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ABSTRACT

Applications (apps) that conceal their activities are fundamentally

deceptive; app marketplaces and end-users should treat such apps

as suspicious. However, due to its nature and intent, activity con-

cealing is not disclosed up-front, which puts users at risk. In this

paper, we focus on characterization and detection of such tech-

niques, e.g., hiding the app or removing traces, which we call “self

hiding behavior” (SHB). SHB has not been studied per se – rather it

has been reported on only as a byproduct of malware investigations.

We address this gap via a study and suite of static analyses targeted

at SH in Android apps. Specifically, we present (1) a detailed char-

acterization of SHB, (2) a suite of static analyses to detect such

behavior, and (3) a set of detectors that employ SHB to distinguish

between benign and malicious apps. We show that SHB ranges from

hiding the app’s presence or activity to covering an app’s traces,

e.g., by blocking phone calls/text messages or removing calls and

messages from logs. Using our static analysis tools on a large dataset

of 9,452 Android apps (benign as well as malicious) we expose the

frequency of 12 such SH behaviors. Our approach is effective: it has

revealed that malicious apps employ 1.5 SHBs per app on average.

Surprisingly, SH behavior is also employed by legitimate (“benign”)

apps, which can affect users negatively in multiple ways. When

using our approach for separating malicious from benign apps,

our approach has high precision and recall (combined F-measure

= 87.19%). Our approach is also efficient, with analysis typically

taking just 37 seconds per app. We believe that our findings and

analysis tool are beneficial to both app marketplaces and end-users.
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1 INTRODUCTION

Mobile security research has mostly focused on malware activation,

malicious payloads, permission abuse, or leaking sensitive data.

Little attention has been paid to deceptive mechanisms that are

essential for the success of malware, i.e., how malware manages

to get installed, and continues operating on the phone without the

users noticing anything suspicious. To do so, malware uses a range

of SHB, e.g., hiding the app, hiding app resources, blocking calls,

deleting call records, or blocking and deleting text messages. Sur-

prisingly, extremely popular “benign” apps such as Airbnb, Truecaller,

andWaze also employ certain SH techniques in the name of user

convenience.

We believe that SHB is fundamentally deceptive and that having

tools that perform accurate and early detection of SHB is key. First,

app marketplaces, e.g., Google Play or Apple Store, should be able

to detect SHB, so that SHB can be considered in the decision to

publish an app or not. Even when an app with SHB is published

on the marketplace, users should be forewarned about the SHB so

they can decide whether to install the app on their phone or not.

We address these problems on the Android platform via several

advances: (1) we shine a light on SHB via detailed characterization,

(2) we construct an SHB-detecting tool based on static analysis,1

and (3) we show how our approach for identifying SHB can be very

effective at exposing malicious apps as well as deceptive practices in

benign apps. We chose to focus on Android because Android clearly

dominates the worldwide mobile market, with an 87% market share

in the second quarter of 2017 [8]. While popular, Android’s security

could be improved: researchers from the antivirus firm G Data have

discovered that more than 750,000 new malicious Android apps

have sprung out during 2017’s first quarter, and estimate that the

total number will grow up to a staggering 3.5 million by the end of

2017 [1]. Therefore, there is plenty of evidence that the threat level

for Android users remains high, and there is an impetus to detect

and weed out malware before it is published on Google Play or it

reaches users’ devices.

We start by presenting a detailed characterization of SHB in

Section 2. We group SHB into three main categories: SHB that

involve app objects, i.e., hiding the presence of the app; SHB that

block or remove traces of remote communication, e.g., blocking calls

or deleting text messages; and subverting the system’s reminders,

e.g., hiding notifications or muting the phone.

1The tool and datasets are available at http://spruce.cs.ucr.edu/SelfHiding/
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In Section 3 we present our approach: a tool, consisting of a suite

of static analyses, that exposes potential SHB in a given Android

app. Our tool works directly on APKs, i.e., the format Android apps

are distributed in, and does not require access to app source code.

In Section 4 we evaluate our approach along several dimensions.

First, we check our approach’s accuracy via manual validation on

a set of 198 malware samples; we found that it attains an 85.71%

F-measure. Second, we check whether our approach can be used to

triage benign from malicious apps: using a dataset of 9,452 benign

and malicious apps, the attained F-measure is 87.19%.

In Section 5 we provide a detailed exposé of SHB in widely-used

apps, and how these deceptive behaviors can affect users.

To summarize, we make the following contributions:

(1) An exposé of of SHBs, including novel SHBs, as employed

by malware and widely-used benign apps.

(2) A static-analysis-based approach for detecting SHB.

(3) An evaluation of our approach on 9,452 sample apps, both

benign and malicious.

2 SELF-HIDING BEHAVIORS

In this section, we provide a comprehensive description of SH

behaviors. We define as SH a behavior meant to hide the app or

its actions from being viewed (or heard!) by the user. Note that we

exclude those behaviors meant to evade security mechanisms, e.g.,

anti-malware tools or access control mechanisms – they have been

studied thoroughly and are outside the scope of this paper.

Our characterization is based on manual analysis of about 200

malicious apps and automated analysis of about 3,000 other mali-

cious apps. We found 12 SHBs; few of these are even mentioned in

the research community, let alone characterized thoroughly, and

some, including “Hide icon” and “Hide activity”, are not mentioned

at all.

Users could employ three main approaches for identifying the

presence of malicious apps: inspecting app objects (icon, app, ac-

tivity), analyzing remote communication (SMS, MMS, and phone

calls) or checking system reminders (system dialogs, sound, system

logs, notifications, recent apps list, etc). There are two main issues

with this approach, though: (1) it requires a highly knowledgeable

user who performs such inspections periodically, and (2) malware

actively attempts to escape (hide itself) from such identification.

To set up the discussion, in Figure 1 we show the number of SHBs

in sample sets of 1,000malicious and 1,000 benign apps, respectively;

the 1,000 benign apps are a random sample extracted from the 6,233

benign apps, while the 1,000 malicious apps are a random sample

extracted from the 3,219 malicious apps (a more thorough dataset

description is provided in Section 4).

2.1 App Objects

2.1.1 Hide icon. After installation, benign apps add their icon

to the home screen. To hide itself, a malicious app removes the

icon so the user cannot notice the app’s presence. There are two

methods for hiding the icon:

(a) Modifying the app’s manifest file to remove the app from the

default launcher, i.e., home screen. This can be done by deleting

category android. intent . category .LAUNCHER from the app’s main activ-

ity section in the manifest file.2 For example, malware Fake-skype

camouflages as the popular app Skype and runs in the background

without an icon in the home screen.

(b) Calling an Android API method to disable the icon at runtime.

This can be done by invoking method setComponentEnabledSetting(). For

example, malware Facebook-otp (full package name: jgywwv.jvyjsd.

sordvd), masquerades as the Facebook app but disables its icon im-

mediately after installation. We show the segment of the code we

reverse-engineered from this malware:

1 PackageManager pm = getPackageManager();

2 ComponentName cn = new ComponentName("jgywwv.jvyjsd.sordvd", "

jgywwv.jvyjsd.sordvd.Activity1");

3 pm.setComponentEnabledSetting(cn, PackageManager.

COMPONENT_ENABLED_STATE_DISABLED, PackageManager.

DONT_KILL_APP);

2.1.2 Hide app. When benign apps are running, they typically

show up in the running app list. In contrast, a malicious app can

run as a service, in the background, hence does not show up in the

list. In order to automatically start the malware as a service without

the user clicking the icon, a malicious app creates a BroadcastReceiver

class and registers it to receive certain events like SMS_RECEIVED,

BOOT_COMPLETED, etc. After receiving one of the registered events,

the malware’s BroadcastReceiver launches the malware as a service

in the background. As a result, the user cannot see the malicious

app in the running app list. For example, the spyware Candy_corn

automatically records Google Voice calls in the background. As

shown in the following code segment, Candy_corn monitors seven

kinds of events and starts itself as a service (if the service is not

running already):

1 public void onReceive(Context context , Intent intent ) {

2 ...

3 String act = intent . getAction () ;

4 if ( Intent .ACTION_BOOT_COMPLETED.equals(act) |

5 Intent .SMS_RECEIVED.equals(act) |

6 Intent .NEW_OUTGOING_CALL.equals(act) |

7 Intent .SCREEN_OFF.equals(act) |

8 Intent .PACKAGE_INSTALL.equals(act) |

9 Intent .PACKAGE_ADDED.equals(act) |

10 Intent .SIG_STR.equals(act) ) {

11 if ( isServiceRunning () )

12 return;

13 Intent serviceIntent = new Intent(context , com.google.progress

. AndroidClientService . class ) ;

14 serviceIntent . setAction ( "com.google.

ACTION_START_CALL_RECORD");

15 context . startService ( serviceIntent ) ;

16 }

17 ...

18 }

2.1.3 Hide activity. Most malware runs as a background service.

However, starting in Android version 3.1, apps cannot create a

service without having an activity associated with that service.

Therefore, a malicious app must first create an activity. Next, to

hide the activity, the app can employ two approaches: making the

activity transparent or destroying the activity before it becomes

visible.

2The manifest file (AndroidManifest.xml), bundled with the app, contains a descrip-
tion of the app’s capabilities, system requirements, resources, permissions, etc.
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Figure 1: The numbers of SHBs in two sample sets of 1,000 malware apps and 1,000 benign apps, respectively.

To render an activity transparent, a malicious app needs to make

the activity’s main layout transparent, set the activity as full screen,

then remove the action bar and window title. These values can

be set in the app’s manifest file. In addition, malware can also

accomplish this via certain API methods. For example, Android API

methods setBackground(), setBackgroundDrawable() or setBackgroundColor()

can change the activity to transparent. Methods addFlags() , setFlags

() , or requestWindowFeature() can change the window to full screen,

as well as remove the action bar and the window title. We now

illustrate this with malware DroidKungFu3. First, the manifest file is

used to make the activity layout transparent:

< style name="Theme.NoTitle" parent="@android:style/Theme">

<item name="android:windowBackground">@android:color/transparent</

item>

<item name="android:windowNoTitle">true</item>

<item name="android:windowIsTranslucent">true</item>

<item name="android:windowContentOverlay">@null</item>

</ style >

Then, at runtime, the app sets thewindowflag to FLAG_NOT_TOUCH

_MODAL, meaning that even when the window is focusable, it allows

any pointer events outside the window to be sent to the windows

behind it. As a result, the user cannot see the malware activity but

can still use the activity of another app, which is just below the

malware activity – de facto the malware activity has successfully

inserted itself between the unsuspecting user and the app below:

1 protected void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState ) ;

3 ...

4 setContentView(R.layout . activity_main ) ;

5 getWindow().addFlags(WindowManager.LayoutParams.

FLAG_NOT_TOUCH_MODAL);

6 ...

7 }

To destroy an activity before showing it, a malicious app will

call finish () in one of the three lifecycle callback methods: onCreate(),

onStart () , or onResume(). The finish () method in turn calls onDestroy()

to finish the activity. If finish () is called in onCreate() or onStart () , the

activity is not shown at all. But if it is called in onResume(), the screen

will flicker during the activity transition from the foreground to

the background. To prevent this, the activity is set to transparent.

We show this being accomplished in the SaveMe spyware:

1 protected void onCreate(final Bundle bundle)

2 {

3 super.onCreate(bundle) ;

4 ...

5 this . getPackageManager().setComponentEnabledSetting(this.

getComponentName(), 2, 1);

6 // 2 = COMPONENT_ENABLED_STATE_DISABLED; 1 = DONT_KILL_APP

7 this . finish () ;

8 ...}

2.2 Remote Communication

2.2.1 Delete Message. Sending SMS/MMS messages furtively,

in the background, is a common behavior in malware. Therefore,

several anti-malware products focus on this to recognize malware.

After sending or receiving SMS/MMS in the background, Android

saves a copy of the SMS/MMS in the outbox or inbox, respectively.

To cover its tracks, malware needs to delete this copy. The malware

usually calls delete () on a content URI, i.e., "content :// sms/inbox/" and

"content :// sms/outbox/", respectively. Furthermore, malware can also

delete SMS/MMS associated with a certain message ID, time, or

phone number. An example is malware XTaoAd.A that deletes a

message upon receipt:

1 void onReceive(android.content .Context context ,android.content . Intent

intent ) {

2 ...

3 if (android.os . Build .VERSION.SDK_INT >= android.os.Build.

VERSION_CODES.KITKAT) {

4 if (! Telephony.Sms.getDefaultSmsPackage(context).equalsIgnoreCase(

context .getPackageName())) {

5 context .getContentResolver () . delete (Uri . parse( "content :// sms/") ,

null , null) ;

6 ...

7 }}}

2.2.2 Delete Call Log. After making or receiving a phone call

in the background, Android will generate a record in the call log.

To cover its traces, malware has to delete this entry from the call

log. An example is the SaveMe spyware. SaveMe has a service that

can make a call in the background (e.g., to a premium number)

as dictated by the malware’s server. We show this in Figure 4. In

the left code snippet EXT_CALL is the number to be called. After the

phone call, the malware deletes the corresponding call log entry. In
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the right code snippet, the string s contains the number that was

just called.

2.2.3 Block Message. After a malicious app sends SMS/MMS

to sign up for a premium-rate service in the background, it will

receive a confirmation SMS/MMS sent from the service provider.

To prevent users from knowing this, the malware has to filter the

received SMS/MMS by calling abortBroadcast () . An example is Tro-

jan:Fakebank.B, shown below (please note that method a checks the

intent to see whether the SMS message has been received).

1 void onReceive(android.content .Context context ,android.content . Intent

intent ) {

2 ...

3 if (! Telephony.Sms.getDefaultSmsPackage(context).equalsIgnoreCase(

context .getPackageName())) {

4 a( intent . getExtras () , context ) ;

5 abortBroadcast () ;

6 ...

7 } }

2.2.4 Block Call. For malware that is part of a botnet, the com-

mand and control (C&C) server could call the infected phone to ask

the bot (malware app) to perform certain services; the C&C server

is encoded in the phone number. To prevent users from realizing

this, the malware needs to block the phone call. If the malware

received an intent android. intent . action .PHONE_STATE and the number

of the caller is the C&C server, then the ringer mode is set to silent

to suppress the notification of the incoming call and the phone

call is disconnected. Its corresponding entry from the call logs is

also removed, removing all traces of the phone call. An example is

malware fakeAV that uses endCall () to cancel the incoming call:

1 void onReceive(android.content .Context context ,android.content . Intent

intent ) {

2 ...

3 TelephonyManager tm = (TelephonyManager) context.getSystemService(

context.TELEPHONY_SERVICE);

4 try {

5 Class c = Class . forName(tm.getClass() .getName());

6 Method m = c.getDeclaredMethod("getITelephony");

7 m. setAccessible (true) ;

8 com.android. internal . telephony.ITelephony telephonyService = (

ITelephony) m.invoke(tm);

9 telephonyService .endCall () ;

10 } catch (Exception e) {

11 e . printStackTrace () ;

12 }

13 ...

14 }

2.3 System Reminders

2.3.1 Hide Alert. System dialogs could reveal the presence of

malware by displaying alarms, user account balances, or other

abnormal behaviors to the user. To avoid this, malware has to

dismiss the system dialog by broadcasting the intent ACTION_CLOSE_

SYSTEM_DIALOGS, as shown in the following code snippet:

1 public void onWindowFocusChanged(boolean hasFocus) {

2 super.onWindowFocusChanged(hasFocus);

3 ...

4 if (! hasFocus) {

5 Intent closeDialog = new Intent(Intent .

ACTION_CLOSE_SYSTEM_DIALOGS);

6 sendBroadcast(closeDialog ) ;

7 }

8 ...

9 }

2.3.2 Hide Notification. Apps can send alerts to the user by gen-

erating a notification on the notification bar. But the malware can

delete notifications by calling NotificationManager’s methods cancel ()

or cancelAll () when receiving notifications. An example is malware

Bios.NativeMaliciousCode.apk:

1 void clearNotify (android.content .Context context ) {

2 ...

3 (( android.app.NotificationManager) context .getSystemService( "

notification " ) ) . cancel (1) ;

4 ...

5 }

2.3.3 Mute Phone. To cover their presence, malicious apps of-

ten resort to muting the phone or disabling the vibrate function, to

prevent the user from hearing the sound of alarms, notifications,

phone calls or incoming SMSs. This can be accomplished in a vari-

ety of ways: switching to silent mode, calling the vibrator service,

setting the phone to mute, or adjusting the volume to the lowest

level. An example is the Trojan iBanking:

1 void a(android.content .Context context ) {

2 ...

3 (( android.media.AudioManager)context.getSystemService("audio") ) .

setStreamMute( AudioManager.STREAM_ALARM, true);

4 ...

5 }

2.3.4 Exclude From Recent Apps List. After an app has run, the

system puts its activities into the recent apps list. To prevent this,

malware can set the flag excludeFromRecents in the manifest file, or

by calling ActivityManager.setExcludeFromRecents(). An example is Tro-

jan:Malapp.

< activity android:name="com.yangccaa.chengaa.WEYY"

android: label="@string/notification_name"

android: taskAffinity =" . NotificationActivity "

android:excludeFromRecents="true">

<intent− filter >

<action android:name="android.intent . action .MAIN" />

<category android:name="android.intent . category .LAUNCHER" />

</ intent− filter >

</ activity >

2.3.5 Delete System Log. Android saves system activity into the

system log, which can be viewed via the logcat . Malware can call

adb logcat -c to delete the logs if the phone is rooted or if the
Android API is lower than 16. We present an example of such an

action extracted from the trojan SMSblocker:

1 r = getRuntime() ;

2 r . exec( " logcat −c") ;

3 DETECTING SH BEHAVIORS

Our approach relies on a suite of static analyses to detect SHBs.

Figure 2 shows an overview of our tool’s design. The input is an

APK file (APK is the format Android apps are distributed in). We

pass the bytecode to Soot [12]/FlowDroid [13] which perform basic

tasks such as alias analysis, call graph analysis, as well as fixpoint

computations to deal with loops and recursion. Next, we perform
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Figure 2: Tool overview.

Figure 3: SAPI analysis.

our core analyses (described shortly) on both bytecode and XML

files. Finally, a report detailing the potential SHBs is produced.

3.1 Static Analysis

3.1.1 Finding SH Call Invocations (SAPI Analysis). Our first anal-

ysis finds whether SH API calls are invoked (we name this SAPI anal-

ysis for short). We present the analysis in Figure 3. Specifically, the

analysis starts at anOrigin (app or activity start). In the first stage,

we use control-flow and call graph analysis to findwhether a certain

SAPI call is invoked – green nodes and edges on the left represent

methods and call graph edges, respectively. In the second stage,

we use backward dataflow analysis to find if the call is invoked

with certain SH-indicating parameters; more precisely, we walk

the def-use chains backwards (shown in black) until we can find the

parameter definition, e.g., a constant or an alias. In Table 1 we show

the origins and SAPI calls for each SHB. For example, to detect the

“Hide app” SHB, our analysis will check whether the call to Context.

startService () is reachable when starting in BroadcastReceiver .onReceive() .

To check for “Delete message” on the other hand, we start track-

ing from BroadcastReceiver .onReceive(SMS_RECEIVED/ACTION_VIEW) to see

if we can reach ContentResolver.Delete () ; next, we walk the def-use

chains backwards to see if the argument is "content :// sms". For cer-

tain behaviors, e.g., “Hide activity”, we use all the app’s entry points

as origin; app entry points are provided by FlowDroid.

We now provide an example from the real malware DroidKungFu1,

which deletes all SMS messages. In this case we show simplified

disassembled code, from which we have removed irrelevant instruc-

tions.

1 specialinvoke $r3 .< java . lang . StringBuilder : void < init >( java . lang .

String ) >( "content :// sms/")

2 $r4 = virtualinvoke $r3 .< java . lang . StringBuilder : java . lang . String

toString () >()

3 $r5 = staticinvoke <android.net .Uri : android.net .Uri parse( java . lang .

String ) >($r4)

4 virtualinvoke $r2 .<android.content .ContentResolver: int delete (android

.net .Uri , java . lang . String , java . lang . String []) >($r5 , null , null)

Let us assume that our analysis has determined that an invo-

cation of ContentResolver.Delete () is reachable from BroadcastReceiver .

onReceive(PHONE_STATE). To check the value of Delete () ’s parameter,

we walk the def-use chains backwards starting at $r5 (that is used

at line 4 and defined at line 3). As line 3 calls method parse () , we

proceed further on $r4 and then $r3. Eventually on line 1 we see

the definition, i.e., "content :// sms/". This concludes our analysis and

we report the potential “Delete message” behavior.

3.1.2 Pair Action (PAPI) Analysis. Another broad self-hiding

category consists of pair actions, where an app first performs a ma-

licious action then deletes traces of this action, e.g., deleting a text

message after sending it. Our analysis (we name this PAPI analysis

for short) detects six types of pair actions: send message/delete

message log, receive message/delete message log, receive/block

message, make phone call/delete call log, receive phone call/delete

call log, receive/block phone call.

Our pair action detector uses data flow analysis in a manner

similar to taint analysis to see if data flows from a pair start to a pair

end. The paired methods and the SHB are listed in Table 2. Figure 4

shows a code snippet from the real malware Saveme that deletes a

call from the call log. Our tool detects data flow from startActivity

() to contentResolver . delete () . Actually EXT_CALL on line 2 (left) and s

on line 4 (right) have the same value – the phone number called.

Therefore, the pair (Context. startActivity () ,contentResolver . delete () ), is

detected, indicating the SHB “Delete call log”.

3.1.3 User-decision (UD) Analysis. To reduce potential false pos-

itives in cases where SAPI methods are also used by benign apps,

we perform a user-decision analysis that checks whether an API
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Table 1: SH call (SAPI) analysis.

SH Behavior Origin SH Call (SAPI)

Hide app BroadcastReceiver .onReceive(ACTION_BOOT_COMPLETED

/SMS_RECEIVED/NEW_OUTGOING_CALL/SCREEN_OFF/

PACKAGE_INSTALL/PACKAGE_ADDED/SIG_STR)

Context. startService ()

Hide activity any Window.addFlags(FLAG_NOT_TOUCH_MODAL)

entry Window.setFlags(FLAG_NOT_TOUCH_MODAL,∗)

point Window.requestFeature(FLAG_NOT_TOUCH_MODAL)

Delete message BroadcastReceiver .onReceive(SMS_RECEIVED/ACTION_VIEW) ContentResolver.Delete( "content :// sms")

Delete call log BroadcastReceiver .onReceive(PHONE_STATE) ContentResolver.Delete( "content :// cal_log / calls " )

PhoneStateListener .onCallStateChanged(TelephonyManager.

CALL_STATE_RINGING)

Block message BroadcastReceiver .onReceive(SMS_RECEIVED) BroadcastReceiver .abortBroadcast( "content :// sms")

Block call BroadcastReceiver .onReceive(PHONE_STATE) ITelephony.endCall ()

PhoneStateListener .onCallStateChanged(TelephonyManager.

CALL_STATE_RINGING)

Hide alert any entry point Context.sendBroadcast(Intent .

ACTION_CLOSE_SYSTEM_DIALOGS)

Hide notification BroadcastReceiver .onReceive() NotificationManager. cancel ()

NotificationManager. cancelAll ()

Mute phone any Vibrator .Cancel()

entry AudioManager.setRingerMode(RINGER_MODE_SILENT)

point AudioManager.setStreamMute(true)

AudioManager.adjustStreamVolume(ADJUST_LOWER)

Delete system log any entry point Runtime.Exec(" logcat −c")

Figure 4: Code snippets of malware Saveme that implement the “Delete call log” SHB.

Table 2: Pair action (PAPI) analysis.

SH Behavior Pair start Pair end

Delete message SmsManager.sendTextMessage()/sendMultipartTextMessage()/

sendMultimediaMessage()

ContentResolver.Delete ()

SmsMessage.createFromPdu()

Delete call log Context. startActivity () ContentResolver.Delete ()

PhoneStateListener .onCallStateChanged()

BroadcastReceiver .onReceive()

Block message SmsMessage.createFromPdu() BroadcastReceiver .abortBroadcast ()

Block call BroadcastReceiver .onReceive() ITelephony.endCall ()

PhoneStateListener .onCallStateChanged()

method invocation is the result of an user decision. We name this

UD analysis for short.
The user’s GUI actions can be decision-related or decision-unrelated,

as explained next. Decision-related actions include clicking a but-

ton, checking a checkbox or selecting a menu item; in other words,

the user takes decisions (and acts accordingly) in a way meant to
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change the app state. Examples of decision-unrelated actions in-

clude scrolling down a window or changing focus. If an SAPI is

invoked by a decision-related action, we rule that call as legitimate,

rather than an SH attempt. However, if invoked by a decision-

unrelated action, it can be an SHB. Note that existing research can

only detect whether an API is invoked by a GUI [15, 17], whereas

we further consider whether the GUI can reflect decisions.

In order to present the user-decision analysis approach, we intro-

duce several definitions. User-Decision-GUI (UDG) is an interactive

GUI element, e.g., Button, Checkbox, Radio Button, Toggle Button,

Spinner, Picker, or menu. User-Decision-Callback (UDC) is a top-

level callback method directly invoked as a result of the user action,

e.g., onClick () , onCheckedChanged(). In contrast, some callback methods

are due to decision-unrelated actions, e.g., onBackPressed(), onScroll () ,

onEditorAction () .

Android offers two ways for creating a correspondence between

a callback method and a GUI element: statically defining the call-

back as the handler of an event in the GUI element’s layout file or

dynamically defining a callback for the GUI element by registering

a listener object – we handle both.

We determine that a given callback is an UDC if either of these

two conditions is satisfied:

• The corresponding GUI of the callback is an UDG, and the

event to be handled by the callback is a decision-related

event, e.g., click. Note that there exist decision-unrelated

events, e.g., scroll and focus change.

• The corresponding GUI of the callback is an UDG, and the lis-

tener of the callback is decision-related, e.g., onCheckedChange

Listener . Note that there exist decision-unrelated listeners,

e.g., onCreateContextMenuListener and onFocusChangeListener.

Finally, we infer that an API invocation is user-decided if all of

its callbacks are UDC, which includes callbacks within the same

component and callbacks in other components. If any callback is

not UDC, we infer that the API call is not invoked by the user –

further, if this call is an SAPI, it is potentially an SHB.

3.1.4 Activity Finish Analysis. This analysis detects activity hid-

ing, i.e., whether an activity is terminated prematurely, before being

displayed, as illustrated in Section 2.1.3. To achieve this, the activity

calls finish () within onCreate(), onStart () , or onResume() (or their de-

scendants in the call graph). Therefore, our analysis starts at the

beginning of these three callback methods. We perform a control

flow analysis to check whether there exists a path from the begin-

ning of the callback to the callback’s end that includes finish () ; if

such a path exists, it indicates potential activity hiding. We name

this AF analysis for short.

3.1.5 Attribute Analysis. The purpose of this analysis is to check

whether the app attempts to manipulate activity attributes in or-

der to deceive the user. The analysis checks both the XML mani-

fest file and the attribute-related API methods. For example, the

liner layout of an activity has an attribute “background color”.

If the attribute value is #00000000, the activity is transparent. An

app can set the value of an attribute in the manifest or layout

files, or by calling certain API methods, e.g., setBackgroundDrawable(),

setBackgroundColor() or setBackgroundResource(). Another example is the

attribute excludeFromRecents which can be specified in the manifest

file, or set via the API methods setFlags () and addFlags() .

3.2 Detection Rules

We use SAPI, PAPI, UD, AF, and Attribute to denote the five static

analyses. The detection rules for the SHBs are shown in Figure 5. If

any of the rules fires, the tool will report the app as malicious. We

now explain each rule.

Rule 1 reports “Hide icon” when the main activity is removed

from the home screen without user involvement. Rule 2 detects

“Hide app” if starting an app as a service without user involvement.

Rule 3 reports “Hide activity” when the activity finish analysis re-

turns true or the main activity is transparent. Rule 4 infers behavior

“Delete message” when deleting occurs after receiving or sending a

message. Rule 5 reports “Delete call log” when deleting occurs after

making or receiving a phone call. Rule 6 detects “Block message”

if blocking received or sent messages. Rule 7 reports “Block call”

when blocking incoming or outgoing phone calls. Rule 8 reports

“Hide alert” if the app closes a system dialog without user involve-

ment. Rule 9 infers behavior “Hide notification” when canceling a

notificationwithout user intervention. Rule 10 detects “Mute phone”

when muting the phone surreptitiously. Rule 11 finds SHB “Exclude

from recent apps list” if the attribute EXCLUDE_FROM_RECENTS is set

without user’s involvement. Rule 12 reports “Delete system log” if

that specific shell command is not launched by the user.

3.3 Implementation

We implemented our tool on top of the Soot and FlowDroid static

analysis frameworks. These frameworks only analyze bytecode,

so we added modules to analyze XML files (e.g., categories and

attributes in AndroidManifest.xml, style.xml, etc). Our static
analysis modules use both data-flow and control-flow analyses.

Finally, the analysis results are produced using the detection rules.

3.4 Limitations

Limitations/false negatives. Our tool has several analysis limita-

tions. First, if an SHB is invoked by GUI interaction but the GUI text

does not reflect the invocation of the SHB, the tool will not report

it; Huang et al.’s idea of finding mismatches between user interface

and app behavior [17] could be used to address this limitation. Sec-

ond, there were a few apps that, due to obfuscation, could not be

analyzed, e.g., TripAdvisor (com.tripadvisor.tripadvisor.apk)
and KCLS

(com.bibliocommons.kcls.apk).

Improving precision/reducing false positives. Our analysis, built

on top of FlowDroid, is based on over-approximation, and handles

reflection/native code conservatively – this can be a source of false

positives. Also, the SAPI functions with zero parameters tend to

have more false positives – a more precise alias and flow analysis

would improve precision.

Broader concerns. There could be other classes of SHBs, beyond

the ones we have discovered. Nevertheless, our list of SHBs: (1) is

effective at malware discrimination, and (2) exposes questionable

practices in benign apps.
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1 Hide icon !UD ∧ RemoveFromHomeScreen(MainActivity)

2 Hide app !UD ∧ SAPI(Start_service)

3 Hide activity ActivityFinish () ∨ (!UD ∧ AttributeAnalysis(Transparent_Main_Activity) ∧ SAPI(Set_Flags))

4 Delete message !UD ∧ SAPI(Delete_Sms_Mms) ∧ (PAPI(Receive_Sms_Mms) ∨ PAPI(Send_Sms_Mms))

5 Delete call log !UD ∧ (PAPI(Make_Phone_Call) ∨ PAPI(Receive_Phone_Call)) ∧ SAPI(Delete_Call_Log)

6 Block message !UD ∧ SAPI(Block_Sms_Mms) ∧ PAPI(Receive_Sms_Mms) ∧ PAPI(Send_Sms_Mms)

7 Block call !UD ∧ SAPI(Block_Phone_Call) ∧ PAPI(Receive_Phone_Call) ∧ PAPI(Make_Phone_Call)

8 Hide alert !UD ∧ SAPI(Close_System_Dialog)

9 Hide notification !UD ∧ SAPI(Cancel_Notification)

10 Mute phone !UD ∧ ( SAPI(Cancel_Vibrate) ∨ SAPI(Mute) ∨ SAPI(Adjust_Volume) ∨ SAPI(Chang_Ringer_Mode) )

11 Exclude from recent apps list !UD ∧ AttributeAnalysis(EXCLUDE_FROM_RECENTS)

12 Delete system log !UD ∧ SAPI(Delete_Logcat)

Figure 5: Detection rules.

Finally, our approach cannot recognize specific malware fam-

ilies: certain SHBs might span multiple malware families. This is

expected, as our design goal was at a lower level, automatic SHB

identification, rather than clustering malware by family.

4 EVALUATION

In this section, we present an evaluation of our approach along

several dimensions: Is the approach effective at identifying SHBs?

Is the approach efficient? What are the main causes of false posi-

tives/false negatives? We begin by describing the two datasets used

in our evaluation.

Datasets. Our first dataset, which we name MA-198, contains
198 malware samples that were decompiled and analyzed manu-

ally, in detail. The 198 samples come from the Malware Genome

Project [31], Drebin [11], and AndroZoo [10].

The second dataset, which we name ALL-9452, consists of 6,233
benign apps3 and 3,219 malicious apps.4 These apps were analyzed

automatically. To ensure that the benign set does not contain mal-

ware, we sent all the apps in this set to VirusTotal [7], a public

malware scanning service. If an app is reported by at least one com-

mon anti-virus tool as malicious, we removed it from the benign

set. For the malware samples, we performed a quick and simple

static analysis to eliminate the samples without any possibility to

have SHBs. This is done by searching requested permissions, major

SAPI calls and intent actions. For example, if an app does not have

permissions SEND_SMS and RECEIVE_SMS, it is impossible to have the

SHB “Delete message”. Moreover, in order to make sure that the

samples are malware, we sent them to VirusTotal. If an app was

reported malicious by less than two scanners, we removed it from

the malware set.

Platform. The static analysis tool ran on an 8-core Intel Xeon

i7-4770 (8MB Cache, 3.4 GHz) with 32GB of RAM. The system ran

Ubuntu 14.04.1, Linux kernel version 3.13.0-32-generic.

3The benign app samples are from Google Play and AndroZoo [10]; specifically, 4,970
(70%) of the benign apps are from Google Play and span all 33 app categories, as well
as games.
4The malware samples are from Drebin [11], DroidCat [3], Kharon [5], AndroMal-
Share [2], Malware Genome Project [31], and Offensive Computing [6].

Table 3: Effectiveness results on MA-198.

True Over-reported Under-reported

SHBs SHBs (FP) SHBs (FN)

219 46 27

Precision: 219
219+46 = 82.64% Recall : 219

219+27 = 89.02%

F−measure: 2 ∗ 82.64∗89.02
82.64+89.02 = 85.71%

4.1 Effectiveness

The test for evaluating effectiveness consists of two steps: SHB

detection validation (manual) and large scale measurement (auto-

matic).

4.1.1 Manual Cross-checking on MA-198. As there is no existing
oracle to determine SHB, we manually verified each static analysis

report. Specifically, we reverse-engineered each app – decompiled

the app (to source code) via the JADX decompiler [4]. Note that

decompilation is not always possible due to obfuscation, so some of

our manual analysis was based on source code inspection, some on

Dalvik bytecode inspection. The results are shown in Table 3. Our

tool has reported 265 SHBs in total; of these 219 were true SHBs,

while 46 SHBs were over-reported (false positives) and 27 were

false negatives, i.e., our tool missed those SHBs (the reasons will be

discussed in Sections 4.1.3 and 4.1.4, respectively). This yields an

F-measure of 85.71%, indicating that our tool is quite effective.

4.1.2 Automated Analysis on AA-9452. We now turn to dis-

cussing the large-set results, shown in Table 4. Note that here the

numbers in columns 2–4 indicate apps, not SHBs (since we only

have ground truth for app nature, not SHBs).

A sample is identified as malicious if it exhibited any one of the

SH behaviors. The tool missed (false negatives, or ‘FN’) 311 samples

from the malware set, hence the recall value is 90.62%. The tool

also reported 996 benign apps as having SHB (false positives, or

‘FP’) from the benign set, hence the precision is 84.02%. While these

996 apps were not malicious, their use of SHB is questionable – we

discuss such uses at length in Section 5.
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Table 4: Effectiveness results on AA-9452.

Apps Apps reported as SHBs SHBs

Malicious Benign /app

Malicious set 3,219 2,908 311 4,843 1.5

(FN)

Benign set 6,233 996 5,237 1,241 0.2

(FP)

Precision: 5,237
5,237+996 = 84.02% Recall : 2,908

2,908+311 = 90.62%

F−measure: 2 ∗ 84.02∗90.62
84.02+90.62 = 87.19%

Figure 6: FPs generated by each SHB.

Finally, the F-measure is 87.19%; the malware set exhibited 1.5

SHB per sample on average5 while the benign set exhibited only

0.2 SHB per sample.We believe that the high F-measure value and

the per-app figures of 1.5 SHB (malicious) vs 0.2 (benign) indicate that

our approach is effective for detecting SHB (and perform SHB-based

triaging) in Android apps.

4.1.3 False Positives. To better understand the causes of false

positives, in Figure 6 we have grouped them by SHBs. Five SHBs,

“hide activity”, “hide notification”, “hide icon”, “hide app” and “delete

system log”, generated the most false positives. We investigated

this and found that the false positives were due to several reasons:

(1) Certain apps employ SHB, such as running in the background

without the user having started the app, or without the user

being able to see that running app, in the name of improving

user experience (see Section 5).

(2) Static Analysis: alias, data-flow, and control-flow analyses

are over-approximating, which is inherent in static analysis.

4.1.4 False Negatives. We have categorized the false negative

sources as follows:

(1) Parameters of an SHB are dynamically sent from a remote

control server, hence our static analysis cannot identify the

behavior. For example, spyware Saveme has a remote server

5Median = 1, min = 0, max = 5.

that sends the id, time or phone number through the network

to delete certain SMS/MMS messages.

(2) SHBs are launched by GUI interaction, but the behavior

mismatches the content shown on the GUI. For example,

apps Pure girl and iCalendar employ this behavior.

(3) Some malware samples do not have SHB, though they do

invoke SAPI calls, e.g., Towelroot and FakeCMCC. Our tool

did not identify these samples as malicious.

4.1.5 Behavior statistics. Figure 1 shows the number of each

type of SHBs detected per 1,000 malware samples and 1,000 benign

samples, respectively.6 The total number of SHBs detected in the

malware set is 1502 per 1000 samples while in the benign set it is

only 185 per 1000 samples. “Hide app”, “Hide activity” and “Block

message” are the three most common SHBs in the malware set.

4.2 Efficiency

Running our tool on the 9,452 apps took about 10 days. We show the

detailed efficiency results in Table 5. The “Bytecode size” grouped

columns show that the datasets had substantial variety in terms

of app size, and some apps’ bytecode size was as large as 24 MB.

The “Time” grouped columns show running time statistics for each

dataset. We focus on AA-9452 as it is larger, hence more representa-
tive. The mean analysis time was 84 seconds while the median was

37 seconds, which shows that our analysis is practical. Finally, we

believe that even the maximum analysis time of 15,290 seconds (i.e.,

4 hours 15 minutes) is acceptable for a static analysis. To conclude,

with a median analysis time of 37 seconds on a median app size of

2.4MB we believe that our approach is efficient at SHB analysis.

5 SELF-HIDING BEHAVIOR IN BENIGN APPS

For each SHB category our tool has found in benign apps, we per-

formed a two-part targeted manual investigation: first, we analyzed

the disassembled bytecode, and then ran the app with instrumen-

tation to confirm the SHB. We focused this investigation on two

categories of apps: (1) apps that are very popular, e.g., with more

than 100 million installs; or (2) less popular apps which displayed

severe cases of SHB. Ultimately we aimed to answer the questions “

Why does this SH behavior occur and what are the consequences

for the user?” This section summarizes some of our findings; we

limit the discussion to 8 SHBs for brevity.

5.1 Hide App

Many popular benign apps, such as Airbnb and BBM start themselves

as an automatic service after receiving the BOOT_COMPLETED event.

This event, which requires the permission RECEIVE_BOOT_COMPLETED

, notifies the app that the system has rebooted. In conjunction with

this event and permission, there is a function which launches the

auto-start service. Our tool reports this as “Hide app” SHB. Apps em-

ploy this technique as a means to initialize app-specific information

and functions upon startup. While it could be argued that the app

is not hiding in the malicious sense (rather it is running in the back-

ground to have access to certain types of data – most commonly,

location services), we believe that users should know when such

6The 1,000 benign apps are a random sample extracted from the 6,233 benign apps,
while the 1,000 malicious apps are a random sample extracted from the 3,219 malicious
apps.
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Table 5: Efficiency results.

Dataset Bytecode size (KB) Time (seconds)

min max average median min max average median

MA-198 32 15,021 5,326 1,995 13 6,596 140 32

AA-9452 5 24,218 4,496 2,459 2 15,290 84 37

apps are running: (1) so they understand why the battery is drain-

ing, and (2) so they understand the privacy implications of apps

accessing and transmitting sensitive information (e.g., location) in

the background.

5.2 Hide Notification

Certain apps, such as Waze, Truecaller, All in One Toolbox, Quick

Heal Mobile Security, and MiniFetion use NotificationManager. cancel () or

NotificationManager. cancelAll () to block notifications without user in-

tervention. As a result these apps have been marked as having the

“Hide notification” SHB. This is due to the nature of cancel () and

cancelall () , which cancel all previously-shown notifications. Apps

employ this technique as a means to update the user to the most

recent notification or to consolidate notifications, especially in com-

munication apps such as MiniFetion and TrueCaller. Lately, many

“clean up” and “device maintenance” apps have started to exhibit

this behavior for the same reasons. Consolidated notifications may

appear convenient to the user, however the app does not have a

means to show high-priority notifications first (other than through

chronological order). Therefore, users might prefer to receive notifi-

cations for all messages to reduce the risk of missing an important

notification. However in the case of Waze, the app blocks certain

notifications using Vanagon Notification Manager which cancels all

app notifications when the user is not driving. While the app might

be trying to appear helpful, notification cancellation and blocking

without user’s consent/awareness is questionable at best.

5.3 Mute Phone

Our tool discovered the use of AudioManager.setRingerMode() in the be-

nign app Camera360. As its name states, this is a camera app which

edits and takes photos; it has more than 100 million installs and

was “Best App of 2016 on Google Play in several countries”.7 Many

camera apps use volume controls when recording audio. Our tool

also discovered the “Mute phone” SHB in certain benign popular

apps like Smart Truck Route and All in One Toolbox due to the use

of Vibrator . cancel () and AudioManager.setRingerMode(). Regarding Smart

Truck Route, the app directly checks and manipulates the device’s

audio settings, including its ringer mode. As for All in One Toolbox,

the app mutes the phone based on the SDK version of the device.

This is dubious behavior for a utility app aimed at optimizing the

Android device. To sum up, even though it seems reasonable in

some of these cases, we believe that muting the phone should be

done by the user through a system-wide control rather than silently

by the app.

7https://play.google.com/store/apps/details?id=vStudio.Android.Camera360&hl=en

5.4 Block Message

As the BroadcastReceiver is usually a dormant app component, it is

not surprising that its methods can be categorized as SHBs, es-

pecially abortBroadcast () . As a result, many benign apps can exhibit

this behavior. Interestingly, these apps are not limited to those

which rely heavily on BroadcastReceiver. For example, the popular

navigation app Waze uses abortBroadcast () which can be construed

as the “Block Message” SHB. The abortBroadcast () method is used to

prevent other receivers from obtaining the broadcast, thus block-

ing the communication. It might be justified that Waze employs

this tactic as a means to prevent itself from getting location-based

alerts that may be irrelevant or annoying to the user. While the

intentions of message-blocking apps might appear benign, such

blocking removes decision-making from the user and can interfere

with usability.

5.5 Block Call

Apps which use ITelephony.endCall () are considered to have the ‘Block

Call” SHB. The benign app Truecaller has the sole purpose to identify

and block spam calls, hence it was obviously marked to have this

behavior. Despite explicitly stating that it automatically blocks

calls, an app which decides for the user which calls are spam can

be maliciously manipulated against the user’s interest.

5.6 Hide Icon

“Hide icon” achieves its goal by deleting an activity’s category .LAUNCHER

from the Android manifest. While this deletion merely indicates

that that activity should appear as an initial activity of a task, it

is evident that a deceitful app can use hide-icon to promote other

activities, masking the deceitful app beneath. Many popular benign

apps such as ES File Explorer and Next Launcher 3D Shell Lite have this

behavior. For example, app Next Launcher 3D Shell Lite is a premium

launcher for Android’s home screen, but one of its key features is

that it draws 3D icons and widgets over their original counterparts.

App ES File Explorer has permissions to draw over apps, which is

surprising and might be regarded as excessive for a file manager.

By having the ability to promote certain activities and controlling

the launcher’s top level apps, apps with this SHB should be treated

with caution.

5.7 Delete Call Log

The appQuick Heal Mobile Security exemplifies this SHB. The app

uses ContentResolver.Delete () to delete the call logs on the device. The

app has call filtering capabilities and has explicit permissions to

read and write call logs on the user’s device. Nevertheless, (1) users

may not be aware of the security implications of log deletion, and

737



Self-Hiding Behavior in Android Apps: Detection and Characterization ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

(2) the user does not initiate call deletion. These two factors make

this particular SHB instance quite problematic.

5.8 Delete System Log

MiniFetion, an app from the Baidu app marketplace, sends free SMS

to the user’s contacts. Despite the seemingly straightforward nature

of the app, we found two highly questionable behaviors. First, the

app deletes the system log via "logcat -c". Second, the app has
an activity MobClickAgent which uploads device logs to a third party

server. Thus the app is able to manipulate, as well as exfiltrate, the

system logs without the user’s awareness. While not many popular

apps have this SHB, users need to be extremely suspicious of any

app which send device logs and user information to third-party

servers.

6 RELATEDWORK

Behavior-based malware detection for Android has been long been

studied due to the prevalence of malware in the Android ecosys-

tem; a variety of methods for characterization and behavior-based

detection have been proposed.

Malware behavior characterization. CopperDroid characterizes

malware behavior based on how it is initiated, either through Java,

JNI, or native code execution [20]. SmartDroid uses a combination

of static and dynamic analysis to detect conditions as a way to

expose the behavior of Android malware in UI-based triggers [29].

Machine learning.Crowdroid uses crowdsourcing to obtain traces

of an app’s behavior [14]; it distinguishes between benign and ma-

licious apps of the same name and version by detecting anomalous

behavior using k-means; some limitations include having to rely on

the Android user community as a source for app traces, as well as

having high energy consumption on devices. PUMA [21] evaluates

the scope and use of permissions. DREBIN [11] uses both static

analysis and machine learning to optimize analysis and detection

patterns; MAMA [22] uses classifiers based on features to detect

malware. Yerima et al. [28] use static analysis to build Bayesian

models as a way to detect evasive malware. Andromaly applies ma-

chine learning (anomaly detectors) to classify features and events

as benign or malicious [25]. DroidRanger uses a permission-based

footprinting scheme to detect malware followed by a heuristic-

based filtering scheme to identify behavior of unknown malware

families [32]. Droid Detective detects malware based on permission

combination [19]; by obtaining permission combinations which

have been requested frequently by malware, it auto-generates sets

to be used as a means of identifying malware. MONET combines

runtime behavior with static structures to detect malware vari-

ants and to generate a runtime signature of the malware [27]. AV-

class performs massive-scale malware labeling through clustering

anti-virus labels, and identifying the most likely family names for

each sample [24]. Similarly, Euphony categorizes malware samples

based on clustering the anti-virus labels produced by anti-virus

vendors [18].

Static analysis. Apposcopy uses static analysis to extract mal-

ware properties, and takes a more semantics-oriented approach to

classify malware based on its signature [16]. However one of its

biggest limitations is that it cannot detect obfuscation or self-hiding.

Another signature-based tool is DroidAnalytics which collects, man-

ages, and extracts malware and analyzes mutations and repackaging

methods [30]. Similarly, DroidAPIMiner uses classifiers based on se-

mantic information from the bytecode of apps, namely API calls [9].

Using dataflow analysis and frequency analysis, it captures the

most common and relevant API calls used by malware. Feng et al.

focus on a structure of information flows gathered through the se-

quence of API calls and the patterns of behavior present to identify

malware [26]. Similarly, we have employed such API and dataflow

analyses in our work to analyze SHB. MADAM is a host-based mal-

ware detection system for Android devices [23]; it analyzes features

at 4 levels – kernel, app, user, and package – which enables it to

detect 125 existing malware families.

Rather than focusing on general behavior-based analysis of mal-

ware, we implement a range of static analyses to detect SHB and

malware. Machine learning, while useful in better understanding

malware behavior, has several disadvantages, e.g., the models it

learns are opaque whereas we have a static analysis report that

helps users/developers/marketplaces trace the SHB precisely; fur-

thermore, machine learning may oversimplify SHB resulting into

large numbers of false positives. Most static analyses of malware

are focused on behavior and do not employ attribute analysis as

we do; this analysis is key in identifying SHB such as transparent

activities. Finally, our work differs from dynamic analysis-based

approaches in the standard static vs. dynamic analysis way: due

to static analysis our approach is prone to false positives, but does

not require running the app. Dynamic analysis is prone to false

negatives and requires high-quality inputs to ensure good coverage.

7 CONCLUSION

Motivated by the common tendency of Android malware to self-

hide in order to deceive users and cover malicious traces, we define

a set of self-hiding behaviors and construct a suite of static analyses

to reveal such behavior. Our experiments indicate that the presence

of self-hiding behavior is strongly associated with malice in a given

app. Nevertheless, we also found plenty of benign, widely-popular

apps that employ hiding techniques, which suggests that end-users

and marketplaces would benefit from using an approach like ours

to shed light on potential nefarious behavior in Android apps and

improve user experience.
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