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Abstract The rapid consumption of fossil fuel and

increased environmental damage caused by it have given a

strong impetus to the growth and development of fuel-

efficient vehicles. Hybrid electric vehicles (HEVs) have

evolved from their inchoate state and are proving to be a

promising solution to the serious existential problem posed

to the planet earth. Not only do HEVs provide better fuel

economy and lower emissions satisfying environmental

legislations, but also they dampen the effect of rising fuel

prices on consumers. HEVs combine the drive powers of

an internal combustion engine and an electrical machine.

The main components of HEVs are energy storage system,

motor, bidirectional converter and maximum power point

trackers (MPPT, in case of solar-powered HEVs). The

performance of HEVs greatly depends on these compo-

nents and its architecture. This paper presents an extensive

review on essential components used in HEVs such as their

architectures with advantages and disadvantages, choice of

bidirectional converter to obtain high efficiency, combining

ultracapacitor with battery to extend the battery life, trac-

tion motors’ role and their suitability for a particular

application. Inclusion of photovoltaic cell in HEVs is a

fairly new concept and has been discussed in detail. Var-

ious MPPT techniques used for solar-driven HEVs are also

discussed in this paper with their suitability.

Keywords Hybrid electric vehicle � Hybrid energy storage

system � Architecture � Traction motors � Bidirectional
converter

Abbreviations and symbols

ABS Antilock braking system

AC Alternating current

ADTR Antidirectional-twin-rotary

ADVISOR Advanced vehicle simulator

ANN Artificial neural network

ASCI Auto-sequential commutated mode single-

phase inverter

BEV Battery electric vehicle

BLDC Brushless DC motor

CD Charge depletion

CDFIM Cascaded DFIM

CF-qZSI Current-fed quasi-ZSI

CMPPT Centralized MPPT

CS Charge sustaining

CSI Current source inverter

CS-PMSM Compound-structure PMSM

CVT Continuous variable transmission

DC Direct current

DFIM Doubly fed induction motor

DMPPT Distributed MPPT

DRM Double-rotor machines

DTC Direct torque control

e-CVT Electronic continuous variable

transmission

EM Electric motor

EMS Energy management system

EREV Extended range electric vehicle

ESS Energy storage system

EV Electric vehicle

FC Fuel cell
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FCEV Fuel cell electric vehicle

FEM Finite element method

FL Fuzzy logic

FOC Field-oriented control

FLC Fuzzy logic controller

GA Genetic algorithm

HESS Hybrid energy storage system

HEV Hybrid electric vehicle

IC Incremental conductance

ICE Internal combustion engine

ICV Internal combustion vehicle

IGBT Insulated gate bipolar transistor

IM Induction motors

IMCCR Induction motor with compound cage rotor

IPMSM Interior permanent magnet synchronous

motor

Isc Incremental short-circuit current

KKT Karush–Kuhn–Tucker

LC Inductor capacitor

MFM-BDRM Magnetic field-modulated brushless

double-rotor machine

MOSFET Metal-oxide-semiconductor field-effect

transistor

MPC Model predictive controller

MPP Maximum power point

MPPT Maximum power point tracker

MRAC Model reference adaptive controller

M-SRM Modular-switched reluctance motor

NPC Neutral point clamped

P&O Perturb and observe

PAM Pulse amplitude modulation

PHEV Plug-in HEV

PI Proportional integral

PM Permanent magnet

PMBLDC Permanent magnet BLDC

PMSM Permanent magnet synchronous motor

PSO Particle swarm optimization

PV Photovoltaic

PVHEV Solar-driven HEV

PWM Pulse width modulation

RC Resistance capacitor

SA Simulated annealing

SBP Synergetic battery pack

SFO Stator flux oriented

SOC State of charge

SRM Switched reluctance motor

STA Supertwisting algorithm

TTR Through-the-road

TCO Total costs of ownership

UC Ultracapacitor

VF-ZSI Variable frequency impedance source

inverter

Voc Open-circuit voltage

V2G Vehicle to grid

VSI Voltage source inverter

ZSI Impedance (Z) source inverter

XHEVs Full HEVs and PHEVs

1 Introduction

A well-knit and coordinated transportation provides

mobility to people and goods. The transportation sector

mainly consists of road, railway, ships and aviation, where

road transportation consumes 75% of the total energy spent

on transportation. The automobile industry plays a signif-

icant role in economic growth of the world and hence

affects the entire population. Since vehicles mostly run on

internal combustion engine (ICE), the transportation

industry is accountable for 25%–30% of the total green-

house gases emission [1]. ICE works in the process of fuel

combustion resulting in the production of various gases

like CO2, NO2, NO and CO [2] which cause environmental

degradation in the form of greenhouse effect and are

responsible for their adverse effect on human health. To

overcome this, the transportation industry is trying hard to

manufacture vehicles that can run on alternate power

sources. Electric vehicles (EVs) were tried as a solution in

1881 where battery alone propelled the vehicle and there-

fore required a bulky battery pack. Absence of an ICE

handicapped these vehicles with a short driving range [3].

Hybrid electric vehicles (HEVs) were conceptualized to

bridge the power of ICE and the emission-free nature of

EVs. HEVs offer better fuel efficiency over ICE-based

vehicles and generally work in charge-sustaining (CS)

mode where the state of charge (SOC) of battery is main-

tained throughout the trip. The issue with CS mode is that

its charging efficiency relies mainly on regenerative brak-

ing and gasoline, so plug-in HEVs (PHEVs) were con-

ceptualized as a possible solution. Unlike HEVs, PHEVs

have the additional facility to be charged externally

through power outlets. Most of the power in a PHEV is

derived from an electric motor (EM) which acts as a pri-

mary source, while ICE acts as a backup. As the battery

SOC reaches a particular threshold, the PHEV behaves like

a regular HEV, and the ICE kicks in and acts as a primary

power source. The PHEVs mainly work in charge depletion

(CD) mode where SOC is depleted up to a threshold level.

PHEVs extend the all-electric range, improve local air

quality and also may have grid connection capability.

Another possible approach for extending the electric

range of an HEV is to allow continuous charging of the

battery while running. The emergence of solar-driven
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HEVs (PVHEVs) leads to continuous charging of batteries

by means of solar energy, which minimizes the usage of

gasoline and hence reduces environmental pollution.

Robust and affordable batteries are a primary challenge

for hybrid vehicles. Various HEV battery compositions have

been tried in the past with the best results from lithium-ion

derivatives. Three levels of integration of battery packs are

possible in vehicles: (1) singular battery cells, (2) modules,

comprised of individual battery cell, and (3) battery packs,

comprised of modules. Battery should be able to supply high

power over short periods and must be capable of enduring

millions of transient shallow cycles over vehicle life. To

extend the range and life of a battery, it can be interfaced

with an ultracapacitor (UC) which permits longer life cycle,

higher rate of charge/discharge and lower internal resistance

which result in lesser heat loss and better reliability. UC

improves the efficiency cycle to around 90% from 80% [4].

The combination of battery and UC forming a hybrid energy

storage system (HESS) is more efficient as compared to their

individual performances.

The fundamental requirement for traction motors used in

HEVs is to generate propulsion torque over a wide speed

range. Two most commonly used motors in HEV propul-

sion are permanent magnet motor (PM) and induction

motor (IM). There are various hybrid cars now available

and manufactured by Audi, BMW, Chevrolet, Ford,

Honda, Mercedes, McLaren, Nissan, Mitsubishi, Hyundai,

Porsche, Tesla, Toyota, etc. The fuel consumption saving

by a few models is shown in Table 1 [5].

Various possible architectures of an HEV are presented

in Sect. 2, and bidirectional converters reported in the lit-

erature are discussed in Sect. 3. The HESS is given in

Sect. 4, and Sect. 5 details the various motors used in

HEVs and their controlling strategies. Section 6 deals with

various MPPT algorithms used in PVHEVs, Sect. 7 points

out the flipside of hybrid vehicles, and Sect. 8 presents the

conclusion and recommendation. The methodology adop-

ted for constructing this review paper is shown in the form

of a flowchart in Fig. 1.

2 Architecture of HEV

The key components in an HEV consist of an electric

motor (EM), battery, convertor, ICE, fuel tank and control

board. These components can be categorized into three

groups:

1. Drivetrains—physically integrate the ICE power

source and electric drive.

2. Battery/energy storage system (ESS)—emphasizes

large or modest energy storage and power capabilities.

3. Control system—instructs electric systems/ICE and

manages the HESS.

These components can be integrated in different ways and

sizes which results in variation in vehicle design. Based on

the component integration, drivetrains mainly include ser-

ies, parallel and power split designs. In [6] the HEV’s

architecture has been classified into six different categories,

which are mild/microparallel, parallel, series, power split,

combined and through-the-road (TTR) hybrids.

In series HEV, the power sources provide electrical

energy at DC bus, which is then converted to traction

power [7]. In parallel HEVs, traction power can be sup-

plied by ICE or EM alone, or together by both the sources.

The EM is used to charge the HESS by means of regen-

erative braking [8]. The parallel mild HEV is an ideal

option as they provide a prime trade-off between the cost of

vehicle and its performance [9]. Complex HEVs incorpo-

rate features of both parallel as well as series architecture.

They are almost like the series–parallel hybrid except for

the variance in power flow of the motor, which is bidi-

rectional in complex hybrid and unidirectional in series–

parallel HEVs. The disadvantage of complex hybrid is its

complexity in design. A pictorial representation of these

architectures is given in Fig. 2.

Architecturally, PHEV is similar to HEVs except for a

large-size onboard battery, having high energy density and

efficiency. The combination of CS and CD modes requires

a more complex control strategy than in an HEV. PHEVs

begin operation in CD mode; and as soon as the battery

reaches a threshold value of SOC, the battery shifts to CS

mode until the vehicle is parked and recharged. The

architecture of a solar-driven HEV (PVHEV) is similar to

the PHEV except for an additional photovoltaic (PV) panel,

which charges the battery during a sunny day. To extract

the maximum power from PV panels, the maximum power

point tracker (MPPT) algorithms are applied. The block

diagram of PVHEV is shown in Fig. 3.

Patterns of power flow:

The power flows in HEVs to encounter the load demand

are given in Fig. 4. There are many possible patterns as

given below [10]:

1. powertrain 1 alone delivers power to load;

2. powertrain 2 alone delivers power to the load;

3. both powertrains 1 and 2 deliver power to load at the

same time;

4. powertrain 2 obtains power from load (regenerative

braking);

5. powertrain 2 obtains power from powertrain 1;

6. powertrain 2 obtains power from powertrain 1 and load

at the same time;

7. powertrain 1 delivers power to load and to powertrain

2 at the same time;
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8. powertrain 1 delivers power to powertrain 2, and

powertrain 2 delivers power to load;

9. powertrain 1 delivers power to load, and load delivers

power to powertrain 2.

Various papers have been published by researchers on

the architecture of hybrid vehicles, and some of them are

discussed here. In [11] a small ICE/generator was added to

the battery-powered EV to develop a series hybrid drive-

train. The series hybrid drivetrain has some prominent

benefits: (1) the ICE and the driven wheels are not coupled

mechanically, which compels ICE to operate at its narrow

optimal region; (2) single-torque source operation simpli-

fies the speed control; (3) the torque–speed characteristic of

EM obviates multigear transmission; and (4) easy drive-

train control, simple structure and easy packaging. How-

ever, it suffers from some drawbacks, as follows: (1) the

conversion of energy takes place in two steps, i.e.,

mechanical to electrical through generator and vice versa

through motor, and hence results in more energy losses; (2)

two electric machines are required, i.e., generator and

motor separately; and (3) a big size traction motor is

required. The series hybrid drivetrain is mostly used in

heavy vehicles such as buses, trucks and military vehicles.

This configuration was also considered for the analysis of

hybrid lithium high-energy battery [12]. In [13], the PHEV

is simulated for series and parallel architectures and it is

concluded that during powering mode, the operating points

of the motor for parallel PHEV are more concentrated in

the extended high-speed, high-efficient region. In case of

parallel PHEV, regenerative braking takes place in a high

efficiency region which is not the case in the series coun-

terpart. While analyzing the effect of different functions on

energy management strategies apropos of both architec-

tures, the parallel configuration was found to be superior

[14].

Fig. 1 Methodology adopted for constructing this review paper
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In [15, 16], power split was considered for the analysis

of the through-the-road (TTR) architecture, a subcategory

of parallel architecture. In [17], the split—parallel archi-

tecture for TTR and its control challenges are detailed.

Miller [18] employed power split architecture as it provides

better liberty of power control. He also showed that elec-

tronic continuous variable transmission (e-CVT) was more

efficient than the mechanical continuous variable trans-

mission (CVT). In [7], it is discussed that hybrid cars use

parallel and power split architecture, but heavy hybrid

vehicles use the series architecture, so small ICE is

required. Series, parallel and power split architectures have

been presented in [19]. In [20], the power split architecture

and its modeling in a systematic way are detailed. In [21],

an energy management system (EMS) for power

split/parallel architecture of HEV was employed to

improve the battery life and powertrain energy efficiency.

The results showed that the proposed two propulsion

machines improved the powertrain efficiency by 5% as

compared to one propulsion machine. In [22], a parallel

active topology was used with a fuzzy logic controller

(FLC) which has been implemented for online energy

management of an EV. In [23], a similar kind of strategy

fused with particle swarm optimization (PSO) and simu-

lated annealing (SA) is proposed to minimize the fuel

consumption and emissions for a parallel HEV. In [24], the

parallel architecture is used in a bilayer distribution system.

It is made up of an alternating current layer which provides

aids to the system loads and an embedded direct current

layer that interfaces the PV arrays with PHEVs. In [25–27],

Fig. 2 Various architectures of an HEV

Charge port Battery pack

Generator

IC engine

Controller

Motor Transmission

PV panel Electrical connection

Sensor connection

Mechanical connection

Fig. 3 Block diagram of PVHEV

ENERGY 
SOURCE 1

ENERGY 
CONVERTER 1

ENERGY 
CONVERTER 2

ENERGY 
SOURCE 2

∑ LOAD

Power train 1
(unidirectional)

Powertrain 2
(bidirectional)

Power flow while propelling

Power flow while charging

Fig. 4 Patterns of power flow
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the parallel architecture is employed for PHEV and its

energy management is presented.

In [28], a model of the power split PHEV powertrain

and a TTR hybrid electric powertrain was simulated and

their prototypes were investigated based on various

parameters. A quasi-static model was used to investigate

and evaluate vehicle performance, fuel economy, emis-

sions and supervisory control of the passenger car. A low-

frequency vehicle powertrain dynamics model was used to

evaluate the vehicle dynamics, acceleration and braking

performance of a racecar.

Based on the literature, a summary giving various

architectures and their application is given in Table 2.

Table 3 gives the comparison of emissions for EV and

HEVs for FTP-75 urban, federal highway and commuter

driving cycles. Table 4 provides a brief summary of these

architectures.

There are various architectures available for HEVs, but

since the complex hybrid involves bidirectional power

flow, it is more suitable and beneficial compared to the rest.

Ultracapicitor
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DC/DC
converter Inverter EM
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DC/DC
converter Inverter EM
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(d) Active cascaded battery/UC configuration

Battery
Inverter

Ultracapicitor

Multi-input
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Fig. 5 Various possible configuration of UC and battery [146]
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3 Bidirectional DC/AC converter

Power converters are proliferated in all kind of applications

to increase controllability and efficiency in automotive

applications [30]. The bidirectional converter is essential in

hybrid vehicles to convert DC from the battery/UC/fuel

cell (FC) or their combination into AC that is given to the

motor drive. An extensive research has been carried out on

DC/AC converters including single-stage single-phase

[31], single-stage three-phase [32] or zero voltage switch-

ing inverters [33]. The various motor drives used in EV and

HEV have been proposed in [34–45].

There are various topologies of traction inverters such as

voltage source inverter (VSI), current source inverter

(CSI), impedance source converter (ZSI) and soft switch-

ing [46]. These are described below.

3.1 Current source inverter

The CSI can be used for the speed control of AC motors,

especially induction motors with varying load torque. The

following are the types of CSI:

1. single-phase CSI,

2. auto-sequential commutated mode single-phase inver-

ter (ASCI) and

3. three-phase CSI.

Advantages:

1. The circuit for CSI is simple. It uses only converter-

grade thyristor having reverse-blocking capability and

is able to withstand high-voltage spikes during

commutation.

2. An output short-circuit or simultaneous conduction in

an inverter arm is controlled by the ‘controlled current

source’ used here, i.e., a current-limited voltage source

in series with a large inductance.

3. The converter/inverter combined configuration has an

inherent four-quadrant operation capability without

any extra power component.

Disadvantages:

1. It suffers from the drawback of having limited

operating frequency and hence cannot be used for

uninterruptible power supply systems.

2. At light loads and high frequency, these inverters have

sluggish performance and stability problems.

These inverters can be divided into two categories: one

is to reduce switch count, and another is to reduce capac-

itance for HEVs. The reduced switch scheme faces the

challenge of cost and efficiency, whereas reduced capaci-

tance reduces the cost and improves the power density of

the traction inverter. Wu et al. [47] proposed a CSI with

interior permanent magnet machine, as it increases the

constant-power operation regions due to voltage-boosting

function. The CSI for medium- and high-power induction

machines was studied in [48–54]. A novel space vector

pulse width amplitude modulation (SVPWAM) method for

a buck–boost CSI was proposed in [55]. Due to this tech-

nique, the switching loss had reduced by 60%. Further-

more, the power density increased by a factor of 2–3. A

new type of control strategy known as the nouveau for CSI

in battery-driven electric vehicle (BEV) has been proposed

in [56] for better harmonic performance of the electrical

machine. In [57], a method to switch off an interior per-

manent magnet synchronous motor (IPMSM) by using a

CSI inverter in the event of a malfunction in a BEV has

been presented.

3.2 Voltage source inverter

The VSI can be used practically in both single- and three-

phase applications. VSIs have good speed range, multiple

motor controls from a single unit and a simple regulator

design. In addition, there are some disadvantages of the

VSI; e.g., the power factor decreases as the speed decrea-

ses, and it induces harmonics, cogging and jerky start and

stop motions. The types, advantages and disadvantages of

VSI are as below:

Types of VSI:

1. single-phase half-bridge inverter,

2. single-phase full-bridge inverter and

3. three-phase VSI.

Advantages:

1. low-power consumption and high-energy efficiency up

to 90%,

2. high-power handling capability,

3. no temperature variation- and aging-caused drifting or

degradation in linearity,

4. easy to implement and control and

5. compatible with today’s digital controller.

Disadvantages:

1. attenuation of the fundamental component of the

waveform;

2. drastically increases switching frequencies and hence

creates stresses on switching devices;

3. generation of harmonic components.

Liu et al. [58] selected an advanced film capacitor to

replace the conventional electrolytic bulk capacitors for EV

applications. In [59], an adaptive flux observer to adjust

itself by online estimation of DC-link voltage and rotor

resistance has been proposed for VSI-based induction
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motor (IM) in HEVs. The proposed observer is capable of

obtaining simultaneous flux and DC-link voltage observa-

tion with online tuning of rotor resistance. Feng et al. [60]

proposed a current injection-based online parameter and

VSI nonlinearity estimation method for permanent magnet

synchronous motor (PMSM) drives in EVs. The nonlin-

earity of VSI in HEV is discussed in [61]. A new inverter

design based on the silicon carbide-based semiconductor

devices was proposed to fulfill the power and temperature

requirements of EVs in [62]. The impact of various mod-

ulation schemes on DC-link capacitor of VSI for HEV has

been discussed in [63].

3.3 Impedance source inverter

Impendence source inverter (also called Z-source inverter,

ZSI for short) has been considered an efficient candidate in

vehicle applications such as drive system reliability, which

leads to an increase in the range of inverter output. The ZSI

is one of the most promising power electronics converter

topologies suitable for motor drive applications. It has the

properties of buck and boost in single-stage conversion. A

special Z network composed of two capacitors and two

inductors connected to the well-known three-phase inverter

bridge and allows working in buck or boost mode using the

Table 1 Saving in fuel consumption in some top models

Technology Nonhybrid/nonelectric base

model (BEE* fuel efficiency

star rating)

Hybrid/electric model

(BEE fuel efficiency

star rating)

Gasoline equivalent

fuel consumption reduction

over base model

Diesel-based mild hybrid Maruti Ciaz VDI (5 star) Maruti Ciaz VDI-shvs (5 star) 7%

Diesel-based mild hybrid Maruti Ertiga VDI (4 star) Maruti Ertiga VDI-shvs (5 star) 15%

Gasoline based strong hybrid Toyota Camry at 2.5 l (2 star) Toyota Camry hybrid (5 star) 32%

Battery-operated electric Mahindra Verito d2 (4 star) Mahindra E-verito d2 (5 star) 68%

Battery-operated electric – Mahindra e2o (5 star) –

*Bureau of Energy Efficiency

Table 2 Summary of architectures and their application

Architecture Complexity Efficiency Hybridization Computation time/mathematical complexity

Series 1 1 Full HEV and plug-in HEV 1

Parallel 2 2 Micro-, mild and full HEV 2

Series–parallel 3 3 Full HEV and plug-in HEV 3

1—low, 2—medium, 3—high

Table 3 Comparison of emission for different driving cycles [29]

Parameters Conventional EV Series hybrid Parallel hybrid

Control complexity NA Simple Medium Complex

Weight (kg) Very low High Medium Low

NOx (g/km) High NA Medium Low

CO (g/km) High NA Medium Low

HC High NA Low Medium

Fuel consumption (km/L) High NA Medium Low

Amount of energy supplied or depleted (MJ) NA Low Medium High

NA not applied

Table 4 Summary on architectures

Architecture Loss Efficiency Complexity Sizing of

component

Series 4 1 1 4

Parallel 3 2 2 3

Series–

parallel

2 3 3 2

Complex 1 4 4 2

4—very high, 3—high, 2—moderate and 1—minimum
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shoot-through state. The ZSI improves the stability and

safety of a brushless DC (BLDC) motor drive system under

complex conditions. The following are the advantages of

ZSI:

1. Provides desired AC voltage output regardless of the

input voltage.

2. Yields high-voltage utility factor.

3. Overcomes voltage sags without any additional

circuits.

4. Minimizes the motor ratings to deliver required power.

5. Improves the power factor and reduces harmonic

current and common mode voltage of the line.

There are three topologies of ZSIs, namely basic, bidi-

rectional and high-performance ZSI [64]. Replacement of

the input diode by a bidirectional switch in the basic ver-

sion results in bidirectional ZSI topology. The bidirectional

ZSI is able to exchange energy between AC and DC energy

storage. Being a basic topology, the variable frequency

(VF) ZSI cannot work in regenerative mode and hence

cannot charge the battery due to which the output voltage is

low [65]. However, the continuous input current by VF-ZSI

is suitable for photovoltaic (PV) applications. To perform

rectangular wave modulation for motor drive control, an

improved circuit topology of ZSI depending on the drive

condition of the H/EV has been discussed in [66]. Dong

et al. [67] have developed current-fed quasi-ZSI (CF-qZSI)

with high efficiency by using reverse-blocking IGBT for

HEV application. CF-qZSI is able to achieve bidirectional

power flow and voltage buck operation as it has a diode and

an LC network in its design.

The improvements in the heat transfer capabilities of

power module technologies are still inadequate, and a

paradigm shift is needed in order to achieve the cost

reduction and meet the power density challenges of the

H/EV inverters [68]. The sustainability of inverters at very

high temperature (105 �C) while operating at high effi-

ciency is another issue to be addressed [69]. The 900V SiC

MOSFET technology in the inverter reduces the energy

losses and is beneficial in the mild city-style drive cycles

[70]. Its application in multiphase motor drive system not

only reduces power loss in the inverter but also permits the

use of a smaller DC-link capacitor [71]. A high-capacity

compact power module (J1 series) has been developed with

compact size, high performance, lightweight and low self-

inductance [72].

Another bidirectional DC/AC converter has been pro-

posed for HEV applications, which can be used as a single

input single/multiple output. The reduction in current rip-

ple by carrier modulation method proposed in [73] leads to

the reduction of DC capacitance and voltage ripple. The

ripple reduction was achieved in HEV applications by

using DC-link capacitor and carrier modulation technique

[74, 75]. The synergetic battery pack (SBP) inverter was

also introduced for H/EV applications. It has the advantage

of using voltage semiconductor devices and hence

improves the stability. In the SBP inverter, only one-stage

conversion takes place and hence results in lesser losses

and reduces the cost [76]. A pulse amplitude modulation

(PAM) inverter was introduced in HEV to obtain high

performance [77–82]. A fault-tolerant 4-leg topology was

proposed in [83]. The quasi-ZSI (q-ZSI) [84] can buck and

boost the voltage and provide the bidirectional power flow.

In [85, 86], the modified space vector pulse width modu-

lation with different pulse width modulation (PWM)

sequences was applied, which led to different current rip-

ples, switching loss, total harmonic distortion and voltage

spike on the switching devices. Therefore, switching

sequence and choice of PWM are important [87–89]. The

strategy proposed in [90–92] allows the PMSM to work as

inductors of the boost converter. This technique reduces the

current ripple, thermal stress under heavy load and boosts

the output.

An important criterion for deciding the size of a 3-phase

PWM converter is cooling. A novel method is to have a

power module concept with double-sided chip cooling

Table 5 Comparison of various topologies of the HESS [146]

Topologies Advantages Disadvantages

Isolated topology in Fig. 5b

Isolated topology in Fig. 5c

Isolated topology in Fig. 5d

Higher galvanic isolation, higher-voltage

conversion ratios

Bulky, heavy, costly magnetic core, higher EMI,

higher-voltage stress across switches

Nonisolated topology in Fig. 5e Lower transfer capacitor voltage rating Two large inductors, discontinuous output

current, a larger output capacitor and a higher

switch/diode voltage rating

Nonisolated topology in Fig. 5f Reduced input/output current ripples Having two large inductor higher transfer

capacitor voltage ratings

Nonisolated topology in Fig. 5g One small inductor no transfer capacitor voltage,

lower switch/diode voltage ratings, lower

switching/conduction losses

Discontinuous output current
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which allows very high-power densities. In addition, lower

stray inductance and package resistance improvements will

enable high inverter efficiencies [93]. The dual-sided

cooling discussed in [94] provides better cooling options in

inverters.

Table 6 Comparison of various motors used in HEV [151]

Brushless DC PM Switched reluctance Polyphase induction

Type AC DC AC AC

Family Synchronous excited PM Separately excited Synchronous unexcited Induction slip ring

squirrel cage

Power to rotor PM DC Induced Induced

Power to stator Pulsed DC PM Pulsed DC AC

Overall cost High Medium Medium Medium

Weight Low Medium Medium Medium

Commutation method Internal electronic Mechanical commutation External electronic External electronic

Controller cost Very high Medium High High

Pros Outstanding torque and speed,

fast responses, tremendous

power and long life

High starting torque Low inertia can be tailored

for specific applications

and runs cool

High efficiency

Cons Very expensive, limited

economy to small-sized

motors

Susceptible to damage if

dropped, requires

maintenance, bulky and

limited rotation speed

Not very power full, ripple

in torque and requires

position sensing

Expensive controller

Maintenance

requirement

Low Brushes wear Low Low

Speed control method Frequency dependent PWM Frequency dependent Frequency dependent

Starting torque [ 175% of rated torque [ 200% of rated torque Up to 200% of rated torque High

Speed range Excellent Limited by brushes, easy

control

Controllable Controllable

Efficiency High High Less than PMDC High

Application HEVs, EVs and ICVs HEVs, EVs and ICVs ICVs HEVs, EVs and ICVs

Efficiency with motor

only (%)

80 97 94 90

Efficiency with power

electronic devices

only (%)

98 93 90 93

Efficiency with motor

and power

electronic devices

(%)

78 90 85 84

Examples Peugeot Citroen/Berlingo (psa)

(France)

Nissan/Tino, Honda/Insight

(Japan), Toyota Prius

(Japan), etc.

Holden/ECOmmodore

(Australia)

Renault/Kangoo

(France), Chevrolet/

Silverado (USA), etc.

Table 7 Comparison of MPPT algorithms used in HEVs

MPPT technique Convergence speed Implementation complexity Periodic tuning Sensed parameters

P&O Varies Low No Voltage

IC Varies Medium No Voltage and current

Fractional Voc Medium Low Yes Voltage

Fractional Isc Medium Medium Yes Current

FLC Fast High Yes Varies

Neural network Fast High Yes Varies
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4 Hybrid energy storage system

The choice of ESS depends on various parameters,

including charging speed, energy density, life expectancy,

cost, weight and size [95, 96]. The current trend indicates

that batteries and UC remain as the main choices for ESS

[97]. Batteries have low cost per watt hour, high energy

density but short cycle life and low specific power, while

UCs preserve high peak power, long cycle life, high cost

per watt hour and low energy density [98–103]. The UCs

are robust, have a quasi-infinite cycle life and can sustain

highly dynamic power profiles [104, 105]. The UCs are

also responsible to reduce the sulfation in lead acid bat-

teries for EVs [106]. Furthermore, the UCs provide high-

frequency and high-magnitude power, whereas the batter-

ies fulfill low-frequency requirements. It is not possible for

an individual energy storage device to fulfill all the

requirements [107]. However, a combination of the two

Table 8 Cost breakdown for different powertrain options (in EUR) [300]

Costs type (in EUR, year 2020) ICV HEV PHEV 15 PHEV 30 EREV BEV FCEV

Purchase price (excluding CO2 penalties) 27,946 29,963 30,805 31,941 37,093 36,390 46,456

Resale value - 9503 - 11,916 - 12,252 - 12,704 - 14,756 - 10,335 - 15,809

Net depreciation 18,443 18,047 18,554 19,237 22,337 26,054 30,647

Energy cost 4016 2142 1739 1564 1637 1235 2587

Maintenance and repair cost 2892 2720 2704 2692 2124 2348 2548

Other operation cost (e.g., motor tax and inspection) 330 160 160 160 160 53 53

Total cost of ownership 25,680 23,069 23,157 23,653 26,257 29,690 35,835

EREV extended range electric vehicle, also known as plug-in series HEV; PHEV 15 and PHEV 30: plug-in HEVs with two different battery sizes

Table 9 Comparison of various existing hybrid vehicles

Vehicle Driving

range

Efficiency Fuel type Overall

cost

Structure Advantage Disadvantage ESS Driving

mode

ICV High Low Gasoline High Simple 1. Matured

technology

2. Better

performance

3. Simple and

reliable

4. Commercialized

1. Harmful

emission

2. Poor fuel

economy

Fuel tank City and

high

way

BEV Low High Electric Low Simple 1. Pollution free

2. Efficient

1. Poor dynamic

response

2. Recharge time is

high

Battery and

ultracapacitor

City

HEV Medium Low Gasoline ? electric Medium Medium 1. Low emission

2. High fuel

economy

3. Reliable and

durable

1. Bulky

2. More number of

components

Fuel tank, battery and

ultracapacitor

Highway

PHEV High High Gasoline ? electric Medium Complex 1. Highly fuel

efficient

2. Low emission

3. V2G or G2V
capability

4. Quiet and

smooth operation

1. High initial cost

2. Impact on grid

Fuel tank, battery and

ultracapacitor can be

charged from outlet

City and

high

way

PVHEV High High Gasoline ? electric Low Complex 1. Highly efficient.

2. Low emission

and large size

3. Quiet and

smooth operation

4. Reliable

1. Very high initial

cost.

2. Extra

components

Fuel tank, PV panel,

battery and

ultracapacitor can be

charged from outlet

City and

high

way
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can help to overcome their drawbacks [108–113]. UCs

tolerate the surges during the battery operation and main-

tain the DC-bus voltage, whereas the batteries maintain the

SOC of the UCs. Therefore, the combination of these two

will lead to high stability of the entire system [114, 115].

To protect EV batteries and extend their life, an UC is

combined with them [116–119]. The sudden load varia-

tions are absorbed by the UC, and hence efficient use of the

batteries can be achieved [120, 121]. The batteries can be

modeled with 1 resistance capacitor (RC) and multiple RC

branches, and an UC is added to make it a HESS. The

optimal power split between the battery and an UC is an

important task and influences their sizing. Quite a few

papers have discussed this power split, and they are briefly

presented below.

The UC and battery parameters can be assessed using

curve fitting techniques for desired cell responses. While

designing ESS mechanisms like high temperature, over

charge/discharge and under-/overvoltage protection

schemes, cell balancing and their redistribution should be

considered [122, 123]. To split the current between UC and

battery, Karush–Kuhn–Tucker (KKT) and the neural net-

work (NN)-based EMS are used in [124]. The NN-based

EMS demonstrates better robustness and performance in

terms of the battery state of health. However, KKT offers

simpler implementation and excellent computation per-

formance. The artificial neural network (ANN) is very

useful in calculating the residual capacity of an UC [125].

The fuzzy logic (FL)-based EMS in a HESS for longer

battery life was also adopted. Here, a battery lifetime

degradation model was used to develop the relationship

between the battery charge/discharge behavior and the

impact on its lifetime [126, 127]. The power optimization

in a parallel arrangement of battery and UC was carried out

using superimposed DC-bus control system which had DC-

bus voltage, proportional integral (PI) controllers and a

feed-forward load compensator [128, 129]. Wireless

charging concept was used to charge the UC effectively in

[130]. A rule-based control algorithm was proposed to

effectively manage the UC’s SOC and offload the current

peaks from the battery in [131, 132]. Model predictive

controller (MPC) was used to distribute the energy in a

HESS in [133]. This scheme satisfied load demand and

maintained the output voltage at the desired value.

In order to better utilize the high-power density of UCs,

a logic threshold control strategy for HESS was proposed

in EVs [134–137]. An adaptive FL-based EMS is used to

determine the power split between the battery and the UC

pack. An FL controller is used as it can easily manage the

complex real-time control issues and does not need the

knowledge of the driving cycle ahead of time. It maximizes

the efficiency and minimizes the battery current variation

[138]. A HESS linear quadratic regulator was designed to

mitigate issues related to battery wear and peak power

demands for EVs and HEVs [139].

The equivalent consumption minimization strategy is

proposed to distribute the power between the battery and

UC in a series HEV [140]. Other HESS like UC with the

FC has also been adopted in few cases, and one of such

combination is interfaced using the ant colony method in

[141]. A dynamic MPC is designed for FC-UC hybrid,

which maintains load side requirement and voltage across

UC. The single MPC in outer loop is used to find the values

of FC and UC currents which are used as references for

inner PI control loop [142]. The implementation of HESS

has at least three major advantages: cheaper batteries,

increased autonomy and extended lifetime [143, 144].

There are various possible configurations to connect the

HESS and the electric traction motor, which are given in

Fig. 5. Also, a battery and UC can be interfaced by means

of bidirectional DC/DC converter in many ways [145]. The

topologies are mainly selected based on their advantages

and disadvantages as tabulated in Table 5. The boost half-

bridge best meets the requirements of a bidirectional cell,

thus suitable for battery/UC interface [146].

The passive connection given in Fig. 5a is the simplest

configuration with both the battery pack and the UC

directly connected to the motor drive without interfacing to

a DC/DC converter. Regardless of the system simplicity,

the absence of a control on the DC side is the main

drawback of this system. This limitation is resolved in the

controlled HESS [147] as presented in Fig. 5b, c. The UC

is not directly connected to the DC bus, and the bidirec-

tional DC/DC converter controls the power contribution

from the UC. The optimal sizing of the DC/DC converter is

the main issue here.

In active cascaded battery/UC topology shown in

Fig. 5d, UC is directly connected to the terminal of an

inverter, whereas the battery is connected through a DC/

DC converter. The UC acts as a buffer against a rapid

power flow change. As a result, battery is protected and the

energy flow can be effectively controlled. However, in this

topology, UC voltage needs to be kept constant, limiting

the working range of the UC. This topology was used in

[148] to reduce the conduction and switching losses and to

improve the accuracy.

A new concept having two semi-active configurations,

i.e., a semi-active UC and a battery, has been postulated in

[149]. A bidirectional nonisolated DC/DC converter per-

forms energy control of one of the storage elements. In this

control strategy, UC provides fast dynamic power, and the

complement is provided by the battery bank [150], as

shown in Fig. 5e.

In case of multi-DC/DC converter topology shown in

Fig. 5f, the battery and UC are individually connected to

the inverter terminal through their own DC/DC converter.
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This topology shows a good performance, especially for

the controllability of current flow.

The two DC/DC converter required in topologies shown

in Fig. 5e, f is replaced by a multi-input nonisolated bidi-

rectional DC/DC converter [151]. This topology minimizes

the losses and has been analyzed in [152].

The multi-input DC/DC converter is used for the inte-

gration of energy sources such as FC, PV and wind for EV

applications [153]. The advantage of DC/DC converter is

to have low component counts and a simplified structure.

Since this converter is capable of operating in different

modes of operation such as boost, buck and buck/boost,

this topology attains an important role in the energy

diversification of different sources in HEV applications

[154]. A zero voltage transition buck-and-boost converter

can also be employed for UC interface that guarantees soft

switching condition for all semiconductor devices in EVs

[155].

In [156], a three-level neutral point-clamped converter

(NPC) is proposed to optimally couple UC and a battery

pack. It minimizes the usage of battery pack in providing

peak current in acceleration and deceleration modes. In

[157], a half-bridge bidirectional DC/DC multi-input con-

verter is chosen to link the battery and the UC.

5 Motors

There is an extensive need of advanced motors and gen-

erators to meet the aggressive targets in terms of efficiency,

power density and cost of the drivetrain in HEVs. The

specification of the motor/generator depends on its usage,

like in light/medium/heavy duty vehicles, off/on highway

vehicles and locomotives. The performance of the machine

depends mainly on vehicle duty cycle, thermal character-

istics and the cooling mechanism implemented. Invention

of power converter topologies for drive control has

advanced the traction systems for EVs over recent years.

The classification of various motors used in traction is

shown in Fig. 6. A brief literature review on the motors

used for traction in EV/HEVs is presented below. A brief

study on control methods of these motors is also presented

at the end of this section.

5.1 Switched reluctance motors

These days, the switched reluctance motor (SRM) is

receiving much attention in EV/HEV applications. These

motors have various advantages such as easier control,

rugged construction, better fault tolerance capability and

outstanding torque–speed characteristics. An SRM is well

suited for applications where constant power is required

over a wide operating region. SRM is also reported with

several drawbacks such as electromagnetic interference,

torque ripple, high noise and requirement of a special

convertor topology [158].

In order to overcome the drawbacks of SRM such as low

torque/power density and high torque ripple, a novel

modular (M)-SRM with hybrid magnetic paths for simple

structure, low cost and improved dynamic performance has

been presented for EV applications [159]. An average

torque control of SRM for light EVs is proposed to control

and estimate the average torque of the motor shaft in [160].

The Seeker optimization algorithm has been presented in

[161] to minimize the torque ripple of SRM.

A multistage fast design methodology for SRM is pre-

sented in [162]. The process aims to determine the best

speed at which the SRM would start in single-pulse mode

operation. In [163], SRM was developed with a new

propulsion system having good overall efficiency in the

total speed range, especially in high speed and excellent

generating performance. Generally, PI controllers are used

for the speed control of SRM, but have drawbacks of high

overshoot and settling time; hence, to overcome them, a

fuzzy sliding mode controller has been presented in [164].

SRM is highly suitable to provide the maximum torque for

a short time [165]. In [166], SRM has been constructed and

test results are presented over the entire speed range and it

has been concluded that the output power is significantly

enhanced to 100 kW from 60 kW in a high-speed range

(5400–13900 rpm) with the same outer diameter and the

axial length of the IPMSM. A new design of SRM as a

starter/generator for HEV has been presented in [167]. The

results show that SRM is capable of starting the vehicle and

charging the battery as well. A new modified fuzzy-PI

controller is designed to control a high-power SRM,

modeled by means of the finite element method (FEM) for

HEV applications [168]. This ensures the best efficiencies

over the specified operating range.

To improve the efficiency of SRM for HEV, the

response surface method and multiobjective genetic algo-

rithm (GA) are applied over various operating modes

[169]. Considering the maximum torque capability and

maximum power density, SRM seems to be the best can-

didate for HEV application [170]. In [171], an optimized

controller for SRM to reduce undesirable torque ripples for

EV and HEV has been discussed. An integrated multilevel

converter fed by a modular front-end circuit in SRMs for

PHEV has been presented in [172].

The high-speed capabilities of 6-slot/4-pole and

8-slot/6-pole designs have been presented in [173]. The 6/4

designs yield 40% more power at high speed without

exceeding the voltage and current ratings of the motors.

The SRM definitely shows potential for superior perfor-

mance to BLDC’s and IM’s [174]. A split converter-fed

four-phase SRM drive to realize flexible integrated
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charging functions (DC and AC sources) has been pre-

sented for better fault tolerance in [175]. The features of

SRM have been described keeping in view their application

for vehicles [176].

5.2 Brushless DC motors

BLDC motors are theoretically the result of reversing the

position of the stator and rotor of PM DC motors. Their

main advantages are high efficiency, compactness and high

energy density. In [177], a 5-phase brushless fault-tolerant

hybrid-excitation motor was proposed for EV applications.

In [178], BLDC was used for EV by means of a fuzzy-

tuned PI speed control. In [179], a brushless dual-rotor flux

switching permanent magnet motor was employed for

PHEV application. A double-stator permanent magnet

BLDC (PMBLDC) was engaged for HEV application in

[180].

A position sensorless BLDC motor based on the sliding

mode control has been presented in [181] for EV applica-

tions. The techniques based on flux-weakening control are

complex and costly. To circumvent these problems a

multispeed winding is designed with sensorless control and

presented in [182]. The back electromotive force (EMF)

signal of brushless in-wheel hubs can be exploited to

simplify their antilock braking system (ABS) arrangement.

The experimental results show that the sensorless wheel

speed measurement accuracy of a BLDC motor with eight

pole pairs is approximately 50% better than the ones pro-

duced by the commercial ABS sensor [183].

The integrated starter generator torque booster for a

hybrid propulsion system has been presented in [184, 185].

In [186], a promising doubly salient-BLDC generator for

HEV application was proposed as it has low cost, high

robustness and flexible control. The predictive controller-

enabled BLDC motor drive has been presented to improve

the motor current response in [187]. In [188], field weak-

ening has been improved, which helps in vehicles where

large constant/power speed ratio is required. Digital PWM

control for a BLDC drive in both motoring and generating

modes of operation is discussed in [189]. This control

strategy is simple, robust, current sensorless and compu-

tationally less intensive. Chen and Cheng [190] used a low-

voltage BLDC motor/alternator with modified converter

design in hybrid electric scooters. In [191], the magneti-

zation analysis of the BLDC motor has been presented and

it has been concluded that the post-assembly magnetization

is preferred in order to overcome the problem of magnetic

forces and ferrous debris. The magnetic field-modulated

brushless double-rotor machine (MFM-BDRM) is com-

posed of the stator, the modulating ring rotor and the PM

HEVs. Compared with traditional double-rotor machines

(DRMs), the MFM-BDRM shows more complicated

electromechanical energy conversion relations, due to its

special operating principle [192]. The influence of mag-

netic phase couplings on the performance of multiphase

BLDC machines with overlapping phase winding config-

urations is investigated in [193]. A novel configuration of

the BLDC motor with an integrated planetary gear train,

which provides functional and structural integrations to

overcome inherent drawbacks of traditional designs, has

been presented in [194]. The performance of BLDC motor

was evaluated in terms of rise time, setting time and

overshoot using topologies like fuzzy, PI and their hybrid

in [195]. It has been concluded that a hybrid controller is

suitable for high-power applications, whereas a PI con-

troller is promising for low-power applications. The gen-

erated output power of five-phase BLDC motor is

improved under faulty conditions in HEVs [196, 197]. An

efficient regenerative braking system in BLDC motor is

presented for hybrid vehicles in [198].

5.3 Permanent magnet synchronous motor

PMSMs prove to be strong contenders to IM in HEV

applications. Its benefits include lesser heating, higher

power density and higher efficiency. That being said,

PMSMs suffer from a major drawback of demagnetization

due to armature reaction. In [199], the PM motor and IM

were compared for HEV application with the help of

advanced vehicle simulator (ADVISOR) tool and the

results indicate superior performance of PM motors, in

terms of standard performance indices such as traction

capabilities and fuel efficiency. A PMSM shows better

result for HEV when clubbed with HESS.

A novel PMSM drive system with a bidirectional ZSI is

proposed and tested by keeping in view the feasibility and

effectiveness for an EV system. The application of a

bidirectional ZSI to PMSM drive system improves the

reliability since it is a single-stage structure and the shoot-

through states can no longer destroy the inverter [200]. The

PMSM with ZSI and modified vector control considering

DC-link capacitor is presented in [201]. To improve the

efficiency of a PMSM, a loss optimization control strategy

is proposed in [202]. A generalized predictive current

control method combined with sliding mode disturbance

compensation is proposed for PMSM to satisfy the

requirement of fast response in EV system [203]. The

hybrid PWM-based discontinuous modulation strategy

with DC-link voltage balancing for a three-level NPC

traction inverter is presented, and PMSM is considered for

traction motor drive in [204]. A test bench has been

developed using a surface-mounted PMSM to emulate

various electrical machines to understand their real

behavior [205, 206].
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To prevent an increase in speed during emergency crash,

high-voltage discharge of the capacitor for PMSM drive is

presented in [207]. Six typical topologies of compound-

structure PMSM (CS-PMSMs) are proposed and evaluated

in terms of torque density, manufacturability, heat-dissi-

pating capability and magnetic coupling for an HEV system

[208]. The virtual prototyping and optimization of PMSM

for HEV drivetrains is presented in [209]. Zheng et al. [210]

used an axial–axial flux CS-PMSM, which enables ICE to

operate in the optimum efficiency region independent of

road conditions. The robust shape model of PMSM for a

large-sized HEV is presented in [211]. The numerical

computations using the FEM are performed to build the

lumped parameter model for PMSM system in [212]. The

field-controlled PMSM is proposed for HEV applications in

[213]. A new PMSM machine with increased power capa-

bility was proposed in [214] with two winding sets in which

one of them is dedicated for generator operation and the

other for output voltage regulation by flux weakening. To

minimize the problem of coupling between d and q axes, a

modified current control strategy of the flux-modulated CS-

PMSM has been presented in [215].

The PM-assisted synchronous reluctance motors for

automotive applications have been examined in [216], but

as they use rare earth PMs, the electric motors with less or

no rare earth PMs are therefore presented. To reduce the

cost of the machine, the flux switching of the PMSM has

been presented in [217]. In order to avoid the fault in any

component, an onboard diagnostic approach for PMSM

drive system has been presented in [218]. Point of common

coupling is used to obtain fast torque monitoring and high-

performance operation of a PMSM in [219]. A fault-tol-

erant control system for high-performance PMSM drive is

proposed in [220]. Unbalanced magnetic pull plays a key

role in nonlinear dynamic behaviors of PMSM. The anal-

ysis indicates that these effects are caused by the interac-

tion of the initial phases of forward and backward whirling

motions [221]. Reference [222] presents a sensorless

algorithm designated for the emergency control of an

interior PMSM drive. Two topologies for PMSM (1. bat-

tery connected directly to inverter and 2. connected

through bidirectional converter) are compared, and it has

been concluded that high efficiency of PMSM drive can be

obtained by using the second topology [223]. In [224], the

design principles of PMSMs for traction applications and

its necessary boundary conditions, such as PM flux linkage

level and the synchronous inductances, have been dis-

cussed; several different topologies capable of producing a

low-speed peak torque have been also studied.

To avoid the catastrophic failure of the encoder and

sensor, a novel backup universal sensor concept for PMSM

with position and current estimation has been presented in

[225]. An improved algorithm has been developed for

obtaining the maximum torque by accounting the core loss,

cross-coupling effect and temperature for PMSM drive

[226].

5.4 Induction motor

IMs are widely accepted for the propulsion of EVs, due to

their reliability, ruggedness, low maintenance and high

efficiency. In addition, from a safety point of view, these

motors get de-excited during fault in inverter [227]. IMs

offer a higher power density and better efficiency when

compared to the DC machine. IM provides a wide range of

speed with good efficiency. Some of the usage of IMs in

hybrid vehicles is briefed below.

The new design of IM for EVs was proposed with

improved speed torque curve in [228]. The field-oriented

control (FOC) algorithm needs accurate estimation of

motor state variables in order to ensure full-torque per-

formances and good efficiency of IM. For this purpose, a

two-rotor resistance estimation method is presented in

[229]. Reference [230] presents the motor condition mon-

itoring for HEV and its review with focus on nine com-

monly used condition monitoring methods of IM. In [231],

losses and temperature in IMs are considered and the

effects of rotor materials and air-gap length on the per-

formance of these motors are analyzed. It is concluded that

the efficiency of the motor with a copper mouse cage rotor

is considerably higher than that of the motor with an alu-

minum rotor. A new sensorless speed control technique for

IM-driven EV using a model reference adaptive controller

(MRAC) with a basic energy optimization technique

known as golden section method has been presented in

[232]. The proposed scheme is immune to the variation in

stator resistance. The unique formation of the MRAC with

the instantaneous and steady-state reactive power elimi-

nates the requirement of any flux estimation in the process

of speed estimation. In [233], an energy-efficient and

speed-sensorless control scheme for IM of EV has been

presented. The IM drive is designed, keeping in view the

features like fast dynamic response, high efficiency and

low cost. Furthermore, a loss minimization algorithm is

associated with the main control strategy to ensure high IM

drive efficiency.

An improved direct rotor FOC of seven-phase IM for

HEV has been presented with FLC to filter the nonse-

quential current [234]. This minimizes the loss in IM,

which adds to its advantages of high reliability, low cost

and high power and torque density. The IPMSM is still an

efficient and attractive machine for traction applications

from efficiency and size perspective but with increased

cost, mainly due to rare earth material [235].

A dual-current loop control algorithm has been proposed

for HEV in [236]. The torque and air-gap flux of a doubly
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fed induction motor (DFIM) are controlled directly as

compared to the singly fed permanent magnet. For IM, the

torque–speed operation region for EV/HEV applications is

nearly doubled with the proposed algorithm. A compact

diagnostic algorithm is presented using advanced speed

feedback error management technique for traction motor

and generator faults in [237]. The issues addressed are

sensor issues, vehicle vibration, hardware tolerances and

environmental impacts like temperature, moisture and

electromagnetic interferences. A single-electrical-port

control scheme, for four-quadrant operation of cascaded

DFIM, is proposed in [238], and a new hybrid cascaded

H-bridge multilevel inverter for IM has been proposed to

improve torque control. An improved motor line-current

reconstruction technique by software control for shaft-

sensorless EV and HEV propulsion drives has been pre-

sented in [239]. This strategy emphasizes on the mini-

mization of the error caused in driveline current.

A new kind of IM called as induction motor with

compound cage rotor (IMCCR) has been proposed in

[240]. The IMCCR has been suggested as a better choice

for the driving systems in EVs and PHEVs. The effects of

ambient temperature and output load on motor thermal

performance have been considered as well. Table 6 pro-

vides the comparison of various motors used in HEV

applications.

Based on the literature survey given above, it is found

that there is growing interest in the development of

advanced traction motors for hybrid vehicles and many

traction motors are available in market. However, consid-

ering the trade-off based on various parameters like per-

formance, robustness, reliability and cost, the choice is

often between IM and permanent magnet AC motor.

5.5 Control of traction motors

A brief study has been carried out on the various methods

of controlling the traction motors used in hybrid/electric

vehicles and summarized as below:

The driving characteristics of a PM-type antidirectional-

twin-rotary (ADTR) motor on the EV driving simulator and

traction control for an EV using ADTR motor have been

presented in [241]. There are three excitation sources,

namely permanent magnetic, armature and axial coils in

the motor. Control of these excitation sources to make the

motor run in different modes for vehicle applications has

been demonstrated [242]. A novel algorithm for designing

the set of PI/PID controllers for stabilizing the current and

speed loops of a high-speed and high-power flywheel

energy storage system using a PMSM is demonstrated in

[243]. The improved speed tracking performance of a

fuzzy-based indirect FOC of IM drives in comparison with

a conventional PI control in HEV applications is presented

in [244]. In [245], a stator flux-oriented (SFO) control

scheme of IM using variable-saturation regulators is pro-

posed. The traditional SFO control scheme consists of the

d-axis current component, torque, stator flux and speed

loops with four PI-type controllers. This control

scheme uses two regulators with variable saturation in such

a way that the maximum DC-bus voltage utilization is

reached and overcurrent problems are prevented. A fuzzy

adaptive controller to minimize harmonics introduced by

the multilevel converter in traction drives is presented in

[246]. A combined control structure of IPMSMs to achieve

true maximum voltage utilization is proposed in [247]. The

hybrid structure provided a smooth transition from current

vector control to modulating voltage-scaled controller

mode by deactivating the current regulator in the flux-

weakening region. A pressure command control method of

engine clutch in a parallel-type HEV is demonstrated in

[248], where a dynamic model of an HEV powertrain was

also constructed to launch operation with engine power

only. A review on different motors used to propel EVs,

their control techniques and rotor speed estimation using

sensorless methods has been presented in [249].

Direct torque control (DTC) in an IM to achieve better

performance has been shown in [250]. As the motor speed

varies, the switching frequency also varies, and the maxi-

mum sampling frequency is used in DTC. The motor

structure and torque equation of a novel claw pole-type

half-wave-rectified variable field flux motor, as well as the

motor design parameters, are described in [251]. The

influence of the rotor structure on the torque characteristic

was also evaluated using 3D-FEM. Reference [252] pre-

sents a synchronous homopolar motor, which is suitable for

sensorless operation over its entire speed range, including

zero speed. This ability is necessary for the traction drives,

the reliability of which is currently limited due to the

presence of the rotor position encoder needed for operation

at low speeds. In [253], an attempt was made to build a fast

response overvoltage-protecting circuit for traction

IPMSM. A good work on the control of salient-pole PMSM

for traction in hybrid vehicles has been presented in [254].

In [255], a consensus based on the total amount of coop-

erative tracking control has been developed to maintain

total torque needed for traction. Case studies, particularly

with system architecture (sliding mode and PID control

methods), extremum-seeking algorithm for the maximum

tire-road friction and the corresponding slip value, and

experimental validation of the tire model used in the con-

troller were discussed in [256]. The analysis of the three

topologies for on-board HESS in EV applications modeled

with energetic microscopic representation for voltage sta-

bility has been proposed in [257]. A dynamic model,

design and novel control strategy for ecotractions supplied

by wind generator–supercapacitor hybrid power systems
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have been developed in [258]. A novel efficiency

improvement method using loss models and gold section

search in an IPMSM traction system in EVs has been

presented in [259]. The loss models of the IPMSM and the

inverter were considered here, and a 2.7% increment in the

overall efficiency was recorded. A model reference adap-

tive system-based estimation algorithm to calculate the

rotor resistance of an IM working under dynamic condi-

tions has been reported in [260]. An advanced strategy for

life extending control of PMSMs traction drive system in

rail vehicles that evaluates and compares the IGBTs dam-

age under different flux conditions offline, has been pro-

posed in [261]. A supertwisting algorithm (STA)-based

control scheme for vehicle traction control has been pro-

posed in [262]. The controller is a combination of the STA

control law and a nonlinearity observer. The control law

was designed based on a sliding mode control method, but

the switching control part was replaced with a STA. An

integrated vehicle and wheel stability controller which is

designed using MPC technique has been proposed in [263].

The prediction model consists of a double-track vehicle

model augmented with the wheel dynamics. A novel

adaptive wheel control algorithm with slip optimization,

considering a balance between maximizing the traction and

minimizing the energy consumption, depending on surface

conditions has been proposed in [264]. A detailed review

on energy optimization strategies in HEVs is given in [3].

6 MPPT algorithms used in HEVs

With the growing demand for switching over to renewable

energy resources, PV technology is charging ahead of the

other alternatives. The various salient features of it being

noiseless, pollution free, immune to direct contamination

and its simplicity in operation help make it the preferred

choice. The various structures of PV systems and their

suitability in hybrid vehicles have been discussed in

[265–269].

The I-V characteristics of PV cells are nonlinear, and

there exists only one maximum power point (MPP) [270].

By interfacing the power, electronic devices with PV sys-

tem, the efficiency can be increased along with MPP

controller.

Many algorithms have been put forward to track this

MPP, but among all, constant voltage tracking method is

the most traditional method but has limitations during

varying temperature. To overcome them, perturb and

observe (P&O) and incremental conductance (IC) methods

are most widely used.

In case of P&O, the load impedance varies periodically

and senses the change in the direction of power, whereas in

IC, dp
dv

is monitored to detect whether MPP has reached,

where p is the power and v the voltage. In P&O, the system

oscillates near MPP; hence, the system works, inefficiently

[271]. The IC algorithm is the procedure where the voltage

and current curves provide the maximum power level

[272]. The advantage with IC is its responsiveness to

changing atmospheric conditions, whereas P&O benefits

from being more straightforward to implement [273].

A simple charging algorithm with P&O MPPT was

proposed for PVHEV in [274]. This is used to extract the

maximum power with the help of a boost converter. The

charging algorithm drives the converter in constant current

and constant voltage mode as needed. The P&O algorithm

has also been designed for PVHEV in [275].

An MPPT control algorithm which does not require a

current sensing device has been presented for HEV appli-

cations in [276]. In this algorithm, MPP can be determined

by the PV voltage and switching duty ratio of the con-

verter. In [277], a small-sized PV cell and other hardware

components were selected to reduce power loss and cost

and to obtain high efficiency. In [278], a solar-thermo-

electric hybrid system for HEVs was proposed with P&O-

based MPPT. This method is capable of tracking the global

MPP with reduced hardware cost [279]. The ANN-based

MPPT in PVHEVs was also used. An offline ANN, trained

using the backpropagation and gradient descent momentum

algorithm, can be used for online estimation of the refer-

ence voltage for the feed-forward loop [280]. In [281], it is

proposed that one should use P&O algorithm when the

vehicle is parked and voltage-based MPPT algorithm is

suitable while driving.

The MPPT algorithms, namely P&O, IC and only cur-

rent, are compared in terms of energy performances in

ambient conditions, and IC has proved to be better [282].

For comparison, PV modules were mounted on a moving

platform, designed to simulate insulations received by solar

systems on a moving vehicle.

A modified P&O algorithm has been proposed to obtain

fast transient response with high stability for variations in

solar irradiance [283]. P&O- as well as IC-based tech-

niques can be used to handle variable solar irradiance.

They provide an optimal solution and a realistic driving

scenario. Voltage balancing control is very useful as it

allows an independent source for every independent MPPT

in a distributed MPPT (DMPPT). When compared to

centralized MPPT (CMPPT), the DMPPT offers 6.9–11.1%

improvements in annual energy [284]. The single-ended

primary inductor converter and estimated P&O were used

for charging the battery efficiently, which prolongs the

battery life [285]. MPPT algorithms based on the ant col-

ony optimization, FL, ANN, GA and PSO, have been

applied to PV systems under changing irradiance
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conditions. A new type of algorithm, namely firefly algo-

rithm, was also introduced in [286].

The PHEV loads should be given due consideration

while designing a grid-connected residential PV system.

The PV arrays and battery packs can be connected in a

cascaded manner to power the load. A DC/DC converter

can be used to regulate the voltage of the PV arrays by

MPPT using the IC method [287]. In grid-connected mode,

PV works at its MPP and EV works in the charging mode.

However, when the microgrid gets isolated from the utility

grid, both PV and EV should deliver active and reactive

powers to feed the loads [288]. Table 7 provides the

comparison between various MPPT algorithms, which

have been used in HEVs. ANN and FL are trending these

days because of their advantages over others.

7 HEV: the flipside

Ever since Lohner-Porsche, the first HEV, was developed

in 1901, the automobile industry has come a long way. In

the recent years, HEV technology has gained tremendous

boost in terms of research and development. There is a

general sense of optimism in the industry in regard to this

new technology. While discussing the many advantages of

HEV, often the shortcomings are overlooked. This tech-

nology is still in a relative inchoate state and has certain

below-mentioned inherent shortcomings that need

addressing in order to become a mainstream product.

7.1 Shortcoming

1. Limited range An HEV has a comparatively restricted

range. Considering that an HEV ought to generate

minimal amount of energy from the ICE, the distance

per charge is relatively small. There have been

improvements apropos of this variable. Further, an

HEV requires a minimum of 30 min to charge fully,

whereas a traditional car would require barely five

minutes to fill the complete tank.

2. Low power A traditional vehicle is equipped with a

powerful ICE which allows it to provide tremendous

speed and torque. In HEV, the combination of ICE,

EM and pack of batteries makes it bulky and eats up

the extra space. In the bid to reduce the weight and

cost, an HEV is equipped with a weaker engine and

smaller motor, which gives less speed and torque.

Owing to this fact, faster cars have not been able to

transit to this eco-friendly technology. There have

been attempts to break this image, with a prominent

example being Tesla’s Model S vehicle, but the cost of

the car is well beyond the common man’s budget.

Adding fuel to the fire, an ICE is more durable than a

motor which has many sensitive components.

3. Expensive The major concern that holds back the

buyer’s intention to purchase a hybrid vehicle is its

cost that makes it $5000–$10000 costlier than con-

ventional cars. But, the features of HEV like lower

running cost and tax exemptions can compensate for

this rise in cost up to large extent.

4. Maintenance costs The complex structure of HEV

leads to high maintenance cost along with it and also

gives rise to the need of highly skilled technicians and

mechanics for repair.

5. Batteries Considered to be the weakest link in the

chain, the battery required to store energy has always

posed a challenge in HEV technology. Lithium-ion-

based batteries are the most common batteries used in

HEVs owing to its high energy density. But such

batteries invite a whole set of problems, such as its

high sensitivity to external environment, weight and

cost. Compared to the traditional ICE, a battery is

more susceptible to variations in temperature and is

heavier. The final nail in the coffin is that the materials

used in the creation of the battery itself are hazardous

to the environment, hence vitiating the ultimate

objective of being a green technology. The risk of

human life during an accident is exacerbated due to the

additional risk of electrocution from the batteries

present in an HEV.

6. Security A HEV requires a controller for the optimum

usage of ICE and electric motor power trains. With the

increased dependence on smart solutions, security

proves to be an ever present danger. Remote exploita-

tion may result in illegal access to unsavory people. It

may result in huge losses for an individual if not wary.

Unlike a traditional ICE which still requires physical

contact to stop or disable a vehicle, an HEV is

vulnerable to remote attempts. As such great precau-

tions and protocols need to be developed to keep

consumers safe.

7. Critical analysis Several critics also claim that an HEV

simply delays the inevitable due to its continued

consumption of fossil fuels. In order to provide more

power or increase the distance, an ICE is coupled with

the motor. As such, an HEV only reduces the rate of

fuel burning in ICE. With current estimates indicating

the exhaustion of fossil fuels in the recent future, some

critics are skeptical of the utility of HEVs [289, 290].

7.2 Scope for improvements

There are many fronts where this technology can grow, be

it in the adaptation, dissemination or penetration of HEV in
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the market. Being quite advantageous over conventional

vehicles, it has some weaknesses in terms of efficiency,

refueling, cost and many others. Some important thrusts of

focus are listed below.

1. Battery issues The battery plays a vital role in HEV

performance. They are quite heavy and expensive and

thus impact the cost of HEVs. The performance of a

battery is affected by temperature variations; therefore,

an efficient battery management system is required. It

needs long charging time and is sensitive to over/

undercharge. Number of charge/discharge cycles

decides the durability of battery. Further, disposal of

toxic waste of battery is a big issue. Resolving these

issues will allow the BEVs to run on the road.

2. Public awareness Public awareness and participation

is very crucial to infiltrate HEVs in their lives. Various

media and education can make people conscious about

the advantages of this alternate transport. Participation

of government, private players and cost-effective

schemes will encourage consumers to use hybrid

vehicles.

3. Smart charging infrastructure The charging infras-

tructure needs to be built at regular intervals so that

these vehicles can be used for long journeys.

4. Impact on grid EVs and PHEVs mostly are charged by

being plugged into the power outlet continuously for

several hours. So, increase in these vehicles will

increase the load on grid and power system perfor-

mance issues. Hence, the need for extra generating

units will arise. The electric power available in

vehicles can also be banked at the grid using vehicle

to grid (V2G) concept which is relatively unexplored

at present. This concept works on the balancing of the

‘off-peak’ and ‘peak’ demands.

5. Cost Due to high prices of the batteries used in HEVs,

EVs and PHEVs, these vehicles are not affordable to

middle-income groups who comprise the major portion

of the population. The advancement in control strat-

egy, battery management system and less costly

component utilization will decrease the purchase and

operational costs which will attract more people to buy

such vehicles.

7.3 Market share

According to [291], global sales of EVs have climbed from

1.2 million in 2017 to 1.6 million in 2018 and it has been

estimated that it will rise to 2 million in 2019, 7 million in

2020, 30 million in 2030 and 100 million in 2050. The

share of these vehicles globally is increased from 0.5% in

2014 to 1.7% in 2017. In 2017, China has 48% of market

share and Europe has 26%. In terms of EV sales by

country, China was once again the leader of the pack with

over 600,000-unit sales, far ahead of USA which racked up

200,000.

It is expected that the penetration of EV/PHEVs will be

around 35–47% of the new cars by 2040. It is observed that

agencies have provided different statistics based on the

growth rates, and thus, there are no unique data available

on the long-term market share of these vehicles. The data

on BEVs and XHEVs (including full HEVs and PHEVs)

are taken from McKinsey [291] and Morgan Stanley & Co.

[292] as they are the player in the vehicle domain statistics

and the same is shown in Fig. 7. In [292], data are given for

BEVs and XHEV for China, USA and Europe for status

quo assumption and with breakthrough assumption till

2030, whereas in [293], the worldwide total data are given

for BEVs till 2035. It can easily be inferred that the share

of green vehicles will increase over the coming years.

The six European countries, i.e., Germany, France,

Norway, Netherlands, UK and Sweden, are expected to

share more than 67% of the total BEV market in the year

2020, whereas only four countries (Germany, France, Italy

and UK) are expected to share more than 52% of the total

market share of PHEVs [294]. According to Pike Research

forecast, almost 1.8 million of BEVs, 1.2 million of PHEVs

and 1.7 million of HEVs are expected on Europe’s road-

ways by 2020 [295–297].

7.4 Costs involved

Ever since its inception, the cost of HEVs has always been

much higher than its traditional counterparts in the same

segment. Studying just its model price would be mislead-

ing, so it is necessary to realize the various costs, such as

maintenance, repair, depreciation and fuel to get the

complete picture. Comparisons between various costs

involved in vehicle are as follows:

1. Fuel costs The main difference between EVs and ICVs

is their fuel source, ICVs run on gasoline, while EVs

run on electricity. According to a study of the
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University of Michigan’s Transportation Research

Institute, the operating cost of EV is less than half of

gas-powered cars. The average operating cost of an

EV is $485/year as against $1,117 for gasoline-

powered vehicles in the USA. This figure is subject

to the rates of gas and electricity.

2. Purchase cost The base price for an EV in general is

seen to be higher in comparison with traditional

alternatives. Higher costs can be attributed to increased

complexity and number of components in an HEV and

specialized parts.

3. Maintenance costs In ICVs, vehicle maintenance costs

can be very high due to engine maintenance which is a

huge money sink, which further increases as the car

ages. Changing the engine oil, coolant, transmission

fluid and belts can add up in value over time. Since an

EV does not have these parts, such repair costs are

averted. The universal vehicle expenses, i.e., tire and

brake changes, insurance and structural repair, are part

of owning any vehicle. EVs are also not free of

expenses. The highest maintenance cost associated

with EVs is due to its battery which is unlike normal

batteries. EV has large complex rechargeable batteries,

which are quite resistant to any defect but degrade with

time, and their replacement is quite expensive.

4. Depreciation cost HEVs have seen a higher rate of

depreciation compared to ICVs. Deprecation is judged

by its resale ability. One possible reason for the higher

depreciation cost could be linked to the rapid advance-

ment in HEV technology. An HEV which was once

state of the art could become much inferior within a

short period due to the recent stress in research in this

field.

5. Electric car rebates and incentives A great reason

which attracts consumers to go for EVs is the country

and state incentives available in the form of various

subsidies and policies. These rebates help offset the

typically higher cost of an electric car to make ‘‘going

electric’’ more financially feasible [298].

EVs are not for every lifestyle, but when compared to

the myriad costs surrounding ICV purchase and mainte-

nance, choosing an EV can be an intelligent fiscal decision.

Table 8 summarizes total costs of ownership (TCO) of the

selected drivetrain architectures. They are derived assum-

ing the average German holding period of 4 years and an

average yearly driving distance of 10,000 km. The cost

breakdown for a midsized conventional car with a gasoline

engine versus different hybrid architectures, a full battery

electric car and a fuel cell vehicle is summarized in

Table 8. The TCO assessment covers all types of expenses

accruing for a vehicle owner including one-time cost (e.g.,

purchase price, expected resale value) as well as operating

cost (e.g., fuel/energy, vehicle tax, general/exhaust

inspection, maintenance and repair) [299, 300]. It can

immediately be inferred that HEVs are economical.

7.5 Affordability

While discussing about HEVs, a natural question that arises

is affordability. The government of every country is taking

interest to search for an alternative method of transporta-

tion which is accessible to the public. As such, there is a

rapid deployment of well-managed infrastructure to sup-

plement electric technology. Since the production of the

batteries has increased, its cost was shaved by approxi-

mately 50% and is expected to be lesser than $200/kWh by

2020. Improvement in battery technology will reduce the

cost of the hybrid vehicle and make it accessible to more

people. It is expected that EVs can be made affordable by

2022 even if the conventional cars improve their fuel

efficiency by 3.5% a year. The analysis uses the US gov-

ernment’s projected oil price of $50–$70 (£36–£50) a

barrel in the 2020s. If the price is $20, the tipping point is

pushed back between 3 and 9 years. Figure 8 depicts the

battery pricings over the next 12 years, and it can be

inferred that by 2022, EVs are likely to cost the same as

ICE vehicle equivalent.

Consequently, EVs will reduce the revenue from ICE

vehicle, but it will compensate via the revenue generated

from this new window of opportunity for car manufactur-

ers, for charging infrastructure companies and for battery

manufacturers. Solid-state batteries will be the key to the

enhancement in battery performance as they are 2.5 times

denser than lithium-ion batteries.

The past 6 months have witnessed 10 future plans for

launching EV from varied automakers. Based on these

plans it is expected that about 25 million units would be on

the road by 2025. Tesla Gigafactory is currently 35%

operational and aims to produce 50 GWh of batteries in

2018. The EV charging station is a big hindrance which has

yet not been focused and needs global attention. Currently,

charging stations are present in limited areas where EVs

sale is higher.

According to 2018 statistics, the total cost of ownership

of a Ford Fusion Hybrid would amount to * $35,606. This

HEV lies comfortably in the midsize market range. In

contrast to this, a Honda Accord, which is a traditional

vehicle, would cost * $35,709. By comparing other car

models, it is evident that HEVs are now as price compet-

itive as ICE vehicles. When looking into the compact

market, it is seen that an HEV would be about * $9,000–

$10,000 more expensive. The difference of the pricing in

the two segments can be understood due to the higher

maintenance and fuel consumption of a midsize IC-driven

vehicle compensating for a more expensive battery and
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base price. In a compact vehicle, the fuel consumption is

also lower. Apart from that, the depreciation seen in a

compact HEV is surprisingly higher which could be due to

its lesser demand and product and rapid technology chan-

ges in the field. It is evident that HEVs in the midsize

market are already price competitive and are affordable

choices [301–304].

8 Conclusion

HEVs are rapidly emerging as a potential alternative to the

existing state of transportation due to their lower petroleum

consumption and toxic emission. Strict CO2 emission laws

and increased public awareness will propel HEVs to be the

future of road transportation. Penetration of PHEVs in the

market will change the operations of electric grid sub-

stantially, and efforts are being made to provide a two-way

communication between the user and the grid. A review of

various components of HEVs like architecture, bidirec-

tional converter, ESS, motors and MPPT has been pre-

sented, and the findings are summarized at the end of each

topic in tabular form.

Based on the literature review, it is found that the

complex hybrid architecture will provide greater efficiency,

trading off on higher costs and more complex designs. As

the inverters are needed to interface the motor engine with

ESS, their selection is of prime importance and q-ZSI is

found to be a promising candidate.

To extend the battery life, it is suggested to combine UC

with battery which will further improve the fuel efficiency

and performance during varying ambient conditions.

Based on the study carried out, it is observed that there

is a growing interest in developing advanced traction

motors for hybrid vehicles and many traction motors are

available in the market. However, considering the trade-off

based on performance, robustness, reliability and cost, the

choice is often between induction motor and permanent

magnet AC motor.

PVHEVs are still in infant stage and being explored to

minimize gasoline consumption and maximize the usage of

renewable energy. Various MPPT algorithms tuned with

artificial intelligence techniques like FL, ANN and PSO are

also being explored for PVHEV applications.

A comparison of various existing hybrid vehicles is

provided in Table 9 which will serve as a guide to choose

the best option. This paper provides all necessary infor-

mation regarding the above-mentioned components and

may be considered as a comprehensive document for the

researchers and academicians who wish to carry out

research in the field of hybrid vehicles.
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