correspond
orderly to its label, free-flow time (min), and normal capacity
(pcu/min). The travel time of each link is computed by BPR
function:

𝑐
𝑎
= 𝑐
0

𝑎
[1 + 0.15(

V
𝑎

𝑂
𝑎

)

4

] ∀𝑎 ∈ 𝐴, (9)

where 𝐴 is the set of links, 𝑐0
𝑎
, V
𝑎
, and 𝑂

𝑎
are orderly the

free-flow time, traffic flow, and initial capacity on link 𝑎. For
brevity, we will omit the units in the remaining presentation.

It can be concluded from Figure 1 that the flow of Routes
1–4 are orderly equal to that of Routes 8–5 when it is symmet-
ric. This property will be often quoted below without extra

notice. Given that the initial traffic flow pattern of network
is at UE state with 𝑓

0

= (20, 20, 25, 25, 25, 25, 20, 20)
𝑇 and

all travelers have the same reaction sensitivity 𝜃, let vector
Cap = (Cap9,Cap11), where Cap9 and Cap11 denote the
ratio of capacity reduction on links 9 and 11, respectively.
In the present numerical example, we design two scenarios
which are parameterized as follows:

asymmetric capacity reduction (ACR):

Cap = ([0.1 : 0.1 : 0.9] , 0.0)

when 𝜃 = [0.1 : 0.1 : 3.0] ,

(10)

symmetric capacity reduction (SCR):

Cap = (0.0, [0.1 : 0.1 : 0.9])

when 𝜃 = [0.1 : 0.1 : 3.0] .

(11)

Note that the capacity reduces just at day 0 and goes
back to normal after day 0. Also, only one link suffers from
the capacity reduction at a time. Obviously, Figure 1 remains
symmetric under SCR, but it will become asymmetric under
ACR. Based onTheorem 3, the convergence criterion is set to
be ‖𝑓(𝑛+1) − 𝑓

𝑛

‖ ≤ 1.0𝐸 − 004.

4.2. Numerical Results. Figure 2 displays the traffic evolutions
under medium SCR and different reaction sensitivities. Fig-
ure 2 suggests that traffic on the routes suffering from direct
interferences will suffer different degrees of flow loss, causing
the sudden drops on those curves on Day 1. Figure 2 also
suggests that the traffic evolutions on the symmetric routes
are identical under SCR. In addition, when 𝜃 = [0.4 :

0.4 : 1.6], the route-swaps are convergable, whereas the
smoothness of route-swaps becomes worse as 𝜃 rises. When
𝜃 = [2.0 : 0.4 : 2.4], the route-swaps fail to converge but
finally reach the 6-day cycle of periodical oscillations, and the
amplitudes increase as 𝜃 rises.

Our numerical results uniformly report that the route-
swaps finally reach the 6-day cycle of periodical oscillations
unless convergence is reached. For this, we introduce the
average deviation (AD) to measure the degrees of final
oscillations; that is,

AD = √
1

2 × 4 × 6
∑

𝑤

∑

𝑘

6

∑

𝑖=1

(𝑓
𝑤

𝑘𝑖
− 𝑓
𝑤0

𝑘
)
2

, (12)

where 2, 4, and 6 in the denominator orderly denote the
number of OD-pairs, the number of routes contained in each
OD-pair, and the cycle of periodical oscillation. 𝑓𝑤

𝑘𝑖
denotes

the 𝑖th flow element in the periodical oscillation on route 𝑘
between 𝑤.

Figure 3 suggests that AD is not uniformly equal to 0 but
depends on 𝜃 and the capacity reduction, which demonstrates
that the stability of DNMSD does not hold in general. On
the whole, we can divide the final flow states into three
regions, that is, stable region with 𝜃 ≤ 1.6, metastable
region with 𝜃 ∈ [1.7, 1.8], and unstable region with 𝜃 ≥

1.9. In the stable region, route-swaps can converge to the
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Figure 1: A medium testing network (also applied in Zhang et al. [9]).

initial UE state for all capacity reductions. In the metastable
region, both convergence and oscillation exist, and route-
swaps only converge for small capacity reductions. In the
unstable region, route-swaps cannot converge to the initial
UE state but step into the 6-day cycle of periodical oscillations
for all capacity reductions. In addition, it is shown from two
subfigures that the final AD mainly depends on the reaction
sensitivity more than the capacity reduction, and AD grows
more and more slowly as 𝜃 increases.

Tables 1 and 2 orderly present the final flow states
produced by day-to-day NMSD under ACR and SCR when
𝜃 = 2.5.

Table 1 shows that although the network recovers symme-
try after one-day of ACR on Link 9, the oscillation manners
on the symmetric routes are obviously asymmetric for all
levels of ACRs. This phenomenon indicates that ACR causes
asymmetric route-swapping for two OD-pair users, which
finally results in asymmetric evolutionary results.

Table 2 shows that the final oscillation manners on the
symmetric routes are identical under SCR; that is, SCR finally
results in symmetric oscillations.

Figure 3 and Tables 1 and 2 jointly demonstrate that the
final oscillationmanners depend on both 𝜃 and the characters
of capacity reductions. Different oscillation manners are
reached for different 𝜃; even though 𝜃 is given, the final
oscillation manners can be different under different capacity
reductions. This phenomenon is especially obvious under
SCR. Moreover, 𝜃 has a larger impact on the traffic evolution
than the capacity reduction.

Figure 4 displays impacts of capacity reduction and
reaction sensitivity on the convergent rate of route-swaps in
the stable region (i.e., 𝜃 ≤ 1.6).

Figure 4 shows that, given a capacity reduction the rate
of convergence increases at first and then decreases as 𝜃

increases from 0.1 to 1.6, and this variation is more and
more obvious as capacity reduction rises; given a 𝜃, the rate
of convergence increases overall as the capacity reduction
grows, but this trendweakens as 𝜃 increases.Overall, the reac-
tion factor 𝜃 has more significant impacts on the convergent
rates of route-swaps than the extents of capacity reduction.
The above findings can provide some useful insights for

developing DNMSD-based traffic assignment algorithms.
Since the value of 𝜃 cannot impact the feasibility of flow
sequences, we can fix 𝜃 at a relative (rather than a very) small
level (e.g., 𝜃 ∈ [0.5, 1.0]) to guarantee convergence and still
maintain a fast rate.

Figure 5 displays the traffic evolution under one-day
medium ACRs in stable region.

See each column in Figure 5 alone; it shows analogous
trends as Figure 2 does. Comparing two columns of Figure 5,
it shows that asymmetric interferences lead to asymmetric
reactions. As 𝜃 increases from 0.4 to 1.6, due to undertaking
direct interferences, the travelers between OD-pair (1, 11)
react oneday earlier than those between OD-pair (2, 12),
and the former also reacts much stronger than the latter.
Figure 5 also suggests that any interference in a correlated
traffic network will transfer to the whole network, and the
impact of interference is degressive.

5. Numerical Study II

In this section, we discuss the influence of network scale
on the convergence of route-swaps through a numerical
comparison between two hypothetical networks. For this,
besides Figure 1, another testing network (see Figure 6) is
introduced.

5.1. Contrastive Network. The contrastive network (Figure 6)
consists of 10 nodes, 11 links, 2 OD-pairs, and 4 paths.

In Figure 6, the bracketed numbers in every linkmean the
same as those of Figure 1. OD-pairs and paths are organized
as follows:

OD-pair (1, 9) is connected by Path 1 (1 → 5 → 8)
and Path 2 (2 → 6 → 9);
OD-pair (2, 10) is connected by Path 3 (3 → 6 →

10) and Path 4 (4 → 7 → 11).
Obviously, in contrast with Figure 1, Figure 6 has
smaller scale.

5.2. Scenarios and Results. This numerical example is to
identify the difference in convergence region of 𝜃 for
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Figure 2: Traffic evolutions under one-day medium SCR.

Figures 1 and 6. In present contrastive experiment, the travel
time of each link is computed by (9); all travelers have the
same reaction sensitivity 𝜃; the initial network states for two
networks are both at UE states; the convergence criterion is
the ‖𝑓(𝑛+1) − 𝑓

𝑛

‖ ≤ 1.0𝐸 − 004.

Initial conditions for Figure 1 (the same as that of
Section 4) are

the travel demands for both OD-pairs are 90
(pcu/min);
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Figure 4: Convergence under different (𝜃,Cap).

the initial path flow pattern 𝑓
0

= (20, 20, 25, 25,

25, 25, 20, 20)
𝑇;

the capacity reduction vector Cap = (Cap9,
Cap11).

Initial conditions for Figure 6 are

the travel demands for both OD-pairs are 45
(pcu/min);
the initial path flow pattern 𝑓

0

= (20, 25,

25, 20)
𝑇;

the capacity reduction vector Cap = (Cap5,
Cap6).

Just the same as Section 4, here the capacity reduces at
Day 0 and goes back to normal afterDay 0. Also, only one link
suffers from the capacity reduction at a time. Two designed
capacity reduction scenarios are parameterized as follows:

asymmetric capacity reduction (ACR):

Cap = ([0.1 : 0.1 : 0.9] , 0.0)

when 𝜃 = [0.005 : 0.005 : 5.0] ,

(13)
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Figure 5: Convergable traffic evolutions under one-day medium ACR.
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Figure 6: A simple testing network (modified from Zhou and Chen [10]).

Table 1: Final flow states under different ACRs and 𝜃 = 2.5.

𝜃 Cap9 (%) Final path flows (pcu/min)
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8

2.50

10 and 40–90

74.8243 1.3342 11.1557 2.6858 9.7170 1.3738 7.6246 71.2847
6.7909 0.6582 11.1167 71.4342 9.6895 70.2239 3.4885 6.5981
6.7699 67.3692 5.9334 9.9276 3.4381 11.3381 1.4553 73.7685
3.5258 7.6638 2.5071 76.3033 71.2334 11.2976 0.7361 6.7329
72.8012 7.6437 1.4564 8.0986 7.7571 6.0320 69.4974 6.7134
6.6764 3.3534 71.8913 8.0789 76.6707 2.3772 7.6447 3.3074

20–30

73.7685 1.4553 11.3381 3.4381 9.9276 5.9334 67.3692 6.7699
6.7329 0.7361 11.2976 71.2334 76.3033 2.5071 7.6638 3.5258
6.7134 69.4974 6.0320 7.7571 8.0986 1.4564 7.6437 72.8012
3.3074 7.6447 2.3772 76.6707 8.0789 71.8913 3.3534 6.6764
71.2847 7.6246 1.3738 9.7170 2.6858 11.1557 1.3342 74.8243
6.5981 3.4885 70.2239 9.6895 71.4342 11.1167 0.6582 6.7909

symmetric capacity reduction (SCR):

Cap = (0.0, [0.1 : 0.1 : 0.9])

when 𝜃 = [0.005 : 0.005 : 5.0] .

(14)

Obviously, Figures 1 and 6 remain symmetric under SCR
but become asymmetric under ACR. Table 3 presents the
numerical results for two networks.

Here the uniform convergence supremum of 𝜃 is the
supremum of 𝜃 promising the convergence of route-swaps
for Cap9/Cap11 = [0.1 : 0.1 : 0.9]. Table 3 indicates that
the uniform convergence supremums of NMSD vary with
both interferences and network scales. As the network scale
increases, the uniform convergence supremum of 𝜃 reduces
by 12.79% under ACR and 15.40% under SCR. For NPSD,The
two numbers are both 3.78%, with both reducing from 3.835
to 3.690 and having no relation with the capacity reduction.
These results suggest that the instability of traffic network can
become worse as the scale of network increases, and such a
possibility for the NMSD network is larger than that for the
NPSD network. In some degree, this implies that the pair-
wise route-swapping behavior is more robust than the min-
cost-pursed behavior. In addition, the convergence region for

NPSDhas no relation to the characters of interference.Hence,
NPSD is more suitable to develop algorithmic devices for the
UE-oriented traffic assignment problems.

6. Conclusions

This study develops a nonlinear min-cost-pursued swapping
dynamic (NMSD) to describe such a kind of rerouting
behavior solely rerouting to the least costly routes connecting
a certain OD-pair. NMSD swaps traffic to the shortest
routes by a nonlinear function of the relative (rather than
absolute) cost-differences. NMSD can prevent two behavioral
deficiencies (i.e., weak robustness andoverswapping) suffered
by the existing analogous models. NMSD is a rational
behavior adjustment process with stationary link flow pattern
corresponding toWardrop user equilibrium and can promise
solution-invariance. In addition, both continuous-time and
discrete-timeNMSDs (abbreviated as CNMSD andDNMSD,
resp.) share the same revision protocol and can capture het-
erogeneous rerouting behaviors. Also, CNMSD is Lyapunov-
stable.

The first numerical example conducted by the day-to-
day NMSD suggests the following: (1) as reaction factor 𝜃
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Table 2: Final flow states under different SCRs and 𝜃 = 2.5.

𝜃 Cap11 (%) Final path flows (pcu/min)
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8

2.50 10–90

73.0483 7.6258 1.3517 7.9742 7.9742 1.3517 7.6258 73.0483
6.6895 3.3245 72.0310 7.9550 7.9550 72.0310 3.3245 6.6895
73.0299 1.3182 11.1420 4.5098 4.5098 11.1420 1.3182 73.0299
6.6933 0.6822 11.1000 71.5245 71.5245 11.1000 0.6822 6.6933
6.6740 69.4958 5.9146 7.9156 7.9156 5.9146 69.4958 6.6740
3.2919 7.6460 2.3397 76.7225 76.7225 2.3397 7.6460 3.2919

Table 3: The uniform convergence supremums of 𝜃.

Route-swapping dynamics Interference Figure 6 Figure 1

Day-to-day NMSD ACR 1.915 1.670
SCR 1.915 1.620

Day-to-day NPSD ACR 3.835 3.690
SCR 3.835 3.690

increases, the traffic evolution results can be divided into
three regions, that is, the stable region, meta-stable region,
and unstable region; (2) the final traffic states depend on
both 𝜃 and the characters of interference, and 𝜃 plays a
more important role. The second numerical study suggests
that as the network scale increases, the convergence region
of reaction factor for both NPSD and NMSD reduces.
However, the convergence region for NPSD has no relation
to the characters of interference and reduces much slower. In
addition, there is no need for NPSD to identify the shortest
route. Hence, NPSD is more suitable to develop algorithmic
devices for the UE-oriented traffic assignment problems than
NMSD.
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