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Abstract—Face biometric systems are vulnerable to spoofing
attacks. Such attacks can be performed in many ways, including
presenting a falsified image, video or 3D mask of a valid user.
A widely used approach for differentiating genuine faces from
fake ones has been to capture their inherent differences in (2D
or 3D) texture using local descriptors. One limitation of these
methods is that they may fail if an unseen attack type, e.g. a
highly realistic 3D mask which resembles real skin texture, is
used in spoofing. Here we propose a robust anti-spoofing method
by detecting pulse from face videos. Based on the fact that a
pulse signal exists in a real living face but not in any mask
or print material, the method could be a generalized solution
for face liveness detection. The proposed method is evaluated
first on a 3D mask spoofing database 3DMAD to demonstrate
its effectiveness in detecting 3D mask attacks. More importantly,
our cross-database experiment with high quality REAL-F masks
shows that the pulse based method is able to detect even the
previously unseen mask type whereas texture based methods fail
to generalize beyond the development data. Finally, we propose
a robust cascade system combining two complementary attack-
specific spoof detectors, i.e. utilize pulse detection against print
attacks and color texture analysis against video attacks.

Index Terms—Face liveness, pulse, anti-spoofing, cross-
database, mask.

I. INTRODUCTION

Face is one of the most popular biometric traits used
in authentication systems [1]. Face authentication systems
are known to be vulnerable to presentation attacks because
presenting a replica of the targeted face is easy compared
with falsifying other biometric traits, e.g. fingerprint or iris.
First, face biometric data can be widely sampled in public
or social media [2]. Second, the attacks can be performed
in different and relatively cheap ways using e.g. photos or
videos, or even (3D) masks of the targeted face. The face anti-
spoofing problem has received significant attention lately, and
many software-based and hardware-based countermeasures
have been proposed. Here, we list several papers closely
related to the current work. More comprehensive surveys can
be found in e.g. [1], [3] and [4].

Assuming that there are inherent disparities between gen-
uine faces and fake ones (e.g. printed photos), such as shading,
reflectance and skin texture (quality), some earlier works [5]–
[7] have proposed approaches for performing spoof detection

*Corresponding author.

from (single) static images. The key idea has been to capture
these attributes by analyzing e.g. the spatial frequency power
distribution [5], [6] or local texture [7]. Dynamic methods, i.e.
exploiting facial motion as a clue, have also been explored for
face spoof detection. Typically dynamic countermeasures to
photo attacks aim at detecting physiological signs of life, such
as eye blinks [8] and mouth movements [9]. Since prints and
display devices are flat objects whereas live faces are complex
3D structures, low-cost depth sensors, e.g. Microsoft Kinect,
can be also exploited to simplify the measurement of three-
dimensionality of the observed face [10].

The main focus of previous examples in face anti-spoofing
research has been on tackling the problem of photo and video
attacks, while wearable (3D) mask attacks have received much
less attention. The main reason is that it is expensive to collect
large scale datasets of masks. However, due to advances in 3D
printing, the manufacturing costs of 3D masks are becoming
reasonable, which makes mask attacks a significant threat to
face biometric systems in addition to print and video attacks.

Recently, Erdogmus et al. [11] addressed this issue by
releasing the first 3D mask attack dataset 3DMAD in which
the attackers wear 3D facial masks of the targeted persons.
They showed also that these kinds of attacks are capable
of fooling anti-spoofing methods utilizing eye blinking [8]
or depth information [10]. Inspired by [7], Erdogmus et al.
used local binary pattern (LBP) [12] based facial texture
representation for 3D mask attack detection. Although the
texture based method performs well on the 3DMAD, one
potential limitation is worthy of concern. The masks included
in the 3DMAD suffer from obvious 3D printing artifacts (see,
Figure 1 left), which can be easily captured using powerful
texture descriptors, like LBP. However as manufacturing tech-
niques develop, higher quality 3D masks with realistic skin-
like texture can be obtained by intruders (see, Figure 1 right). It
is likely that texture based methods can be outwitted with these
kinds of masks. Furthermore, the performance of texture based
approaches is known to degrade dramatically in unknown
operating conditions because the facial texture models are
highly dependent on the used input camera and fake face
type [3], [13], [14]. In real-world applications, face biometric
systems are operating in open environments when unknown
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Fig. 1. Comparison of masks used in 3DMAD (left) and REAL-F (right).
Upper left: enlarged area highlights the 3D printing defects of the 3DMAD
mask. Upper right: enlarged area shows skin-like texture of the REAL-F mask.

input devices and unseen attack scenarios will be definitely
encountered. Thus, there is a need for a generalized mask
detection approach that does not make too strong assumptions
on the input sensor or the mask type, e.g. specific texture
patterns.

In this present work, we propose to use pulse detection from
facial videos for face anti-spoofing. Heart rate measurement
from face is an emerging topic that originates from the
technique of photoplethysmography (PPG). When light sheds
on bare skin parts like earlobes, wrests or fingers, hemoglobins
in superficial vessels absorb part of the lights. Cardiac pulse
rhythmically changes the number of hemoglobins within a
local region, and a PPG can capture the changes by measuring
the amount of light being absorbed thus measure the pulse
(see, Figure 2). Recent studies have reported that pulse can
also be measured from facial videos captured with ordinary
color cameras [15], [16]. The background mechanism is simi-
lar as the facial skin color changes slightly according to cardiac
pulses. These subtle changes can be revealed and used for
measuring pulse rate with proper signal processing.

Fig. 2. Illustration1of how a photoplethysmography (PPG) works.

Inspired by the pulse measurement studies [15], [16], we
analyze these facial color changes that correspond to cardiac
pulses in frequency domain, and use their power strengths to
build features for the anti-spoofing task. Based on the fact that
a pulse signal can be only detected in a real living face but

1Figure from howequipmentworks.com.

not in any mask (or print) material, the method could be a
generalized countermeasure to mask (and print) attacks.

To our best knowledge, this is the first in-depth study
that considers pulse detection for the problem of face anti-
spoofing. We demonstrate that the pulse detection based
method works well on a 3D mask attack database (3DMAD).
More importantly, we show that when an unseen mask attack
with high quality (i.e. REAL-F mask) is included in the test
set, texture based methods using LBP features will fail to
generalize whereas the pulse detection approach is able to
perform robustly. We also explore its effectiveness in detecting
print and video replay attacks. Finally, we propose a robust
cascade system combining two complementary attack-specific
spoof detectors, i.e. utilize pulse detection against print attacks
and color texture analysis against video attacks. The pulse-
based method is very simple yet effective and can be applied
in real time. It operates on ordinary color videos, thus no
special equipment is needed, which allows it to be generalized
to various anti-spoofing scenarios.

For the remaining parts of the paper, we explain the pulse
detection method in Section II, and provide the experimental
results with discussion in Section III. Our conclusions and
plans for future work are presented in Section IV.

II. METHOD: PULSE DETECTION FROM FACE VIDEOS FOR
ANTI-SPOOFING

A. Face Detection and ROI Tracking

The method takes a video as the input. Given a facial video
of n frames, the first step is to accurately locate and track an
area of bare facial skin. We use the lower half face including
the cheeks, nose, mouth and chin, while the forehead and eyes
are excluded as they may be blocked by glasses or hair.

We apply Viola-Jones face detector [17] on the first frame
of the input video, and then use discriminative response map
fitting (DRMF) method [18] to find 66 facial landmarks within
the face bounding box. We use 9 of the 66 landmarks to define
a region of interest (ROI) as shown in Figure 3 a. The location
of the ROI is tracked through all frames using the Kanade-
Lucas-Tomasi (KLT) algorithm [19].

The tracked ROI contains pixels of facial skin whose color
values change with the cardiac pulse. Three raw pulse signals
rraw, graw and braw (see Figure 3 b) are computed one from
each RGB channel, respectively. For the red channel, the mean
value of all pixels inside the ROI is calculated for each frame,
so that the raw pulse signal is a one by n vector rraw =
[r1, r2, . . . , rn]. The two other raw signals graw and braw are
computed similarly.

B. Temporal Filtering and Power Spectrum Distribution

Next, we apply three temporal filters that have shown to
be helpful in excluding frequencies not relevant for pulse
measurement [15]. The first one is a detrending filter based on
a smoothness priors approach [20], which is used for reducing
slow and non-stationary trend of the signal. The second one
is a moving-average filter, which removes random noises
by averaging adjacent frames. The third one is a Hamming
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Fig. 3. Framework of the proposed method. For the sake of simplicity, only the PSD of green channel is shown in part c. The PSD curves for red and blue
channels are computed in the same way.

window based finite impulse response (FIR) bandpass filter
with a cutoff frequency range of [0.7, 4] Hz, which covers the
normal range of pulse from 42 beat-per-minute (bpm) to 240
bpm [15].

After pre-processing, we use fast Fourier transform (FFT)
to convert the pulse signals into frequency domain. The power
spectral density (PSD) curve is computed in which the power
e is estimated as a function of the frequency f .

Fig. 4. Typical PSD patterns of a real access (left) and a mask attack (right)
extracted from the green color channel.

Figure 4 depicts typical PSD patterns of a genuine access
and an attack. If there is a live face in the video, there will
be a dominant peak in the PSD corresponding to the pulse
frequency and its second harmonic peak. In the case of a mask
(or a print) attack, the PSD usually contains just (multiple)
random noise peaks at a much lower power level. Therefore,
we construct two features for each color channel for the face
liveness detection task. The first feature is denoted as E, which
is the maximum value of e when f is in the range of [0.7, 4]. To
increase the stability of the feature for cross-database testing,
we build a second feature demoted as Γ, which is the ratio of
E and the total power:

Γ =
E∑

∀f∈[0.7,4] e(f)
. (1)

So we have a six-dimensional feature vector
[Er, Eg, Eb,Γr,Γg,Γb] for each video, in which r, g
and b indicate corresponding color channels.

C. Classification

The anti-spoofing problem is treated as a two-class classi-
fication task, in which real accesses are differentiated from
attacks. A support vector machine (SVM) [21] is used as the
classifier.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We carried out experiments on three datasets in order to
evaluate the effectiveness of the pulse-based feature under
three different types of attacks: 3D mask, print and video

replay attacks. The first two experiments consider two different
3D mask attacks provided in 3DMAD and REAL-F datasets.
The 3DMAD is the only publicly available 3D mask attack
database, whereas the REAL-F is a new self-collected dataset.
In the final experiment, we explore the performance of the
porposed approach also in detecting print and video replay
attacks provided in the relatively new MSU Mobile Face
Spoofing Database (MFSD) [4]. Next, we will describe the
experimental set-ups used in our experiments.

Methods: For any given dataset, we use the first ten
seconds of each video sample (all video samples in the
three datasets are at least ten seconds long) to extract a six-
dimensional feature vector [Er, Eg, Eb,Γr,Γg,Γb] (referred to
as Pulse). In order to mitigate the effect of complex classifi-
cation schemes and to evaluate the robustness of the proposed
feature itself, we used a linear kernel for the SVM with fixed
cost parameter C = 1000 throughout all experiments.

We considered the widely used LBP features as a baseline
for comparing the performance of the pulse-based feature. In
the following experiments, the LBP features are first extracted
for each frame and the same SVM configuration is used to
get image-based classification scores. The video-based perfor-
mance is obtained by averaging all frame-based score values
for each video. Inspired by the state of the art [4], [7], [11],
[22], four configurations of LBP features are employed: 1)
LBP − blk indicates LBP8,1 histograms extracted from 3× 3
blocks of a gray-scale face image and then concatenated into
a 531 dimensional vector; 2) LBP − blk − color indicates
the same block-wise LBP8,1 but extracted separately from
each RGB color channel and then concatenated into a 1593
dimension vector; 3) LBP − ms indicates multi-scale LBP
extracted from a whole gray-scale face image combining
LBP8,1, LBP8,2, LBP8,3, LBP8,4 and LBP16,2 when the total
feature vector length is 479; and 4) LBP − ms − color
indicates the same multi-scale LBP but extracted separately
from the each RGB channel of a whole face image when the
total feature vector length is 1437.

Performance metrics: The results for all experiments
are reported using equal error rates (EER) which corresponds
to the operating point when the false positive rate (FPR) equals
the false negative rate (FNR). For the first two experiments,
we also report the half total error rate (HTER):

HTER =
FPR(τ∗) + FNR(τ∗)

2
, (2)

where the threshold τ∗ corresponds to the EER operating point
of the used development set.
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A. 3D Mask Attack Database (3DMAD)

Data: 3DMAD [11] contains 255 videos recorded from
17 subjects. The recording was divided into three sessions
s1, s2 and s3: s1 and s2 were real accesses, in which each
subject’s face was recorded five times (altogether ten videos)
at different dates; s3 was the spoof attack condition, in which
another person was recorded five times while wearing the
3D face mask of the targeted subject. The masks used in
3DMAD were ordered from online store ThatsMyFace.com
and manufactured using 3D printing. A high resolution photo
of exactly the same kind of mask is shown in Figure 1 left.

Testing protocol: For training and testing, we use the
same leave-one-out cross-validation (LOOCV) protocol as
used in paper [11]. In each fold of all 17 folds of cross
validations: one subject’s data is left for testing, while the
data of the remaining 16 subjects is divided into two subject-
disjoint halves as training and development sets, respectively.

Results: The results are listed in Table I. It can be seen
that the Pulse feature worked well on 3DMAD with an HTER
of less than 8% on the test set. Thus, the pulse detection
method is very effective in differentiating 3D mask attacks
from real access attempts even though a feature vector of only
six dimensions and a linear classifier are utilized. On the other
hand, all four LBP configurations achieved perfect results on
the 3DMAD. However, this can be explained by the obvious
3D printing defects (see Figure 1) that the LBP descriptors
can easily capture because both the training set and testing set
include data achieved in the same acquisition conditions.

TABLE I
RESULTS ON 3DMAD.

3DMAD-dev 3DMAD-test
Method EER HTER EER
Pulse 2.31% 7.94%4.71%
LBP − blk 0% 0% 0%
LBP − blk − color 0% 0% 0%
LBP −ms 0% 0% 0%
LBP −ms− color 0% 0% 0%

B. High Quality REAL-F Mask Attack

In this experiment, we demonstrate that the pulse-based
approach is able to detect a previously unseen type of mask
attack of high quality, while the different texture based
methods fail to generalize beyond the development data.
As manufacturing techniques improve, higher quality mask
are easily accessible. Figure 1 right shows an example of
REAL-F mask2 with an enlarged area highlighting its texture.
The highly detailed texture of the REAL-F mask resembles
real human skin, thus might be able to spoof texture based
countermeasures.

Data: Since there is no other 3D mask database available,
we bought two REAL-F masks and collected a small REAL-F
dataset3. Currently, the REAL-F dataset contains 24 videos of

2For more information about REAL-F masks, please refer to http://http:
//real-f.jp/en news.html.

3The dataset will be expanded and made publicly available in near future.

which 12 are real accesses recorded from two subjects, and
the other 12 are attacks using two REAL-F masks. All REAL-
F videos were recorded using a Logitec C 920 webcam at a
frame rate of 30 fps and with a resolution of 1280 by 760.
Each video clip lasts ten seconds.

Testing protocol: Again, we randomly select eight sub-
jects’ data from 3DMAD for training and the other eight
subjects’ data as the development set, while the 24 REAL-
F videos can be seen as an augmented test set containing a
previously unseen mask type. We run 100 folds of such test
using different combinations of training data, and summarize
the results of all folds to report EER, HTER and the FPRs
when FNR=0.1 and FNR=0.01.

Results: Results are shown in Table II. Although the
different LBP features performed well on the original 3DMAD
data, their performance decreases dramatically in this cross-
database scenario, i.e. when the REAL-F masks are intro-
duced. From the four types of LBP features, the two block-
wise LBP features performed better than multi-scale LBP
features. However, even the best-performing configuration
(LBP−blk−color) misclassifies almost half of the attacks as
real accesses when FNR = 0.01. On the other hand, our pulse-
based method is able to generalize beyond the development
data and performs robustly under the new type of mask attacks.

TABLE II
RESULTS ON REAL-F.

REAL-F

Method HTER EER FPR FPR
(FNR=0.1) (FNR=0.01)

Pulse 4.29% 1.58% 0.25% 3.83%
LBP − blk 26.83% 25.08% 37.92% 48.25%
LBP − blk − color 25.92% 20.42% 31.50% 48.67%
LBP −ms 39.87% 46.50% 59.83% 73.17%
LBP −ms− color 47.38% 46.08% 86.50% 95.08%

Face anti-spoofing techniques relying on texture information
might be outwitted because of two reasons: 1) they either fail
to find texture differences due to the skin-like texture of the
high quality mask, 2) or they simply cannot generalize to
unseen mask types as they were tuned on a different kind
of mask. The pulse detection technique, however, has clear
semantic definition and does not make strong assumptions on
the mask attack type, e.g. specific texture patterns. Therefore,
it won’t be affected by the mask quality (or new input sensor),
and is capable of detecting different kinds of masks, even
previously unseen ones, as long as the mask is non-transparent.

Discussion about the pulse-based method for 3D mask
attack detection: For further analysis of the pulse feature, the
Eg values of 255 3DMAD samples and 24 REAL-F samples
are depicted in Figure 5 (the other five dimensions have similar
patterns). It can be seen that most mask attack cases (orange
crosses) are clustered and their Eg values are very low. In
principle, the PSD of a mask attack corresponds to random
noise (see, Figure 4 right), because no pulse power peak can be
found in such cases. The Eg values for real cases are generally
larger because they correspond to pulsation power which is
usually presented as a dominant peak with a much higher value
than the noise peaks (see, Figure 4 left). The deviation of real
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access Eg values, however, is rather high as it can be affected
by several factors, including illumination, skin tone, motion
and facial resolution [16], [23]. To be more specific, higher
facial resolution, i.e. amount of skin pixels and reasonable
illumination conditions are helpful in order to get stronger
pulse signals, whereas darker skin tone or deliberate motion
will either derogate the pulse signal or increase noise level.

Fig. 5. Eg values of 255 3DMAD samples and 24 REAL-F samples. Black
circles show cases of real face. Orange crosses show cases of mask attack.

It is important to notice from Figure 5 that most of the error
cases are false negatives, while false positive cases are rare.
In general, heart rate cannot be simply detected from masks
but in some real cases the pulse signal is hard to reveal due
to aforementioned factors. We examined the erroneous cases
and found that eight error cases are originated from the same
subject who has both darker skin tone and small facial area.

The current REAL-F dataset is somewhat limited but still
it shows the limitations of texture based methods and also the
potential of our pulse-based method. We believe that these
findings will generalize and can be better demonstrated when
more comprehensive dataset is available, which will be one
important part of our future work.
C. The MSU Mobile Face Spoofing Database (MFSD)

We also explored the effectiveness of the pulse based
method in detecting print and video replay attacks. For this
purpose, we chose to use the MSU Mobile Face Spoofing
Database (MFSD) [4].

Data: The MSU MFSD includes print and video attacks.
It consists of 280 video clips recorded from 35 subjects using
two cameras: built-in camera in MacBook Air 13” (640 by
480), and front-facing camera of the Google Nexus 5 (720 by
480). For each subject, two clips were the real accesses, two
clips were photo attacks in which printed HD face photo were
held in front of the camera for recording, and four clips were
video attacks replayed either by an iPad or by an iPhone.

Testing protocol: We divided MSU MFSD data into
photo attack (MSU-photo) and video attack (MSU-video) sets
to test the proposed method separately on the two different
attack types, and then we also test it on the whole dataset
(MSU-all). For MSU-photo evaluation, 70 real accesses and
70 print attacks are included; for MSU-video evaluation, 70
real accesses and 140 video attacks are included; for MSU-
all evaluation all 280 clips are included. All three tests use
the same protocol as proposed in [4], in which 15 subjects’
data is used for training and the rest 20 subjects’ data for
testing. The Pulse feature was extracted for each video
the same way as previously done on 3DMAD. For texture
features, we considered only LBP −ms − color because it

has been suggested in the literature that 1) color LBP features
outperform their gray-scale counterparts in print and video
attack detection [22], and 2) the use of block-wise LBP is
beneficial only in detecting mask attacks [4], [11], [24].

Results: The EER results are listed in Table III. It
can be seen that the Pulse feature worked best for photo
attacks with only 5% EER, but failed for video attacks as
expected. For photo attacks, the actual recorded material is
paper, thus no pulse power should be detected. On the other
hand, for video attacks, the subtle skin color changes caused
by pulsation are still present because the presented videos
originate from the original live faces (assuming that the quality
of the recaptured face is good enough). The pulse-based
method cannot differentiate video attacks from real cases as
pulse can be detected in both cases. The LBP feature, however,
performed better against video attacks than photo attacks.

TABLE III
RESULTS AS EERS ON DIFFERENT SETS OF MSU MFSD.

Method MSU-photo MSU-video MSU-all
Pulse 5.00% 35.00% 36.67%
LBP −ms− color 10.00% 5.00% 13.33%
Cascade – – 7.50%
IDA in [4] – – 8.58%*
*Results from [4] are image-based classification results.

Discussion: We did not use the two other well-known
face spoofing databases, namely the Replay-Attack [24] and
the CASIA [25] datasets, in this experiment because their data
is not suitable for the current configuration of the pulse-based
feature. As mentioned in the earlier subsection, both facial
resolution and motion can affect the pulse signal.

In the Replay-Attack Database, the videos have very low
resolution (320 by 240), thus the amount of valid facial skin
pixels is too small for recovering pulse signals. According
to our prior tests, a face size of 100 by 100 is acceptable
for the pulse detection method to work. This is a reasonable
requirement considering potential target applications, like mo-
bile biometrics, because nowadays high-quality cameras are
embedded in the latest generations of consumer electronics.

The real access videos in the CASIA dataset have fine
enough image resolution but they are short and contain a
lot of deliberate facial motions, e.g. expressions and mouth
movements. The subjects were instructed not to keep still
because it was argued that facial motion is a crucial liveness
cue for anti-spoofing [25]. For the pulse detection method to
work properly, the valid part of a input video, i.e. with fine
facial resolution and without deliberate motion, has to cover
at least a couple of circles of heart beats in order to reveal the
periodical character of the pulse signal. Due to the short length
and the deliberate facial motion, the videos in the CASIA
dataset do not meet this criterion.

Some videos in 3DMAD and MSU MFSD also suffer from
motion and illumination variations from the pulse detection
point of view. In our preliminary experiments, we tested the
pulse-based method using videos of different lengths. With
longer videos, e.g. ten seconds, it achieved the best perfor-
mance, while with shorter videos, e.g.three or five seconds,
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the method still got reasonable results with only about 1% to
5% increase in the EER and HTER. If all frames of an input
video were valid, the pulse method could operate robustly on
short video clips, e.g. from three to five seconds.

Cascade system: Based on previous results, the pulse-
based method works better on photo attacks while the LBP
method works better on video attacks, but no single feature is
robust enough to deal with all types of attacks. We propose
a general anti-spoofing system (Figure 6) by cascading the
strongest models of the two features. Model 1 was trained on
MSU-photo set using the Pulse feature, and Model 2 was
trained on MSU-video set using LBP −ms− color feature.

Fig. 6. Cascaded system combining Pulse and LBP − ms − color. ‘P’
indicates positive and ‘N’ negative (classified as real and attack, respectively).

The cascaded system was tested on the whole MSU MFSD.
Table III provides a comparison of the proposed system with
[4]. For each FNR level of Model 1, we can get an EER for the
whole system. The best EER of the cascaded system is 7.5%,
achieved when the FNR of Model 1 is set to 2.5%. Since
Model 1 and Model 2 are complementary to each other, the
cascaded anti-spoofing modules perform robustly under print
and video attacks, outperforming the state of the art [4].

IV. CONCLUSIONS

In this paper, we proposed a generalized approach for face
liveness detection by detecting pulse from facial videos. Power
values that correspond to cardiac pulsations are used to build
a feature vector for anti-spoofing task. The proposed method
was demonstrated to be very effective for detecting 3D mask
attacks. While texture-based methods fail to generalize beyond
the training data, the proposed method is able to maintain its
robust performance even under (previously unseen) high qual-
ity mask attacks because the pulse feature is independent from
mask quality and type. Our method works well also for print
attacks, but is not suitable for video attack detection if used
alone. Thus, we proposed a cascaded system combining the
pulse feature and color LBP feature that are complementary
in detecting both photo and video attacks.

This is the first in-depth study which uses pulse detection for
face anti-spoofing. The proposed method has potential to be
generalized into many real-world use case scenarios. In future
we plan to: 1) expand the REAL-F dataset into a more repre-
sentative database containing additional high quality 3D mask
attacks; 2) explore ways to further increase the robustness of
the pulse-based feature in challenging conditions.
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