
 Available online at www.ijpe-online.com

vol. 14, no. 4, April 2018, pp. 709-716

DOI: 10.23940/ijpe.18.04.p14.709716

* Corresponding author.

E-mail address: yxh@hbu.edu.cn

SDN Load Balancing Method based on K-Dijkstra

Xiaohui Yang* and Lei Wang

School of Cyberspace Security and Computer, Hebei University, Baodin, 071002, China

Abstract

In order to solve the problem that control and forwarding are closely coupled in traditional network, the network lack of innovation and

programmability, and the network management and maintenance difficulty, an SDN load balancing method based on K-Dijkstra is

proposed. By using SDN technology to achieve the separation of control and forwarding, the controller is responsible for the global

scheduling, making the network flow and task scheduling more flexible than the traditional network. Through the integration of flow

management, traffic monitoring, dynamic load balancing and load calculation in the SDN control layer, the K-Dijkstra algorithm and the

HRRF algorithm are combined in the load balancing module to solve the problem of path selection. The traffic environment also has a

better load balancing effect, optimizing the control layer structure, improving network management efficiency and achieving dynamic

load balancing of network traffic. The simulation results on Mininet show that the method can significantly improve network delay,

packet loss and throughput compared with traditional networks.

Keywords: software definition network; dynamic load balancing; flow management

(Submitted on January 5, 2018; Revised on February 23, 2018; Accepted on March 27, 2018)

© 2018 Totem Publisher, Inc. All rights reserved.

1. Introduction

With the development of the network showing a trend of fast, diversified services and wide branches, the traditional network

structure and network equipment have gradually restricted the birth of new network technologies. The emergence of the new

network architecture Software Defined Network (SDN) has provided a new research direction for the new Internet

architecture [15]. Since the introduction of SDN [1], many research institutes and scholars have done a lot of meaningful

research [5]. The OpenFlow network has been deployed on a large scale in many countries and educational institutions [4,8].

In recent years, through the work of scholars, the SDN security model has gradually matured and started to be deployed on a

large scale in the field of security [2]. The working principle of SDN is to divide the network structure into the application

layer, control layer and data layer. Causing the control function to be separated from the traditional network, switches and

routers in the data layer achieve the forwarding function. The application layer provides a programmable interface, thereby

reducing the workload of the switch and the router and increasing the network flexibility [16].

With the rapid growth of network users, more and more network application traffic into the network, data generated by

various data servers makes serious server resource consumption, and the processing speed of server and the speed of

memory access is gradually unable to satisfy the user's requirements. Therefore, the disadvantages of the traditional

networks structure gradually appear [13]. Methods of traditional networks achieve load balancing include: random

algorithm, polling algorithm, weighted polling algorithm and the minimum connection algorithm. Traditional networks use

load balancer to achieve load balancing. Load balancer is expensive and complex. In addition, because all requests are

delivered through a single hardware load balancer, the single point nature of the load balancer results in load balancing, and

any failure on the device will cause the entire site to crash. In order to improve efficiency, traditional networks need to

increase network bandwidth, upgrade network devices and re-purchase new infrastructure. This method is not desirable

when funds are limited, and the network service quality will not greatly improve. In addition, the data forwarding and

control in the traditional network architecture are closely coupled, so there are deficiencies in network innovation and

programming, and the time for device development, testing and application is relatively long. New applications in the

http://www.ijpe-online.com/

710 Xiaohui Yang and Lei Wang

network need to be re-established in protocols and standards, and network management and maintenance are difficult. The

emergence of SDN is expected to solve the above problems. In order to solve the problem of disorder of receiving end

stream due to different delay of transmission path, Yang Yang [6] and others proposed a kind of dynamic routing algorithm

F-TAM with fuse mechanism. By contrasting the proportions of control channels and data channels in a single domain,

Xiaomao Wang [10] and others adopted a dynamic mix of source routing and direct delivery, so it will reduce the controller

pressure and dynamically adjust the control plane. It also reduces the probability of inconsistent control logic when the flow

table is issued. Ying Wang [11] and others proposed a load balancing mechanism consisting of four components: load

measurement, load announcement, balance decision and switch migration. This mechanism realizes the load balancing by

using multi-controller management and utilizing the capability of load announcement when the traffic is overloaded. Each

controller can make balanced decision as soon as possible without relying on the load information provided by other

controllers. Meanwhile, in order to reduce the communication load and processing load, which is caused by load

announcement, a suppression algorithm is proposed to reduce the load announcement frequency. Although all literature

takes advantage of the flexibility of SDN to solve the problem of out-of-order in the flow table issuance to varying degrees,

the management load brought by the centralized management is under the multi-controller. In the aspect of path decision,

the above literature fails to solve the problem of path selection when there are too many network nodes. In order to solve this

problem, this paper combines the K-Dijkstra algorithm with the HRRF algorithm to solve the problem of path selection

when the network nodes are overloaded and the traffic is overloaded.

2. SDN Technology Architecture Work

For the first time in 2007, a team led by Martin Casado, a Stanford student, implemented SDN. They try to add a centralized

controller to the traditional network so that network administrators can directly monitor, forward the network traffic through

the controller and apply it to the network devices; therefore, the entire network is safe control. Architecture is shown in

Figure 1.

Backbone

Network

70% network traffic 30% network traffic

Backbone

Network

50% network traffic 50% network traffic

Controller

SDN switch SDN switch

(a) Traditional network link load is not balanced (b) SDN network link traffic balance forwarding

Figure 1. Traditional network and SDN network link load comparison

Comparing with the traditional network, the SDN technology architecture is a new type of network structure, not a

specific protocol. The traditional network needs to pass the router and the switchboard, and follow the TCP / IP agreement

to carry on the data transmission. The agreement rule is written in the router and the switchboard, but writing the content

outward is not transparent. This shows that in order to modify functions or add services to existing networks, the entire

network protocol needs to be modified. Due to the huge workload, the traditional networks are difficult to move under the

current rapid network development. The SDN separates control and forwarding, and provides an API interface that can be

programmed by the user to set requirements on the controller. The data layer only needs to forward the data according to the

instructions issued by the controller. This architecture enables the network to be fully transparent to users, enables users to

plan the network environment and achieves the target functions according to their own needs[14]. SDN architecture is

shown in Figure 2.

Data layer: Consists of a number of switches and routers that support the OpenFlow protocol. All the forwarding entries

and packets of user data are processed and forwarded there. Southbound interface: A interface between the control layer and

the data layer. The control layer delivers the forwarding policy to the data layer through the currently mainstream OpenFlow

protocol. Control layer: The controller in the control layer which has the functions of coordinating the underlying network

equipment, provides the whole network view, formulates the flow table forwarding strategy, manages the network topology

structure, implementing updating and maintaining the equipment state information. Northbound interface: There is no

standardization for this interface between the control layer and the application layer. However, the northbound interface

provided by the application layer of the mainstream controller uses the REST API. Application layer: Contains a number of

application software that enable third-party users to design software with different functions as required to manage the

network, including load balancing, security, network operation monitoring, topology discovery and other services.

 SDN Load Balancing Method based on K-Dijkstra 711

Figure 2. SDN architecture diagram

3. Load Management Design in SDN Architecture

This paper draws on the above system architecture, designs a new SDN flow control structure, and mainly consists of three

parts: a number of servers and clients consisting of the underlying network, a number of OpenFlow protocol switches

formed OpenFlow switching network, and SDN controller composed of streaming data forwarding decision-making center.

This is shown in Figure 3.

OpenFlow Switching

Network

Client

Flow

Management

Load

Calculation

Network

Monitoring

Load

Balancing

SDN

controller

OpenFlow

Server-side

Figure 3. SDN architecture under a new load management structure

3.1. Flow Management Module

This module deploys and executes the path required by the flow during load balancing forwarding. When the controller

delivers the load balancing forwarding policy, the flow management module is responsible for sending the forwarding policy

in the form of a flow table to the switch in the data layer that supports the OpenFlow protocol. When data flows enter a

designated switch in a flow table, the switch forwards the packet only according to the rules in the flow table.

Application

Layer
SDN Application

Control

Layer

Data

Layer

SDN

Control
NBI Proxy

CDPI Drive

CDPI Proxy

NBI Drive

Mobile

Managemen

t

Access

Control

Traffic

Monitoring
Load

Balance

Northbound Interface:FML,RESTful

Southbound interface: OpenFlow, PCEP

SDN Data Path

CDPI Proxy

Forwarding

Engine

Router Switch

Virtual

Switch
Wireless

access point

CDPI Drive

712 Xiaohui Yang and Lei Wang

3.2. Flow Monitoring Module

In the traditional network architecture, in order to achieve the statistical detection of a link traffic, all traffic on this link can

only be assigned by port mirroring. This method makes the traditional network in the traffic detection detect the flow of

great. In the SDN, the controller is responsible for controlling the entire network, so that real-time access to traffic

information within the data layer switches. This centralized control makes SDN accurate, fast, convenient and low overhead

in dynamic traffic monitoring [9].

3.3. Load Calculation Module

The significance of designing this module is that SDN takes full use of the advantages of statistical convenience over traffic

monitoring in traditional network architectures. It can directly extract and analyze the traffic load collected by the traffic

monitoring module of each link, calculate whether the current time needs to load balance the network. This module also can

base on part of the link service needs. Current traffic conditions are used to make global judgments and reasonable analysis,

in order to balance the distribution of network resources.

In order to measure the link load in the network at a certain moment, the concept of Coefficient of Variation (C.V) is

introduced. Although the variance can represent the imbalance of network load, each calculation needs to obtain the flow

information of each link. So, the calculation work is relatively complicated. The coefficient of variation only needs to obtain

partial data randomly to measure the degree of data dispersion.

Coefficient of Variation formula:

C.V = (SD ÷ MN) × 100%

Among them, SD represents the standard deviation and MN represents the average. The standard for measuring load

balancing as shown in Equation (1) and Equation (2):

2

1
a

[() ()]

() ()

n

a i

i

F t F t

t F t
n

 






 (1)

1

a

()

()

n

i

i

F t

F t
n




(2)

Where n is a randomly generated number used to obtain the load of n links, n can be taken multiple times. I is the

service node number, Fa(t) is the average load of n links. Fi(t) is the load at moment i. The larger value of τ(t), the more

uneven the load of each node, the worse the load balance. The smaller value of τ(t), the more uniform the load of each node,

the better the load balance. When the value of τ(t) is equal to 0, the link is in perfect balance and the load condition is

completely ideal. Therefore, the value of τ(t) is used to directly reflect the load on the network link as one of the parameters

that triggers link load balancing.

3.4. Load Balancing Module

This module is the core module in the SDN controller. When the link load in the network is unbalanced (τ(t)>threshold), this

module is called to perform link load balancing. Traditional routing algorithm for load balancing mostly adopts Floyd or

Dijkstra algorithm to obtain a shortest path, so that overloaded traffic in the network is diverted to other links to reach the

link road load balancing purposes [7]. In addition to ensuring the optimal performance of a single link, whether the link is

beneficial to the load balancing of the global link should also be taken into consideration. In this module using the K-

Dijkstra algorithm for load scheduling, combined with High Response Ratio First(HRRF) algorithm to achieve the desired

load balancing effect in the case of heavy traffic, such as metropolitan area network and wide area network.

4. SDN Load Balancing Method Based on K-Dijkstra Algorithm

4.1. The Basic Idea of Algorithm

This article refers to Martins Deletion Algorithm[12], and makes some improvements on the Dijkstra's shortest path

algorithm. The core idea of K-Dijkstra algorithm is to delete an edge on the shortest path in the digraph. The weighted value

w of the edge in the digraph is composed of the ternary function group w=αx+βy+γz (α+β+γ=1), where x represents the

 SDN Load Balancing Method based on K-Dijkstra 713

average delay, y represents the average packet loss rate, and z represents the number of hop counts. The specific values are

provided by the traffic monitoring module at the control layer. Through the application layer software, users or

administrators can set the value of three parameters to achieve the current network delay, packet loss rate and the proportion

of the number of hop counts. It shows that the smaller the w, the better the current load of the path, and the higher the

priority. Then, the shortest path that can replace the deleted edge is found by calculation, and achieve the purpose of finding

a backup link for load balancing.

If the current traffic is too large and has too many network nodes when several spare links are calculated by K-Dijkstra's

algorithm, excessive backup links may appear in the calculation process through the K-Dijkstra algorithm. These excess

backup links occur because the K-Dijkstra algorithm realizes the selection of a new path by deleting some nodes. As the

number of deleted nodes increases, the node that the flow passes through will also increase. This will cause the network

delay and the packet loss rate to increase. In order to solve this problem, it draws on the High-Response-Ratio First (HRRF)

algorithm commonly used in job scheduling by CPU[3]. The controller detects the corresponding time of each link by

sending a stream to all backup paths at regular intervals t. When the link receives the probe stream message, the link will

encapsulate the stream into a Packet_In message and feed it back to the controller. The controller is determined by collecting

the time tback from sending the probe stream to receiving feedback messages from each alternate link. The smallest time

interval is regarded as the link, which is most favorable to the current load condition among all alternative paths. At the

same time, it no longer accepts the time tback of the feedback message, and suspends the sending of the stream message to the

congestion link instead of sending the message to the optimal path, to achieve the purpose of load balancing.

4.2. The Basic Description of The Algorithm

K-Dijkstra algorithm is described as follows:

• Step 1. The Dijkstra algorithm is used to calculate the shortest path with m as the root node and s as the end

point in the directed graph G(N,A), and this path is denoted as Sn, n=1

• Step 2. If there is a candidate path that exists in this path at this time, and the value of n less than the

maximum number of required shortest paths N, then let the current path S=Sn , go to Step 3; otherwise, the

procedure ends

• Step 3. Starting from the first node, traversing all the nodes in the graph to find the node whose first degree of

entry is greater than 1 is denoted as ka , and if there is no extended node ka' of ka in all nodes, go to Step (4);

otherwise find all the nodes following ka , whose corresponding extended nodes are not in the first node of

point set P, denoted as ki , then go to Step (5)

• Step 4. Generate the expansion node ka of ka' and add it to the set of points P, at the same time, connect all the

precursor nodes of ka other than the previous node ka-1 in the path S to generate one edge to ka' , and save the

arc the same weight, add these arcs to arc set A. Calculate the shortest path from the initial node m to the

extended node ka' and that is denoted as ki=ka+1

• Step 5. Mark kc for all nodes traversed from ka after path S, and perform the following operations:
(1) Add an expansion node kc' of kc to the node set P

(2) Connect the precursor node of all kc in path S to an arc of its extended node kc (except for the previous node kc-1

 of kc), and add these arcs to arc set A with the weights held constant

(3) Calculate the shortest path from the start node s to kc'. If an extended node kc-1' exists in the previous node

kc-1 of kc in the path S, an arc connecting kc-1' to kc' is generated, and the weight is equal to the arcs (kc-1, kc)

• Step 6. Find the shortest path between the start node m and the current expansion node t(n)' of the end node as

the section n shortest path, and let n=n+1, and perform (2) and continue.

Expansion node: The last node on the basis of the collection to add the corresponding new node.

Precursor node: The previous node of a node in the shortest path.

The HRRF algorithm is described as follows:

• Step 1. Set the time interval t

• Step 2. Each interval t , send the probe stream F to the candidate paths S1, S2, ... , Sn.

• Step 3. Start the timer after sending probe stream F

• Step 4. After receiving the probe stream F, the alternative paths S1, S2 , ... , Sn encapsulate the stream into a

Packet_In message and feed it back to the controller

714 Xiaohui Yang and Lei Wang

• Step 5. After receiving the first Packet_In message fed back by the alternative path Sf, the controller stops

receiving other feedback messages, and after modifying the flow table information, forwards the stream to be

forwarded through the path Sf. If the controller receives multiple Packet_In messages at the same time, the

controller forwards the stream to be forwarded randomly

• Step 6. Repeat Step 2-Step 5 after the time interval.

4.3. Algorithm Feasibility Analysis

Combined with the above two algorithms, K-Dijkstra algorithm searches globally to find the link most conducive to the

current load situation. When the current traffic is too large, it is optimized by HRRF algorithm. Then, it can also have a

better load balancing effect in a larger traffic environment. When τ(t) is not equal to 0, the load is unbalanced. The flow

scheduling policy in the load balancing module is triggered to dynamically adjust the overall situation. Instead of

forwarding the flow to the overload link, the flow is scheduled to the chain that is most conducive to the current load, which

can achieve the purpose of balancing the load of the link.

5. Simulation Test and Experimental Result

Experimental environment is: Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz 4.00GB of Memory. The operating system is

Ubuntu14.02. The controller adopts OpenDayLight controller to form a controller cluster, which is used to form the control

plane. The bottom data layer uses Mininet to deploy the network environment to generate a simulated network topology

map. The host IP address of the running controller and the switch are 10.188.14.139. In the same network environment, the

traditional network the polling algorithm, the randomized algorithm and the SDN load balancing method based on K-

Dijkstra proposed in this paper are respectively executed 100 times under different loadings. The contents of the testing are

the network delay, the network packet loss rate, the network throughput and the execution time. Take the average value, and

compare the results obtained by taking different values of the three parameters α, β, γ in the weighted value w of the directed

graph respectively.

Figure 4. Average delay Figure 5. Average packet loss rate

Figure 6. Average throughput Figure 7. Average execution time

 SDN Load Balancing Method based on K-Dijkstra 715

Figure 4, Figure 5 and Figure 6 show that when the load is in the range of 200 ~ 500MB and the time is within 0 ~ 20s,

the packet or stream processing of the server is less difficult. Therefore, the average delay, the average packet loss rate and

the average throughput of the three load balancing algorithms are not significantly different. As the load and the time

increase, the server needs to handle more and more packets or streams. In this case of the high load, the traditional network

using the polling algorithm and the randomized algorithm to deal with the network packet increases the difficulty. The link

load unbalanced leads to the overload of some links, so the growth rate of the average delay and the average packet is more

obvious. The proposed SDN algorithm uses K-Dijkstra algorithm to find some alternative paths, then uses HRRF algorithm

to select the optimal path in the part of the alternative path. Inform the controller through the feedback message, and achieve

the load balancing. Even if the network load is too large or after a certain period of time, there is an evident advantage in the

average delay and the average packet loss rate, which making the network can provide better service for users.

Figure 7 shows that as the load increases, the average execution time of the three algorithms is different. As the

load increases, the average execution time used by the randomized algorithm is the least, and the SDN optimization

algorithm proposed in this paper is slightly larger. The reason is that the randomized algorithm and the polling

algorithm are simple, and the execution time is short. The SDN optimization algorithm proposed in this paper is

implemented on the basis of SDN architecture. The controller plays a decisive role and has a large workload.

Therefore, the execution time is slightly larger than the traditional network the polling algorithm and the randomized

algorithm.

Figure 8. Average delay under different parameters

Figure 9. Average packet loss rate under different parameters

Figure 10. Average throughput under different parameters

Figures 8, 9 and 10 show that when the three parameters α, β, γ in the edge weight w of the directed graph take different

values respectively, the results are different. In case of the average delay, if the users or administrators have the highest

expectation of the low delay in the current situation, the value of α is equal to 1, the value of β and γ is equal to 0, and the

716 Xiaohui Yang and Lei Wang

delay is the lowest. In the case of the packet loss rate, if the users or administrators have the highest expectation of the low

packet loss rate, the value of β is equal to 1, the value of α and γ is equal to 0, and the rate of the packet loss is the lowest.

There is no significant difference in throughput. The experimental results show that the weight w of the directed graph is

determined by the ternary function, and the dynamic values of the three parameters α, β, γ are obtained through the

application layer, which can meet the different needs of different users or administrators in the network delay and the packet

loss rate.

6. Conclusions

The traditional network structure cannot meet the increasing network traffic. As to the problem of load balancing in

network, this paper proposes a load balancing method based on K-Dijkstra algorithm and HRRF algorithm, which uses SDN

as a network architecture. This method solves the problem of unbalanced load caused by excessive network traffic. This

paper designs four modules: flow management, traffic monitoring, dynamic load balancing and load calculation in the

controller of SDN architecture. The K-Dijkstra algorithm and HRRF algorithm are introduced into the dynamic load

balancing module. Through K-Dijkstra algorithm, a number of alternative paths are calculated, and the optimal path in the

alternative path is selected by HRRF algorithm to achieve load balancing, which effectively reduces the network delay and

packet loss rate and improves the network throughput.

Acknowledgements

This work is supported by the National Key R&D Program of China under Grant (No. 2017YFB0802300).

References

1. J. A. Azevedo, J. J. E. R. S. Madeira, E. Q. V. Martins and F. M. A. Pires, “A Shortest Paths Ranking Algorithm.” Proceedings

of the Annual Conference AIRO'90, Models and Methods for Decision Support, Operational Research Society of Italy. pp.

1001-1011

2. Feldmann “A. Internet Clean-slate Design: What and Why” Acm Sigcomm Computer Communication Review, vol. 37, no. 03,

pp. 59-64, 2007

3. A. Gavras, A. Karila, S. Fdida, et al. “Future Internet Research and Experimentation: the FIRE Initiative.” Acm Sigcomm

Computer Communication Review, vol. 37, no. 38, pp. 89-92, 2007

4. E. C. Geni, “Opening Up New Classes of Experiments in Global Networking.” IEEE Internet Computing, vol. 14, no. 01, pp.

39-42, 2010

5. R. Jain. “Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the next Generation.” IEEE

Conference on Military Communications, IEEE Press, pp. 153-161, IEEE, 2006

6. N. Mckeown, T. Anderson, H. Balakrishnan, et al. “OpenFlow:Enabling Innovation in Campus Networks,” Acm Sigcomm

Computer Communication Review, vol. 38, no. 02, pp. 69-74, 2008

7. H. C. Li. “HRRF Scheduling Strategy based on TinyOS.” Computer Science, vol. 37, no. 04, pp. 80-81, 2010

8. H. F. Li, C. Dong, Zheng, X. H. Zheng, et al. “Research and Implementation of Traffic Management Applications based on

Software Defined Networks and Implementation of.” Computer Applications and Software, vol. 32, no. 05, pp. 17-19, 2015

9. T. Wang, H. C. Chen, G. S. Cheng. “Study on Software-Defined Network and Security Defense Technology.” Journal on

Communications, vol. 38, no. 11, pp. 133-160, 2017

10. X. M. Wang, C. H. Huang, Q. Y. Fan, K. He. “Measurement Method based on Load Balancing in Streaming Networks.”

Huazhong University of Science and Technology Journal, 2016,44 (11): 75-81.vol. 44, no. 11, pp. 75-81, 2016

11. Y. Wang, J. K. Yu, K. K. Pei, X. S. Qiu. “A Load Balancing Scheme for SDN Multi-Controller based on Load Bulletin.”

Journal of Electronics and Information Technology, vol. 39, no. 11, pp. 2733-2740, 2017

12. S. Wu. “The Design of a Load Balancing Scheme based on SDN Network and Implementation.” Fudan University, 2014

13. Y. Yang, J. H. Yang, H. S. Wen, H. Wang. “Multi-path Transmission in Data Center based on SDN Traffic Measurement.”

Huazhong University of Science and Technology Journal, vol. 44, no. 11, pp. 53-58, 2016

14. S. Zeng, G. Chen, F. Z. Qi. “Software Defined Network Performance.” Computer Science, vol. 42, no. s1, 2015

15. C. K. Zhang, Y. Cui, Y. Y. Tang, et al. “Research Progress on Software-defined Networks (SDNs).” Journal of Software, vol.

26, no. 01, pp. 62-81, 2015

16. Q. Y. Zuo, M. Chen, G. S. Zhao, et al. “Research on SDN based on OpenFlow.” Journal of Software, no. 05, pp. 1078-1097,

2013

