

S. Nurcan (Ed.): CAiSE Forum 2011, LNBIP 107, pp. 126–141, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Tool Support for Enforcing
Security Policies on Databases

Jenny Abramov1,2, Omer Anson2, Arnon Sturm1, and Peretz Shoval1

1 Department of Information Systems Engineering
2 Deutsche Telekom Laboratories (T-Labs),

Ben-Gurion University of the Negev,
Beer Sheva 84105, Israel

{jennyab,sturm,shoval}@bgu.ac.il,
oaanson@gmail.com

Abstract. Security in general and database protection from unauthorized access
in particular, are crucial for organizations. It has long been accepted that
security requirements should be considered from the early stages of the
development process. However, such requirements tend to be neglected or
dealt-with only at the end of the development process. The Security Modeling
Tool presented in this paper aims at guiding and enforcing developers, in
particular database designers, to deal with database authorization requirements
from the early stages of the development process. In this paper we demonstrate
how the Security Modeling Tool assists the various stakeholders in
designing secure database code and describe the tool architecture.

Keywords: Secure software engineering, database design, authorization.

1 Introduction

Data is the most valuable asset for an organization as its survival depends on the
correct management, security, and confidentiality of the data [1]. In order to protect
the data, organizations must secure data processing, transmission and storage.
Developers of data-oriented systems always face problems related to security. Yet,
these types of problems are usually ignored in the early stages of the development
process.

In the last decade various methods were suggested to incorporate security aspects
within the development process. Several UML security-related extensions were
proposed, such as UMLsec [19] and SecureUML [17, 15]. Additionally, a security-
oriented extension to the Goal-Driven Requirements Engineering methodology
Tropos was proposed - Secure Tropos [18]. Mouratidis and Jurjens combined Secure
Tropos and UMLsec [24] to create a structured methodology for secure software
development that supports all software development phases. Fernández-Medina and
Piattini [23] also proposed a method to design secure databases. Another approach for
security specification is security patterns, which is based on the classic idea of design
patterns introduced by the Gang of Four [20]. Security patterns were proposed to

 Tool Support for Enforcing Security Policies on Databases 127

assist developers to handle security concerns and provide guidelines to be used from
the early stages of the development lifecycle [5]. However, to successfully utilize a
security pattern, there must be systematic guidelines supporting its application
throughout the entire software development lifecycle. Such a methodology to build
secure systems using patterns was presented by Schumacher et al. [25] and Fernandez
et al. [16]. This methodology integrates security patterns into each one of the software
development stages, and each stage can be tested for compliance with the principles
presented by the patterns. A catalog of security patterns can help to define the security
mechanisms at each architectural level and at each development stage. Hafner and
Breu [21] proposed a model driven security methodology for service-oriented
architectures. Other methodologies present the use of aspect-oriented software design
to model security as separate aspects which would later be weaved within the
functional model. For example, in [22] the authors propose to deal with access control
requirements while utilizing UML diagrams.

The above studies, and other related studies (which are not referenced here due to
space limit), mainly provide guidelines regarding the way security should be handled
within certain stages of the software development process, or address specific aspects
of security. To the best of our knowledge, no existing method provides a complete
framework that both guides and enforces organizational security policies on a system
design, and then generates executable code from that design.

To overcome these deficiencies, we have developed a methodology that enables
organizations to specify their security policies in the form of security patterns, which
will guide developers in the incorporation of these particular organizational security
policies, as well as verifies their correct application. In addition, the methodology
enables the developer to transform the result into code, based on the organizational
policies. In this paper, we explicitly refer to the application of access control in
databases.

The methodology incorporates ideas from two areas of expertise: in the area of
system development methodologies, we adopt the principle of integrating data and
functional modeling at the early stages of the development, according to the
Functional and Object-Oriented Methodology (FOOM) [6]; in the area of domain
engineering, we adopt the principles suggested by the Application Based Domain
Modeling (ADOM) approach [4]. ADOM supports building reusable assets on the one
hand, and representing and managing knowledge in specific domains on the other
hand. This knowledge guides the development of various applications in that domain
and serves as a verification template for their correctness and completeness.

The developed methodology is supported by the Security Modeling Tool (SMT),
which enables the modeling of security patterns and enforces their correct usage
during application development. The knowledge captured in the security patterns is
used to automatically verify that the application models are indeed secure with respect
to the defined patterns. Having a verified model, a secure database code can be
automatically generated.

SMT is an Eclipse plug-in and is based on existing frameworks such as the Eclipse
Modeling Framework [2], which is used to interface with UML diagrams; and the
Standard Widget Toolkit [7], which is used to provide additional graphical user
interface where needed. The SMT is continuously under development.

128 J. Abramov et al.

The rest of this paper is structured as follows: Section 2 provides an overview on
the methodology, Section 3 presents and illustrates the use of the Security Modeling
Tool, Section 4 elaborates on the SMT architecture and design, and Section 5
summarizes and proposes ideas for future work.

2 Methodology Overview

The methodology can be roughly divided into four phases: preparation, analysis,
design, and implementation. Fig. 1 presents the scope of the methodology in terms of
the tasks to be performed in each phase (presented in round rectangle) and the
generated artifacts (presented in rectangle). The preparation phase occurs at the
organizational level, whereas the other three phases occur at the application
development level.

Fig. 1. Methodology overview

At the organizational level, in which the preparation phase takes place, we define
organizational security policies in the form of security patterns. These security
patterns present general access control policies within the organization. Once the
patterns are specified, the transformation rules are defined, depicting how to
transform a logical model, based on the pattern, into a database code. The artifacts
created in this phase are reusable and may be applied to various applications.

The application level deals with the development of different applications within
the organization. In the analysis phase of the application development process, two
models are defined, following the FOOM methodology [6]: a conceptual data model
in the form of an initial class diagram, and a functional model in the form of extended

 Tool Support for Enforcing Security Policies on Databases 129

use cases. Then, the security constraints regarding authorization to access the database
are analyzed and specified in natural language. In the design phase, the artifacts from
the preparation and analysis stage are used to refine the data model and enhance it
with the definitions of the security patterns, in order to create a secure data model.
Next, the secure data model is verified. If the verification fails, the data model is
refined until it adheres to the rules of the security patterns. In the implementation
phase, the secure data model is transformed into a secure database schema with its
access control specifications. This process is performed by executing the
transformation rules specified in the preparation phase as part of the security patterns.

3 The Security Modeling Tool

3.1 Organizational Level - The Preparation Phase

During the preparation phase, security patterns along with their transformation rules
are specified. These patterns will serve as guidelines for application developers as
well as a verification template. In addition, they provide the infrastructure for the
transformation process.

Security Pattern Specification: Similarly to the classical pattern approach, security
patterns are specified in a structured form. The standard template aids designers, who
are not security experts, to identify and understand security problems and solve them
efficiently. In order to specify the patterns, we use a common template introduced by
Schumacher [5]. The template consists of five main sections: name, context, problem,
solution, and consequence. The name, context, problem, and consequence sections are
documentation text files; the SMT provides a text editor to support the specification
of these sections. They provide the name of the pattern, the context in which the
security problem occurs, the description of the security problem, and the
consequences of this solution. The solution section provides a generic solution to the
problem. It is specified with a UML class diagram that provides the static structure of
the solution. The SMT uses a UML editor that is based on TOPCASED [9]. Fig. 2
(upper side) presents the structure of a simple Role-Based Access Control (RBAC)
pattern. In the described pattern, Role is akin to an external group of entities or users
playing a specific role that needs to access the database. While applying or
implementing this RBAC pattern, it is obligatory to define at least one Role as it is
defined as a <<mandatory>> element. In addition, one can specify the system
privileges assigned to some Role by using the sysPrivileges classification
ProtectedObject is akin to a database table, where the PK classification is used to
indicate the primary keys of the table. Privileges association class determines the
schema object privileges of a Role with respect to a specific ProtectedObject. A class
that is classified as Privileges must include at least one object privilege – accessType.
Both sysPrivileges and accessType classifications are Boolean properties that should
be assigned to TRUE in case a privilege is given.

In addition, OCL constraints are used to specify additional constraints that cannot
be expressed via the diagrams. The SMT provides an OCL Editor to add constraints to

130 J. Abramov et al.

the pattern. These OCL constraints are evaluated in the application layer during the
verification in the design stage, rather than in the domain layer where they are
defined. To enable this verification we had to define several operators, such as
getName() or getParent(), that support metadata queries on the elements.

The lower part of Fig. 2 shows an example of an OCL rule. In this example, the
OCL rule restricts the number of roles that can have the SYSDBA system privilege to
one, and that is the DBA role. Another example of such OCL rule is the following
constraint that limits object privileges to SELECT, INSERT, UPDATE and DELETE:

context Privileges

inv: Set{'SELECT','INSERT','UPDATE','DELETE'}->

 includesAll(self.accessType->collect(e|e.getName()))

Fig. 2. Pattern specification window

In case that a finer grained solution is required, SMT provides a method to define
OCL rules in the form of general templates [8]. These general templates are specified
using the specific elements that were already defined by the class diagrams specifying
the structure of the pattern. In the RBAC example, the Role, ProtectedObject,
accessType are some of those elements. The templates are essentially exemplars of
the desired output code with "blanks" that should be filled in with a value of an
attribute. These "blanks" contain meta-code and are delimited between "< >". After
the missing values are inserted, a template engine is used to create the output code.
Fig. 3 presents the instance level template that is used to specify access constraints on
an instance of an object (or a row of a table in terms of relational database). These
templates are used to specify fine grained access control policies during the
application modeling. The developers need only to fill in the missing parameters that
are inside the triangle brackets and do not need to write code in PL/SQL unless they
want to express some complex constraint.

-- The DBA role, and only the DBA role, may have the SYSDBA system privilege.

inv:
 if self.getName() = 'DBA' then
 self.protectedObject->size() = 0
 and self.sysPrivileges->collect(e | e.getName())->includes('SYSDBA')
 else
 self.sysPrivileges->collect(e | e.getName())->excludes('SYSDBA')
 endif

 Tool Support for Enforcing Security Policies on Databases 131

Once the solution (i.e., the pattern) is defined, the SMT automatically generates a
UML profile, which will be used by the applications to classify security elements. In
our case the profile will consist of the following: the stereotypes Role and
ProtectedObject are created and are associated with the class meta element, the
Privilege stereotype is associated with the association class meta element. The
attributes of sysPrivileges, accessType, PK, and username, are created as stereotypes
associated with the property meta element. The various OCL constraints are also
transformed into the profile. Note that we did not associate any new notations for the
profiles; rather we used the standard <<stereotype>> to add semantics to the
application model elements.

Fig. 3. The Instance (Row) Level Template

Transformation Rules Specification: To transform an application model (UML
class diagram) into SQL code, we use the ATLAS Transformation Language (ATL)
[3]. These transformation rules are generic and refer to all applications. The ATL
rules specify how the application elements should be transformed into SQL elements.
So, applications are transformed to SQL model instantiating an SQL meta-model
provided by SMT. Then, the SQL model (created by the ATL transformation) is
automatically converted to SQL code by the SMT. Fig. 4 shows the transformation
rule for Privilege.

3.2 Application Development Level

To demonstrate the use of SMT at the application development level, we use a simple
university system, which enables to register students to courses, update student
details, assign grades, etc. Naturally, each system operator has different privileges.

context <Privilege> inv:

 self.<ProtectedObject>.<RoleOfObject : ProtectedObject>-> -- RoleOfObject is ProtectedObject representing the Role

CREATE OR REPLACE FUNCTION <RoleOfObject : ProtectedObject>_<Privilege2constrain : accessType>_<ProtectedObject>
 (v_schema VARCHAR2, v_object VARCHAR2) RETURN VARCHAR2 AS
 <RoleOfObject : ProtectedObject>_username VARCHAR(200);
 <RoleOfObject : ProtectedObject>_id INTEGER;
BEGIN
 <RoleOfObject : ProtectedObject>_username = SYS_CONTEXT('userenv', 'session_user');
 SELECT id
 INTO <RoleOfObject : ProtectedObject>_id
 FROM <RoleOfObject : ProtectedObject>
 WHERE username = <RoleOfObject : ProtectedObject>_username;
 RETURN '<ProtectedObject>.<RoleOfObject : ProtectedObject> = ' || <RoleOfObject : ProtectedObject>_id;
END;

BEGIN DBMS_RLS.ADD_POLICY (
 object_schema => '<ProjectName>',
 object_name => '<ProtectedObject>',
 policy_name => '<RoleOfObject : ProtectedObject>_<Privilege2constrain : accessType>_<ProtectedObject>',
 policy_function => '<RoleOfObject : ProtectedObject>_<Privilege2constrain : accessType>_<ProtectedObject>');
END;

132 J. Abramov et al.

Fig. 4. ATL transformation code for the Privilege association class

The Analysis Phase: The first task in the analysis phase is to create a conceptual data
model from the users' requirements. The conceptual data model is an initial class
diagram that consists of data classes, their attributes and various types of
relationships. Fig. 5 depicts the initial (UML) class diagram of a university
registration system.

Fig. 5. An example of an initial class diagram

Next, the functional model of the application is defined using extended use cases
(EUC). A EUC is similar to a FOOM transaction [6]; it includes, besides the functions
of the UC, also external/user entities and data classes. An external/user entity
provides input data or obtains output information from the system. (It is different
from an Actor in ordinary use cases, which only signify who operates the use case.)
Data classes, which are taken from the initial class diagram, are manipulated (i.e.,
retrieved or updated) by the functions of the EUC. As in ordinary use-cases, for every
EUC diagram we also prepare a description. The template for a EUC description is
extended compared to an ordinary UC description, as it includes definitions of access
privileges.

Later on in the development process, for each class included in a EUC the
developer defines: a) the authorized operators (i.e., roles) of the EUC; b) the type of
access privilege (e.g., add, read, update or delete); and c) the attributes involved in

 Tool Support for Enforcing Security Policies on Databases 133

that operation. Fig. 6 shows an example of a EUC diagram that is supported by the
EUC editor. A Student is an external entity which provides inputs and gets outputs,
the Course, Course Offering and Enrollment are classes, and Display courses, Display
selected courses’ offerings, and Add registration to selected course are functions. The
EUC editor extends the TOPCASE use case diagram notations to support the new
elements, i.e., classes and the different types of links.

Fig. 7 shows part of the EUC description that is supported by the EUC Analysis
Editor. At the bottom of Fig. 7, the security specifications section is presented in a
form of a table, where for each class that participates in the EUC the access control
privileges are specified. Eventually, all the security specifications, defined for all the
EUCs are aggregated in one table.

It should be noted that EUC diagrams also serve as the core functional/behavioral
model of the application, and can be used for the generation of the input and output
forms and reports, as well as skeleton of the code.

Fig. 6. An example of a EUC diagram

The Design Phase: During this phase, the initial class diagram is refined by the
designer, to include the security specification. The SMT allows the designer to
specify which security patterns are used in the application. Then, the various elements

134 J. Abramov et al.

that appear in the initial class diagram are classified according to the security patterns
defined in the preparation stage. Technically, this is done by assigning the stereotypes
from the security pattern profile that was created when the security pattern was
finalized. Then, the SMT allows the designer to select stereotypes for each element
according to the applied patterns, and the element type. Fig. 8 presents the refined
data model of the university application. In that figure, the relevant classes are
associated with the Role and ProtectedObject stereotypes and new Privileges classes
are introduced. These include the names of the accessType attributes as set by the
OCL constraint, and the initial values of these attributes (which are not shown
visually, yet they are part of the model); in the example their values are True.

Fig. 7. An example of a EUC description

During the design phase, additional changes to authorization rules may be applied
and fine grained restrictions may be specified using the templates that were defined in
the patterns. The templates are instantiated using the Template Editor. Fig. 9
illustrates the use on the instance (row) level template that was defined in Fig. 3. To
use the template, the designer merely instantiates it and provides the missing
parameters. The Template Editor lists the missing parameters at the bottom. The SMT
also provides a preview of the templates after the missing parameters were specified.

 Tool Support for Enforcing Security Policies on Databases 135

Fig. 8. An example of the RBAC-base refined data model

Fig. 9. An example of instance level (row) constraint in OCL and PL/SQL

136 J. Abramov et al.

After creating a refined data model, we need to check if it adheres to the security
policies as defined by the specified security patterns. The SMT provides automatic
verification. This verification is essentially a conformance checking with respect to
the relevant patterns; it includes checking the number of elements, as depicted in [4],
their types, and the available OCL constraints. If the application is invalid, an error
message, like the one appears in Fig. 10, is presented, explaining the verification
errors. In that example there are two errors: 1) multiplicity error: access type is not
specified to the Privilege class StudentR_CourseOffering; 2) OCL error: StudentR
role has the SYSDBA privilege.

Fig. 10. An example of an error massage

The Implementation Phase: During this phase the transformation rules, which were
defined during the preparation phase, are used to translate the verified application
model into database code. Fig.11 presents the generated SQL commands for the
Student role and a sample of the SQL fine-grained code for the university application.

The artifacts produced in the organizational level, and the artifacts leading to the
implementation in the application development level, can be exported as
documentation in a PDF file.

More details on the pattern-based approach that is applied as part of the
methodology can be found in [14].

 Tool Support for Enforcing Security Policies on Databases 137

-- Role creation
CREATE ROLE STUDENT;
-- Granting privileges to Student
GRANT CREATE SESSION TO STUDENT;
GRANT SELECT ON COURSE_OFFERING TO STUDENT;
GRANT SELECT ON COURSE TO STUDENT;
GRANT SELECT, INSERT, DELETE ON ENROLLMENT TO STUDENT;
GRANT SELECT, UPDATE ON STUDENT TO STUDENT;
-- Instance level template transformation
-- Students can update only their personal information:
CREATE FUNCTION STUDENT_STUDENT_UPDATE
 (SCHEMAV VARCHAR2, OBJ VARCHAR2) RETURN VARCHAR2 AS
BEGIN
 IF (NOT DBMS_SESSION.IS_ROLE_ENABLED('STUDENT')) THEN
 RETURN NULL;
 END IF;
 RETURN 'username = ' || SYS_CONTEXT('USERENV', 'SESSION_USER');
END;
BEGIN DBMS_RLS.add_policy(
 object_schema => 'UNIVERSITY',
 object_name => 'STUDENT',
 policy_name => 'STUDENT_STUDENT_UPDATE ',
 policy_function => 'STUDENT_STUDENT_UPDATE ',
 statement_types => 'UPDATE',
 update_check => TRUE);
END;

Fig. 11. A sample of the generated SQL commands for the university application

4 SMT Architecture and Design

In this section, we discuss the implementation details of SMT. We first introduce the
technologies on which SMT is based, as well as the reasons for choosing them. Then,
we elaborate on the specific components developed within SMT, i.e., the different
editors and the ADOM library. Finally, we describe how the SMT components
interact with each other. Fig. 12 shows the components that SMT uses (marked in a
broken line), and the components that were developed internally (marked in a solid
line). The figure also shows the dependencies among the various components, which
are organized as layer of dependencies. Note that the integration of all these
components is done using the plug-ins facilities of the Eclipse framework. In short, at
the organization level, in order to specify the pattern, SMT uses text editors for the
pattern description, UML editor for the specification of the structure of the pattern
along with the ADOM library, OCL editor to specify the constraints on the structure
of the pattern, and Templates editor to specify the fine grain templates. Then, for
specifying the pattern transformation we use ATL. At the application development
level, the UML and EUC editors are used to specify the different application
diagrams, EUC analysis editor to define the textual description of the EUC, the
ADOM library to refine and verify the application data model by the pattern, the
Dresden OCL to verify that the OCL constraints hold, and finally, ATL to transform
the application model into code.

138 J. Abramov et al.

Fig. 12. Overview of the SMT components

4.1 Eclipse

SMT and all its dependencies rely on the framework provided by Eclipse [10]. It was
chosen for the following reasons: (a) it is an extensible platform; (b) it is open source,
meaning that the source code can be used as documentation and aid in finding errors;
and (c) the Eclipse framework has been extended to support many technologies,
including UML by TOPCASED [9] and OCL [11].

4.2 EMF

Much of the SMT’s functionality relies on modeling capabilities. This functionality is
provided by the Eclipse Modeling Framework (EMF) project [2], which is a modeling
framework and code generation facility for building tools and other applications based
on a structured data model.

EMF is a very mature modeling framework, providing a complete toolset for
working in a model-oriented context. Additionally, it is available as an Eclipse
extension, making it highly suitable for our needs. Many model-oriented features in
Eclipse, and all such features used by SMT, rely on EMF. Note also that Eclipse's
UML library too is based on EMF.

4.3 TOPCASED UML Editor

TOPCASED [9] is an Eclipse plug-in that provides a simple, extendible graphical
modeling framework. TOPCASED also provides a UML editor as one of its sub-
projects. Additionally, this framework may be extended to provide graphical editors
to other diagram types. This capability was used within the general UML editors and
to create and provide a new editor for the EUC diagrams. TOPCASED relies on EMF
for both persistency and representation. Therefore, other modules based on EMF may
interact with the artifacts generated by TOPCASED without the need for a new API
or adaptor.

4.4 Dresden OCL

Dresden OCL [11] provides a set of tools to parse and evaluate OCL constraints on
various models like UML, EMF, and Java. Furthermore, it provides tools for
Java/AspectJ and SQL code generation. The tools of Dresden OCL can be either used

Fig. 12. Overview of the SMT components

LaTeX
(TeXlitse
plug-in)

ADOM

Eclipse

SWT

EMF

TOPCASED Dresden OCL ATL

Templates
Editor

OCL
Editor

UML
Editor

EUC Analysis
Editor

SMT

EUC
Editor

 Tool Support for Enforcing Security Policies on Databases 139

as a library for other project or as a plug-in project that extends Eclipse with OCL
support. In the case of SMT, the Dresden OCL library is used to enforce OCL
constraints. As EMF provides only syntactical solutions, complex semantic solutions
are beyond the scope of the EMF project. In SMT, we found that OCL may be
specified using EMF's implementation of OCL; however EMF was not flexible
enough to allow us to interpret and enforce the OCL rules on its own, and so the
Dresden OCL library was used.

4.5 ATL

ATLAS Transformation Language (ATL) [12] is a model transformation language
and toolkit. In the field of Model-Driven Engineering (MDE), ATL provides ways to
produce a set of target models from a set of source models. SMT uses ATL to define a
transformation from a pattern-based application design to its equivalent in SQL.

4.6 SWT

The Standard Widget Toolkit (SWT) [13] is an open source, graphical widget toolkit
used to develop user interfaces in Java. It is a pre-built part of the Eclipse framework,
which allows user interfaces implemented in SWT to be integrated more natively into
Eclipse than other Java GUI toolkit. For this reason, user interfaces designed for SMT
were implemented using SWT rather than a different widget framework.

4.7 The ADOM Library

The relationship between the organizational security pattern models and the
application models within SMT are provided by the ADOM library. As we plan to
adopt ADOM in various modeling notations (e.g., class and sequence diagrams), it
was designed to be language independent. The ADOM library is separated into two
main categories to allow for implementation in various languages and environments:
language independent code, and language dependent code. That library also
implements the ADOM validation algorithm.

Language independent code makes no assumptions on the used language beyond
what is defined by ADOM. That is the multiplicity indicator which is defined as a
UML profile. That part of the tool has three sections which are relevant to SMT:

a) The abstract data-structure, which provides a tree-like structure of model
elements;

b) The element options, which allow ADOM elements to be extended to include
data and functionality deemed necessary by the developer of the library’s
extension. For instance, the multiplicity validation algorithm extends each ADOM
element to contain required and actual multiplicity. The OCL validation algorithm
extends each ADOM element to contain any number of OCL constraints, which
must be confirmed in order for the validation to succeed.

c) The validation algorithms. This is also a pluggable mechanism, used to allow
library extension developers to provide validation algorithms on ADOM
applications in reference to their ADOM domains. Usually, validation algorithms
also provide element options, providing them with additional data necessary to
perform the validation algorithm, such as multiplicity and OCL constraints as
stated before. Note that these parts were reused in other ADOM-related projects.

140 J. Abramov et al.

The language dependent code has two sections relevant to SMT. The first section is
an implementation of the abstract data-structure described in the language
independent part. This implementation may be used by other components to have
direct access to the underlying data-structures of the language in use, and retrieve
necessary data.

4.8 Document Generation

The document generation facilities of SMT are provided using LaTeX. LaTeX is a
high-quality typesetting system that includes features designed for the production of
technical and scientific documentation. SMT generates a LaTeX document, which is
then processed and generates an output file in PDF. The SMT enables the document
generation of both organizational policies and application specification.

5 Summary

We have presented SMT, a Security Modeling Tool, which supports the development
of secured database schemata following a methodology that we have developed. This
tool utilizes security patterns for guiding and enforcing security on database
application design. The tool guides developers on how to incorporate security aspects
defined by security patterns, in particular authorization, within the development
process. It handles the specification and implementation of the authorization aspect
from the early stages of the development process, leading to a secure system design.

In this paper we demonstrated the application of an access control policy (RBAC)
over a database. We also implemented other policies such as DAC and MAC using
the same methodology. In addition, we are in the process of using the same
mechanisms to implement patterns other than access control to other software layers
besides the database. Currently, we are in a process of applying the methodology
along with its supporting tool in an industrial environment. This will enable us to
introduce improvements in the methodology and the tool. In future work, we plan to
enrich the methodology and tool to support other security requirements (e.g., privacy,
encryption, and auditing). In addition, we plan to further extend the methodology to
deal also with the behavioral specification of applications, in addition to its
application in structural specification.

References

1. Dhillon, G.S.: Information Security Management: Global Challenges in the New
Millennium. IGI Publishing (2001)

2. Eclipse Modeling Framework (2011),
http://www.eclipse.org/modeling/emf/

3. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming. Science of Computer Programming 72(1-2), 31–39 (2008)

4. Reinhartz-Berger, I., Sturm, A.: Utilizing Domain Models for Application Design and
Validation. Information & Software Technology 51(8), 1275–1289 (2009)

 Tool Support for Enforcing Security Policies on Databases 141

5. Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models, and
New Applications. Springer-Verlag New York, Inc., Secaucus (2003)

6. Shoval, P.: Functional and Object-Oriented Analysis and Design - An Integrated
Methodology. IGI Publishing, Hershey (2007)

7. Standard Widget Toolkit (2011), http://www.eclipse.org/swt/
8. StringTemplate (2011), http://www.stringtemplate.org/
9. TOPCASED (2011), http://www.topcased.org/

10. Eclipse (2011), http://www.eclipse.org/
11. Dresden OCL Toolkit (2011),

http://www.dresden-ocl.org/index.php/DresdenOCL
12. ATL (2011), http://eclipse.org/atl/
13. Standard Widget Toolkit (2011), http://www.eclipse.org/swt/
14. Abramov, J., Sturm, A., Shoval, P.: A Pattern Based Approach for Secure Database

Design. In: Salinesi, C., Pastor, O. (eds.) CAiSE Workshops 2011. LNBIP, vol. 83, pp.
637–651. Springer, Heidelberg (2011)

15. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models to access
control infrastructures. ACM Transaction on Software Engineering and
Methodologies 15(1), 39–91 (2006)

16. Fernandez, E.B., Larrondo-Petrie, M.M., Sorgente, T., VanHilst, M.: A methodology to
develop secure systems using patterns. In: Mouratidis, H., Giorgini, P. (eds.) Integrating
Security and Software Engineering: Advances and Future Vision. IDEA Press (2006)

17. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002.
LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

18. Mouratidis, H., Giorgini, P.: Secure Tropos: a Security-Oriented Extension of the Tropos
Methodology. International Journal of Software Engineering and Knowledge
Engineering 17, 285–309 (2007)

19. Jurjens, J.: Secure Systems Development with UML. Springer (2005)
20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable

object-oriented software. Addison-Wesley Professional (1995)
21. Hafner, M., Breu, R.: Security Engineering for Service oriented Architectures. Springer

(2009)
22. Ray, I., France, R.B., Li, N., Georg, G.: An aspect-based approach to modeling access

control concerns. Information & Software Technology 46, 575–587 (2004)
23. Fernández-Medina, E., Piattini, M.: Designing secure databases. Information & Software

Technology 47(7), 463–477 (2005)
24. Mouratidis, H., Jurjens, J.: From goal-driven security requirements engineering to secure

design. International Journal on Intelligent Systems 25(8), 813–840 (2010)
25. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P.:

Security Patterns: Integrating Security and Systems Engineering. John Wiley & Sons
(2006)

	Tool Support for Enforcing Security Policies on Databases
	Introduction
	Methodology Overview
	The Security Modeling Tool
	Organizational Level - The Preparation Phase
	Application Development Level

	SMT Architecture and Design
	Eclipse
	EMF
	TOPCASED UML Editor
	Dresden OCL
	ATL
	SWT
	The ADOM Library
	Document Generation

	Summary
	References

