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Largest Matching Areas for Illumination and
Occlusion Robust Face Recognition

Niall McLaughlin, Ji Ming, Danny Crookes

Abstract—In this paper we introduce a novel approach to
face recognition which simultaneously tackles three combined
challenges: uneven illumination, partial occlusion, and limited
training data. The new approach performs lighting normaliza-
tion, occlusion de-emphasis and finally face recognition, based on
finding the largest matching area (LMA) at each point on the face,
as opposed to traditional fixed-size local area based approaches.
Robustness is achieved with novel approaches for feature ex-
traction, LMA-based face image comparison and unseen data
modeling. On the extended YaleB and AR face databases for
face identification, our method using only a single training image
per-person, outperforms other methods using a single training
image, and matches or exceeds methods which require multiple
training images. On the LFW face verification database, our
method outperforms comparable unsupervised methods. We also
show that the new method performs competitively even when the
training images are corrupted.

I. INTRODUCTION

A. Literature Review

In many real world applications of face recognition, it is
impractical or impossible to obtain more than one training
image per-person. However, the problem of face recognition
given variable lighting, partial occlusion and a single training
image per person is challenging. Both illumination and partial
occlusion may result in large changes in the feature represen-
tation of the appearance of a person, where the changes caused
by these factors can sometimes be greater than the variation
between images of the same person [1], [2]. Given limited
training data, it can be difficult to separate illumination and
occlusion effects from inter-personal variation. In this paper,
we aim to tackle these three problems together. Given a single
training image per person, we develop a new algorithm for
correcting the effects of illumination while disregarding the
effect of partial occlusion.

For recognition with illumination variation, two main cat-
egories of approaches have been tried: those that attempt to
model the appearance variation caused by illumination, and
those that attempt to build an invariant representation of the
face. Many of the original approaches to illumination invariant
recognition involved statistical analysis of the variation of
face images under differing illumination. It has been shown
that a face, viewed from a single direction but under varying
illumination, can be represented using a small number of
eigenfaces [3], [4]. A set of illumination basis vectors can
be constructed for each person using several training images
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taken from the same direction but under differing illumination
conditions [5], [6], [7], [8]. Another statistics-based method is
the spherical harmonics representation, which represents the
surface appearance of an object, ignoring cast shadows, in a
9D linear subspace [9], [10], [11]. These statistical methods
require several face images per person captured under differing
illumination conditions to build the illumination models.

Other methods seek an illumination-invariant representation
which allows a single training image to be used for each
person. The Retinex illumination model [12] explains the
observed brightness at each point on the face in terms of the
intrinsic reflectivity at that point, together with the magnitude
and angle of the incident illumination. Given this model, it is
commonly assumed that the low spatial frequency components
of the face image represent the illumination information, while
the high spatial frequency components represent the intrinsic
face reflectivity, that should be recovered for recognition.
Thus, self quotient imaging (SQI) [13], [14], [15], [16] was
used to approximate the illumination using a smoothed version
of the face image, which is subtracted from the logarithm
of the original face image to give an invariant represen-
tation. Similar filtering can be carried out directly in the
frequency domain to remove the low-frequency illumination
components, using the Fourier [17] or DCT [18] transforms.
Taking the opposite approach, the gradient domain reveals the
high frequency variation of pixels relative to their neighbors,
which is invariant to low frequency illumination variation [19],
[20]. Several gradient-domain methods have been developed,
such as edge maps [21], Gradientfaces [22], robust gradient
features [23], and subspace learning using gradient orienta-
tions [24] which can jointly handle illumination variation and
partial occlusion. It is also possible to decompose the face
image into Gabor features and learn which orientations and
scales are most discriminant [25]. Similarly, local binary pat-
terns (LBP) describe the appearance of a local region relative
to its center point, and are therefore invariant to monotonic
illumination change within the local area [26], [27]. Some
recent methods make use of the commonalities between all
human faces. For instance to generate synthetic face images to
improve recognition in challenging conditions [28]. Symmetric
shape from shading models (SSFS) use a generic 3D head
model to recover the shape and albedo of any face using a
single image [29], [30], while 3D morphable head model based
methods re-project a face image to a canonical representation
before recognition [31], [32], [33].

Face recognition given partial occlusion is another challeng-
ing problem that has received much attention. By definition,
partial occlusion affects only certain parts of the face, while



2

leaving others unaffected. As a result, use of local face
descriptors, which should be unaffected by occlusion outside
their locality, has been a popular method for tackling this
problem. In [34] the face image is divided into a number of
local areas, and the statistical variability of the training data
within each local area is modeled using a Gaussian function.
The similarity between two images is then defined as the
sum of Mahalanobis distances between all the testing and
training image local descriptors. A similar approach is taken
by [35] and [36], where the training examples are used to
learn statistics for the appearances of each local face area.
During recognition, weights are assigned to every local area
of the testing image, proportional to each area’s likelihood
given the unoccluded training examples. Using examples of
occluded and unoccluded face areas, it is possible to train
a classifier to identify which local areas of a testing image
face are occluded. Examples of several different methods for
modeling the appearance of local face areas, and of performing
classification, exist in the literature. For example, local non-
negative matrix factorization is adopted by [37] to model
the local areas of a face, and a nearest-neighbor classifier
is then used to classify each local area as belonging to
the target class or to the occlusion class. Similarly, in [38]
and [39], examples of occluded images patches are used to
train an SVM classifier to detect occluded areas of a testing
face image. In [40], the KL-divergence between local-binary-
pattern histogram features is used to identify occluded areas;
a KL-divergence threshold is learned from training data to
decide whether a pair of image patches are similar enough
to be included during recognition. The approach in [41]
attempts to select the unoccluded face areas for recognition,
using a maximum posterior probability method. While the use
of local face descriptors has been popular in the literature,
occlusion-robust recognition can also be performed without
explicitly dividing the face into local regions, for example, face
recognition by sparse representation [42], [43], or by random
sampling [44]. Although such methods can recognize a face
under occlusion, the authors of [42] found that superior results
could be obtained by modeling each local area of the face
individually. In effect, use of local descriptors takes advantage
of our prior knowledge that many real-world occlusions cover
contiguous areas of the face (in contrast to salt-and-pepper
type noise which could be viewed as a type of non-contiguous
occlusion).

B. Contributions of this Work

In this paper, we present a novel method for face recognition
that is robust to simultaneous realistic partial occlusion and il-
lumination variation. This method can be used with only a sin-
gle training image per person. Based on the Retinex illumina-
tion model [12], we introduce a new method of comparing the
similarity of face images, that is based on finding the largest
matching area (LMA) at each face location. In contrast to
existing methods for illumination normalization and occlusion
modeling based on fixed-size local image areas, as described
above, image comparison based on the largest matching areas
both improves the discrimination between different persons,

and at the same time, optimizes the accuracy of illumination
normalization. In the new LMA method, we model the unseen
illumination variation and occlusion with a novel unseen-data
likelihood. This is included in a maximum a posteriori (MAP)
framework to capture the largest matching local image areas
for illumination normalization, and to deemphasize occluded
local image areas during recognition. Experiments have been
conducted showing the improved performance of the new
method compared with existing methods from the literature.

The remainder of the paper is organized as follows. In
Section II, we describe a piecewise constant illumination
model which forms the basis for this paper’s key idea: the
largest matching area (LMA) approach. In Section III, the
features used to represent each local face image area, and
a method for comparing features given limited training data,
are introduced. In Section IV, we first describe the LMA
approach for identifying the largest matching image areas for
face recognition with robustness to illumination changes, and
we then explain how this approach can be further extended to
provide robustness to partial occlusion. In Section V, experi-
ments are performed to evaluate the new LMA approach and to
compare with results from the literature. Finally, conclusions
are presented in Section VI.

II. LARGEST MATCHING AREA USING
PIECEWISE-CONSTANT ILLUMINATION MODEL

Given a face image, let I(x, y) refer to the brightness of
the pixel at location (x, y), which depends on both the face’s
intrinsic reflectivity R(x, y) and the illumination L(x, y). It
has been observed [12] that in natural images the illumination
varies slowly, i.e., L(x, y) is present at low spatial frequencies,
while the intrinsic reflectance information R(x, y) is present
at higher spatial frequencies. This observation can be used to
construct a model to separate the intrinsic reflectance R(x, y)
from the illumination L(x, y) based on their differences in
spatial variation. Specifically, we assume that surrounding each
location (x, y) there is a small area δ(x, y) in which L(i, j),
for (i, j) ∈ δ(x, y), is approximately constant and can be
described by two constant components: the first component is
additive, modeling the mean pixel brightness within the area
δ(x, y), and the second component is multiplicative, modeling
the variance of the pixel brightnesses over the area δ(x, y).
Therefore, inside δ(x, y) the observed pixel brightness value
I(i, j) at location (i, j) can be expressed as

I(i, j) ≈ βδ(x,y)R(i, j) + αδ(x,y) ∀(i, j) ∈ δ(x, y) (1)

where αδ(x,y) and βδ(x,y) represent the respective constant
additive illumination bias and constant multiplicative illumina-
tion factor associated with the area δ(x, y) surrounding pixel
location (x, y). Equation (1) represents a piecewise constant
illumination model: at each location (x, y), the illumination
will remain even over a contiguous area δ(x, y) of pixels
surrounding (x, y), while the intrinsic reflectance may change
on a pixel-to-pixel basis. The values of αδ(x,y) and βδ(x,y)
can vary across different areas δ(x, y) of the face, to model
globally uneven illumination over the whole image.

In this paper, we study face image recognition assuming
that the illumination condition in each testing image can be
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modeled by (1). For simplicity, we further assume that the
local evenly-lit areas δ(x, y) have a square geometry. But we
do not assume specific knowledge about the size of δ(x, y)
and the values of αδ(x,y) and βδ(x,y). We propose a novel
approach to estimating the size of δ(x, y) for each location on
the face, for normalizing the respective αδ(x,y) and βδ(x,y) to
achieve illumination-invariant face recognition. To maximize
the system’s performance, we assume that, while we have
uncontrolled illumination for the testing images, we have well-
lit training images that can be described by an image-specific
global constant illumination model. The illumination model
for the training images has an analogous expression to (1) but
where δ(x, y) now represents a whole image and αδ(x,y) and
βδ(x,y) are the image-dependent constants. Later in the paper
we show that this assumption can be relaxed.

We use a simplified example to illustrate our idea. Assume
δ(x, y) is a square area on the testing image, for which
the model (1) holds, and hence the constant illumination
factors, αδ(x,y) and βδ(x,y), can be normalized using mean
and variance normalization, for example. Also assume the
illumination in the corresponding area of the training image
is similarly normalized, allowing both areas to be directly
compared. Selecting a fixed size for the area δ(x, y) runs the
risk that the normalization process will corrupt the intrinsic
reflectance information, as some areas are too large to contain
even illumination, while other areas are too small to allow
normalization to be performed effectively. Ideally, we wish to
find the largest area δ(x, y) in which the testing image can
be modeled using the constant lighting condition (1), as this
is likely to achieve the most accurate recovery of the intrinsic
reflectance information.

Seeking an optimal solution to this problem, we propose
the Largest Matching Area (LMA) approach: at each location
(x, y), we find the largest testing image area that can be
matched at the corresponding location by the training image,
with an objective function that favors constant illumination.
Since larger image areas with even illumination can be normal-
ized more accurately, and since larger, correctly-normalized
image areas can be more discriminative (than a smaller area at
the same location) for correct matching, estimating the largest
δ(x, y) based on identifying the largest matching image areas
with even illumination optimizes recognition accuracy. The
above example can be extended to other lighting normalization
techniques which remove the constant illumination factors
αδ(x,y) and βδ(x,y) in order to recover the intrinsic reflectance
information, as will be demonstrated in this paper.

Interestingly, we find that the LMA approach can also
be used to help address the problem of partial occlusion.
When performing face recognition given partial occlusion,
the matching scores from occluded areas should be excluded,
as these areas do not contribute to discrimination between
the faces of different individuals. We show that the problem
of deemphasizing the matching scores from occluded areas
can be embedded within the problem of finding the largest
matching areas between the training and testing images, where
areas mismatching due to occlusion are deemphasized from
the calculation. Hence, to some extent, the LMA framework
is capable of simultaneously tackling the problems of il-

lumination variation and partial occlusion. We will address
all the problems mentioned above, the LMA approach for
illumination normalization, its extension to deemphasizing
partial occlusion and their combination in Section IV. Before
this, in the following section we first describe the features used
in our research to represent the face images.

III. FEATURE REPRESENTATION AND LIKELIHOOD

In this section we explain the feature representation used
to describe each image area. Note that in this paper we
assume all training and testing images have already been
aligned. In terms of notation, we use I to represent a testing
image and use Iδ(x,y) to represent a square area δ(x, y) in
the image containing the pixels surrounding location (x, y),
which can be modeled by the piecewise constant lighting
condition (1) with unknown illumination factors αδ(x,y) and
βδ(x,y). We use Im to represent a training image from person
m, which assumes a global constant illumination model with
image-dependent illumination factors αm and βm, and we
use Imδ(x,y) to represent the area in the image corresponding
to Iδ(x,y). During the feature extraction stage, we normalize
the illumination difference between Iδ(x,y) and Imδ(x,y) by
removing their respective constant illumination factors. Since
we do not assume specific knowledge about the size of
each δ(x, y), we perform lighting normalization and feature
calculation over a range of different sizes for δ(x, y), assuming
that the largest δ(x, y) for which (1) holds is contained within
this range. Finally, we select the optimal estimate for the
largest δ(x, y) to form the matching score for recognition. The
algorithm for deciding the optimal estimate will be detailed in
the next section (see Section IV). In this section we describe
the methods used for calculating normalized features and for
feature comparison, assuming (1) applies to each local area
δ(x, y) being considered.

A. Band-Pass Filtering for Preprocessing

As a preprocessing step, we use a band-pass filter to
reduce low-frequency illumination information corresponding
to αδ(x,y) in (1), while retaining the discriminative reflectance
information. The band-pass filter is also intended to remove
high-frequency noise, as well as to further normalize any
residual random, high-frequency illumination factors which
can not be accurately represented by the piecewise constant
illumination assumption. The filter we adopt is the Difference
of Gaussians (DoG) kernel [13], [14], which has previously
been shown to be effective for the task of illumination-
invariant face recognition [27], [45]. Specifically, we use a
centered spatial DoG kernel that can be expressed as follows

DoG(x, y) =
1√

2πσ2
1

e−(x−y)
2/2σ2

1 − 1√
2πσ2

2

e−(x−y)
2/2σ2

2

(2)
where the parameters σ2

1 and σ2
2 specify the variances of the

Gaussian functions and hence the bandwidth of the filter. In
our experiments, their values are fixed at σ2

1 = 1 and σ2
2 = 2.

We apply this filter to all the training and testing images before
any other operations are carried out.



4

B. Fourier Magnitude Spectra as Features for Image Area
Representation

Small changes in an individual’s facial expression and/or
head pose mean that even given well aligned face images,
corresponding local areas of pixels may not correspond to the
same physical locations on the faces. To reduce the effect of
these small misalignment errors on recognition, we use the
2D Fourier magnitude spectrum as the feature to represent
each local image area. By taking the magnitude spectrum, we
omit the phase information, allowing us to take advantage of
the shift invariance of the Fourier magnitude representation to
improve the robustness to small misalignment errors and small
facial expression changes. Applying the 2D Fourier transform
to an area Iδ(x,y) in the band-pass filtered testing image, and
assuming the piecewise constant illumination model (1) holds
for the area, the resultant testing image magnitude spectrum
for the area may be expressed as

|Ĩδ(x,y)(u, v)| ' βδ(x,y)|R̃δ(x,y)(u, v)|+ δ(u, v)α̃δ(x,y) (3)

where |Ĩδ(x,y)(u, v)| and |R̃δ(x,y)(u, v)| represent the respec-
tive magnitude spectra of the band-pass filtered pixel values
and intrinsic reflectivity of the area, α̃δ(x,y) denotes the resid-
ual constant lighting background, if any, of the area after band-
pass filtering, and δ(u, v) is the Kronecker delta function. We
can obtain the analogous expression to (3) for a corresponding
training image area Imδ(x,y). Suppose we have

|Ĩmδ(x,y)(u, v)| ' βm|R̃mδ(x,y)(u, v)|+ δ(u, v)α̃m (4)

where |Ĩmδ(x,y)(u, v)| and |R̃mδ(x,y)(u, v)| represent the pixel
and reflectivity magnitude spectra of the area Imδ(x,y) after
band-pass filtering, and as in (3) the residual constant lighting
background of the area after band-pass filtering is denoted
by α̃m. To form the feature vector for Iδ(x,y) we take the
magnitude spectral coefficients |Ĩδ(x,y)(u, v)|, discard the ze-
roth coefficient |Ĩδ(x,y)(0, 0)|, and concatenate the remaining
coefficients into a vector. The feature vector for Imδ(x,y) is
obtained in the same way. As indicated in (3) and (4), if
constant lighting is assumed in Iδ(x,y) and Imδ(x,y), ignoring
the zeroth spectral coefficient is equivalent to normalizing the
constant additive illumination biases α̃δ(x,y) and α̃m from the
feature vectors. We use vectors sδ(x,y) and smδ(x,y) to represent
the respective feature vectors obtained for the testing and
training image areas Iδ(x,y) and Imδ(x,y), for each area δ(x, y).

C. Cosine Similarity Based Likelihood for Comparison

We use cosine similarity to compare the feature vectors from
each pair of corresponding local areas from the training and
testing images. The cosine similarity of the pair of feature
vectors sδ(x,y) and smδ(x,y) can be expressed as

CS(sδ(x,y), s
m
δ(x,y)) =

sδ(x,y) · smδ(x,y)
||sδ(x,y)||||smδ(x,y)||

(5)

where the dot operation corresponds to the inner product
between two vectors, and ||s|| represents the norm of vector
s. Cosine similarity is invariant to constant multipliers applied
to the vectors being compared. Assume that the additive

illumination biases of sδ(x,y) and smδ(x,y) have been removed,
by band-pass filtering and discarding the residual zeroth
spectral coefficient as described above, then cosine similarity
will further cancel their multiplicative lighting difference, i.e.,
βδ(x,y) and βm in (3) and (4). Hence we can obtain an
illumination-invariant similarity score between the two areas,
assuming constant illumination.

It should be noted that the above procedures for
illumination-invariant feature calculation and comparison will
work most effectively if the sizes of the evenly-lit image
areas δ(x, y) being considered are large. Hence it can be
understood intuitively that searching for the largest areas
δ(x, y) in the testing image in which the model (1) holds
will lead to improved accuracy of lighting normalization, and
therefore improved accuracy for face image recognition. In the
algorithm to be described in the next section, we will use a
likelihood function to measure how well a given testing image
vector sδ(x,y) is matched by a training image vector smδ(x,y),
in order to search for the largest matching image areas with
even illumination. Following the usual convention in statistics,
we write the likelihood function as p(sδ(x,y)|smδ(x,y)). This
likelihood function is based on the cosine similarity (5) and
takes an exponential function form

p(sδ(x,y)|smδ(x,y)) = MCS(sδ(x,y),s
m
δ(x,y)) (6)

where M > 1 is the base number of the likelihood function.
For magnitude-spectrum based feature vectors, the cosine
similarity define in (5) takes values in the range [0, 1]. The
likelihood function (6) exponentially expands the difference in
cosine similarity between different pairs of feature vectors. In
this paper we have tested a range of base numbers M including
e, to be detailed later. The likelihood function defined above
can be used when there is only a single training image for
each person.

IV. IMAGE MATCHING FOR FACE RECOGNITION

In this section, we first introduce the largest matching area
(LMA) approach for identifying the largest matching image
areas with even illumination. This leads to an algorithm for
face recognition with robustness to illumination variation. We
then further extend this approach to improve robustness to
unknown partial occlusion.

A. The LMA Approach

For face recognition, we consider comparing a testing image
I against each of the training images Im, by comparing
the feature vectors sδ(x,y) and smδ(x,y) from locations (x, y),
where within the compared areas δ(x, y), the testing image
is assumed to have a constant lighting condition (1). At each
location (x, y), we aim to find the largest area δ(x, y) over
which this constant illumination assumption holds, thereby in-
creasing the accuracy and discrimination of the feature vectors
sδ(x,y) and smδ(x,y) used to compare the images. We formulate
the problem of estimating the largest δ(x, y) as a maximum
a posteriori (MAP) problem, based on the likelihood function
defined in (6).
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Given a testing image area represented by feature vector
sδ(x,y), and assuming an equal prior probability P for all
possible matching image areas s′, we define the posterior
probability of matching with the training image area smδ(x,y)
as

P (smδ(x,y)|sδ(x,y)) =
p(sδ(x,y)|smδ(x,y))P∑

All s′ p(sδ(x,y)|s′)P

'
p(sδ(x,y)|smδ(x,y))∑

m′ p(sδ(x,y)|sm
′

δ(x,y)) + p(sδ(x,y)|φ)

(7)

where p(sδ(x,y)|smδ(x,y)) is defined in (6), as the likelihood
that a given testing image area sδ(x,y) is matched by the
training image area smδ(x,y). This likelihood is “accurate” if the
lighting condition in the corresponding testing image area can
be modeled by (1). The denominator, the average likelihood of
sδ(x,y), is approximated by a sum of two terms. The first term
is the average likelihood of sδ(x,y) over all the corresponding
training image areas, assuming that sδ(x,y) will be matched
by at least one of these training areas. Again, this average
likelihood is accurate only if the given testing image area can
be modeled by (1). The second term, p(sδ(x,y)|φ), tries to
model the likelihood of the given testing image area when
it violates the constant illumination assumption, which can
happen, for example, when the area δ(x, y) is too large.
This term is also intended to model any testing image areas
affected by occlusion, or by a combination of illumination and
occlusion, which will also be addressed in this paper. In any of
these unseen-data conditions, the likelihoods in the first term
and in the numerator, p(sδ(x,y)|smδ(x,y)), will become invalid.

In our studies, we model the unseen-data likelihood
p(sδ(x,y)|φ) using a mixture model, with resemblance to a
conventional Gaussian mixture model (GMM). Specifically,
we use a large set of natural image samples gathered from the
training images, plus simulated random noisy image patches,
to model testing image areas with variable lighting conditions
and occlusion. Each sample image is represented using an
identical feature representation to that used to model the
face images: band-pass filtered Fourier magnitude spectra
with constant-lighting normalization, extracted at every image
location, and over a range of scales. We then group all the
feature vectors with the same scale into a feature vector set,
to simulate the unseen testing image areas of the same scale.
Denote by Bδ the feature vector set consisting of all the feature
vectors of the sample image areas with scale δ. Given a testing
image vector sδ(x,y), and assuming that it will match at least
one of the feature vectors in Bδ , but we do not necessarily
know which, it is suitable to model the likelihood of sδ(x,y)
by using a mixture model over Bδ . Specifically, we calculate
the likelihood p(sδ(x,y)|φ) over the k-nearest neighbor (k-NN)
set within Bδ

p(sδ(x,y)|φ) =
1

k

∑
s∈Bδ(k)

p(sδ(x,y)|s) (8)

where Bδ(k) ⊂ Bδ is the feature set containing the k closest
feature vectors for the given testing feature vector sδ(x,y)
measured in terms of the likelihood (6). Further details of the

implementation of (8) for selecting the sample image set and
the value of k will be discussed in Section V.

Testing image areas with uneven illumination (and hence
distorted feature vectors) are likely to have low likelihoods
p(sδ(x,y)|smδ(x,y)) given the correct training image areas, but
not necessarily low likelihoods given the incorrect training
image areas (which is why we obtain recognition errors). The
presence of the unseen-data likelihood p(sδ(x,y)|φ) helps to
reduce the posterior probability (7) should such an erroneous
match happen. In the event of occlusion, where low likeli-
hoods p(sδ(x,y)|smδ(x,y)) may result for all the training image
areas, the presence of the unseen-data likelihood prevents the
posterior probability from growing large, due to the tending-to-
zero of both the numerator and denominator likelihoods, which
would give a false indication of matching if not corrected.
Alternatively, for the testing image area sδ(x,y) with even
illumination and matching training image area smδ(x,y), we
can assume that the corresponding likelihood p(sδ(x,y)|smδ(x,y))
is most-likely greater than the corresponding unseen-data
likelihood p(sδ(x,y)|φ), because

p(sδ(x,y)|φ) ' 1

k
p(sδ(x,y)|smδ(x,y))

≤ p(sδ(x,y)|smδ(x,y)) (9)

In (9) above, the first approximation is based on the assump-
tion that the matching, i.e., most-likely, training image area
smδ(x,y), is included in Bδ(k), and will therefore dominate
the mixture-based likelihood (8). The above inequality (9)
indicates that for correctly matching training and testing image
areas, the effect of the unseen-data likelihood p(sδ(x,y)|φ)
tends to be small and hence, a large posterior probability
can be obtained from (7). Therefore, posterior probability (7)
can be used to identify the most-likely matching training and
testing images areas with even illumination. Given a training
image area and testing image area with even illumination, a
large posterior probability will be obtained; conversely, a small
posterior probability may indicate a mismatched training area
and/or uneven illumination in the given testing area, assuming
even illumination in the training image.

At each location (x, y), we aim to find the largest area
δ(x, y) over which the testing image can be modeled by (1).
This problem may be solved by estimating the largest match-
ing testing image area, over the training images, with an
objective function that favors constant illumination. Since
larger image areas are generally more discriminative and can
be normalized more accurately assuming even illumination,
estimation based on searching for the largest matching image
areas with even illumination optimizes the accuracy. We now
reveal another important property of the posterior probability
that allows the estimation to be carried out, i.e., it favors the
continuity of match, by giving larger posterior probabilities to
larger matching image areas with even illumination. Assume
that sδ(x,y) and smδ(x,y) are a pair of matching testing and train-
ing image areas, in terms of constant lighting and having the
greatest likelihood, i.e., p(sδ(x,y)|smδ(x,y)) ≥ p(sδ(x,y)|sm

′

δ(x,y))
for any m′ 6= m, and p(sδ(x,y)|smδ(x,y)) ≥ p(sδ(x,y)|φ).
Furthermore, assume ε(x, y) is a smaller area with the same
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origin as δ(x, y) and is contained within δ(x, y). Then the
above property says that:

P (smε(x,y)|sε(x,y)) ≤ P (smδ(x,y)|sδ(x,y)) (10)

That is, the posterior probability increases as the size of the
matching image areas with even illumination increases. For
clarity of presentation, the proof of inequality (10) is included
in Appendix A.

Therefore based on (10), for each training image Im,
at each location (x, y), we can obtain an estimate of the
largest area δ(x, y) of the testing image that can be modeled
using the constant illumination assumption, by maximizing
the posterior probability P (smδ(x,y)|sδ(x,y)) over δ(x, y) that
favors the continuity of matching image areas with constant
illumination. Given the unknown but fixed lighting condition
of the testing image, we assume that the optimal estimate
of the largest δ(x, y), in terms of the maximum posterior
probability, will be obtained on the training image with the
largest matching area of reflectance due to the inequality (10).
We express the estimate found over Im as

δ̂m(x, y) = (11)

arg

{
P (sm

δ̂m(x,y)
|sδ̂m(x,y)) = max

δ(x,y)
P (smδ(x,y)|sδ(x,y))

}
In face recognition, we form the matching score for each
training image Im by using the corresponding posterior
of the estimate, i.e., P (sm

δ̂m(x,y)
|sδ̂m(x,y)). Specifically, for

every given testing image I , we calculate the posteriors
P (sm

δ̂m(x,y)
|sδ̂m(x,y)) for each training image Im of each

person m at every location (x, y). Then, the overall score for
training image Im matching the given testing image I can be
defined as

Γ(Im, I) =
∑
(x,y)

lnP (sm
δ̂m(x,y)

|sδ̂m(x,y)) (12)

where the sum is over all locations (x, y) within the images
being compared. Algorithm 1 outlines the method for solving
the estimation problem (11) and for calculating the match
score (12).

In the above description, we have made two assumptions.
The first assumption is that the training images can be mod-
eled by image-specific constant illumination. This assumption
effectively means that the size of the largest matching areas
(i.e., δ(x, y)), subject to constant illumination, is decided
by the testing image only. Thus it helps to maximize the
size of the matching areas that can be found between the
training and testing images to obtain greater discrimination.
If we drop this assumption and allow the training images to
have random, piecewise constant lighting as in the testing
images, the new algorithm may still be applicable. But in
this case it will focus on the largest matching areas δ(x, y)
in which both the training image and the testing image can
have constant illumination. Such areas may be smaller than
with the corresponding constantly-lit training images. In our
experiments, we will demonstrate the applicability of the new
algorithm to this situation, i.e., given more adverse training
conditions. Our second assumption is that each person m

Data: Testing image I , training image Im, unseen-data
feature vector sets Bδ

Result: Posterior matching score for each training image
for each location (x, y) in testing image I do

for each area size δ(x, y) do
Calculate feature vector sδ(x,y) for testing image
area Iδ(x,y)
Calculate unseen-data likelihood p(sδ(x,y)|φ)
using (8)
for each training image Im and corresponding
area smδ(x,y) do

Calculate likelihood p(sδ(x,y)|smδ(x,y))
using (6)

end
for each training image Im and corresponding
area smδ(x,y) do

Calculate posterior P (smδ(x,y)|sδ(x,y))
using (7)
Record the maximum posterior
P (sm

δ̂m(x,y)
|sδ̂m(x,y)) over δ(x, y), i.e., (11)

end
for each person m do

Add the above obtained
lnP (sm

δ̂m(x,y)
|sδ̂m(x,y)) to the match

score (12)
end

end
end

Algorithm 1: Algorithm for computing the posterior match-
ing score for each training image.

has only one training image Im. However, this algorithm can
be easily extended to accommodate multiple training images
for each person, by calculating the sum in the denominator
of (7) over all the training images of all the persons, and by
calculating an average match score (12) for each person over
all the training images for the person.

B. Extension to Occlusion Robustness

In (12) we assume that the optimal local areas selected for
comparison, in terms of the maximum posterior probability
of matching, will contain valid face features. We can fur-
ther extend this method to model random partial occlusion
of the testing images, in which some local areas do not
contain valid face features. We assume that an occluded
testing image area sδ(x,y) can be modeled by the unseen-data
likelihood p(sδ(x,y)|φ), leading to a low posterior probability
P (smδ(x,y)|sδ(x,y)) for any training face image areas smδ(x,y).
Using this assumption we can improve robustness to partial
occlusion by deemphasizing local areas with low posterior
probabilities from the overall score for each face. In other
words, instead of using all local areas for recognition, we aim
to choose only the reliable local areas (defined in terms of
large posterior probabilities) for recognition. This will retain
as much inter-personal discriminative information as possible
while improving robustness to partial occlusion.
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The problem of identifying all reliable local areas can be
formulated as a higher-level MAP problem, similar to (7),
which makes use of the previously calculated local area poste-
rior matching scores. Specifically, given a testing image I , we
obtain its maximum local area posteriors P (sm

δ̂m(x,y)
|sδ̂m(x,y))

for each training image Im, along with the unseen-data poste-
riors P (φ|sδ(x,y)), which are identical for all the training im-
ages. The unseen-data posteriors are calculated using (7) with
the numerator likelihood replaced by the unseen-data likeli-
hood p(sδ(x,y)|φ). We sort these probabilities in descending
order. Let P (sm

δ̂m(xj ,yj)
|sδ̂m(xj ,yj)

) denote the sorted posterior
probabilities for training image Im, with j = 1, 2, ..., J denot-
ing the index of the face area locations in sorted order, from the
highest posterior probability to the lowest posterior probability
(assuming a total of J areas). Similarly, let P (φ|sδ(xl,yl))
denote the sorted unseen-data posterior probabilities, indexed
by l = 1, 2, ..., J , from the highest posterior-probability area
to the lowest posterior-probability area. To select the optimal
local areas for recognition, we formulate a posterior proba-
bility for each training image Im, using the corresponding
P (sm

δ̂m(xj ,yj)
|sδ̂m(xj ,yj)

) for Im, as a function of the number
of local areas with the highest posterior probabilities. This
posterior probability can be expressed as

P (Im|I,J ) = (13)∏J
j=1 P (sm

δ̂m(xj ,yj)
|sδ̂m(xj ,yj)

)∑
m′
∏J
j′=1 P (sm

′

δ̂m′ (xj′ ,yj′ )
|sδ̂m′ (xj′ ,yj′ )

) +
∏J
l=1 P (φ|sδ(xl,yl))

where 1 ≤ J ≤ J is the number of the highest-posterior
areas used in forming the posterior probability P (Im|I,J ).
Thus, the new matching score for training image Im, in place
of (12), can be defined as the maximum P (Im|I,J ) over J ,
i.e.,

P (Im|I, Ĵm) = max
J

P (Im|I,J ) (14)

where Ĵm is an estimate of the number of the optimal local
areas for comparing the testing image I against the training
image Im. In a similar way to the proof of inequality (10), we
can show that the posterior (13) favors continuity of matching:
higher posteriors are obtained when more local areas are
matched (in terms of higher local area posteriors than any
of the competitor areas including the unseen-data). Therefore,
given a testing image, we can assume that an optimal estimate
of all reliable local areas will be obtained on the training
image with the largest number of matching areas, due to the
maximum posterior. Eq. (14) can be viewed as an extension
of the problem (11). Through finding the largest matching
areas between the training and testing images, (11) obtains an
estimate of the optimal local areas for lighting normalization,
while (14) obtains an estimate of the optimal combination of
local areas for deemphasizing occlusion.

V. EXPERIMENTS

A. Data, Implementation and Experimental Conditions

In our experiments, we tested the proposed LMA system’s
ability to cope with both illumination variation, combined

illumination variation with partial occlusion, and limited train-
ing data. Face identification experiments were carried out
using two databases: the extended-YaleB database and the AR
database, and a face verification experiment was carried out
using the LFW database.

The extended YaleB database [7] contains the frontal face
images of 38 persons, each captured under 64 illumination
conditions without occlusion. As per the standard testing
protocol, the images were split into 5 subsets based on
illumination angle: Subset 1 (0◦−12◦), Subset 2 (13◦−25◦),
Subset 3 (26◦ − 50◦), Subset 4 (51◦ − 77◦), and Subset 5
(78◦ − 90◦). A single image evenly illuminated image from
Subset 1 was used as the training image for each person, i.e.,
Condition P00A+00E+00, and testing was carried out using all
other images. Example images from each illumination subset
are shown in Fig. 1.

The AR face database [46] consists of the frontal face
images of 100 persons, captured with varying combinations
of illumination, partial occlusion and facial expressions. This
database was captured over two sessions spaced two weeks
apart, and hence contains a relatively large degree of intra-
personal appearance variation. A single clean image from
Session 1, Condition 1, with even illumination, neutral facial
expression and no occlusion was used as the training image
for each person. All tests were carried out using images from
Session 2, Conditions 14 - 26, with varying facial expressions,
occlusions and lighting. The pre-aligned version of the AR
database was used for all experiments. Examples images are
shown in Fig. 2.

The Labeled Faces in the Wild (LFW) database [47] consists
of around 13,000 face images from 1680 individuals, where
all the faces images have been collected from the Web. The
face images therefore exhibit a high degree of variation in
illumination, pose, and expression, the only restriction being
that faces were detected using the Viola-Jones detector [48].
The deep-funneled version of LFW [49] was used in our
experiments, and all images were cropped to include only the
face area.

The LMA system’s parameters were kept consistent across
all databases. Specifically, all images were preprocessed using
a DoG filter with parameters σ1 = 1, σ2 = 2, in (2), as
in [27]. Optimization over the size of the local image areas
δ(x, y), which had square geometry, in (11), was carried out
over the following range of scales: 5 × 5, 7 × 7, 9 × 9, . . . ,
29 × 29 pixels. The features, representing local image areas
at each scale, were sampled from a grid covering the whole
face image with a stride of 5 pixels. The base number M
in (6) was fixed to 1×109. The unseen-data likelihood model,
p(sδ(x,y)|φ) in (8), was built on a feature set Bδ consisting
of the feature vectors of 1000 image areas at each scale δ,
randomly selected from all training image areas of all persons.
In our experiments, slightly better performance was obtained
by augmenting this feature set with the feature vectors of
randomly generated square image patches at each scale δ,
where each pixel value was drawn from normal distribution
∼ N (128, 162). Over this feature set, the k closest feature
vectors were chosen for each testing image area at each scale
to calculate p(sδ(x,y)|φ). In our experiments, k was set to 10.
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In Section V-F, we will investigate the sensitivity of the system
to differing parameters.

For real-world applications efficiency may be important.
Our system takes around 0.02 seconds to compare two face
images on a single-core 3GHz machine in Matlab. The time
needed to search a large gallery could be reduced as the task of
comparing a probe with the gallery is inherently parallel. The
majority of our system’s execution time is used for feature
extraction, however in practice this step only needs to be
performed once per face image and the results stored for later
use.

B. Recognition Results on Extended YaleB

We first compare the face recognition performance of the
proposed LMA system on extended YaleB with results from
the literature. The comparison is presented in Table I. It can
be seen that for illumination Subsets 1 to 3, all systems
were able to attain perfect accuracy. We observed that the
illumination change from the training data in these subsets
is not significant and does not pose an issue for recognition.
Illumination Subsets 4 and 5 contain much larger variation
from the training data. For Subset 4, our system produced
results comparable with the existing literature, and for Subset
5, containing the most challenging illumination conditions, our
proposed system was able to outperform ELT [27], PCML [50]
and L&S [51], and achieved the same accuracy as OLHE [52]
which used all images from Subset 1 for training. We also
compare with IGO-LDA [24], which achieves an average
accuracy over all subsets of 97.80%, compared with LMA’s
average accuracy of 99.62%. Table I also includes the LMA
results without using the unseen-data model, which will be
discussed later.

C. Recognition Results on AR

We now compare the face recognition performance of our
LMA system tested on the AR database with results cited
from the literature. Table II shows the comparison. When
training the LMA system, a single image with frontal lighting
from Session 1, Condition 1 was used for each person. The
examples taken from the literature for comparison all used
more than one training image per-person. Images from Session
2 were used during testing.

From Table II it can be seen that the LMA system is able to
perform better than or comparably with existing systems from
the literature [42], [53], [54], [55], particularly for occluded
conditions, achieving 98% recognition rate with sunglasses
occlusion, and 96% with scarf occlusion. These results are
notable, as only a single training image per person was used by
the LMA system, while the other systems being compared with
used 8 training images per person. On the clean conditions
the LMA system achieved an accuracy rate of 99% (the only
error occurred as a result of a corrupted testing image W-027-
14.bmp).

D. Fixed Size versus Maximum Size

The LMA system searches for the largest matching area
with constant illumination between the testing and training

images at each point on the face. In this experiment, we
compare fixed-size area based recognition with the LMA
approach. We use the same posterior probability based scoring
algorithm (12), with the optimal estimate of the matching area
δ̂m(x, y) replaced by fixed-size area δm(x, y) for all (x, y) and
m. We have tested a range of scales for the fixed δm(x, y).
The comparison is intended to confirm our intuition that by
maximizing the size of matching area at each point of the
face, discrimination and accuracy for lighting normalization
improves over the use of fixed-size local areas.

The accuracy rates obtained for each fixed local area size
from 5×5 up to 29×29 are shown in Fig. 3 for the extended
YaleB database and in Fig. 4 for the AR database. In addition
the recognition accuracy produced by the LMA system is
included in both figures as a horizontal line for comparison.
In both figures, for recognition based on fixed-size local areas,
as the size increases, recognition accuracy also increases until
a certain size. For very small areas it is unlikely that there
will be enough discriminative information to accurately match
between testing and training images. Also for very small areas
the lighting normalization process may cause corruption to
the intrinsic reflectance of the image, further degrading the
discrimination. Conversely for very large areas, illumination
variation, occlusion and other factors can again make accurate
normalization difficult, even between images of the same
individual. Ideally, we would like to base recognition on the
maximum local area size at each location, as this is likely to
achieve the best accuracy for normalization and discrimination.
However, it is not always possible to know the optimal local
area size a priori, as it depends on the characteristics of
the given testing data and training data. By comparing the
recognition accuracy curve in Fig. 3 for the extended YaleB
database with that of Fig. 4 for the AR database, it can be seen
that optimal recognition accuracy occurs at different local area
sizes in both databases. The proposed LMA system exceeds,
in the case of the AR database, and is comparable with, in the
case of the extended YaleB database, the best accuracy with
fixed-size local areas. Hence the LMA approach is capable
of automatically adapting to different databases and testing
conditions.

E. Unseen-Data Model

In this analysis, we examine the ability of the LMA system
to cope with training and testing mismatch that could be
caused by illumination variation, partial occlusion, or other
types of variation. In particular, we investigate the effective-
ness of modeling the mismatch by using the unseen-data
likelihood, i.e., p(sδ(x,y)|φ), in the posterior probability (7)
for improving recognition accuracy. The comparison was
conducted between the LMA systems with/without including
this model. The results for both the extended YaleB and AR
databases by the LMA system without this model are included
in Table I and Table II, respectively.

In the YaleB database, which does not include any realistic
partial occlusion, use of the unseen-data model improves
recognition accuracy for Subset 5, which contains the most
challenging illumination conditions. This may be due to very
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dark areas of the face being captured by the unseen-data
model and hence being deemphasized from the posterior
probability of the whole face. These very dark areas are
more likely to be corrupted by noise and hence less likely
to contribute discriminative information. In the AR database,
including the unseen-data model also leads to an improvement
in recognition accuracy for the majority of testing conditions.
The improvement is more significant for some severe testing
conditions, such as screaming which causes a large expression
change, and combined occlusion/illumination variation (e.g.,
sunglasses + illumination changes). In two cases, we observed
a small drop in accuracy.

A new set of experiments was conducted, to systematically
assess the robustness of the LMA system to varying amounts
of partial occlusion. The extended YaleB database was used in
the new experiments, to simulate testing conditions containing
both varying amount of occlusion and at the same time
significant illumination variation. For each person, a single
un-occluded, evenly-illuminated face image was used as the
training image. During testing, images with simulated partial
occlusion were generated by randomly replacing a contiguous
square of the testing image, with an unrelated image, covering
20%, 40%, 60% or 80% of the testing image area. During
testing, no knowledge of the position and nature of the
occlusion was provided to the system. Example testing images
with simulated occlusion are shown in Fig. 5. In this ex-
periment, for each occlusion amount, the average recognition
accuracy over all illumination subsets was recorded. Similar
experiments were conducted previously by other researchers
(e.g., [56] and [42]). Our LMA-based results, with/without
including the unseen-data model, are shown in Figure 7 along
with the results from the literature. As expected, when the
amount of occlusion is increased the performance of the
system decreases. However, use of the unseen-data model in
the LMA system significantly increases recognition accuracy
compared to without this model. The results produced by the
LMA system compare favorably with those of [56] and [42].
The posterior probability of a match between a clean face
image and realistic images with: facial expression change,
illumination change, and partially occluded local areas, is
visualized in Fig. 6.

F. Parameter Sensitivity

The sensitivity of the LMA system to varying the values of
parameters was tested, particularly, the base number M used
in the likelihood function (6), and the k-NN set cardinality
k used in calculating the unseen-data likelihood (8). This
experiment was performed using the AR database, and while
one parameter was varied, the other parameters remained at
the values described at the beginning of this section.

The change in recognition accuracy that results from varying
the value of the base number M is shown in Fig. 8. As the
value of M is increased from e to 109, the overall recognition
accuracy also slightly increases, however the performance of
the system is not highly sensitive to the specific value of this
parameter used. As mentioned earlier, a value of M = 109

was used to obtain the results presented above. The change

in recognition accuracy that results from varying the value
of the k parameter is shown in Fig. 9. It can be seen that
when the k parameter is decreased from 1000 to 10, the
recognition accuracy increases. Small values of k may lead
a more accurate estimate of the likelihood of a given feature
vector. However, the system is again not highly sensitive to
the specific value of this parameter used.

G. Misalignment Robustness

When performing face recognition, the probe image must
be accurately aligned with the gallery images to allow cor-
responding face regions to be compared. In this experiment
we investigate the robustness of magnitude Fourier features
to small misalignment errors, compared with discrete cosine
transform (DCT) features. This experiment was carried out
using the extended-YaleB database, and identification accuracy
was averaged over all illumination subsets. During testing, all
probe images were translated diagonally by a specified number
of pixels, simulating misalignment of the probe and gallery
images.

The results presented in Table III show that magnitude
Fourier features are more robust to misalignment error than
DCT features. Magnitude Fourier features even gives some
benefit when no misalignment is introduced, suggesting that
these features may be more robust in the general case.

H. Different Training Images

In many situations it may not be possible to obtain an un-
occluded, evenly illuminated, training image for each person.
As mentioned in Section IV-A, the LMA approach can be
applied in situations where both the training and testing data
have varying lighting conditions that can be modeled by (1).
The AR database was used to demonstrate this. In contrast
to the earlier experiments where a clean image was used for
training, in this experiment, corrupted images were used for
training, including those with partial occlusion, illumination
variation, or combinations of both corruption conditions, with
the same testing conditions.

Table IV shows the results, where for each training condi-
tion, the recognition accuracy results were averaged over all
testing conditions. We can see that the best overall average
recognition accuracy was achieved with the training image
without occlusion and with the right illumination condition,
although this accuracy is only marginally better than that
achieved using the non-occluded, frontal-illumination condi-
tion. The lowest overall performance was observed when the
scream condition was used as the training image for each
person. As the LMA system was not specifically designed to
handle expression changes, this is not unexpected. Again, we
see the importance of the unseen-data model for improving
robustness, compared to the system without this model.

I. Face Verification

We assess the face verification performance of the pro-
posed system using the Labeled Faces in the Wild (LFW)
database [47]. In contrast with recent approaches making use
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of deep neural networks [57] which require large training
sets, our face verification system is unsupervised, meaning
we do not make use of the LFW training set for setting the
system’s parameters to better distinguish between same and
different face image pairs. Therefore the system’s parameters
remain identical to those used in all previous experiments. For
given pair of images, we calculate the posterior probability
of matching, using a modified version of (7), where the
denominator is calculated using the union of a large set of
face images randomly selected from the LFW training-set, and
one of the images in the verification pair. And the unseen data
likelihood, (8), is calculated using a large set of randomly
selected image patches from the LFW training-set.

The standard LFW testing protocol was followed, with
results calculated using 10-fold cross-validation using the
suggested data splits. Overall results are presented as an ROC
curve, see Fig. 10. Our proposed LMA system achieved an
Area Under the Curve (AUC) score of 0.8304, which is
superior to other unsupervised face verification methods such
as, Local higher-order statistics [58] with an AUC of 0.8107,
or, Locally Adaptive Regression Kernels [59] with an AUC of
0.7830. Although some other unsupervised methods achieve
better performance (e.g. [60] AUC of 0.9405), they make use
of additional pre-processing steps such as fitting 3D head
models to cope with pose variability [60]. We showed in our
method that some robustness to pose variation may also be
achieved by finding the largest matching areas between the
pose varying images for comparison.

VI. CONCLUSION

In this paper we have presented a novel approach to achiev-
ing robustness in face recognition, based on finding the largest
matching area at each point. Our method tackles three com-
bined challenges simultaneously: uneven illumination, partial
occlusion, and having only a single training image per person.
Experiments show that, compared with other methods from the
literature, our method outperforms methods which use only a
single training image per person, and matches or outperforms
methods which require multiple training images. Further tests
in the paper show the importance of two factors in the success
of the new method: the inclusion of an unseen-data model, and
finding the (dynamic) largest matching area rather than a fixed-
size patch. It is also shown that performance is much better if
the single training image is good quality and non-occluded,
although the method still performs competitively when the
training image is corrupted.

APPENDIX A: PROOF OF INEQUALITY (10)

This inequality can be proven if we can assume that, at a
given location, larger areas will normally be more discrimina-
tive than smaller areas to identify if the two areas are matching
or not. This can be expressed in terms of likelihood ratios:

p(sδ(x,y)|smδ(x,y))
p(sδ(x,y)|sm

′

δ(x,y))
≥
p(sε(x,y)|smε(x,y))
p(sε(x,y)|sm

′

ε(x,y))
(15)

where, as defined in (10), sδ(x,y) and smδ(x,y) are two matching
feature vectors in terms of having the greatest likelihood ratio

p(sδ(x,y)|smδ(x,y))/p(sδ(x,y)|s
m′

δ(x,y)) for all sm
′

δ(x,y) 6= smδ(x,y),
and sε(x,y) is a sub-vector in smδ(x,y) representing a smaller im-
age area, with smε(x,y) representing the corresponding matching
sub-vector in smδ(x,y), and sm

′

ε(x,y) representing the correspond-
ing mismatching sub-vector in sm

′

δ(x,y). Equation (15) simply
indicates that larger likelihood ratios will be obtained based
on larger image areas to differentiate between matching and
mismatching images at the given location. Based on (9), we
can have a similar inequality concerning the likelihood ratio
associated with the unseen data:

p(sδ(x,y)|smδ(x,y))
p(sδ(x,y)|φ)

≥
p(sε(x,y)|smε(x,y))
p(sε(x,y)|φ)

(16)

Dividing both the numerator and denominator of (7) by
p(sδ(x,y)|smδ(x,y)), and applying the above two likelihood-ratio
inequalities to the expression, we can obtain the posterior
probability inequality (10).
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TABLE I
Recognition accuracy, on the extended-YaleB database, comparing the LMA

approach with the literature. The results show the number of correctly
recognized images for each testing condition. The total number of testing

images in each subset is shown in brackets in the Illumination Subset
column. The symbol * indicates that more than one training image per
person was used. We also show the results for our proposed approach

without the unseen data model (LMA-UDM).

Illumination LMA LMA ELT PCLM OLHE* L&S
Subset -UDM [27] [50] [52] [51]
1 (263) 263 263 263 263 - 263
2 (456) 456 456 456 456 456 456
3 (455) 455 455 455 455 455 440
4 (526) 524 523 523 426 512 223
5 (714) 707 703 694 693 707 493

TABLE II
Recognition accuracy (%) on the AR database, comparing the LMA based

approaches with the literature. For LMA, a single clean image from Session
1 was used for training and all images from Session 2 were used during
testing. All the other systems for comparison use more than one training

image per-person.

Recognition Accuracy (%)
Test Condition LMA LMA SRC DICW MRF CRC

-UDM [42] [53] [54] [55]
Clean 99 99 - - - -
Smile 96 94 - - - -
Anger 99 99 - - - -
Scream 66 56 - - - -
Illum. Right 100 100 - - - -
Illum. Left 100 100 - - - -
Illum. Both 97 100 - - - -
Sunglasses 98 96 97.5 99.5 99 94.2
Sg.+Illum. R 98 80 - - - -
Sg.+Illum. L 93 80 - - - -
Scarf 97 98 93.5 98 97.5 95.8
Scarf+Illum. R 95 94 - - - -
Scarf+Illum. L 89 88 - - - -

TABLE III
Identification accuracy, averaged over all illumination subsets of the

extended-YaleB database. These results compare the robustness to
misalignment of the proposed system with either 2D magnitude Fourier

features or 2D DCT features.

Offset (pixels) 0 1 2 3 4 5 6
Mag. Fourier 99.91 99.91 99.74 96.5 89.55 78.94 60.95
DCT 97.07 97.06 95.18 89.93 77.12 62.77 38.38

1 2 3 4 5

Fig. 1. Example images from the extended YaleB database showing the typical
illumination in each subset. A single image from illumination subset 1 was
used as the training image for each person, and all other images were used
during testing.

TABLE IV
Recognition accuracy (%) on the AR database, with a single corrupted

training image from varying conditions, averaged over all testing
conditions. Results are shown for the LMA system tested with and without

the unseen-data model.

Average Recognition Accuracy(%)
Training Condition LMA LMA (no unseen-data model)
Clean 94.38 91.08
Smile 83.53 67.92
Anger 84.00 77.76
Scream 50.53 32.53
Illum. Right 94.53 86.69
Illum. Left 92.69 87.30
Illum. Both 89.53 83.84
Sunglasses 80.38 71.08
Sunglasses + Illum. Right 77.92 64.61
Sunglasses + Illum. Left 75.84 64.00
Scarf 81.23 70.69
Scarf + Illum. Left 76.84 62.69
Scarf + Illum. Left 74.53 63.53

Clean Smile Anger Scream Illum. Right Illum. Left Illum. Both

Sunglasses Sg + Illum. Right Sg + Illum. Left Scarf Scarf + Illum. Right Scarf + Illum. Left

Fig. 2. Example images from the AR database. In our experiments, either
a single clean image or an imperfect image with nonuniform illumination
and/or partial occlusion was used as training for each person, and all other
images were used during testing. Testing and training images were selected
from different sessions.

5 7 9 11 13 15 17 19 21 23 25 27 29
0.9

1

Fixed Local Area Size (Pixels)

Id
en

tif
ic

at
io

n 
A

cc
ur

ac
y 

(%
)

Fixed Local Area
Proposed System

Fig. 3. Average recognition accuracy (%) on the extended YaleB database,
for the system using fixed-size local areas as the size was varied. Also shown,
as a solid line, is the recognition accuracy produced by the LMA system.
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Fig. 4. Average recognition accuracy (%) on the AR database, for the system
using fixed-size local areas as the size was varied. Also shown, as a solid
line, is the recognition accuracy produced by the LMA system.

20% 40% 60% 80%

Fig. 5. Test images showing artificial occlusion, generated using the extended
YaleB database. The percentage of the total image area covered by the
occlusion is shown above each image.

Fig. 6. Best viewed in color. This figure illustrates the posterior probability
of a match between a clean training image and realistically corrupted testing
images, where red indicates a high posterior probability, and blue indicates a
low posterior probability. On the top row, the three images on the left show
expression variation, and the three images on the right show illumination
variation. The images on the bottom row show combined partial occlusion
with illumination variation.
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Fig. 7. Average recognition accuracy (%) over all testing subsets of the
extended YaleB database as the percentage of artificial occlusion was varied.
The LMA systems is compared to the PCANet [56] and SRC [42] systems.
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Fig. 8. Average recognition accuracy (%) over all testing subsets of the AR
database, as the base number M in (6) was varied.
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Fig. 9. Average recognition accuracy (%) over all testing subsets of the AR
database, as the value of the k parameter in the k-NN unseen-data model (8)
was varied.
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Fig. 10. ROC curve comparing performance on the LFW database of the
LMA system with the LARK [59] and LHS [58] methods.


