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Résumé 

Contexte et Motivation 

Conférence vidéo est un sujet de télécommunications bien connu, qu’on étudiait 

pour les décades. Récemment ce sujet a reçu une nouvelle pulsion grâce à la bande 

passante accrue de réseau local et réseau étendu, et l’apparition de l’équipement 

vidéo de bon marché. Au même temps le vidéo de bonne qualité, comme "Full HD", 

peut demander les ressources computationnelles significatives pour son traitement. 

Le traitement vidéo pour les conférences comprend quelques manipulations 

nécessaires pour obtenir une expérience utilisateur avancée (mélange de plusieurs 

flux vidéo ou de passer l'image au participant qui parle actuellement), ainsi que les 

opérations causées par l'incompatibilité des paramètres, par exemple transcodage 

dans le cas où les participants utilisent différents codecs vidéo. 

Actuellement, deux architectures distinctes pour le traitement de ces tâches de 

manipulation de vidéo sont utilisés . 

La solution traditionnelle utilise Multipoint Control Unit (MCU) [1]. MCU est un 

composant puissant qui centralise toutes les opérations de traitement vidéo et 

distribue les flux résultant. MCU peut être mis en œuvre comme une unité matérielle 

intégrée avec Digital Signal Processors (DSP) ou un composant logiciel installé sur 

les serveurs type Commercial Off-The-Shelf (COTS). Aussi MCU peut être déployé 

dans le nuage où au mode local. Dans tous les scénarios de déploiement, MCU 

représente une ressource dédiée, qui doit être acheté ou loué. 

Une autre solution consiste à utiliser des clients vidéo en tant que ressources 

pour le traitement vidéo. Ceci peut être réalisé en exploitant de la stratégie Peer-to-

Peer (P2P) ou de Selective Forwarding Unit (SFU) [2]. L’approche P2P a été 

soigneusement étudié, mais cette technique n'a pas gagné du terrain dans les 

communications de l'entreprise, car elle ne fournit pas de moyens faciles 

d'intégration avec les applications d'entreprise, ainsi que la mise en œuvre des 

exigences des entreprises importantes comme l'accès aux annuaires LDAP 

hétérogènes. SFU est un composant logiciel qui transmet les paquets vidéo basés 

sur les limites des capacités des clients vidéo. Il ne fait pas de traitement des médias 

sur les flux vidéo, en effet il filtre et relaie les paquets. Par conséquent, la capacité 

d'un système de vidéoconférence entraîné par SFU dépend des capacités des 

clients vidéo. Si paramètres sont incompatibles en termes de codecs alors SFU n’est 

pas utile, en tant que les clients vidéo n’ont normalement pas fonctionnalité 

transcodage. 

Dans cette thèse un système de Desktop Grid Conferencing (DGC) est proposé, 

qui utilise les ressources de la grille des ordinateurs d’entreprise (PCs, ordinateurs 

portables, etc. déployés dans le réseau de l'entreprise) pour l'attribution des services 

de traitement vidéo nécessaires pour l'organisation de vidéoconférences. Les 



recherches antérieures sur les grilles des ordinateurs d’entreprise [3] montre qu'une 

quantité importante de ressources CPU de PC utilisés dans les entreprises ne sont 

pas occupés à toute activité. 

 

Figure [1]: Pourcentage du temps lorsque la disponibilité du processeur est 

supérieure à un seuil donné (à partir de [3]). 

Ces ressources pourraient être utilisées pour le traitement vidéo, de façon 

similaire à la notion de "l’Informatique en Brouillard" [12]. Bien sûr, en raison de la 

nature dynamique des ressources de la grille, fournissant Service Level Agreement 

(SLA) est difficile, par rapport à MCU dédié. Dans la pratique, le système DGC peut 

être soutenu par un service de la vidéoconférence en nuage, qui sera utilisé lorsque 

le système DGC n'a pas assez de ressources. En combinant le système DGC avec 

un service de vidéoconférence en nuage, on peut obtenir des avantages financiers 

évidents, comme la grille existe déjà avec aucune dépense supplémentaire 

nécessaire. 

Le système est conçu pour les topologies typiques de réseau d'entreprise, 

contenant des sites avec la réseau locale rapide inter-relié par potentiellement plus 

lents liens Internet. Les algorithmes proposés analysent les caractéristiques du 

réseau, tels que le retard entre les sites et la bande passante Internet requis pour les 

flux vidéo ainsi que les caractéristiques de nœud de réseau, comme la charge CPU, 

le type de connectivité réseau et le type d'alimentation afin de fournir la meilleure 

possible Quality of Experience (QoE) dans les circonstances actuelles. Pour 

comparer d'autres variantes de la répartition des tâches, une méthode de Multi 

Attribute Decision Making (MADM) spécialement adaptée à ce cadre est introduit. 



Prenons un exemple du système DGC déployé sur les trois sites. Plusieurs 

utilisateurs organisent une conférence vidéo. Trois ordinateurs sont enregistrés dans 

le système, leurs caractéristiques sont comparées et le système décide de déployer 

le traitement vidéo nécessaire à la conférence sur l'un d'entre eux (Fig. [2]). 

 

Figure [2]: le traitement de la conférence vidéo est hébergé sur Processeur 1 

À un certain moment, un processus tiers, consommant beaucoup de puissance 

CPU, est lancé sur le PC, qui héberge le traitement de la conférence de sorte que le 

système décide de re-hôte le traitement de la conférence à un autre PC (Fig. [3]). 

 

Figure [3]: Le traitement de la conférence vidéo est accueilli à Processeur 3 en 

raison de l'augmentation de la charge CPU sur Processeur 1 

La description du système  

La description du système DGC repose sur deux notions principales: Tâches et 

Processeurs. 

Tâche est une activité sur les flux médias, traditionnellement fourni par un MCU 

ou un serveur multimédia logiciel: mixage vidéo, basculement le flux vidéo sur la 

personne qui parle, transcodage ou d'autres manipulations sur les flux vidéo. Les flux 

audio accompagnent traditionnellement les flux vidéo et sont simplement mélangés 

ensemble par le même serveur de médias. Par exemple, une tâche associé à la 



conférence vidéo représenté sur la Fig. [2] est une mélange vidéo de 4 flux en un 

seul flux résultant (généralement avec l'accent sur la personne en cours de parler) et 

potentiellement transcodage, en cas de codecs incompatibles des terminaux vidéo 

d’utilisateurs. 

Le Processeur est un serveur média déployé sur une plate-forme générale 

comme un PC. Les utilisateurs peuvent activer/désactiver leur PC et de lancer des 

applications tierces qui consomment la puissance du CPU, ainsi que le 

démarrage/arrêt des appels et des conférences au hasard. Cela se traduit par 

l'imprévisibilité des ensembles de Tâches et Processeurs, qui doit être prise en 

compte par le système. 

La logique principale de l'architecture proposée est de distribuer et, le cas 

échéant, de redistribuer les Tâches sur les Processeurs prenant en compte les 

changements dans l'ensemble des Tâches, ensemble de Processeurs et des 

contraintes externes (qui sont énumérés ci-dessous). Le résultat de la distribution 

doit être «optimale» dans certaines conditions. 

Critères d'optimisation peuvent être divisés en deux groupes: ceux du réseau et 

de la plate-forme. 

Critères de réseau qui doivent être prises en compte comprennent: 

1) Bande passante de WAN consommée par une Tâche. Le but est d'essayer 

d'économiser la bande passante de WAN qui est généralement à la charge (par 

opposition à la bande passante de LAN qui est considéré comme gratuit et donc pas 

contrôlé). 

2) Délai de bout en bout entre les terminaux vidéo. Le délai est très important 

caractéristique représentant le niveau de QoE, comme le délai important rend difficile 

une conversation interactive, voire impossible. 

Les critères de la plate-forme sont liés aux Processeurs qui sont disponibles dans 

le système: 

1) La connectivité réseau: prend en compte le fait que la plate-forme utilise la 

connectivité réseau filaire ou sans fil (Wi-Fi). Les connexions filaires offrent 

généralement la plus grande stabilité et moins de retard, ce qui les rend préférables 

pour les communications vidéo interactives par rapport aux connexions sans fil. 

2) Alimentation: prend en compte le fait que la plate-forme est alimenté par le 

circuit électrique ou par sa batterie. Il est particulièrement important que les 

opérations de traitement vidéo sont très intensives au niveau de CPU. 

3) Le partage des ressources: prend en compte le fait que la plate-forme (PC) 

héberge uniquement Processeur (serveur média) ou elle est partagé avec d'autres 

activités de l'utilisateur sans rapport avec le système DGC. Ce critère donne la 



préférence aux plates-formes où aucune applications des utilisateurs exécutent. Telle 

préférence donne la stabilité aux système DGC, comme la consommation CPU est 

plus prévisible. Dans le même temps, cette logique empêche de déployer les Tâches 

sur les plates-formes utilisées activement par les utilisateurs afin de ne pas les 

déranger. 

4) La charge CPU: fournit l'estimation de la charge CPU prévue après une Tâche 

donnée est déployée sur un Processeur donné. Le système tente de répartir les 

Tâches de manière à ce que la charge CPU sur chaque plate-forme serait minimisé 

afin de sécuriser les processus si leur demande de ressources CPU devait 

augmenter. 

Potentiellement d'autres critères d'optimisation peuvent être facilement intégrés 

dans la logique de la répartition des Tâches, sur la base de l'expérience de 

l'utilisation de la mise en œuvre réelle du système DGC. 

Tous les critères d'optimisation sont différents dans leur importance, ce qui nous 

permet de choisir une approche MADM (Multi-Attribute Decision Making), où chaque 

critère sera associé à un poids. 

Les changements dans le système qui nécessitent la distribution des Tâches ou, 

dans certaines circonstances, la redistribution forment une file d'attente des 

événements de changement d'état (State Change Event = SCE). Il existe plusieurs 

types de tels événements: 

1) La Tâche est ajoutée: par exemple, une nouvelle conférence est créé et la 

Tâche de mixage vidéo doit être distribué à un certain Processeur (voir la figure [2]). 

2) La Tâche est supprimée: une Tâche déployée sur certain Processeur est plus 

nécessaire dans le système. Suppression d'une Tâche peut entraîner la redistribution 

d’autres Tâches dans le système pour l'optimisation globale. 

3) Le Processeur est ajouté: un nouveau Processeur est ajouté au système. 

Certaines Tâches peuvent être redistribuées en prenant en compte le Processeur 

ajouté. 

4) Le Processeur est supprimé: un Processeur est retiré du système. Si des 

Tâches ont été déployées sur ce Processeur alors ces Tâches doivent être 

redistribuées à d'autres Processeurs. 

5) Valeur d'un critère d'optimisation est changé: la configuration du système a été 

modifiée, par exemple, la connectivité réseau d'un Processeur a été modifiée à partir 

de Wireline à Wireless. Dans ce cas, certaines Tâches peuvent être redistribuées, si 

nécessaire. 



La file d'attente de SCE fonctionne comme un file d'attente FIFO (First In, First 

Out) avec des priorités strictes. Les priorités sont les suivantes (par ordre 

décroissant): 

1) Processeur est supprimé (avec des Tâches déployées sur lui). 

2) La charge CPU est augmentée d'une manière telle qu'elle peut bloquer 

l'exécution des Tâches. 

3) Tâche est supprimée, Processor est ajouté, Processor est retiré (sans tâches 

sur lui), la charge CPU est réduite, d'autres critères d'optimisation (à savoir pas de 

charge CPU) sont modifiés. 

4) Tâche est ajoutée. 

La plus haute priorité est réglé sur l’événement "Processeur est supprimé" 

comme certaines Tâches sont bloquées dans cette situation, ce qui conduit à une 

mauvaise expérience utilisateur. La deuxième priorité est réglé sur  l’événement "La 

charge CPU est augmentée" pour la même raison potentiellement aggraver 

l'expérience utilisateur. L’événement "Tâche est ajoutée" a la priorité la plus faible 

car il a le sens de prendre en compte tous les changements dans le système avant 

de distribuer une nouvelle Tâche afin d'éviter les redistributions consécutifs. 

Au cours de traitement des SCEs les Tâches sont déployées / redéployé une par 

une. Voilà une fois qu'une décision est prise sur le déploiement / redéploiement, la 

Tâche est effectivement déployée / redéployée et le système attend jusqu'à ce que la 

Tâche se met à consommer des cycles CPU (le système est alors dans un état 

stable). Ensuite, le déploiement / redéploiement d’une Tâche suivante peut être 

traitée en fonction de la nouvelle valeur de la charge CPU. 

L'objectif de la procédure d'optimisation consiste à calculer une valeur 

d'estimation numérique, en tenant compte de la diversité des critères, ce qui 

permettrait la comparaison des distributions possibles des Tâches sur les différents 

processeurs. La Tâche sera ensuite déployée sur le processeur avec la valeur cible 

optimale. Une méthode MADM volontairement créée en utilisant «normalisation au 

courant de contexte» est appliquée pour calculer la valeur d'estimation. 

Une des spécificités des algorithmes de MADM est la nécessité de normaliser les 

valeurs des attributs. Dans le cas général, aucune hypothèse ne peut être faite sur 

eux. Plusieurs méthodes de la normalisation des valeurs dans la matrice de MADM 

sont bien connus (Sij sont des éléments de la matrice d'origine): 

 



Dans toutes ces méthodes, processus de normalisation implique des opérations 

sur les attributs de tous les cas possibles (par exemple somme des valeurs, valeur 

maximale, etc.). Cela signifie que lorsque l'ensemble des alternatives est modifié (à 

savoir Processeur est ajouté / supprimé ou la valeur du critère d'optimisation est 

modifiée), le processus de normalisation devrait être ré-exécuté. En tenant compte 

de la nature dynamique du système DGC, il serait hautement souhaitable de pouvoir 

effectuer les calculs nécessaires pour chaque alternative, indépendamment des 

autres. Une telle approche permet d'appliquer la procédure de MADM uniquement 

lorsqu'un Processeur est ajouté au système ou un attribut spécifique du Processeur 

est modifié. En d'autres termes, aucun calcul serait nécessaire pour un Processeur 

donné, quelles que soient les modifications appliquées à d'autres Processeurs. 

Dans le contexte spécifique de notre problème, nous introduisons le processus 

de normalisation simple qui élimine ces dépendances. Nous savons en fait la nature 

de tous les attributs, leurs valeurs optimales et limites pratiques. Considérons les 

attributs de MADM utilisés dans le système DGC. 

1) Retard End-to-end: La valeur optimale de retard est évidemment 0 (si l'on 

compte en millisecondes). Pour une valeur de retard normalisé, nous utilisons 

l'expression suivante: 

normalized_delay = real_delay / delay_threshold 

delay_threshold peut être défini de différentes façons. Par exemple, 

recommandation l'UIT-T G.114 peut être utilisé. Cette recommandation indique les 

retards vocaux acceptables dans des applications interactives. Retard inférieur à 150 

ms est considérée comme acceptable, plus grand que 400 ms comme inacceptable 

et les valeurs entre les deux signifie qu'il y aura des problèmes de qualité. Une telle 

manière que nous pouvons définir la valeur 400 comme delay_threshold et cela 

signifie que tous les retards de plus de 400 ms ne seront pas distingués les uns des 

autres parce que tous les valeurs  de normalized_delay plus grandes que 1 sont 

arrondies à 1. 

2) Bande passante WAN utilisée: La valeur théorique optimale pour la bande 

passante WAN (WBW = WAN Bandwidth) utilisée par une Tâche est également 0, il 

est atteint lorsque tous les terminaux et le Processeur sont dans le même réseau 

local. Pour la bande passante WAN normalisée (normalized_WBW) la valeur que 

nous allons considérer est défini par l'expression suivante: 

normalized_WBW = real_WBW / max_WBW 

La valeur de max_WBW peut être considérée comme la somme des largeurs de 

bande de tous les flux vidéo d'une Tâche donnée. Cette valeur est connue au 

moment de la création de la Tâche. 

3) Les critères de la plate-forme: Tous les critères de la plate-forme, à l'exception 

de la charge CPU (à savoir la connectivité réseau, l'alimentation, le partage des 



ressources) sont binaires par leur nature, c'est-à-dire ils sont «positif» ou «négatif». 

Positifs sont: 

- La connectivité réseau = filaire 

- Alimentation = circuit électrique 

- Le partage des ressources = dédié 

Négatifs sont: 

- La connectivité = réseau sans fil 

- Alimentation = batterie 

- Le partage des ressources = partagé 

Pour la conformité nous avons mis la valeur "0" pour le cas positif et la valeur "1" 

pour le cas négatif. Grace à cela nous avons la situation quand variante idéale de la 

valeur de l'attribut est "0" et la normalisation n’est pas nécessaire. 

La valeur de critère de charge de CPU est présentée dans les pourcentages 

d'utilisation du CPU prise après une Tâche donnée ont été déployés sur un 

Processeur donné. Il donne la valeur théorique optimale de "0" (pas réalisable dans 

la pratique) et la pire valeur de "100". Pour la valeur de la charge CPU normalisée, 

nous allons considérer l'expression suivante: 

normalized_CPU_load = REAL_ CPU_load / 100 

Critère de la charge CPU a quelques particularités, qui sont décrites ci-dessous. 

Tous les critères d'optimisation utilisées dans les calculs sont représentés dans 

le tableau [1]. 

Tableau [1]: Critères d'optimisation 

Attribute name 
Ideal 
value 

Worst value Normalization divisor 

End-to-end delay 0 ∞ 
400, if delay <= 400 
delay, if delay > 400  

WAN bandwidth 0 Sum of all video streams Sum of all video streams 

Network 
connectivity 

0 1 Not needed 

Power supply 0 1 Not needed 

Resource sharing 0 1 Not needed 

CPU load 0 100 100 

 

Le problème est finalement formulé sous la forme d'une méthode "Simple 

Additive Weighting" (SAW), mais inversée et normalisée: 



                                               

 

   

                                  

où: 

ORj : Résultat Objectif pour Processeur j 

wi : poids du critère i 

aij : valeur normalisée du critère i sur le Processeur j 

M: nombre des critères 

La méthode SAW inversée signifie que nous devons prendre comme résultat la 

valeur la plus petite d’ORj au lieu de la plus grande. La méthode SAW normalisée 

signifie que la valeur ORj est dans l'intervalle [0, 1]. Cette formule implique que ORj 

est calculée pour chaque Processeur indépendamment et uniquement lorsque le 

Processeur apparaît dans le système ou la valeur d'un critère d'optimisation est 

modifié. 

La charge de CPU  du Processeur est différent des autres critères d'optimisation 

parce que sa valeur change en continu par rapport aux changements plutôt rares 

d'autres valeurs des critères. Du point de vue de la mise en œuvre pratique, cela 

signifie que nous pouvons calculer ORj pour tous les critères sauf la charge de CPU 

et le stocker dans un cache pendant que nous devons observer la valeur de la 

charge de CPU en temps réel. 

En outre, afin d'être en mesure de calculer l'impact d'un type particulier de Tâche 

sur la charge de CPU d'un Processeur particulier, un processus de qualification 

préliminaire est nécessaire. Le processus de qualification signifie que le fournisseur 

du système DGC installe un Processeur sur une plate-forme particulière, tous les 

types des Tâches sont exécutées et les niveaux de consommation de CPU sont 

collectés et stockés. Ensuite, ces valeurs pré-collectées peuvent être utilisées 

comme une estimation du besoin de ressources de CPU lorsque le système DGC 

simule la distribution d'une Tâche sur un Processeur installé sur la plate-forme 

qualifiée sur un site du client. 

Afin d'améliorer la perception de la conférence, nous introduisons le taux de 

redéploiements d’une Tâche, définie comme le nombre de fois que la Tâche 

existante est transférée de l'un Processeur à l'autre. Redéploiements conduiront à 

des interruptions dans les flux de médias, il est donc hautement souhaitable de les 

minimiser. 

Un paramètre spécial "Redeployment Penalty" est utilisé par les algorithmes afin 

de réguler le nombre de redéploiements potentiels. Lorsqu'un Processeur est 

considéré comme un candidat à l'accueil d'une Tâche, le gain en "Objective Result" 

doit être au-dessus de ce seuil, afin que la Tâche d'être redéployé sur ce Processeur. 



Notez également qu'un mécanisme simple d'hystérésis est appliqué sur la charge de 

CPU pour éviter des redéploiements cycliques lorsque la charge du CPU change de 

façon sporadique. 

Intégration avec Cloud 

Comme il a été mentionné dans "Contexte et Motivation", le système DGC elle-

même ne peut pas garantir SLA (Service Level Agreement) approprié parce que ses 

ressources sont contrôlées par les utilisateurs finaux, et non par le système lui-même. 

Pour résoudre ce problème système DGC peut être combiné avec le système de 

conférence dans le Cloud afin de fournir à la fois SLA et des avantages de coûts en 

même temps. Dans ce chapitre, nous utilisons le terme "Fog" pour les ressources de 

la grille de bureau afin de souligner son opposition à "Cloud". 

Afin d'obtenir encore plus d'avantages, nous combinons une approche Cloud/Fog 

avec les différents types de serveurs de médias, notamment MCU et SFU, qui 

fournissent différentes caractéristiques d'exploitation. Toutes les combinaisons et les 

circonstances possibles, dans lesquelles leur utilisation donne le plus d'intérêt, sont 

pris en compte dans ce chapitre. 

Récemment, conférence vidéo dans le Cloud est devenu populaire grâce à un 

certain nombre de propriétés utiles, telles que la flexibilité et modèle pay-per-use. 

Dans le même temps, du point de vue du fournisseur de conférence vidéo dans le 

Cloud, il existe un certain nombre de problèmes avec cette approche, nous 

mentionnons ici deux d'entre eux: 

- Nécessité de ressources de traitement importantes dans le Cloud parce 

que tous les calculs sont concentrés en un seul endroit 

- Augmentation du délai de bout en bout parce que les données sont 

envoyées à partir du client vers le Cloud et retour, souvent via des liaisons 

Internet lentes et peu fiables  

Ces deux problèmes peuvent être résolus par le choix approprié du type de 

conférence vidéo établie par le fournisseur. Le type peut être la conférence 

traditionnelle "MCU" qui a besoin de plus de décodage/encodage sur le serveur et 

résulte dans une plus grande consommation de CPU et retard bout en bout, ou il 

peut être conférence SFU qui n'a pas besoin de traitement des flux vidéo. Dans le 

même temps un concept de "Fog" peut être engagée afin de choisir le type de 

ressources sur lesquelles le serveur multimédia sera déployé. 

En combinaison dynamique MCU/SFU et Cloud/Fog on est capable de: 

- Economiser des ressources de fournisseur de conférence vidéo dans le 

Cloud  en termes de cycles de CPU et la consommation de bande 

passante réseau 

- Réduire de manière significative le retard bout en bout, pour améliorer le 

QoE final 



 

 

Figure [4]: Structure du système DGC intégré avec Cloud 

L'idée est la suivante: nous combinons les techniques mentionnées ci-avant et 

obtient quatre approches possibles pour la vidéoconférence. Serveur de signalisation 

peut être dans le Cloud ou sur le site. Nous parlons ici que de serveur de médias et 

des flux de médias. 

SFU dans le Fog: 

'+': Pas d’utilisation de CPU dans le Cloud 

'+': Pas d’utilisation de WAN 

'+': Pas de décodage/encodage supplémentaire 

MCU dans le Fog: 

'+': Pas d’utilisation de CPU dans le Cloud 

'+': Pas d’utilisation de WAN 

'-': Décodage/encodage supplémentaire 

SFU dans le Cloud: 

'+/-': Modéré utilisation de CPU dans le Cloud 

'-': Utilisation de WAN étendue 

'+': Pas de décodage/encodage supplémentaire 

MCU dans le Cloud: 

'-': Grande utilisation de CPU dans le Cloud 

'-': Utilisation de WAN étendue 

'-': Décodage/encodage supplémentaire 



Nous pouvons voir que du point de vue des deux parties (fournisseurs et clients) 

les quatre approches peuvent être priorisés (du meilleur au pire): 

1. SFU dans le Fog 

2. MCU dans le Fog 

3. SFU dans le Cloud 

4. MCU dans le Cloud 

L'utilisation des ressources de Fog sur les locaux sont prescrits par les politiques 

qui sont négociés entre le fournisseur et le client. Les conditions peuvent varier de 

permissives ("toutes les ressources non occupées peuvent être utilisées pour la 

conférence") à restrictive ("client interdit l'utilisation des ressources sur site", qui se 

traduit par une solution de Cloud pure). 

 

Figure [5]: Les types possibles de vidéoconférence 

Évaluation par simulation 

L'objectif de la simulation était notamment de découvrir comment la valeur de 

Redeployment Penalty affecte différents aspects de la solution. Pour la raison de la 

performance l'exécution des calculs sont mises en œuvre dans des nombres entiers 

avec toutes les valeurs normalisées dans l'intervalle [0, 100]. 

Le premier point important que nous avons abordé est le nombre de 

redéploiements des Tâches au cours de leur exécution. Chaque redéploiement 

représente un compromis entre l'optimisation d’Objective Result et la perturbation de 

l'expérience utilisateur provoquée par ces redéploiements, comme les flux vidéo 



doivent être réacheminés vers un nouveau Processeur. Dans la Fig. [6] est 

représenté le nombre de Tâches déployées (pour chaque simulation avec le 

Redeployment Penalty donné) et le nombre de Tâches redéployées. Pour 

Redeployment Penalty > 60, il n'y a plus de redéploiements dans le système. 

 

Figure. [6]. Nombre de Tâches déployées et redéployées en fonction de 

Redeployment Penalty 

Le deuxième point que nous avons considéré est le delta entre Factual Result 

(FR) et Ideal Result (IR). FR est le résultat de l'application des algorithmes décrits ci-

dessus. IR est une sortie de l'algorithme qui, après l'arrivée de chaque State Change 

Event, prend tous les Processeurs, Toutes les Tâches et calcule le déploiement 

théorique qui minimise la somme des Objective Results de toutes les Tâches. Dans 

la topologie limitée que nous avons considéré, l'IR peut être simplement calculée par 

une énumération exhaustive (comparant tous les déploiements possibles). La valeur 

IR représente la répartition optimale des Tâches sur les Processeurs, ne tenant pas 

compte de leur ordre d'arrivée. Dans la figure [7] nous pouvons observer le 

compromis entre une valeur basse de Redeployment Penalty (provoquant une 

certaine perturbation de l'expérience utilisateur en raison de redéploiement des 

Tâches) mais au même temps les valeurs proches de FR et IR; et une valeur haute 

de Redeployment Penalty causant faible perturbation de l'expérience utilisateur, mais 

écart augmenté entre FR et IR. 
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Figure [7]. Factual Result et Ideal Result en fonction de Redeployment Penalty 

Ces simulations montrent un compromis clair entre optimalité du système et le 

nombre de redéploiements. Dans ces figures, Factual Result peut approcher Ideal 

Result, même sans trop de redéploiements. Cependant, quelle valeur de 

Redeployment Penalty devrait être pris dans l'exploitation réelle ne peut être 

déterminée que avec des paramètres réalistes (consommation CPU qualifié, le poids 

des MADM accordés), qui peuvent être disponibles seulement après l'essai de la 

mise en œuvre du système basé sur la plate-forme matérielle réelle avec le vrai 

serveur multimédia. 

Conclusions et Directions des Travaux Futures 

Dans cette thèse, nous avons étudié une approche novatrice pour l'organisation 

de vidéoconférences. De nos jours, la vidéoconférence dans les entreprises est 

organisée principalement à l'aide de MCU centrales. MCU est responsable du 

contrôle de la conférence ainsi que des tâches de traitement vidéo, telles que le 

mixage ou le codage trans. En raison du fait que les MCU sont généralement conçus 

sous la forme de matériel spécialisé, ils sont un équipement coûteux. Les MCU de 

logiciels purs existent également, elles peuvent être utilisées en mode Cloud. 

Cependant, en raison des opérations complexes avec les flux média, ils consomment 

beaucoup de ressources de serveur. Dans le même temps, les approches Overlay 

Network existent pour la vidéoconférence: Application Layer Multicast et Peer-To-

Peer. Ces approches sont conçues pour les relais vidéo, tandis que les tâches de 

mixage vidéo sont directement traitées aux points finaux. Par conséquent, si un point 

final n'est pas capable de mélanger plusieurs flux vidéo, en raison de certaines 

limitations matérielles / logicielles, il ne bénéficiera pas de l'expérience de 

téléprésence moderne. 
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Le problème est donc de fournir une expérience vidéo enrichissante, disponible 

aujourd'hui grâce à des MCU dédiés, sans utiliser de matériel dédié et sans 

surcharger les serveurs existants avec des opérations de traitement des médias. 

La solution proposée consiste à distribuer des MCU sur Enterprise Desktop Grid, 

qui comprend tous les PC disponibles dans l'entreprise, avec suffisamment de 

ressources pour accepter les tâches de traitement vidéo. Les recherches antérieures 

montrent que beaucoup d'ordinateurs personnels dans une entreprise ne sont pas 

utilisés pendant de longues périodes, même pendant les heures de travail. Dans la 

terminologie moderne, cette approche est connue sous le nom de «Cloud 

computing» contrairement au «Cloud computing» centralisé. 

Les exigences pour construire une telle MCU distribuée: 

• L'architecture du réseau devrait s'appliquer à la topologie d'entreprise 

typique, contenant des sites avec un réseau local rapide connecté par Internet 

potentiellement lent 

• L'architecture doit prendre en compte la nature dynamique de Enterprise 

Desktop Grid, en particulier le fait que les PC peuvent être arbitrairement arrêtés 

ou que les processus tiers peuvent être lancés par les utilisateurs finaux 

Le système de conférence Desktop Grid Conferencing (DGC) que nous 

proposons consiste en un ensemble de serveurs multimédia (aborder les tâches de 

traitement vidéo), distribués sur un cluster de matériel de bureau ordinaire (PC, 

ordinateurs portables, etc.). La description du système DGC repose sur deux notions 

principales: les tâches et les processeurs. 

La tâche est une activité liée aux médias, fournie traditionnellement par un MCU 

ou un serveur multimédia logiciel: mélange vidéo, commutation vidéo, codage trans, 

trans-mise à l'échelle ou d'autres manipulations sur les flux vidéo. 

Processor est un serveur multimédia déployé sur un matériel général, tel qu'un 

PC. Les utilisateurs peuvent activer / désactiver leurs PC et lancer des applications 

tierces consommant de l'énergie CPU ainsi que des appels de démarrage / arrêt et 

des conférences au hasard. Il en résulte une imprévisibilité des ensembles de tâches 

et de processeurs, qui doit être pris en compte par le système. 

La logique principale de l'architecture proposée est de distribuer et, si nécessaire, 

de redistribuer les Tâches sur les Processeurs en tenant compte des changements 

dans l'ensemble des Tâches, ensemble de processeurs et contraintes externes. Le 

résultat de la distribution devrait être «optimal» dans certaines conditions. 

Les critères d'optimisation peuvent être divisés en deux ensembles: les réseaux 

et les plateformes. Les critères de réseau qui devraient être pris en compte 

comprennent la bande passante WAN consommée par une tâche et un délai de bout 

en bout entre les points finaux. Les critères de la plate-forme sont liés aux 



processeurs disponibles dans le système: connectivité réseau, alimentation, partage 

des ressources, chargement de la CPU. 

Tous les critères d'optimisation sont différents selon leur nature et leur 

importance, ce qui nous conduit à choisir une démarche MADM (Multi-Attribute 

Decision Making), où chaque critère est associé à un poids. L'application d'une 

méthode MADM donne une métrique intégrale d'un déploiement d'une tâche donnée 

à un processeur donné, appelé Objective Result. Une méthode MADM dédiée 

utilisant "normalisation contextuelle" a été conçue pour calculer le résultat objectif. 

Dans cette méthode, la normalisation est dérivée de la nature des attributs. Une telle 

approche permet d'appliquer la procédure MADM uniquement lorsqu'un processeur 

est ajouté au système ou qu'un attribut spécifique du processeur est modifié. En 

d'autres termes, aucun calcul n'est nécessaire pour un processeur donné, quels que 

soient les changements appliqués aux autres processeurs, ce qui est très important, 

compte tenu de la nature dynamique en temps réel du système DGC. 

Le système DGC lui-même ne peut garantir un accord de niveau de service (SLA) 

approprié car ses ressources sont contrôlées par les utilisateurs finaux et non par le 

système lui-même. Pour résoudre ce problème, le système DGC peut être combiné 

avec le système de conférence dans le Cloud pour fournir à la fois SLA et avantages 

de coûts en même temps. Nous avons développé les algorithmes, combinant 

l'approche Cloud / Fog avec différents types de serveurs multimédias. Le résultat 

fournit une solution de conférence optimisée en termes de coût tant pour le 

fournisseur que pour le consommateur, ainsi que sur l'expérience de l'utilisateur final. 

Afin de tester les algorithmes de distribution de tâches, la logique respective a 

été implémentée à l'aide d'une approche de simulation d'événement discrète. 

Le premier point abordé dans la simulation est le nombre de redéploiements de 

Tâches lors de leur exécution. Chaque redéploiement représente un compromis 

entre l'optimisation de Objective Result et la perturbation de l'expérience de 

l'utilisateur qui accompagne le redéploiement. 

Le deuxième élément que nous avons considéré est le delta entre le résultat 

factuel et le résultat idéal. Le résultat factuel est le résultat de l'application des 

algorithmes, calculant Objective Result dans la situation actuelle du système. Le 

résultat idéal est une sortie de l'algorithme qui, après l'arrivée de chaque événement 

de changement d'état, prend tous les processeurs, toutes les tâches et calcule le 

déploiement théorique qui minimise la somme des résultats objectifs de toutes les 

tâches. La valeur du résultat idéal représente la répartition optimale des tâches sur 

les processeurs, sans tenir compte de leur ordre d'arrivée. 

Ces simulations montrent un compromis clair entre l'optimisation du système et le 

niveau d'expérience de l'utilisateur, affecté par les redéploiements de tâches. En fait, 

le résultat factuel peut s'approcher du résultat idéal, même sans trop de 

redéploiements. Cependant, la logique, responsable de la décision sur le 



redéploiement, ne peut être déterminée qu'avec des paramètres réalistes 

(consommation de CPU qualifiée, pondérations MADM accordées), qui peuvent être 

disponibles uniquement après un test intensif de l'implémentation du système en 

fonction du serveur multimédia réel déployé sur le Plates-formes matérielles réelles. 

Ensuite, nous avons étudié dans quelle mesure un PC peut être utilisé comme 

plate-forme pour héberger un serveur multimédia et comment la charge CPU de 

cette plate-forme affecte la qualité du flux vidéo résultant. Pour cela, nous avons créé 

un banc d'essai avec un serveur multimédia open source, déployé sur un ordinateur 

portable habituel, et connecté plusieurs téléphones portables vidéo jouant le rôle de 

terminaux de conférence. 

Pour l'un des points d'extrémité, nous avons connecté un outil de mesure de la 

qualité de la vidéo, qui nous a fourni un indice d'opinion moyen prévu. Nous avons 

appliqué cet outil à un flux vidéo, généré par un serveur de médias de 

vidéoconférence. Le serveur, déployé sur un ordinateur portable de commodité, a été 

perturbé par un processus de tierce partie, qui a consommé différentes quantités de 

puissance de l'UC. En conséquence, nous avons démontré que le matériel de 

bureau de commodité peut vraiment être utilisé comme une plate-forme pour les 

serveurs de médias, transportant une charge de travail limitée dans la portée de 

notre système de conférence Enterprise Desktop Grid. 

Deux applications de l'apprentissage par machine peuvent être envisagées afin 

d'améliorer la qualité du système. 

Pour une plate-forme donnée avec des poids initiaux définis en exécutant un 

nombre limité de tests manuels, lors de son exploitation, nous pouvons: 

• Basé sur une configuration / état de plate-forme donnée pour essayer de 

prédire dynamiquement des poids qui maximiseront la QoE (ex: la panne de Wi-

Fi augmente le poids de "Connectivité réseau"). Pour cela, nous avons besoin de 

recueillir continuellement des informations sur différents aspects de 

l'environnement système: état du réseau et de l'équipement de réseau, types 

d'ordinateurs personnels utilisés, etc. Ensuite, après la corrélation de cette 

information avec QoE résultante, nous pouvons déduire les poids des critères 

existants ou nouvellement créés afin de maximiser la QoE qui en résulte. 

• Pour tenir compte de l'historique du fonctionnement du système pour les 

distributions futures (ex: les observations de nœud stables / non stables 

présentent le "notation" du nœud). De cette façon, nous pourrions créer une sorte 

de «profils de ressources», c'est-à-dire les caractéristiques typiques de 

l'utilisation et du comportement des ressources, ce qui affecte la stabilité globale 

du système. En corrélatant ces modèles avec des jours de semaine, de temps et 

d'autres informations sur l'environnement, nous pourrons prévoir dans une 

certaine mesure le comportement de ressources données dans le futur. 
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Glossary 

CPU Load Qualification Matrix – matrix containing information on CPU load for a 

given type of Tasks deployed on Processor installed on a given type of platform 

Desktop Grid Conferencing (DGC) – general name of the overall system 

DGC stable state – a state of DGC system when all the Tasks are deployed and 

consume CPU resource or waiting in SCE queue, that is there is no distribution process 

ongoing 

Dynamic Simulation – procedure of simulation of CPU load for a given Task being 

distributed to a given Processor 

Dynamic Simulation Result (DSR) – numerical result of dynamic simulation 

Endpoint – a user’s device which originates/terminates media streams (PC, laptop, 

tablet, deskphone, mobile device, conference specialized hardware, …) 

Full Simulation Result (FSR) – numerical value reflecting integrated evaluation of 

distribution of a given Task to a given Processor. SSR and DSR are used for calculation of 

FSR 

Leg – a connection between an Endpoint and a Conference. Consists of two flows: 

signaling flow (SIP) and media flow (RTP) 

Node – hardware resource on which a Processor can be installed (PC, laptop, tablet, …) 

Objective Result (OR) – integral metric of a deployment of a given Task to a given 

Processor 

Optimization criteria - the rules that determine by which criteria the variants of 

distribution are compared with each other in order to understand which one is better 

Processor – software component (media server) which is installed on a Node and 

which executes Tasks by processing media streams 

Real CPU Load (RCL) – real CPU load of a given Processor  

Real Deployment Result (RDR) – numerical value calculated by the same formula as 

FSR but with RCL used instead of DSR. Such a way RDR reveals the integrated 

characteristic of real deployment of a given Task on a given Processor contrary to FSR 

which reveals the integrated characteristic of simulation of such a deployment 

SCE queue – prioritized queue of State Change Events. Priorities reflect the urgency 

with which a given event should be taken into account 
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State Change Event (SCE) – an event reflecting the change in the set of Tasks, set of 

Processors or in external conditions which causes Task distribution or consideration of 

Tasks re-distribution 

Static Simulation - procedure of calculation of a numerical value reflecting how “good” 

is a given Processor for deploying a given Task in terms of location in network and 

characteristics of hardware of the platform on which Processor is installed. Several 

optimization policies are estimated by a Multi-attribute Decision Making Method to get the 

final value. 

Static Simulation Result (SSR) – numerical result of static simulation 

Task – a set of manipulations executed by Processor on input video streams with a 

target to produce required output video streams. Manipulations include video mixing, video 

switching, trans-coding, trans-scaling, streams relay, etc 

Task deployment – a process of actual assigning of a Task to a Processor, that is 

instructing Endpoints to send their video streams to the given Processor for execution of the 

Task 

Task distribution – a process of choosing of an appropriate Processor for a Task 

based on static and dynamic simulation results 
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1. Chapter 1. Introduction 

 

Chapter 1 

 

Introduction 

 

Video conferencing is a well-established area of communications, which have been 

studied for decades. Recently this area has received a new impulse due to significantly 

increased bandwidth of Local and Wide area networks and appearance of low-priced video 

equipment. At the same time high quality video images such as Full HD may require 

significant computational resources for their processing. Video processing for conferencing 

includes some manipulations necessary to get advanced user experience (mixing together 

several video streams or switch the image to the currently speaking participant) as well as 

operations caused by the incompatibility of endpoints, e.g. trans-coding in the case when 

participants use different video codecs. 

Currently, two distinct architectures for handling these video-processing tasks are used.  

The traditional solution is using Multipoint Control Unit (MCU) [29]. MCU is a powerful 

component that centralizes all video processing operations and distributes the resulting 

streams. MCU can be implemented as a hardware unit with integrated Digital Signal 

Processors (DSP) or a software component installed on commercial off-the-shelf (COTS) 

servers. Also MCU can be deployed in both cloud and on-premises mode. In all deployment 

scenarios, MCU represents a dedicated resource, which needs to be purchased or leased.  

Another solution is to use endpoints as resources for video processing. This can be 

achieved by exploiting Peer-to-Peer (P2P) or Selective Forwarding Unit (SFU) [29] strategy. 

P2P approach has been thoroughly researched but this technique has not gained traction in 

enterprise communications, as it doesn’t provide easy means of integration with business 

applications as well as implementation of important enterprise requirements like access to 

heterogeneous LDAP directories. SFU is a software component, which forwards video 

packets based on endpoints capabilities. It doesn’t perform any media processing on video 

streams, it only filters and relays packets. As a result, the capacity of a conferencing system 

driven by SFU depends on the capabilities of endpoints. If endpoints are incompatible in 

terms of codecs then SFU is not useful, as endpoints normally don’t have trans-coding 

functionality. 

In this thesis a Desktop Grid Conferencing (DGC) system is proposed, which uses 

resources of the enterprise desktop grid (PCs, laptops etc. deployed within the enterprise 

network) for allocating video processing services needed for organizing videoconferences. 
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Previous research on enterprise desktop grids [39] demonstrates that a significant amount 

of CPU resources of PCs used within enterprises are not occupied with any activity. 

 

Figure 1.1: Percentage of time when CPU availability is above a given threshold (from [39]). 

These resources could be used for video processing, similarly to the concept of “Fog 

Computing” [38]. Of course, due to the dynamic nature of the grid resources, providing 

Service Level Agreement (SLA) is challenging, as compared to dedicated MCU. In practice, 

the DGC system can be backed by a cloud video conferencing service, which will be used 

when the DGC system doesn’t have enough resources. Combining the DGC system with a 

cloud conferencing service, one can obtain clear financial benefits, as the grid already 

exists with no extra expenditure needed.  

The system is designed for typical enterprise network topologies, containing sites with 

fast LAN inter-connected by potentially slower Internet links. The proposed algorithms 

analyze network characteristics, such as delay between sites and Internet bandwidth 

required for video streams as well as grid node characteristics, such as CPU load, network 

connectivity type and power supply type in order to provide the best possible Quality of 

Experience (QoE) under current circumstances. To compare alternative variants of task 

distribution, a Multi Attribute Decision Making (MADM) method specially customized to this 

framework is introduced. 

Let’s consider an example of the DGC system deployed on three sites. Several users 

organize a video conference. Three PCs are registered in the system, their characteristics 

are compared and the system decides to deploy video processing needed for the 

conference on one of them (see Figure 1.2). 
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Figure 1.2: Video conference processing is hosted on Processor1 

At some moment a third-party process, consuming a lot of CPU power, is started on the 

PC hosting video conference processing so the system decides to re-host conference 

processing to another PC (see Figure 1.3).  

 

Figure 1.3: Video conference processing is re-hosted to Processor3 due to the increase 

of CPU load on Processor1 

Structure of the thesis 

In Chapter 2 we provide an overview of industrial and academic state-of-the-art of video 

conferencing. Methods and technologies, employed in modern video conferencing solutions 

are comprehensively introduced, and the positioning of a proposed approach is highlighted 

among them. In academic research overview we list the topics, elaborated by the present 

time, noting that the research focuses mostly on Internet topologies, oriented to general 

public, with no results applicable to the specific enterprise grade solution needs.  

Chapter 3 describes the algorithms that allow manipulations on video conferences and 

desktop grid resources, on which the conferences are deployed. The chapter begins with 

the list of criteria, that we consider in order to provide an optimized solution for the task of 

deploying conferencing on grid nodes. Then we present a customized Multi-Attribute 

Decision Making (MADM) method, which combines proposed criteria in one resulting value 

in order to make the nodes comparable between each other. The difference between our 
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MADM method and the traditional ones is that our approach is applicable in real-time to 

constantly changing set of options without the need of extra calculations. And finally we 

elaborate detailed algorithms for all possible events, that can occur in a grid based 

conference system. 

In chapter 4 we present the architecture of the solution. In the first part we describe the 

standalone system, which uses only grid resources. The problematic of delay estimation is 

tackled. The static design view with all necessary interfaces as well as dynamic design view 

with several key workflows are elaborated. In the second part we provide the description of 

the grid based system combined with the cloud based system. This combination allows 

providing guaranteed level of the solution service, even when grid resources are lacking. 

In chapter 5 we discuss the simulation, which verifies the algorithms from chapter 3, 

based on implementation described in chapter 4. We use the statistics of utilization of a real 

conference system, deployed at an enterprise, and a conference topology, typical for an 

enterprise grade conferencing system. In simulation we demonstrate the trade-off between 

the optimality of the system at any given moment and its stability, that is the frequency of 

redeployments of conference activities from one node to another. As a result we show that 

good results in the terms of system optimality can be achieved without significant 

disturbance of user experience.  

In chapter 6 we consider the question of using a PC as a platform for a soft media 

server. For that we demonstrate which level of conference quality can provide a PC, being 

loaded at the same time by third party processes. For that we use several types of software, 

which allow loading the CPU in a controlled manner, and a hardware solution, which is 

capable to estimate the quality of a video stream from the end-user point of view. 

Chapter 7 concludes the thesis and contains suggestions for further work. 

Annex A presents the standalone DGC system design and Annex B presents the design 

of the Cloud integrated DGC system. 
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2. Chapter 2. Video conferencing state-of-the-art 

 

Chapter 2 

 

Video conferencing state-of-the-art 

 

This chapter presents the main technologies behind the modern IP-based 

videoconferencing services, with a particular focus on codecs, network protocols and 

architectures. Traditional industrial disposition as well as modern innovative approaches are 

both addressed. Results of academic research on video conferencing are also presented. 

Legacy analog/digital technologies, together with the gateways between the traditional 

and the IP videoconferencing systems, are not considered.  

The proposed Desktop Grid Conferencing system is also regarded in line with other 

technologies in order to demonstrate its potential positioning in the industry. 

2.1. Video conferencing industry 

2.1.1. Introduction 

Video conferencing is a two-way interactive communication, delivered over networks of 

different nature,  which allows people from several locations to participate in a meeting.  

Conference participants use video conferencing endpoints of different types. Generally 

a video conference endpoint has a camera and a microphone. The video stream, generated 

by the camera, and the audio stream, coming from the microphone, are both compressed 

and sent to the network interface. Some additional info like instant messages, the shared 

screen or a document can be also exchanged between participants. 

IP video conferencing, considered in this tutorial, is based on the TCP/IP technology as 

a transport network for all these flows. In the past, specially designed analog lines and 

digital telephonic lines (ISDN) had been employed for that purpose. IP started to be used in 

the 1990s and has become the prominent  vehicle for video conferencing since then.  

Today IP video conferencing is a well known and widely used service. However, most 

users might not realize that  it has a notably complex architecture, involving a wide range of 

technologies. This tutorial aims at providing an overview of possible architectures and 

technologies, involved in the realization of videoconferencing services.  
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2.1.2. Functional architecture example 

There exist two fundamental means to set up videoconference calls between 

participants. Basic conference functions can be offered in peer-to-peer mode, in which all 

the participants are connected directly with each other (see Figure 2.1). 

 
Figure 2.1: Peer-to-peer video conference 

Conferences, which provide more services, such as central management of participants 

or conference recording, generally make use of a central point of control (“Middlebox”) in 

order to implement these additional services (see Figure 2.2). 

 

Figure 2.2: Video conference with a middlebox 

In this section, we present an example of a possible functional architecture of a 

conferencing solution, using several dedicated servers (defined hereafter), as depicted in 

Figure 2.3. These servers play a role of the “middlebox” in the centralized conferencing 

architecture. Such architecture is typical for advanced video conferences in enterprises. 

2.1.2.1. Functional elements 

Endpoint: A software application or dedicated hardware equipment, which allows a 

user to participate in a conference. It consists of the following elements: 

 Equipment for capturing and rendering both audio and video: a screen, a 

microphone and a loudspeaker or headphones 

 Audio/video coder and decoder, in order to limit the throughput of streams sent 

on the network 

 A signaling protocol stack, which is responsible for the registering the user in the 

conferencing system, joining or leaving a conference, negotiation of media 

formats, etc. 
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 A media transport protocol stack, which delivers encoded media over the network 

between endpoints and the middlebox 

 

 

Figure 2.3: An example of a video conference functional architecture  

Conference Control Application: A Graphic User Interface application, which allows 

the conference leader to fulfill different operations on the conference, such as reserving 

media resources for a future conference, inviting new participants or removing existing 

participants. Web technologies are often used for this type of applications, which can also 

be integrated with the endpoint software. 

Media Server: Software component or hardware appliance, which comprises resources 

for media processing, like: 

 Audio mixing, that allows the voices of conference participants to be mixed into 

one stream, that can be sent to all the participants 

 Video mixing, that allows the images of several participants to be shown 

simultaneously on the screen (see Figure 2.4) 

 

Figure 2.4: Multi image video conference endpoint 

Basic media processing facilities, like media mixing, can be integrated into endpoints 

and can thus be used in peer-to-peer mode. The use of a centralized Media Server gives 

some advantages like: 
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 Media trans-coding if media is encoded by different endpoints in incompatible 

formats 

 Generating additional media streams based on the conference ones, for example 

for recording  

Application server: A software component or hardware appliance, which plays the 

central management role between other functional parts of the video conferencing solution 

(Endpoints, Conference Control Application and Media Server).  Its functionality 

encompasses:  

 Localization of Endpoints (Endpoints register in the Application Server so their 

network locations are known) and management of Call Signaling sessions 

 Conference management: processing the requests of the conference leader 

made with the Conference Control Application (inviting/removing users, etc.) and 

translating them to Call Signaling session commands towards respective 

Endpoints 

 Media Server management: based on the logic of the conference Application 

Server, the Media Server applies different media treatment to the conference 

participants, like playing a voice message to the participants, recording the 

session, etc. 

Having management functions centralized allows the conference to continue smoothly 

even while some Endpoints leave the conference --- which is hardly possible in the case 

when management logic resides on one of the Endpoints. Furthermore, centralized 

management facilitates integration with different enterprise software, like corporate directory 

with information about employees, shared calendars, etc. 

Application and Media Servers can be combined in one box with specifically selected 

hardware optimized for delivering high quality audio/video experience.  

2.1.2.2. Workflow example 

The dynamic view of the architecture, presented in Figure 2.3, is demonstrated with the 

scenario below. The technologies and the protocols, used for this demonstration, are quite 

typical for videoconferencing, deployed in modern enterprises: SIP (Session Initiation 

Protocol)[10] is used for call signaling, RTP (Real-time Transfer Protocol)[9] is used for 

streaming media on the network and MSML (Media Server Markup Language)[15] for 

media resources control. All these technologies are highlighted below. The scenario, 

depicted in Figure 2.3 follows several steps:  

1. The conference leader creates a conference using the Conference Control 

Application (step 1). 
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2. The Application Server sends a MSML command to the Media Server with 

instructions on how the conference must be configured and which resources are 

needed (step 2). 

3. At this stage, Endpoint1 wants to join the conference. It sends the SIP request to 

the Application Server to join the video conference (step 3). The request includes 

information about the media session parameters. 

4. The Application Server forwards the request towards the Media Server (step 4), 

which in turn sends a SIP answer to Endpoint1, with its own media session 

parameters.  

5. A connection between Endpoint 1 and the Media Server is now opened (step 5). 

This is a direct RTP session as the Application Server does not process media 

streams. The connection between  Endpoint1 and the Media Server is 

operational but nothing is transported yet, as we need to attach this session to a 

source of media in the Media Server (for instance to a video mixing function).  

6. The Application Server sends a MSML command, which allows the connection of 

Endpoint1 to be attached to the videoconference session (step 6). From this 

moment, the media flows generated by Endpoint1 will be mixed with the streams 

of other participants.  

If another endpoint (Endpoint2) joins the conference, the procedure will be exactly the 

same as described in steps 3-6 above.   

2.1.3. Video coding 

2.1.3.1. Why video coding 

End user’s device for capturing video (i.e. web camera integrated into laptop) produces 

raw (uncompressed) digital video stream. Video processing (i.e. video mixer in media 

server) and video rendering (i.e. video conferencing endpoint) also require uncompressed 

digital video streams. However, raw digital video streams are usually too heavy (i.e. they 

consume too much bandwidth) to be sent through the network, so they should be 

compressed. 

Video encoding is a process of converting raw digital video to a compressed format, 

video decoding is the opposite process. A hardware or software component that fulfills 

encoding and decoding is called “codec” (which is a concatenation of “coder” and “decoder”) 

[1]. 

The format of the compressed streams normally conforms to some video compression 

standards. The standards typically define lossy compression, meaning that the compressed 

stream loses some of the original information present in the raw stream. As a result, 

compressed/decompressed streams have  lower quality than the original ones. 

https://en.wikipedia.org/wiki/Video_compression_specification
https://en.wikipedia.org/wiki/Video_compression_specification
https://en.wikipedia.org/wiki/Lossy_compression
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2.1.3.2. Types of video coding 

The codecs differ by the quantity of the data, needed to transport the video stream 

(which is called “bitrate”), the complexity of the encoding and decoding algorithms, 

robustness to data losses and errors, which occur when the stream traverses the network, 

end-to-end delay, and a lot of other parameters. 

User endpoints vary in their capabilities to accept and process video streams. These 

differences can be explained by: 

 Different bandwidth capabilities  

 Different decoding complexity and power constraints 

For example, a specialized hardware based video conferencing endpoint, which is 

normally installed in a meeting room, is typically able to process high quality video streams.  

However, a participant using a smart phone is only able to process low quality streams 

using small bitrates. Generally, this problem is resolved by a “Transforming middlebox”, 

which can adjust streams to the recipients’ needs (see Figure 2.5).  

 

Figure 2.5: Logic of transforming middlebox 

Scalable Video Coding (SVC) is another approach, allowing different types of devices to 

participate in the same video conference. With SVC, a high-quality video stream is divided 

into several layers of quality. For instance in Figure 2.6, the three layers are sent on the 

network.  The mobile terminal (with poor network reception) will only receive the base layer, 

which corresponds to the lowest video quality. The other terminals, which can benefit from a 

better network throughput and/or CPU power, can receive additional layers (on top of the 

base layer) in order to get a better video quality.  

The advantage of this technique is that processing at the SVC middlebox is extremely 

light, as the middlebox just needs to filter the different built-in layers, and processing of the 

content of the video stream is not required. 

One of the following methods can be used to build the different layers: 

 Temporal scalability (frame rate): a low frame rate is used for the base layer, 

while additional frames are added on advanced layers, providing more fluidity to 

the video. 
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 Spatial scalability (picture size): the base layer has a low image resolution, while 

advanced layers add additional pixels increasing it. 

 Quality scalability (coding quality): the coding quality corresponds to the number 

of bits associated with each pixel. The base layer is coded with the low coding 

quality, advanced layers with the better one. 

It is also possible to combine several of the above scalability techniques.  

The flexibility of SVC comes at a price, since the layer encoding adds a bandwidth 

overhead of roughly 10% - 20%, as compared with a non SVC stream of the same quality. 

Unfortunately, SVC technique is not currently fully standardized, so implementations of 

different vendors are not compatible with each other, except for the base low bitrate layer, 

which is coded as standard stream (and can thus be decoded by decoders which 

understand only standard coding).  

 

Figure 2.6: Logic of SVC middlebox 

In order to overcome this obstacle, another method called Simulcast Video Coding was 

proposed. Simulcast Video Coding is the parallel encoding of multiple independent video 

streams with different quality strategies (see Figure 2.7). Each endpoint in the video 

conference chooses the most appropriate stream which it can process. This allows 

traditional endpoint, which doesn’t support Scalable Video Coding technology to participate 

in the conference with the appropriate quality level (compatible with their bandwidth and 

CPU limitations). 

 

Figure 2.7: Logic of Simulcast middlebox 
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In Table 2.1 traditional, scalable and simulcast coding methods are compared by the 

following parameters: 

 upstream bandwidth: the bandwidth needed to pass the client streams to the 

middlebox 

 middlebox processing load: the amount of computations, the middlebox needs to 

execute in order to prepare the resulting streams for the clients  

 downstream bandwidth: the bandwidth needed to pass the streams, prepared by 

the middlebox, to the client 

 interoperability: to which extent the standard clients, which don’t support a given 

technology, are able to receive the streams, coded by using this technology  

Table 2.1: Comparison Of Coding Methods 

 Upstream 
bandwidth 

Middlebox 
processing load 

Downstream 
bandwidth 

Interoperability 

Standard 
Coding 

Low High Low High 

SVC Low  
(with small 
overhead) 

Low Low  
(with small 
overhead) 

Low  
(except base 
layer) 

Simulcast High Low Low High 

 

2.1.3.3. Codecs 

Several codecs are used in modern IP video conferencing. They are divided into several 

families. 

2.1.3.3.1. H.264/H.265 

H.264 and H.265 are the codecs standardized by ITU-T and ISO.  

H.264 Advanced Video Coding (AVC) [2] was standardized in 2003. It provides a 

standard (non scalable) encoding with different quality levels, associated with the different 

sets of constraints imposed by decoder performance. The level defines the maximum 

picture resolution, frame rate and bitrate, that a decoder may use. 

The H.264 standard was designed to be used by a wide variety of video applications, 

such as video conferencing, mobile video and high definition broadcast. Different types of 

target applications are addressed by profiles, which represent sets of coding tools and 

algorithms, used by the specific application (independently from the levels). 

Videoconferencing is typically based on the so called Baseline Profile (BP) or Constrained 

Baseline Profile (CBP).  
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H.264 is widely accepted in all areas and implemented in both hardware and software. 

H.264 is protected by a group of patents, which are managed by a holding of patent holders 

called “MPEG-LA”. 

H.264 Scalable Video Coding (SVC) [3] was standardized in 2007 and provides H.264 

implementation of Scalable Video Coding. 

H.265 High Efficiency Video Coding (HEVC) [4] is a successor to H.264 AVC. It was 

standardized in 2013. H.265 generally doubles the data compression ratio compared to 

H.264 AVC at the same level of video quality or, if used at the same bitrate, it substantially 

improves quality. H.265 SHVC (HEVC Scalability Extension) provides implementation of 

Scalable Video Coding technique and was published in 2015. 

2.1.3.3.2. VP8/VP9/VP10 

VP8, VP9 and VP10 are owned by Google. In 2010 Google exposed the source code of 

VP8 [5] under a 3-clause BSD license and the VP8 bitstream format is published by IETF. 

VP8 only supports temporal scalability. 

VP9 [6] is a successor of VP8. It is also open and royalty free. Its bitstream description 

was published by IETF in 2013. The main improvement over VP8 is close to that of H.265 

vs. H.264 – roughly half of bitrate is needed to deliver the same video quality. Scalable 

Video Coding version of VP9 is under development. VP10 is the latest evolution of this 

family which is in the early stage of development. 

2.1.3.3.3. NETVC 

In 2015 an Internet Video Codec (NETVC) working group was created at IETF with the 

target to produce a high-quality video codec meeting following requirements: 

 competitive in terms of performance with best-of-the-breed existing codecs 

 optimized for use in interactive web applications  

 patent and royalty free allowing wide implementation and deployment 

As for the mid of 2016 two codecs were submitted to IETF NETVC group: Daala and 

Thor. 

Daala [7] is a free open source codec under development by Xiph.Org Foundation. The 

codec is developed based on the new principles compared to existing widely adopted 

codecs, which will allow avoiding patent infringement. The ideas of the codec are covered 

by some patents which are freely licensed to everybody.  

Thor [8] is a free open source codec under development by Cisco. The target is to 

propose a codec of moderate complexity to allow real-time implementation in software on 

common hardware, as well as new hardware designs. Thor is based on technologies used 

in currently widespread standards. 

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/3-clause_BSD_license
https://en.wikipedia.org/wiki/Bitstream_format
https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/Royalty_free
https://en.wikipedia.org/wiki/Xiph.Org_Foundation
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2.1.3.3.4. Alliance for Open Media 

The Alliance for Open Media [37] was founded by leading media related companies in 

2015. The first target of the alliance is developing a new open royalty-free video codec 

specification and open-source implementation. VP10, Daala and Thor are considered for 

the development of this new codec.  

2.1.3.3.5. Other codecs 

In existing deployments, a wide variety of other codecs is present such as legacy 

codecs (H.261, H.263, …) and non-standard private codecs (Microsoft RTV, …). 

2.1.4. Video processing 

Given the set of video streams produced by conference participants’ endpoints, the 

conferencing software needs to apply necessary processing in order to guarantee that all 

participants receive the streams that they are able to render. Processing generally consists 

of two parts: video presentation and video transformation. 

2.1.4.1. Video presentation 

Video presentation combines the streams, generated by the participants, in order to 

propose necessary user experience to stream recipients. Video presentation takes place in 

the middlebox or in the recipient endpoint. Today several types of  user experience can be 

offered, depending on the capabilities of conferencing hardware/software and on the type of 

the conference considered. 

2.1.4.1.1. Video mixing (Continuous presence) 

Continuous presence mode is the most common method used in virtual meetings. 

Usually in this mode the screen is split into one large and several smaller surrounding 

windows. The conferencing software sends the video of the current speaker to the large 

window and other participants to the small ones. It’s also possible to use equal windows for 

all the participants. If the number of participants is too large to show them all, only the latest 

speakers are displayed. 

2.1.4.1.2. Video switching 

Voice switch mode has only one window to which the conferencing software switches 

the current speaker. 

2.1.4.1.3. Lecturer mode 

In lecturer mode, the lecturer is shown all the time in the sole window. This mode is 

used for lectures and presentations. 

2.1.4.1.4. Chair mode 

In chair mode, a human moderator manually controls who “owns the floor”, that is who 

can speak and who is shown on the screen at any given time. 
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2.1.4.1.5. Augmented reality 

In augmented reality mode, participants are put into virtual meeting room by replacing 

background, and some additional video effects (like manipulation of the objects) can be 

added. At the present time, this mode is considered as experimental and is not widely 

implemented in the commercial products. 

2.1.4.2. Video transformation 

Video transformation is needed in order to adjust streams to the receivers’ needs in the 

case when they can’t be accepted in the original form. Video conferencing middlebox can 

process video streams on the level of stream content or on the level of stream packets, as 

explained hereafter. 

2.1.4.2.1. Content transformation 

Content processing means that some changes are introduced to the content of the 

video stream. This type of processing requires two-step. The first step is decoding, that is 

the stream encoded in original format is transferred to an uncompressed format. The 

second step is re-encoding, that is the uncompressed stream is encoded in a new format, 

taking into account the necessary changes, which should be introduced to the stream. 

During this two-step process the quality of the video stream suffers as lossy codecs are 

used in videoconferencing. 

Content processing includes: 

 TransCoding: change codec format in the case when the consumer doesn’t use 

the same codec as the producer 

 TransScaling: change the video frame size in the case when the receiver can’t 

process big frames 

 TransFrameRating: decrease video frame rate in the case when the receiver 

can’t process too frequent frames 

 TransBitRating: decrease the video codec bitrate which is the result of a 

decreased picture quality (i.e. bit per pixel).  

The last three techniques are used in the case of scarce receiver resources or available 

network bandwidth. 

2.1.4.2.2. Packet transformation 

Packet processing implies that the middlebox processes IP packets without 

decoding/encoding the stream. Such processing contains: 

 Packet filtering 

 Packet forwarding 
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 Packet header correction 

Packet processing mode can be used only when all the endpoints are compatible in the 

terms of codecs and their configuration, as packet processing server only decides which 

streams should be sent to each participant, filters necessary packets, changes header if 

necessary and forwards the packets to the respective endpoints. This technique is used 

extensively in Selective Forwarding Unit (which is described in section VI.C). 

2.1.5. Protocols  

The protocols, used in videoconferencing systems, can be considered on three levels: 

 Media plane 

 Signaling plane 

 Media resources control 

2.1.5.1. Media plane 

The media plane (or data plane) consists of a set of protocols, used for transportation of 

audio and video streams on an IP packet network. Video conferences use Real-time 

Transport Protocol (RTP) [9] as a means of delivery of audio and video between endpoints 

and middleboxes. RTP is an application layer protocol based on UDP. The specificity of 

real-time audio and video favors the speed of delivery of the packets over reliability.   

TCP is generally used to get a reliable transfer, and is used for video streaming for 

instance. However, retransmission mechanisms of TCP introduce additional delay and jitter, 

which significantly lowers the quality of real-time interactive media sessions. That’s why 

UDP is generally preferred for video conferencing. However, UDP itself is not sufficient and 

RTP provides facilities for jitter compensation and detection of out of sequence arrival in 

data, which are common during transmissions on an IP network. This is ensured by the 

addition of timestamps and sequence numbers. 

RTP is used with its pair protocol “RTP Control Protocol” (RTCP), which provides 

statistics on the Quality of Service (QoS) and control information for an RTP session. 

To overcome potential packet loss, some advanced technologies may be used in 

addition to RTP. 

Packet Loss Concealment (PLC) is a technique to mask the fact that some video 

stream packets are lost, corrupted or arrived too late to be rendered. PLC uses info from 

neighboring parts to the lost segment of the frame, and/or previous frames and future 

frames, in order to estimate the lost content.  

Forward Error Correction (FEC) is a technique, which adds redundant information to 

the video stream that can be used in order to recover lost packets of the stream. 

https://en.wikipedia.org/wiki/Jitter
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Packet Retransmission (RTX) is a technique for retransmitting lost RTP packets by 

the source. This approach has limited use as it adds end-to-end delay, which consists of the 

time to make a request for retransmission and the time for a retransmitted packet to be 

delivered to a destination. Good Quality of Experience (QoE) [30] prescribes maximum one 

way delay of 150 ms in order to provide good media quality. If the resulting delay, 

introduced by packet retransmission, is bigger – this technique can’t be employed. 

2.1.5.2. Signaling plane 

The signaling plane contains the protocols, that negotiate the 

creation/modification/termination of calls between the endpoints and the middleboxes. 

There exist both standard as well as proprietary signaling protocols. 

Session Initiation Protocol (SIP) [10] is a text based protocol standardized by IETF. Its 

design is close to HTTP. Nowadays SIP is the main standard protocol for new 

developments in video conferencing area. Session Description protocol (SDP) is used by 

SIP as a means to exchange media related information, like the list of supported codecs, 

etc.  

H.323 [11] is a binary protocol standardized by ITU-T. Before the wide adoption of SIP, 

it was the main protocol for videoconferencing, so many existing videoconferencing 

installations are still based on H.323. Currently, a lot of equipment supports dual SIP/H.323 

stack. 

Jingle [12] is an extension of eXtensible Messaging and Presence Protocol (XMPP), 

originally developed for chat services, which provides peer-to-peer signaling for multimedia 

sessions. It was developed by Google and the XMPP Standards Foundation, and used in a 

list of products, first of all open sourced. 

Many well known products use their own proprietary signaling, for example Skype.  

Network Announcement (NETANN) [13] provides a user with a possibility to call a 

conference (i.e. a virtual meeting room) using SIP. NETANN provides a way to use 

standard SIP messages, which were initially designed to locate and call a user, in order to 

locate and invoke a conferencing service. NETANN covers only very basic functionalities, 

not allowing rich conferencing user experience.  

In the scope of the SIPPING working group, the IETF presented a more advanced 

conference framework, based on SIP and described in [14]. The framework defines the 

logical entities and terminology used for conferencing. By the way, it was stated that while 

some conference management requirements can be implemented with SIP, some can’t be 

implemented. Hence additional means are needed, as presented in the next section. 

2.1.5.3. Media resources control 

Media resource signaling takes place between the application server and the media 

server functions, in order to provide advanced conference control, such as: 

https://en.wikipedia.org/wiki/Multimedia
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/XMPP_Standards_Foundation
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 in-conference user interaction, like playing a voice message to the participants 

 managing sub-conferences 

 recording 

 modification of the volume of a participant 

 muting a participant 

 conference event reporting (new participant is added, etc.) 

There have been efforts to standardize the centralized control of a video conference at 

the IETF XCON working group [17]. There has also been work to standardize the control of 

a media server at the IETF MEDIACTRL working group [18]. However, these approaches 

are not widely implemented in the  commercial products. 

Media Server Markup Language (MSML) [15] is a XML based language, which is used 

to control conferencing features, such as video layout and audio mixing, configure media 

streams, create sidebar conferences or personal mixes. MSML was described by IETF in 

2010.  

Media Server Control Markup Language (MSCML) [16] is another XML based language, 

which also provides features to manage a conference similar to MSML. MSCML was 

described by IETF in 2006. MSCML and NETANN are related languages, as MSCML is an 

extension of NETANN.  

In both cases, the XML messages are exchanged using the SIP protocol. Both MSML 

and MSCML are royalty-free and well adopted by the industry.  

There also exists a “JSR 309: Media Server Control API” [19], which exposes media 

server control concepts in a form of Java API. 

Finally, it’s worth noting that the IETF CLUE working group (ControLling mUltiple 

streams for tElepresence) [20] has been created to develop a standardized approach to 

control immersive telepresence systems (see section VII.A). The management of such a 

system is much more complex, with its large number of screens and cameras, and requires 

specific exchange of capabilities and layout of the meeting rooms (e.g. spatial relationships 

of cameras, displays and microphones). 

2.1.5.4. Protocols security 

Network connections, used by video conferences, in particular when used over the 

Internet, are vulnerable to different security threats. Besides well known threats, such as 

Denial of Service (DoS) attacks, there exist specific security attacks, associated with the 

protocols listed above. 
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Signaling/media eavesdropping: this is an interception of signaling messages or 

media packets and extracting their content, which allows an attacker to know who is in 

communication with whom and what they are talking about.  

Signaling/media spoofing: if signaling or media messages are intercepted, and their 

content is extracted, it becomes possible for an attacker to substitute the original participant 

with another one and to send false media streams to the conference participants — with 

eventually offending content for instance. 

In order to avoid these problems, the video conferencing connections should be 

secured with the following requirements: 

 authentication: in order to insure that each participant know with whom exactly it 

talks to 

 encryption: packets should be encrypted in order to make it impossible to read 

the contents 

 integrity: packets should be resistant to any changes introduced by an attacker 

Secure version of SIP is called SIPS and consists in SIP over TLS, which gives SIP all 

necessary characteristics. 

The media plane of video conferences can’t be protected by TLS because it uses UDP 

(while TLS is based on TCP). The Secure RTP (SRTP) protocol has thus been defined at 

IETF [21]. SRTP requires participants to exchange cryptographical keys, and several 

mechanisms have been proposed: ZRTP [22], MIKEY [23], SDES [24] and DTLS-SRTP 

[25]. 

2.1.5.5. Protocols network border traversal 

Enterprise network borders are normally protected by a firewall, which provides Network 

Address Translation (NAT) and traffic filtering functions. Firewalls pose certain problems for 

both video conferencing signaling and media traffic, which can’t bypass the network border.  

Special protocols were introduced for traversing a NAT device. Session Traversal 

Utilities for NAT (STUN) protocol [26] is used by an endpoint to determine public IP address 

and port allocated to it by a NAT device.  Traversal Using Relays around NAT (TURN) 

protocol [27] is used, when knowledge of a public IP address is not sufficient in order to 

traverse a NAT device, and an external server, which relays media streams is needed. 

TURN allows an endpoint to control the operation of such a relay. 

STUN and TURN are combined in Interactive Connectivity Establishment (ICE) protocol 

[28], which enables the procedure of discovery and exchange of the info, which is needed 

to establish a media connection in the presence of NAT. 

The filtering function for video conferencing is usually executed by a Session Border 

Controller (SBC). SBC is deployed at the network border and provides firewall function for 
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both signaling and media traffic. SBC can provide a video transformation function (see 

section IV.B) as well. 

2.1.5.6. Protocols compatibility 

One of the main problems of the industry has been incompatibility of the solutions of 

different vendors for a long time. Signaling protocols as well as configuration of codecs in 

use were implemented differently within the limits of the respective standards.  

Several industry organizations, like International Multimedia Telecommunications 

Consortium (IMTC) [34] and International IP Interconnection Forum (i3forum) [35] unite 

leading video conferencing players in order to eliminate discrepancies in protocols 

implementation. 

2.1.6. Types of media servers  

Media servers, used in videoconferencing, can be of several types, reflecting their 

design and functionality. 

2.1.6.1. Multipoint Control Unit 

Multipoint Control Unit (MCU) [29] is a hardware appliance or software component, 

which provides both video presentation and video transformation functionalities. It means 

that it is capable of providing any type of stream presentation (mixing, switching, other types 

of presentation, requiring stream content processing) as well as stream modification (trans-

coding, etc). An MCU can also be referred to as a ”conference bridge”. 

The standard MCU functionality is to decode all incoming media streams, compose a 

particular stream for each conference participant and encode these streams to send them 

through the network. MCU performance is counted in ports, one port being capable to 

receive one video stream. 

Traditionally, hardware MCUs utilize Digital Signal Processors (DSP) in order to make 

operations over video streams more efficient. Evidently, hardware MCUs are not easily 

scalable, as if you need more ports you need to buy more physical instances of the 

hardware. 

A Software MCU is a software component, which is deployed on standard general 

purpose server hardware. Latest advancements in CPU technologies and associated 

programming libraries, such as the Intel Integrated Performance Primitives (Intel IPP) library 

[36], have made it possible for general purpose CPUs to be used for video processing. 

Contrary to a hardware MCU, Software MCU provides efficient scalability and flexibility. 

Software MCUs can be deployed in the cloud with the access to the exact amount of 

hardware resources, which are needed. That makes the operation of adding and removing 

of MCU ports very simple. Furthermore, Software MCUs benefit from easy operations of 

update and upgrade compared to hardware MCUs. 

Hardware and software MCU logic is depicted in Figure 2.8. 



27 
 

 

Figure 2.8: Logic of MCU 

2.1.6.2. Video gateway 

A video gateway is a hardware appliance or a software component, which provides 

video transformation functions, being a mediator between two incompatible video 

conferencing systems (e.g. from two different vendors). The incompatibility may be on 

signaling and/or media level. Such a way video gateway can provide:  

 signaling: connecting different protocols (e.g. H.323/SIP), or aligning different 

flavors of SIP 

 transport: changing the transport protocol (TCP/UDP) 

 media: trans-coding, adjusting modes of the same codec 

 security: interworking between secure side (SRTP) and insecure side (RTP) 

Video gateway can also be used for some additional services, which are based on 

information passing through it, for example for conference recording.  

2.1.6.3. Selective Forwarding Unit 

Selective Forwarding Unit (SFU) [29] is a software component, which relays the 

received video streams to the different conference participants. For that purpose SFU can 

apply packet transformation functionalities. As SFU doesn’t provide content processing, it 

doesn’t consume a lot of CPU cycles as compared to MCU. 

Often SFU may receive different resolutions of the stream from one conference 

participant based on SVC or simulcast technology, so it should apply some logic in order to 

decide which resolution to send to each recipient. This logic can use the physical 

characteristics of the recipient in order to choose appropriate resolution. It may also be 

used to detect active speaker among conference participants in order to send her stream 

with better resolution than others.  

SFU can be based on: 

 standard video coding, in the case when the endpoints are all supporting this 

encoding 

 Scalable Video Coding 
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 Simulcast Video Coding 

In Figure 2.9 an SFU based conference with three participants is depicted. All the three 

participants send two levels of SVC coding. Two non-active participants, using devices with 

relatively small screens,  receive one high quality stream with the active speaker and one 

low quality stream with the other non-active participant. Active speaker, using a device with 

a big screen, is able to benefit from receiving all the streams in high quality level (even if 

these are two stream of non speaking participants). 

 

Figure 2.9: Logic of SFU based on Scalable Video Coding 

2.1.7. Types of clients 

2.1.7.1. Immersive telepresence 

Immersive telepresence is the most advanced (and also the most expensive) form of 

the video conferencing, providing the users with the experience that all the conference 

participants are located in the same room. Purposely designed conferencing rooms 

equipped with several large screens and a variety of cameras are usually used for 

immersive telepresence. 

2.1.7.2. Hardware clients 

Video conferencing hardware clients are dedicated appliance, that can be used in 

meeting rooms or at working desks in order to participate in a conference. Usually such a 

client comprises a webcam and a loudspeaker. Also it can be equipped with a screen or it 

can use a 3rd party screen. 

2.1.7.3. Video desk phones 

Modern desk phones have big screens, which can host an image produced by a 

videoconference. Integrated or external webcam is used with such a solution. 
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2.1.7.4. PC clients 

PC clients are installed on user’s computers and use webcam and screen of this 

computer. The quality of video stream which is produced/consumed by such a client 

depends on CPU of the hosting computer. 

2.1.7.5. Browser clients 

The software clients, which don’t need installation, but are instead downloaded from a 

web site and ready to be used immediately. This category is now gaining traction especially 

after the introduction of the WebRTC technology. WebRTC standardizes interaction 

between conferencing web application and web browser, based on JavaScript API [32]. 

Also it provides a full media stack (protocols, codecs, …) [33].  

2.1.7.6. Mobile clients 

With the rise of smart phones and tablets, mobile devices have become a popular 

platform for video conferencing clients. Taking into account that such clients are battery 

powered, the codec implementation shout pay special attention to energy consumption. 

2.1.8. Topologies  

2.1.8.1. Dedicated on-premises 

Videoconference systems are traditionally implemented as a hardware appliance, 

deployed in the LAN of an enterprise, or as a software component, installed on one or more 

servers in the data center of an enterprise.  

2.1.8.2. Hosted 

A Hosted deployment means that hardware appliance is physically located in the data 

center of a service provider and operated by its IT team (see Figure 2.10). Deployed 

hardware can be used by several clients or it can be locked to a single client in order to 

provide more security. Hosted deployment should not be confused with Cloud, as the 

former still uses hardware appliances, and, as such, doesn’t provide easy scalability.  

 

Figure 2.10: Hosted hardware MCU 
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2.1.8.3. Cloud 

A Cloud deployment refers to a software component in the form of a virtual machine, 

which is physically located in the data center of a service provider (see Figure 2.11). All 

types of middleboxes (MCU, SFU, gateway) can be deployed in the Cloud. Service is 

offered either as a subscription (customer pays for each registered user) or on a usage 

basis (cost per port per minute). 

 

Figure 2.11: Software MCU in the Cloud 

A Cloud deployment has, as defined in [31], the following properties: 

 On-demand self-service  

 Broad network access  

 Resource pooling  

 Rapid elasticity  

 Measured service  

2.1.8.4. Enterprise Desktop Grid 

An Enterprise Desktop Grid deployment means that video processing software 

component is deployed on the grid of usual office hardware, that is desktop and laptop PCs 

(see Figure 2.12). The machines, which are not occupied with other activities, are selected 

to host videoconferencing processing tasks. All types of middleboxes (MCU, SFU, gateway) 

can be deployed on Enterprise Desktop Grid. This is an experimental type of deployment, 

which is under investigation in this thesis. 

The different approaches to video conference deployments are compared in Table 2.2. 

The following criteria are considered: 

 Expenditure : how the conference service is paid for 

 Support: who is responsible for day-by-day operations and administration 
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 Data: where and how the data, related to the conferencing solution (recorded 

video, logs, …), is stored and who can have access to it 

 Elasticity: to which extent the conferencing solution can be scaled 

 

Figure 2.12: Video conferencing deployed on Enterprise Desktop Grid 

Table 2.2: Comparison Of Deployment Approaches 

 

2.1.8.5. Conference endpoints 

The video presentation logic can be located in the conference endpoints. In this case a 

conference is organized without a middlebox, in a peer-to-peer fashion (see Figure 2.13). 

Advantages: 

 No additional resources are required 

 Hosted Cloud On-premises 

hardware 

On-premises 

software 

Enterprise 

Desktop Grid 

Expenditure Operational  

(OPEX) 

Capital 

(CAPEX) 

Capital 

(CAPEX), 

general 

purpose servers 

are used 

Free, as already 

existing 

hardware is 

reused. 

Support Service provider Local IT 

Data 

 

Questionable when 

contract is stopped, 

potentially can be 

accessed by 3rd parties 

Always accessible by owner, not accessible by 3rd 

parties 

Elasticity Limited by 

hardware 

MCU 

Not limited Limited by 

hardware 

MCU 

Limited by 

servers in 

datacenter 

Depends on load 

of the grid 
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Disadvantages: 

 It is not possible to support many participants, as  any endpoint is required to 

keep a separate video connection with all the other participants.   

 It is not possible to support heterogeneous endpoints: all the participants must 

use the same type of client software or hardware so that codecs and their 

parameters (resolution, frame rate, etc) match. There is actually no gateway 

functionality in peer-to-peer topology, by construction. 

 Absence of enterprise conferencing features: enterprise use cases often require 

more advanced features like conference recording, possibility to add/remove 

participants by a moderator, etc., which is difficult to offer in this distributed 

environment. 

 

Figure 2.13: Full mesh conference topology 

In order to optimize video streams, multicast technology can be utilized. Two types of 

multicast technologies are available: Application Level Multicast (ALM), where the 

distribution of flows towards the different receivers is performed by endpoints themselves 

(i.e. at the application layer) (see Figure 2.14), or directly by the network (IP Multicast). 

 

Figure 2.14: Conference topology based on Application Level Multicast 

IP multicast has, however, not gained traction, because: 

 Internet Service Providers usually don’t offer IP multicast services, by reason of 

management complexity, scalability concerns and security risks, associated with 

this technology. As a consequence, this technology is not available when the 

videoconference takes place over the Internet (involving participants from 

different networks). 
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 In an intranet context, multicast is much widely available. However, in the 

enterprise environment, additional services are needed, which can only be 

provided by a middlebox. ALM is thus more natural in this context.  

Selective Forwarding Units can also be used in the context, when video processing is 

integrated in the endpoints: 

Advantages:  

 Often the most cost-effective choice  

Disadvantages:  

 No trans-coding of different video and audio codecs  

 Limited number of participants (usually less than 6)  

 Bandwidth requirements aggregate to increase demand on the organizer’s 

network 

2.1.8.6. Hybrid topologies 

Different types of hybrid topologies are possible. Particularly on-premises + cloud 

deployments are popular nowadays. If a company has got through mergers and 

acquisitions a fleet of several MCUs of different vendors, it can use a cloud multi-vendor 

interoperability service, which allows using these MCUs in the same conference. Or a 

company can decide to physically protect its data in the form of recordings of the meetings, 

and place the recording and storage server in their data center while the conferences 

consume resources in the cloud.  

2.1.9. Current trends  

Currently, several trends of video conferencing evolution can be identified. 

In the codec area, there is a significant move towards open royalty-free codecs, which is 

supported by a great number of industry players through “Alliance for Open Media” and 

IETF NETVC working group. Further increase of resolution from today’s standards HD 

(1280×720) and Full HD (1920×1080) towards 4k (4096×2180) also gains traction for big 

screens. 

Pure software technologies, on which both server infrastructure and clients are based, 

are extensively developed nowadays.  

On the server side they allow virtualization, which is a necessary requirement in order to 

place video conferencing to the cloud and expose it in the form of VCaaS (Video 

Conferencing as a Service).  

At the same time, we can wait evolutions of a Fog approach [38], which moves 

processing burden from the cloud to the resources in proximity of the end users, for 
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example to the network edge devices. The Fog technique can potentially spare needed 

WAN bandwidth as well as reduce end-to-end delay. 

On the client side, software technologies allow using commodity hardware (PC screens, 

integrated cameras and microphones), instead of purchasing expensive one-purpose 

videoconferencing endpoints. This trend is especially important with wide adoption of 

mobile clients (smart phones, tablets) as video conferencing endpoints for the workers, 

which are not attached to a fixed working place.  

WebRTC technology becomes very popular, as it enables browser based clients, which 

are accessed by the users as standard web pages. This removes the necessity of client 

installation, significantly improving end user experience. Being oriented to numerous web 

developers, the technology is very popular and benefits from wide support of the 

community. 

In today’s world, video conferencing is less considered as a stand-alone technology and 

more as a part of “collaboration”, which is a wider notion, comprising different means of 

meeting organization like instant messaging and screen sharing as well as integration of 

video conferencing functionality to business and vertical applications, which prescribes its 

efficient usage in the context of business and industrial processes of the organization. 

2.2. Academic research of video conferencing 

Generally, distributed on end user devices video conferencing is well researched in two 

forms: 

 Application Level Multicast 

 Peer-To-Peer 

The literature on these two approaches is analyzed in the following sections, the state of 

research as of 2011 is done in [43]. 

Active efforts were also dedicated to research of video streaming, supported by the 

distributed “helpers”. The respective articles are analyzed below as well. 

Energy consumption of media processing operations, which is very important for battery 

greedy mobile devices is considered in [83], [84], [85]. 

Cloud-assisted video conferencing is analyzed in [90], [91], [103], [104].  

Conferences, based on IP Multicast technology, are regarded in [96-98], [107].  

Scalable Video Coding based conferences are described in [99], [105], [108-112]. 

2.2.1. Application Level Multicast 

In particular, the structure and efficiency of Application Level Multicast trees for video 

distribution are well elaborated in the literature.  
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For instance, the construction of optimal overlay video distribution trees has been well 

investigated. In [44], it is considered as a utility maximization problem in the context of 

multi-rate video coding, where the utility function is represented by the Peak-Signal-to-

Noise-Ratio (PSNR) of the decoded video.  

In [45], the authors propose to establish an overlay network of specialized Media 

Control Servers responsible for a transmission path selection. User Endpoints can also be 

engaged in this activity if they are capable enough. Several methods for selecting a media 

transmission path are considered. All these works concentrate on video routing but video 

processing (e.g. mixing, trans-coding) is not considered. 

[77] proposes a method for creating ALM trees used for video conferencing. The 

suggested approach considers the number of clients, the available bandwidth, the available 

RAM, processor speed of the peers and hop distance to sort the various nodes that 

participate in a conference. The most powerful participants play the role of LAN gateways 

through which the video stream is passed from the source to the participants of the given 

LAN which is applicable to our situation too. The subject of this paper is video routing, video 

mixing is not analyzed. 

[78] proposes bandwidth fair algorithm for ALM distribution tree construction and a new 

protocol for ALM packet replication and distribution. Neither video mixing nor media 

negotiation is analyzed. 

[79] describes an ALM approach to video conferencing and lists some criteria for the 

ALM tree building. DNS server is used as a controller of the tree. Some criteria interesting 

in scope of our research are mentioned, for example choosing a peer in the same LAN. The 

tree is used for video distribution only, the question of video mixing is not covered. 

[80] describes decentralized P2P conferencing and presents an ALM-based architecture 

that is enhanced by leveraging conferencing specific behavior of the participating peers with 

different capabilities. The approach proposes to use the most powerful nodes as media 

mixers. The idea is pretty close to the one I’m going to research but the paper describes 

only audio streams without analyzing video specific behavior which in nature very different 

from the audio. 

2.2.2. Peer-to-Peer 

In the context of Peer-to-Peer networking, P2P conferencing systems have been 

considered, such as in [46]. The proposed method takes into account the capability of peers 

while assigning video distribution tasks. Here, again, no media processing is considered. 

The proposed in [76] approach improves P2P video conferencing introducing “helpers” 

which address bandwidth deficiency inherent to pure P2P conferencing. So the authors 

study the optimal bandwidth sharing in multiparty P2P video-conferencing systems with the 

helpers. Video mixing is out of the scope of this paper, only video routing is considered. 
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A pretty close to our topic paper was presented in 2015 by Hossain and Khan [88]. They 

describe an election protocol for a P2P conference, which allows Multipoint Control Units to 

dynamically migrate among peers when new peer joins or leaves. But their algorithms take 

into account only video traffic, minimizing the necessary amount of hops as the metric. 

While it will work for geographically distributed servers, for which we consider the resources 

of the platform itself are big enough, it’s not applicable for our problem, where we should 

base our calculations not only on network characteristics, but also on platform ones, like 

CPU load. 

P2P based conferences are also researched in [92-95], [100-102], [106]. 

2.2.3. Video streaming 

The strategy of using distributed “helpers” can be applied to video streaming 

functionality, where helpers are used to compose the final stream. 

[81] considers a multi-source streaming network with distributed mixers, where streams 

originated from multiple sources are mixed before presented to distributed users. The 

proposed approach minimizes the worst-case delay from the source to users via the mixers. 

An adaptive and distributed protocol called “MixN-Stream” is proposed, which continuously 

reduces the network diameter in the presence of churns.  

[82] investigates the question of composable services in media gateways. A user can 

request a computation to be performed on a set of media streams. The system then 

distributes the computation over multiple gateways for execution. An algorithm for 

decomposing the computation into sub-computations and an application-level protocol that 

locates appropriate media gateways to run these sub-computations is presented. 

Different technological approaches to distributed video streaming are also considered in 

[86], [87], [89]. 

Generally the proposed methods are applied to broadcasted video streaming and 

doesn’t take into account interactive video conference requirements, first of all strict end to 

end delay. Such a way they are not directly applicable to our problematic. 

2.2.4. Conclusion 

To summarize, no results were found on the issue of distributing of video processing in 

the context of enterprise desktop grid. However, we believe that nowadays it is crucial to 

have a video processing entity in the middle of a conference, given the diversity of codecs 

and features, implemented by different vendors and often non-compatible with each other. 
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3. Chapter 3. Node selection algorithms 

 

Chapter 3 

 

Node selection algorithms 

 

3.1. General system description 

The DGC system consists of a set of media servers (tackling video processing tasks), 

distributed on a cluster of ordinary office equipment (PCs, laptops, etc). 

The description of the DGC system is based on two main notions: Tasks and 

Processors.  

Task is a media related activity, traditionally provided by a MCU or a software media 

server: video mixing, video switching, trans-coding, trans-scaling or other manipulations on 

video streams. Audio streams traditionally accompany video streams and are just mixed 

together by the same media server. For example, the Task associated to the video 

conference depicted in Figure 1.2 is video mixing of 4 streams into a single stream (with 

typically an emphasis on the current speaker) and potentially transcoding, in case of 

incompatible codecs of the user terminals.   

Processor is a media server deployed on a general purpose hardware platform like a 

PC. Users can turn on/off their PCs and launch third party applications consuming CPU 

power as well as start/stop calls and conferences randomly. This results in unpredictability 

of the sets of Tasks and Processors, which should be taken into account by the system. 

The main logic of the proposed architecture is to distribute and, if necessary, to 

redistribute Tasks on Processors taking into account changes in the set of Tasks, set of 

Processors and external constraints (that are enumerated below). The result of distribution 

should be “optimal” under some conditions.  

3.2. Optimization criteria 

Optimization criteria can be divided into two sets: the Network and Platform ones. 

Network criteria that should be taken into account include:  

1) WAN bandwidth consumed by a Task. The goal is to try  to economize WAN 

bandwidth which is generally chargeable (as opposed to LAN bandwidth which is 

considered free of charge and thus not controlled). 



38 
 

2) End-to-end delay between endpoints. Delay is very important characteristic 

representing the level of QoE, as large delay makes an interactive conversation difficult or 

even impossible. 

Platform criteria are related to the Processors that are available in the system: 

1) Network connectivity: takes into account whether the platform uses wired or wireless 

(Wi-Fi) network connectivity. Wired connections generally provide more stability and less 

delay, which makes them preferable for interactive video communications as compared to 

wireless connections. 

2) Power supply: takes into account whether the platform is powered by electric circuit 

or by its battery. It is particularly important as video processing operations are very CPU 

intensive. 

3) Resource sharing:  takes into account whether the platform hosts only Processor or it 

is shared with other user activities unrelated to the DGC system. This criterion gives the 

preference to the platforms where no users applications run. Such a preference gives 

stability to the DGC system, as CPU consumption is more predictable. At the same time, 

this prevents from deploying Tasks on the platforms actively employed by the users in order 

not to disturb them.   

4) CPU load: provides the estimation of planned CPU load after a given Task is 

deployed on a given Processor. The system tries to distribute Tasks in such a way that 

CPU load on each platform would be minimized in order to secure the processes if their 

demand of CPU resources were to increase. 

Potentially other optimization criteria could be easily integrated into the logic of Task 

distribution, based on the utilization experience of the real implementation of the DGC 

system.  

All the optimization criteria are different in their importance, leading us to choose a 

MADM (Multi-Attribute Decision Making) approach, where each criterion will be associated 

with a weight. Before presenting the chosen MADM algorithm, we need to analyze the 

system behavior.  

3.3. State Change Events 

The changes in the system that require Task distribution or, under some circumstances, 

redistribution form a queue of State Change Events (SCE). There are several types of such 

events: 

1) Task is added: for example a new conference is created and video mixing Task 

should be distributed to some Processor. 

2) Task is removed: a Task deployed on some Processor is no more needed in the 

system. Removal of a Task may cause some Tasks redistribution for overall optimization. 
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3) Processor is added: a new Processor is added to the system. Some Tasks may be 

redistributed taking added Processor into account. 

4) Processor is removed: a Processor is removed from the system. If any Tasks were 

deployed on this Processor then these Tasks should be redistributed to other Processors. 

5) Value of an optimization criterion is changed: the configuration of the system has 

been modified, for example the network connectivity of a Processor has been altered from 

Wireline to Wireless. In this case, some Tasks redistribution may be performed, if needed.  

State Change Events queue functions as a FIFO (First In, First Out) queue with strict 

priorities. The priorities are the following (from highest to lowest): 

1) Processor is removed (with Tasks deployed on it). 

2) CPU load is increased such a way that it may block the Tasks execution. 

3) Task is removed, Processor is added, Processor is removed (with no Tasks on it), 

CPU load is decreased, other (i.e. not CPU load) optimization criteria are changed. 

4) Task is added.  

The highest priority is set to “Processor is removed” SCE as some Tasks are blocked in 

this situation, leading to bad user experience. The second priority is set to “CPU load is 

increased” SCE for the same reason of potentially worsening user experience. The “Task is 

added” SCE has the lowest priority as it has sense to take into account all changes in the 

system before distributing a new Task in order to avoid consecutive redistributions.    

During State Change Events processing Tasks are deployed/redeployed one by one. 

That is once a decision is taken about deployment/redeployment, the Task is actually 

deployed/redeployed and the system waits until the Task starts consuming CPU cycles (the 

system is then in a stable state). Then deployment/redeployment of the next Task can be 

processed based on the new value of CPU load. 

3.4. MADM approach 

The target of the optimization procedure is to calculate a numerical estimation value, 

taking into account the variety of criteria, which would allow comparing potential 

distributions of the Tasks on the different Processors. The Task will then be deployed on 

the Processor with the optimal target value. A purposely-created MADM method using 

“context aware normalization” is applied to calculate the estimation value. 

One of the specificities of MADM algorithms is the requirement to normalize values of 

attributes. In the general case, no assumptions can be made on them. From the state-of-

the-art [41], several methods of normalization of values in MADM matrix are well-known (Sij 

are elements of original matrix):  
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In all these methods, normalization process involves operations on attributes of all the 

possible cases (e.g. sum of values, maximum value, etc). It means that when the set of 

alternatives is changed (i.e. Processor is added/removed or value of optimization criterion is 

changed), the normalization process should be re-executed. Taking into account dynamic 

nature of the DGC system, it would be highly desirable to be able to make the necessary 

computations for each alternative independently from the other ones. Such an approach 

allows applying the MADM procedure only when a Processor is added to the system or a 

specific attribute of the Processor is changed. In other words, no computation would be 

needed for a given Processor, whatever are the changes applied to other Processors.  

In the specific context of our problem, we introduce in the following a simple 

normalization process that eliminates such dependencies.  We actually know the nature of 

all the attributes, their optimal values and practical limitations. Let’s consider the MADM 

attributes used in the DGC system. 

 1) End-to-end Delay: The optimal value of delay is evidently 0 (if we count it in 

milliseconds). For normalized delay value we use the following expression:  

normalized_delay = real_delay / delay_threshold  

Delay threshold can be defined in different ways. For example, ITU-T recommendation 

G.114 [47] can be used. This recommendation states acceptable voice delays in interactive 

applications. Delay smaller than 150 ms is considered as acceptable, bigger than 400 ms 

as inacceptable and values between the two imply that there will be some quality issues. 

Such a way we can set the value 400 as delay_threshold and it will mean that all delays 

more than 400 ms will not be distinguishable from each other as all the normalized_delay 

values bigger than 1 are rounded to 1. 

 2) Used WAN Bandwidth: The optimal theoretical value for WAN Bandwidth (WBW) 

used by a Task is also 0, it’s achieved when all the endpoints and the Processor are in the 

same LAN. For normalized WAN bandwidth value we will consider the following expression: 

normalized_WBW = real_WBW / max_WBW  

The value of max_WBW can be taken as the sum of bandwidths of all the video streams 

of a given Task. This value is known at the moment of creation of the Task.  

 3) Platform criteria: All platform criteria, except CPU load (i.e. network connectivity, 

power supply, resource sharing) are binary by their nature that is they are “positive” or 

“negative”. Positives are: 
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- Network connectivity = wireline  

- Power supply = electric circuit  

- Resource sharing = dedicated 

Negatives are: 

- Network connectivity = wireless 

- Power supply = battery 

- Resource sharing = shared 

For conformity we set “0” value for positive case and “1” value for negative case. 

Thanks to that we have the situation when ideal variant of attribute value is “0” and 

normalization is not needed. 

CPU load criterion value is presented in percents of CPU usage taken after a given 

Task were deployed on a given Processor. It gives the optimal theoretical value of “0” (while 

not achievable in practice) and the worst value of “100”. For normalized CPU load value we 

will consider the following expression: 

normalized_CPU_load = real_ CPU_load / 100  

CPU load criterion has some particularities, which are described below.  

All optimization criteria used in calculations are represented in Table 3.1. 

Table 3.1: Optimization Criteria 

Attribute name 
Ideal 
value 

Worst value Normalization divisor 

End-to-end delay 0 ∞ 
400, if delay <= 400 
delay, if delay > 400  

WAN bandwidth 0 Sum of all video streams Sum of all video streams 

Network connectivity 0 1 Not needed 

Power supply 0 1 Not needed 

Resource sharing 0 1 Not needed 

CPU load 0 100 100 

 

The problem is finally formulated as an inverse normalized Simple Additive Weighting 

(SAW) method [42]:  

                                               

 

   

                                  

where: 

ORj : Objective Result for Processor j 
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wi : weight of criterion i 

aij : normalized value of criterion i on Processor j  

M : number of criteria 

Inverse SAW means that we need to take as the result the smallest ORj instead of the 

biggest one. Normalized SAW means that ORj value is in the range [0, 1]. This formula 

implies that ORj is calculated for each Processor independently and only when the 

Processor appears in the system or value of an optimization criterion is changed.  

3.5. CPU load criterion 

The Processor CPU load is different from other optimization criteria as its value 

changes continuously compared to rather rare changes of other criteria values. From the 

point of view of the practical implementation, this means that we can calculate ORj for all 

the criteria except CPU load and store it in a cache while we need to observe the value of 

CPU load in real time. 

Furthermore, in order to be able to compute the impact of a particular type of Task on 

the CPU load of a particular Processor, a preliminary Qualification process is needed. 

Qualification process means the vendor of the DGC system installs a Processor on a 

particular platform, then all types of Tasks are executed and CPU consumption level is 

collected and stored. Then these pre-collected values can be used as an estimation of 

necessary CPU resource when the DGC system simulates distribution of a Task on a 

Processor installed on the qualified platform at a customer site.  

Table 3.2: Example of Load Qualification Matrix 

                  Platform 
Type of Task 

PC Intel core Quad2 CPU 
@ 2.40 GHz 

IPhone 5S Alcatel-Lucent 
8082 deskphone 

Mixing 3 H264 streams 
in HD  

X1% CPU Load Not possible Not possible 

Trans-coding H264 to 
VP8 in HD 

X2% CPU Load Not possible Y1% CPU Load 

Trans-scaling H264 
from HD to CIF 

X3% CPU Load Not possible Y2% CPU Load 

 

Comparing columns of Load Qualification Matrix we can understand which of two Tasks 

is more resource-intensive so we can sort all the Tasks by their CPU consumption – it’s 

needed in some algorithms.  

 

Merging information from Load Qualification Matrix with information about real CPU load 

of Processors we obtain the Deployment matrix, which is used in some algorithms 

described further. 

Table 3.3: Example of Deployment matrix (bold means real values, not simulated) 
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 Proc1  
(Real CPU Load: 70) 

Proc2  
(Real CPU Load: 30) 

Proc3  
(Real CPU Load: 80) 

Task1 
(Deployed on 
Proc1) 

Load Qualification: 30 
SSR: 40 
RCL: 70 
RDR: 55 

Load Qualification: 20 
SSR: 70 
DSR: 50 
FSR: 60 

Load Qualification: 20  
SSR: 50 
DSR: 100 
FSR: 75 

Task2 
(Deployed on 
Proc1) 

Load Qualification: 40 
SSR: 40 
RCL: 70 
RDR: 55 

Load Qualification: 30  
SSR: 50 
DSR: 60 
FSR: 55 

Load Qualification: 30  
SSR: 50 
DSR: 110 
FSR: 80 

Task3 
(Deployed on 
Proc2) 

Load Qualification: 20  
SSR: 40 
DSR: 90 
FSR: 65 

Load Qualification: 15 
SSR: 50 
RCL: 30 
RDR: 40 

Load Qualification: 15  
SSR: 50 
DSR: 95 
FSR: 72 

 

How numbers in the matrix are produced: 

Task1 on Proc1 (Real CPU Load: 70) 

Load Qualification: 30 = got by qualification process 

SSR: 40   = calculated by Static Simulation 

RCL: 70   = 40 [CPU load by other processes] + 30 [Load qualification] 

RDR: 55   = (40 [SSR] + 70 [RCL]) / 2 

 

Task1 on Proc2 (Real CPU Load: 30) 

Load Qualification: 20 = got by qualification process 

SSR: 70   = calculated by Static Simulation 

DSR: 50   = 20 [RCL] + 30 [Load Qualification] 

FSR: 60   = (70 [SSR] + 50 [DSR]) / 2 

3.6. MADM Example 

3.6.1. Description 

The proposed approach is illustrated by the following example. 

Let’s we have 2 Endpoints on 2 sites: 

- Endpoint1 on Site1 

- Endpoint2 on Site2 

These endpoints use different video codecs so for direct communication trans-coding is 

needed. 

Also there are the following Nodes in the system: 



44 
 

- Node1 on Site1: PC with circuit supply using wireline connection  

- Node2 on Site1: Laptop with battery supply using Wi-Fi connection  

- Node3 on Site3: PC with circuit supply using wireline connection  

One way delay between any 2 sites is 30 ms. Delay of trans-coding executed on PC is 5 

ms. Delay of trans-coding executed on laptop is 12 ms. Delay of Wi-Fi link is 7 ms. (Note: 

values are just illustrative, they may differ from values in real life). 

Bandwidth consumed by both codecs is 1 mb/s. 

 

 

Figure 3.1: Topology fog MADM illustration 
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3.6.2. Calculations 

The calculations in MADM are made using the standard decision table (see Figure 3.2): 

 

Figure 3.2: MADM decision table format 

Taking into account our modifications which introduce a predefined norm for each 

attribute, we add an additional column with the norm. 

Let’s see which results we will have for described above topology while modifying some 

values and weights. In bold are the performances which we are going to modify. 

Let’s for beginning chose the weights that put stress to Bandwidth and Delay, and 

especially to Power: 

Weight  Attribute  Node1  Node2  Node3  Norm  

20  Bandwidth  2  2  4  4  

20  Delay  42  63  72  400  

10  Network  WIRELINE  WIRELESS  WIRELINE  1  

40  Power  CIRCUIT  BATTERY  CIRCUIT  1  

10  Shared  SHARED  DEDICATED  DEDICATED  1  

      

 
Result  22  63  23  

 

 

We see that Node1 and Node3 are very close, while Node2 is much worse, mostly 

because it’s powered by a battery.  
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Now we change the type of alimentation of Node2 from Battery to Circuit: 

Weight  Attribute  Node1  Node2  Node3  Norm  

20  Bandwidth  2  2  4  4  

20  Delay  42  63  72  400  

10  Network  WIRELINE  WIRELESS  WIRELINE  1  

40  Power  CIRCUIT  CIRCUIT  CIRCUIT  1  

10  Shared  SHARED  DEDICATED  DEDICATED  1  

      

 
Result  22  23  23  

 

 

The result is that all the three nodes are almost equal. 

Now let’s imagine that Site3 becomes very far from the other two sites and delay 

becomes 500 ms:  

Weight  Attribute  Node1  Node2  Node3  Norm  

20  Bandwidth  2  2  4  4  

20  Delay  42  63  500  400  

10  Network  WIRELINE  WIRELESS  WIRELINE  1  

40  Power  CIRCUIT  CIRCUIT  CIRCUIT  1  

10  Shared  SHARED  DEDICATED  DEDICATED  1  

      

 
Result  22  23  40  

 

 

This logically leads to the worsening of the result of the Node3. 
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Now let’s change the weights, putting additional stress to Power and reducing all other 

weights. In this case the initial version logically has even more expressive results: 

Weight  Attribute  Node1  Node2  Node3  Norm  

15  Bandwidth  2  2  4  4  

15  Delay  42  63  72  400  

5  Network  WIRELINE  WIRELESS  WIRELINE  1  

60  Power  CIRCUIT  BATTERY  CIRCUIT  1  

5  Shared  SHARED  DEDICATED  DEDICATED  1  

      

 
Result  13  74  17  

 

 

With such disposition the battery powered node is significantly worse that the other two. 

Even if we put again the big delay for the Node3 it can’t change the situation radically:  

Weight  Attribute  Node1  Node2  Node3  Norm  

15  Bandwidth  2  2  4  4  

15  Delay  42  63  500  400  

5  Network  WIRELINE  WIRELESS  WIRELINE  1  

60  Power  CIRCUIT  BATTERY  CIRCUIT  1  

5  Shared  SHARED  DEDICATED  DEDICATED  1  

      

 
Result  13  74  30  

 

 

The Node2 remains the worst one. 

Such a way we see how changes in weights and attribute values can affect significantly 

the decision which node to select for Task deployment. 
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3.7. Redeployment Penalty 

In order to improve user’s perception of the conference, we introduce the rate of Task 

redeployments, defined as the number of times the existing Task is redeployed from one 

Processor to another. Redeployments will lead to interruptions in the media streams, so it's 

highly desirable to minimize them. 

A special parameter "Redeployment Penalty" is employed by the algorithms in order to 

regulate the number of potential redeployments. When a Processor is considered as a 

candidate to host a Task, the gain in Objective Result must be above this threshold in order 

for the Task to be redeployed to this Processor. Note also that a simple hysteresis 

mechanism is applied on the CPU load to prevent from cyclic redeployments when the CPU 

load changes sporadically. 

3.8. Algorithms of Processor selection  

3.8.1. Notation conventions for algorithms 

A Task is denoted by T, a set of Tasks is denoted by {T}. For identification purpose, the 

Task I is denoted by Ti. Similarly are used P, {P} and Pi for Processors. 

SR stands for Simulation Result and equals OR (see (1)) resulting from the simulation 

process, that is from calculating OR for a Task in application to a Processor but the Task is 

not really deployed on this Processor. DR stands for Deployment Result which is OR of a 

given Task really deployed on a given Processor and consuming CPU cycles of this 

Processor. DR values are stored in the system. 

SR of Task Ti simulated on Processor Pj is denoted by SRij, DR uses the same notation 

for deployed Tasks. 

Redeployment Penalty, denoted by λ, is a constant in the range [0, 1] which reflects the 

threshold of the difference between SR and DR of a Task that triggers its redeployment. 

That is if DRim – SRin > λ, then Task Ti is redeployed from Processor Pm to Processor Pn. 

3.8.2. Task is added 

1. Compute SR for added Task Ta on all the Processors {Pj} registered in the system. The 
result is {SRaj}. 

2. Deploy Task Ta on Processor Pd for which SRad = minj {SRaj}. If no Processor is able to 
accept Task Ta then the Task is considered as lost. 

3.8.3. Task is removed 

Generally to remove a Task we need only to remove appropriate objects from the 

program. No Tasks redeployment is triggered by Task removal itself. However, CPU 

resources are freed and this fact will be notified to the DGC system, which might in turn 

trigger redeployment (see algorithm IV.G “Processor CPU load is decreased”). 
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3.8.4. Processor is added 

1. Compute {SRia} for all the Tasks in the system {Ti} simulated on added Processor Pa. 

2. Retrieve from the system {DRij} for all the Tasks {Ti} deployed on the respective 
Processors {Pj}. 

3. Calculate {Dia} = {DRij – SRia} for Tasks {Ti}. 

4. Let’s Dxa = maxi{Dia} which corresponds to Task Tx. If Dxa > λ then redeploy Task Tx from 
Processor Pj on which it’s currently deployed to Processor Pa. 

5. If Task Tx was redeployed on step 4 then wait until system is in stable state and return to 
step 1.  

3.8.5. Processor is removed 

1. Using the results of Qualification process, select the most resource-intensive Task Tx 
from the set {Tf} of Tasks deployed on the removed Processor Pr. Compute {SRxj} for 
Task Tx simulated on all the Processors {Pj} registered in the system.  

2. Let’s SRxy = minj{SRxj} which corresponds to Processor Py. Redeploy Task Tx from 
Processor Pr to Processor Py. Remove Task Tx from {Tf}. If no Processor is able to 
accept Task Tx then the Task is considered as lost.  

3. If {Tf} is not empty then wait until the system is in stable state and return to step 1. 

3.8.6. Processor CPU load is increased 

1. Retrieve from the system {DRic} for Tasks {Ti} deployed on Processor Pc for which CPU 
load is increased. 

2. Compute {SRij} for Tasks {Ti} simulated on all Processors registered in the system {Pj} 
except Pc. 

3. Calculate {Dij} = {DRic – SRij} for Tasks {Ti}. 

4. Let’s Dxy = maxij{Dij} which corresponds to Task Tx and Processor Py. If Dxy > λ then 
redeploy Task Tx from Processor Pc to Processor Py. 

5. If Task Tx was redeployed on step 4 then wait until system is in stable state and return to 
step 1. 

3.8.7. Processor CPU load is decreased 

1. Retrieve from the system {DRij} for Tasks {Ti} on respective Processors {Pj} on which 
they are deployed. 

2. Compute {SRic} for Tasks {Ti} on Processor Pc for which CPU load is decreased. 

3. Calculate {Dic} = {DRij – SRic} for Tasks {Ti}. 

4. Let’s Dxc = maxi{Dic} which corresponds to Task Tx. If Dxc > λ then redeploy Task Tx from 
Processor Pj to Processor Pc. 

5. If Task Tx was redeployed on step 4 then wait until system is in stable state and return to 
step 1. 
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3.9. Possible extensions 

3.9.1. Media stream relays 

One of the main requirements that are posed to DGC system is sparing WAN bandwidth. 

To reduce WAN bandwidth the situations when several media streams delivering the same 

content, originating on one Network Location and terminating on another Network Location 

should be optimized. Such situations are possible when several stream consumers, located 

on one site, use the same output of a Processor located on another site. For example 4 

persons participate in a conference: users A and B on Site 1, users C and D on Site 2. 

Processor 1 is located on Site 1 and plays the role of video mixer. Each conference 

participant receives the image of all 4 participants. Such a way without a Relay the resulting 

video stream is sent twice over the WAN from Site 1 to Site 2.  

The role of Relay is to accept the stream and fork it to all necessary recipients.  In our 

case with a Relay deployed on Site 2 the resulting stream is sent only once and then forked 

by the Relay for Users C and D. 

Without a Relay the streams are sent twice over WAN: 

 

Figure 3.3: Topology without Relay 

With a Relay only one stream is sent over WAN and then forked locally: 

 

Figure 3.4: Topology with Relay 

Trigger: a new Task Ta is added to the system and should be distributed to some 

Processor taking into account that additional Processors can be used as Relays. 
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Basic algorithm: 

1. For each Processor Pj on which Task Ta can be deployed consider respective 

topology of video streams distribution and determine all pairs of Network Locations in 

a form NetLocPairk = [Srck, Dstk] where at least two streams from Network Location 

‘Src’ to Network Location ‘Dst’ have the same contents. As a result a set 

{NetLocPairjk} is formed for each Processor Pj. 

2. For each pair NetLocPairjk find the best Relay located in Network Location Dstk. Best 

relay is determined by application of static and dynamic simulations but from the set 

of optimization policies used for static simulation the network policies are removed as 

the scope of a Relay is one Network Location. As a result the set of Relays {Pjk} is 

defined for each Processor Pj. 

3. Execute static simulation, dynamic simulation and calculate Full Simulation Results 

for Task Ta on all Processors {Pj} taking into account spared WAN bandwidth thanks 

to respective set of Relays {Pjk}. As a result the set {FSRaj
relay} is formed. 

4. Task Ta is deployed on Processor Pd for which FSRad
relay

 = minj {FSRaj
relay}. 

3.9.2. Taking RTCP feedback into account 

The standard way for the sender of a video stream to receive a feedback on how 

successfully it was received is RTCP feedback described in IETF RFC 3611. Normally 

video encoder takes into account info on degraded user experience caused by increased 

delay/jitter/packet loss and reduces size/frame rate/ quality of the video stream.  

In DGC system it’s also possible to try to resolve the problems with the stream delivery 

by changing Processor if there are some alternatives. To implement this logic a new type of 

SCE should be added: “Network problems reported in real-time”. When the system receives 

this SCE via SCE queue then it considers the variants of re-distribution. 

The idea is to remove problematic link from network optimization policies, calculate new 

FSR value and re-deploy Task Tp which experiences problems from the Processor Pf on 

which it’s factually deployed to another Processor according to the new FSR value.  

Basic algorithm: 

1. Retrieve Real Deployment Result for Task Tp on Processor Pf: RDRpf. 

2. Remove problematic link from network optimization policies. 

3. Execute static simulation, dynamic simulation and calculate Full Simulation Results 

for Task Tp on all Processors {Pj} from {P} \ Pf. As a result a set {FSRpj} is formed. 

4. Select FSRpy = minj {FSRpj} which corresponds to Processor Py. 

5. If (FSRpy - RDRpf) < DISTURBANCE_RATE then re-deploy Task Tp to Processor Py.  
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3.10. Analysis of the process 

3.10.1. Scalability 

The situation is possible when an enterprise where DGC system is installed is big 

enough to experience problems in supporting the full Deployment Matrix and using it in all 

the algorithms. To make DGC system scalable and to limit the amount of necessary 

calculations the following approach is proposed. 

The idea is to limit the number of Processors considered for distribution of a given Task. 

Using this approach N Processors with smallest SSR values are selected and only these 

Processors are used in further calculations. 

Let’s consider the use case of Added Task in the context of Scalability. A new Task Ta 

is added to the system with big number of Processors and should be distributed to some 

Processor.  

Basic algorithm: 

1. Execute static simulation of Task Ta on all the Processors from {P} and select N 

smallest values of SSR. These values form the set {SSRaj
s}. 

2. Select the set of Processors {Pj
s} corresponding to the values in {SSRaj

s}.  

3. Execute dynamic simulation of Task Ta on Processors from { Pj
s}. As a result a set of 

Dynamic Simulation Results {DSRaj
s} is created.  

4. A set of Full Simulation Results {FSRaj
s} is created using elements of {SSRaj

s} and 

{DSRaj
s}. 

5. Task Ta is deployed on Processor Pd for which FSRad
s
 = minj {FSRaj

s}. 

3.10.2. Algorithms complexity 

Analysis of algorithms complexity is performed by application of the standard method of 

loops execution number counting. 

 

Let’s introduce the following notation: 

- P: number of Processors 

- Ts:  number of Tasks in the system, value can be potentially big 

- Tp:  number of Tasks deployed on one Processor, value is small 

- C: number of clients in a given Task 

- N: number of Network Locations in the system 

The complexities: 

- Static Simulation     O(1) 

- Dynamic Simulation    O(1) 

- Use case: Task is added   O(P) 



53 
 

- Use case: Task is removed  O(1) 

- Use case: Processor is added  O(Ts
2) 

- Use case: Processor is removed  O(Tp
2 + P) 

- Use case: CPU load is increased  O(PTp
2) 

- Use case: CPU load is decreased  O(Tp
2) 

- Media Stream Relays   O(P + C + N) 

- Taking RTCP feedback into account O(P) 

- Scalability      O(P) with coefficient lesser than for the  

      use case “Task is added” 
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4. Chapter 4. Solution architecture 

 

Chapter 4 

 

Solution architecture 

 

We consider the static and dynamic aspects of DGC architecture, implemented while 
using two distinctive approaches.  

At first, we see how the DGC system looks like and functions when it’s implemented as 
a standalone system (i.e. in “fog” mode). That is when only the resources available at 
enterprise premises can be used for organizing a conference. The system based on this 
approach evidently can’t guarantee any predefined SLA (Service Level Agreement) as it 
depends on quantity of available resources at enterprise premises. 

To avoid this limitation, the DGC system can be coupled with Cloud based conferencing, 
which we consider at second. In this case on-premises resources are utilized at available 
extent, all the requests beyond this capacity are served by Cloud. 

4.1. Standalone DGC system 

4.1.1. DGC architecture 

The structure of components of the DGC system is depicted in Figure 4.1. 

 

Figure 4.1: Structure of DGC standalone system 
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Components: 

- User equipment: a device, employed by a user, in order to participate in a 
conference (PC, laptop, tablet PC, smart phone) 

- Video endpoint: a software application capable of treating SIP call signaling 
and RTP flow delivering audio and video. It’s not part of our research - we use 
existing software. 
 

- Enterprise communications platform: a centralized dispatcher of clients requests, 
responsible of deciding which Tasks are executed on which Processors  

- SIP server: processes standard telephony/conferencing signaling for call 
establishing and tearing. It’s not part of our research - we use existing 
software. 

- Video processing controller: distributes Tasks and observes status of Nodes 
 

- Fog node:  a hardware platform (PC, laptop) used to host media server  
- Monitoring agent: responsible for observing the state of the node, first of all 

CPU load, and reporting this info to Video processing controller. This reporting 
is combined with Heartbeat functionality (that is with the regular check that the 
Node is still functioning and not halted). As well it measures delay to different 
network locations, these results are used by Video Processing Controller in 
Tasks distribution logic. 

- Media server: the component which actually executes media processing tasks 
like audio/video stream mixing. A general purpose off-the-shelf media server 
can be used, no development specifically done for DGC is needed. It’s not 
part of our research - we use existing software.  

Interfaces: 

- SIP signaling: standard SIP signaling is utilized, no special modifications for DGC 
are needed 
 

- RTP stream: standard RTP flows are employed, no special modifications for DGC 
are needed 
 

- API for video processing tasks control: through this API SIP server notifies Video 
Processing Controller about creating/removing/updating of conferences and Video 
Processing Controller notifies SIP server which manipulations with endpoints should 
be executes. 

 

- API for fog node monitoring: through this API Monitoring Agent notifies Video 
Processing Controller about the fact that a Fog node joins/disjoins the Desktop Grid 
and regularly updates the info about CPU load as a part of Heartbeat mechanism. 
Also through this API Video Processing Controller requests Monitoring Agent to 
measure delay to some network location. 

4.1.2. Delay estimation 

Information about the characteristics of the links between the enterprise sites is critically 
important for efficient functioning of DGC system. This information comprises several 
factors: 
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- delay  
- bandwidth 
- cost  

A possible solution for this problematic is ALTO (Application-Layer Traffic Optimization) 
[64]. ALTO provides a possibility for a network element to ask a server, which is aware 
about network characteristics, to get access to this info in convenient form. ALTO provides 
information in the form of a network map and a cost map.  

Network map defines groups of network elements which are close to each other so that 
they can be considered as a one logical entity. An identifier is assigned to each group. In 
our context these are nodes and endpoints which are physically located on one enterprise 
site and connected by LAN. 

Cost map provides costs between groups defined in network map. Cost map is a 
generic notion that can reflect a variety of different link characteristics, like distance 
between network location expressed in number of hops. Some integer number is used to 
express the link cost so the costs can be compared with each other. 

As of the year 2016 the IETF working group has defined several main ALTO documents 
and continues working on details. Such a way we have a chance to see the results of this 
work in production in some time. 

While there are no industrial deployments of ALTO services for the moment, we can 
estimate delay between enterprise sites and remote endpoints using other means. The 
simplest method is just direct probing. We can ask endpoints to ping different nodes in 
order to know exact round-trip time. 

There also exist an academic research on the topic of delay estimation. The two general 
approaches can be applied on application layer to our problem: 

- Coordinates-based Systems (GNP [65], Vivaldi [66], PIC [67], Sequoia [68], ICS [69], 
Pharos [70]) 

- Path Selection Services (IDMaps [71], Meridian [72], OASIS [73]) 

Comprehensive overview of practical aspects of existing methods of discovering and 
using network topology information for estimating network delays is done in [113]. Based on 
this overview it seems that Meridian is the most appropriate as it doesn’t need any 
additional infrastructure and gives exact values instead of estimated. 

4.1.3. Example of ALTO usage 

Let’s consider example of integration of ALTO info into our algorithms. Let’s we have 2 
Endpoints on 2 sites and one remote Endpoint connected to the third site. Three endpoints 
join the conference. Each participant wants to see two other participants mixed into one 
image. 

There are also 2 Nodes which can be used for video processing on the first and the 
third sites.  

(Note: described video transformations are chosen for demonstration purpose only so 
the result doesn’t necessarily expose the real life transformations required for good end 
user experience.)  
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 Figure 4.2: Topology for example of ALTO usage 

Let’s the configuration of endpouints is the following: 

Endpoint1 

- Produces: H264 HD 
- Consumes: H264 VGA 

Endpoint2 

- Prod: H264 VGA 
- Cons: H264 HD 

Endpoint3 

- Produces: VP8 CIF 
- Consumes: VP8 CIF 

ALTO Service provides costs between network locations. In our case we are interested 
in WAN links so network locations are sites and remote devices. 

Network map (Identifiers mapped to network locations, in our case sites and remote 
devices): 

- PID1: {Site1 = [Endpoint1, Node1]} 
- PID2: {Site2 = [Endpoint2]} 
- PID3: {Site3 = [Node2]} 
- PID4: {Endpoint3} 

Cost map (Integers, reflecting link costs between network locations): 

- PID1: {PID1:1, PID2:3, PID3:5, PID4:4} 
- PID2: {PID1:3, PID2:1, PID3:6, PID4:4}  
- PID3: {PID1:4, PID2:6, PID3:1, PID4:2} 
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- PID4: {PID1:4, PID2:4, PID3:2} 

Then we need to provide Tasks definition, that is which exactly operations on video 
streams should be executed in order to provide appropriate user experience. 

On the streams addressed to Endpoint1 (Ep1): 

- Stream from Ep2 must be mixed with stream from Ep3 
- Stream from Ep3 must be transcoded VP8->H264, upscaled CIF->VGA and then 

mixed with stream from Ep2 

On the streams addressed to Endpoint2 (Ep2): 

- Stream from Ep1 must be mixed with stream from Ep3 
- Stream from Ep3 must be transcoded VP8->H264, upscaled CIF->HD and then 

mixed with stream from Ep1 

On the streams addressed to Endpoint3 (Ep3): 

- Stream from Ep1 must be transcoded H264->VP8, downscaled HD->CIF and then 
mixed with stream from Ep2 

- Stream from Ep2 must be transcoded H264->VP8, downscaled VGA->CIF and then 
mixed with stream from Ep1 

Taking all the above info we need to distribute these Tasks. Distribution of the tasks is 
possible with different policies, it depends whether only delay, delay + bandwidth or some 
other parameters should be optimized. In this example let’s consider bandwidth as not 
lacking/expensive resource so we optimize only delay. 

To do that we should avoid extra encodings as the most expensive operation[114]. The 
best place to fulfil a task in this case is on the consumer immediately before rendering.  

In our example only Ep1 can execute necessary stream processing. It means that Ep2 
and Ep3 just send their streams directly to Ep1. 

Ep2 can’t fulfil necessary stream transformations so they are done on Node1 and 
resulting stream is sent to Ep2. 

For Ep3 we need to transcale and downscale streams from Ep1 and Ep2. The best 
place for it is Site1 as streams from Ep1 and Ep2 are already there. But if Node1 is not 
capable to fulfil the second task (in parallel with processing streams for Ep2) we need to 
send streams from Ep1 and Ep2 to Node2 on Site3 and then send resulting stream to Ep3. 
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Figure 4.3: Video streams disposition in example of ALTO usage 

4.2. Cloud integrated DGC system 

As it was mentioned in “Introduction”, DGC system itself can’t guarantee appropriate 

SLA (Service Level Agreement) as its resources are controlled by the end users, and not by 

the system itself. To resolve this problem DGC system can be combined with the cloud 

conferencing system in order to provide both SLA and cost benefits at the same time. 

In order to get even more benefits, we combine Cloud/Fog approach with the different 

types of media servers, notably MCU and SFU, which provide different exploitation 

characteristics. All the possible combinations and circumstances, under which their usage 

gives the most interest, are considered in this chapter. 

Recently the cloud video conferencing has gain traction thanks to a number of useful 

properties, such as flexibility and pay-per-use model. At the same time, from the point of 

view of the cloud video conferencing provider, there exists a number of problems with this 

approach, we mention here two of them: 

- Need of significant processing resources in cloud as all calculations are concentrated 

in one place 

- Increased end-to-end delay as data is sent from the client to the cloud provider data 

center and back, often via slow and unreliable Internet links 

The two problems may be resolved by the proper choice of the type of video conference 

established by the provider. The type may be traditional “MCU” conference which needs 

additional decoding/encoding on the server and results in greater CPU consumption and 

end-to-end-delay, or it may be “SFU” conference which doesn’t need video stream 

processing. At the same time a concept of “Fog” can be engaged in order to choose the 

type of resources on which media server will be deployed. 
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Combining dynamically MCU/SFU and Cloud/Fog approaches we can: 

- Spare cloud video conferencing provider resources in terms of CPU cycles and 

network bandwidth consumption 

- Significantly reduce end-to-end delay, improving end user QoE 

 

 

Figure 4.7: Structure of DGC system integrated with Cloud 

The idea is the following: we combine before mentioned techniques and obtain four 

possible approaches to video conferencing. Signaling server can be in Cloud or on-

premises. We are talking here only about media server and media flows. 

SFU in Fog:  

‘+’:    No Cloud CPU utilization  

‘+’:    No WAN utilization  

‘+’:    No additional decoding/encoding 

MCU in Fog:   

‘+’:    No Cloud CPU utilization  

‘+’:    No WAN utilization  

‘-’:     Additional decoding/encoding 

SFU in Cloud:  

‘+/-’: Moderate Cloud CPU utilization  
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‘-’:    WAN utilization  

‘+’:    No additional decoding/encoding 

MCU in Cloud:   

‘-’:    Extensive Cloud CPU utilization  

‘-’:    WAN utilization  

‘-’:    Additional decoding/encoding 

We can see that from the point of view of the both stakeholders (provider and client) the 

four approaches can be prioritized (from the best to the worst): 

1. SFU in Fog 

2. MCU in Fog 

3. SFU in Cloud 

4. MCU in Cloud 

Cloud provider keeps its revenue as it controls the overall solution and charges for its 

usage. Utilization of on-premises fog resources are prescribed by policies which are 

negotiated between the provider and the client. Policies may vary from permissive (“all not 

occupied resources may be used for the conferencing”) to restrictive (“client prohibits using 

any on-premises resources”, which results in pure cloud solution). 

 

Figure 4.8: Possible types of video conferencing 
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In Figure 4.8: 

- The cloud SFU & the cloud MCU are located in the cloud. The use of these 

resources will introduce extra charges depending on the policies of the cloud 

provider. 

- The signaling server can be located in the cloud for the cloud based solution using 

Fog resources. 

- The signaling server can be located in the Fog, for the on-premise based solution 

using cloud based MCU/SFU resources. 

- Fog part will not introduce extra charges. 

When a new video conference is going to be organized, an algorithm is applied to 

choose dynamically which type of conference will be performed (SFU or MCU), and where 

the media server is instantiated (Fog or Cloud). 

Media server can be moved dynamically from Fog to Cloud or from Cloud to Fog 

according to the available resources in the Fog. And it can be switched from SFU mode to 

MCU mode according to the capacity of the end users equipment.   

In the proposed solution SIP signaling and RTP video streams are standard, that is no 

extensions, designed specifically for our solution, are needed. Video processing controller 

calculates the possibilities of deploying a given video processing Task to a Fog node or 

refuses the task if Fog is not capable to accept it. In the case of refusal the Task is 

deployed to the Cloud.  
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5. Chapter 5. Evaluation by simulation 

 

Chapter 5 

 

Evaluation by simulation 

 

5.1. Simulation input 

The developed task distribution algorithms have been tested using Discrete Event 

Simulation approach. Discrete Events in the simulation are mapped to State Change Events 

reflecting the typical load of an enterprise communication system.  

The characteristics of a typical enterprise communications system were collected using 

the platform, deployed at a real enterprise (Alcatel-Lucent Enterprise) for its internal use. In 

Figures 5.1 and 5.2 the collected statistics of call arrivals is depicted in two formats. We can 

clearly see peaks and dips during working hours, peaks are aligned with the beginning of 

hours (XX:00) and half-hours (XX:30) when scheduled meetings are normally planned. 

 

Figure 5.1: Distribution of call arrivals by day and by hour 
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Figure 5.2: Distribution of call arrivals by hour 

In Figure 5.3 the distribution of call durations is demonstrated. Most of durations are 

concentrated around thirty minutes and one hour calls which reflects the standard durations 

of regular scheduled conferences. 

 

Figure 5.3: Distribution of call durations 
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The algorithms have been developed in Java programming language using DESMO-J  

library [74] for Discrete Event Simulation and JFreeChart library [75] for graphics. 

5.2. Simulation topology 

The simulation topology includes 4 sites with 2 Processors and 4 to 8 endpoints on 

each site: 

- Site A: Processors (PA1, PA2), Endpoints (EA1, … EA4) 

- Site B: Processors (PB1, PB2), Endpoints (EB1, … EB8) 

- Site C: Processors (PC1, PC2), Endpoints (EC1, … EC4) 

- Site D: Processors (PD1, PD2), Endpoints (ED1, … ED8) 

 

The delays between the sites: 

- Site A - Site B : 20 ms  

- Site A - Site C : 40 ms 

- Site A - Site D : 50 ms 

- Site B - Site C : 50 ms 

- Site B - Site D : 60 ms 

- Site C - Site D : 80 ms 

 

The Tasks are represented by the conferences comprising random number of 

participants (2 to 4) located on 1, 2 or 3 sites. All the Tasks have the same nominal type 

and consume CPU power proportionally to the number of conference participants. Tasks 

are added to the system during extended business hours (7:00 - 21:00) for a period of a 

month, with the duration of each Task from several minutes to 2 hours. Both arrival times 

and durations are generated following statistical distributions taken from a real enterprise 

communication system. Weights of all the optimization criteria were equal in these tests. 

This is somewhat arbitrary but they can only be tuned properly once real media server 

implementation on desktop equipment is used.  
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Figure 5.4: Graphical representation of simulation topology 

5.3. Simulation results 

The target of the simulation was in particular to discover how Redeployment Penalty 

value affects different aspects of the solution. For the performance reason calculations are 

implemented in integer numbers with all values normalized in the range [0, 100]. 

The first important point we tackled is the number of redeployments of Tasks during 

their execution. Each redeployment represents a trade-off between optimization of 

Objective Result and the perturbation of user experience caused by these redeployments, 

as video streams should be re-routed to a new Processor. In Figure 5.5 is shown the 

number of deployed Tasks (for each simulation with a given Redeployment Penalty) and the 

number of redeployed Tasks. For Redeployment Penalty > 60, there are no more 

redeployments in the system.  
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Figure 5.5: Number of Deployed and Redeployed Tasks depending on Redeployment 

Penalty 

The second item that we considered is the delta between Factual Result (FR) and Ideal 

Result (IR). FR is the result of applying the algorithms described above. IR is an output of 

the algorithm which, after arriving of each State Change Event, takes all Processors, all 

Tasks and calculates the theoretical deployment which minimizes the sum of ORs of all the 

Tasks. In the limited topology that we considered, the IR can be simply computed by an 

exhaustive enumeration (comparing all possible deployments). The IR value represents the 

optimal distribution of the Tasks on the Processors, not taking into account their order of 

arrival. In Figure 5.6 we can observe the trade-off between low Redeployment Penalty 

(causing some perturbation of user experience due to Tasks redeployment) but at the same 

time close values of FR and IR; and high Redeployment Penalty causing low perturbation of 

user experience but increased gap between FR and IR. 

 

Figure 5.6: Factual Result and Ideal Result as a function of the Redeployment Penalty 
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These simulations show a clear trade-off between system optimality and the number of 

redeployments (which will affect user experience). In these figures, the Factual Result can 

approach the Ideal Result, even without too many re-deployments.  

Of course, the results shown above are plotted for specific and somewhat arbitrary 

parameters (qualified CPU consumption, MADM weights). The optimal value of 

Redeployment Penalty and Weights can only be chosen in real exploitation conditions, 

which may be only available after testing of the implementation of the system with the real 

media server deployed on the real hardware platforms. It is out of scope of the current 

thesis as it is a pre-deployment engineering task that is extremely resource consuming: for 

instance, qualified CPU consumptions require extensive tests on a broad range of typical 

office hardware.  
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6. Chapter 6. Impact of CPU Load on Video Quality 

 

Chapter 6 

 

Impact of CPU load on video quality 

 

6.1. Introduction 

Utilizing a PC as a platform for a media server poses a question on whether this 

commodity hardware can really be used for this purpose, even at limited scale, as 

traditionally media servers are deployed on powerful hardware in data centers. And, once 

the media server is deployed on a PC, how 3rd party processes, executing on the same 

machine and consuming the CPU resource, affect the quality of video conferencing service, 

which is provided by this media server. In this paper we answer these questions by 

elaborating an approach for estimating a quality of a video stream, which is sent to a 

conference participant from the media server, and fulfilling some experiments to 

demonstrate the results of application of this approach to a conference, hosted on a 

standard PC, while the CPU undergoes different levels of the load, perturbating execution 

of the media server. 

The question of video quality is researched intensively in the presence of the complex of 

network impairments: delay, jitter, packet loss [60], [61], as well as separately for jitter [62] 

and for packet loss [57], [58]. Potential impact of video content on quality is also considered 

[63].  

Regarding influence of CPU load the question to some extent was tackled for the video 

endpoints. Azzazi et al [56] describes how CPU is loaded at endpoint, processing video 

streams, when these streams are delivered by ATM network configured with different 

quality attributes. 

At the same time no prior research was found on how CPU load affects the quality of 

video stream provided by MCU. While the MCU is a central part in modern video 

conferencing solutions, and we can assume that impediments to its functioning have 

dramatic consequences on conference quality. 

Videoconference contents over packet networks can be impaired by compression 

coding, packet loss, delay jitter, signal decoding and reconstruction process. The end-user 

may perceive a loss in image clearness-sharpness (like blurring and artefacts) and fluidity 

impairments (like freezing and jerky motion) [53] on the visual information. These 



70 
 

impairments can have a negative impact on the end-user quality assessment and 

satisfaction of the videoconference service. 

The current way of measuring the video quality is mainly based on technical parameters 

of the service like encoding parameters, network errors and bitrates; however, these 

parameters are not directly related with the end-user quality perception. For instance, given 

a video bitrate, perceived quality may be strongly different from content to content  [54].  

Given that signal integrity is not guaranteed and that the final receptor is a human, it is 

therefore necessary to measure video quality by taking into account end-user visual 

perception and judgment. In addition, given that videoconference services are in real time, 

the most practical approach for measuring video quality is using a No-reference metrics. In 

this work, we use Perceptiva VIVO [59] to measure the impact of CPU load on video 

conferencing perceived quality. 

Perceptiva VIVO is an automatic tool for measuring and analysing video quality from 

end-user assessment stand point. We use the version specifically adapted to 

videoconference contents. The tool is a No-Reference metric because there is no need for 

a reference or test signal to analyze quality, its technology is based on human vision 

perception and customer behavior when assessing video quality. Perceptiva VIVO is a 

proprietary technology based on a low-level human vision model reproducing the first stage 

of eyes images processing combined with cognitive models of brain judgment mechanisms. 

Subjective quality tests, respecting the standardised SAMVIQ methodology [55], were 

conducted for modelling and validation proposes. This technology reproduces end-user 

behaviour when assessing videoconference services. 

The tool receives signals from a digital video output interface. The solution then 

provides, in real time, a Mean Opinion Score Predicted  (MOSp) representative of end-

users subjective opinion. A numerical scale (0-100) for rating quality is used. This scale is 

related to five quality categories (bad, poor, fair, good, excellent) that are uniformly 

distributed. The subjective quality scale used to represent customer’s opinion is in 

accordance to SAMVIQ [55] international standard. 

6.2. Description of the testbed 

For our experiments we use a testbed, comprising typical office hardware and an 

operating system. Open source MCU as well as special software, managing the CPU load, 

is installed on the platform. Perceived video quality measurement is conducted using 

Perceptiva VIVO version Visio v2.0. The equipment receives videoconference signal from 

the HDMI interface of the participant desktop. 

As a platform a laptop Dell Latitude E5450 with the CPU Intel Core i5-5200U @ 2.20 

GHz and 8 GB RAM is employed. The operating system is Windows 7 Enterprise with 

Service Pack 1. 



71 
 

OpenMCU-ru [49] of the version 4.1.4 plays the role of media server in our experiments. 

OpenMCU-ru is an MCU providing video mixing, trans-coding and other functionalities. 

Linphone [50] of the version 3.9.1 is our choice for conference participants endpoints. 

Linphone is a software video phone, which is installed, for our experiments, on desktop and 

laptop computers with Windows 7 operating system. The computers are equipped with 

Logitech HD Pro C920 webcam or an integrated webcam  (see Figure 6.1). 

 

Figure 6.1: Configuration of the testbed: User1 receives video stream from the MCU 

and via HDMI connection sends it to the Video Quality Measurement Tool 

We use Session Initiation Protocol [10] in order to connect video endpoints to the media 

server. The video is encoded by VP8 codec [5]. Clients send video streams with the 

resolution 800x600 pixels (SVGA). The CPU mixes these streams in one stream with the 

resolution 704x576 pixels (4CIF). The frequency is 50 fps (frame per second). 

The scenario is the following: several participants connects to the same “virtual meeting 

room”, their video streams are mixed and the resulted stream is sent back to each 

participant. The video streams, sent from the video cameras of the participants, correspond 

to the real video conferencing picture with a person’s head in the frame, without any 

changes of the scene. We capture the screen of one of the participants and analyze the 

quality of the video stream rendered on its screen. 

6.3. Results of the experimentation 

The first thing we would like to know is to which extent a standard laptop can be used 

as a platform for an MCU. For that we are going to measure which CPU resources are 

needed to organize a “virtual meeting room” (with one participant, as a basic case), and 

which resources are needed in order to add a participant to an existing room. Normally the 

most demanding operation is video encoding, so we can expect that each new room, which 

needs a new encoding of the result of the mixing of all the participants streams, will 

increase significantly the CPU load. We see the confirmation of that in Figure 6.2, in which 

the X axis is marked by the following format: “r1:X, r2:Y”, where “r1” and “r2” are two “virtual 

meeting rooms”, X and Y are the number of participants in a respective room. 

User1 User3User2

MCU

Video stream

Video Quality
Measurement Tool
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Figure 6.2: CPU load caused by video processing tasks. X axis titles “r1:X, r2:Y” mean 

X participants in room1, Y participants in room 2 

We can see that creation of a “virtual meeting room” adds 30% - 35% of CPU load: 

these are resources, needed to encode the output video stream of a room. At the same 

time adding a participant to the existing room increases CPU load very moderately, if 

increases at all. This graph proves our idea that a standard user equipment can be used as 

a platform for media server executing a limited number of video processing tasks. In this 

exact case a mediocre laptop holds two conferences each with three participants (and the 

number of participants can be extended to some meaningful value) and consumes about 

60% - 65% of CPU power, which excludes battle for the resources between the media 

processing tasks and leaves enough resources for 3rd party processes.  

Further, we would like to know how limitation of CPU resources, dedicated to MCU, 

affects the quality of resulting video stream. As a media processing task, executed by 

media server, we organized a conference for three participants, consuming about 33% of 

CPU power. Then we investigate this problem by means of two experiments. The first 

experiment is slowing down the target process, in our case OpenMCU-ru, by making the 

CPU to go to idle mode for short periods of time. This functionality is implemented in an 

application “Battle Encoder Shirase” (BES) [51]. We use the version 1.6.2. We can call it a 

“hard” approach as it does not allow Windows process scheduling mechanism to intervene 

into the game and optimize the execution. This approach gives very visual results but it 

does not reflect the real modes in which processes compete for the resources. 

In Figure 6.3 we see that we can reduce CPU resources, used by MCU, leaving about 

10-15% as the reserve to keep Good quality (the reserve is the distance between green and 

red lines). When the reserve is about 5-10%, the quality becomes Poor to Fair, and when 

reserve goes to 0% - the quality gets Bad level. 
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Figure 6.3: Video quality affected by MCU process CPU consumption limitation 

The second experiment employs a special process, which consumes a preconfigured 

amount of CPU, such a way competing with the target process. The special process in our 

case is a “CPU Killer 3” (CPUK) application [52], in the version 1.0.7. CPUK tries to load the 

CPU to the preconfigured level and then Windows process scheduling mechanism assigns 

the real amount of CPU cycles, taking into account other processes, executed on the same 

CPU. Here we use the assumption that all processes have the same “standard” priority. 

This rather well simulates the concurrent applications launched on the same platform, we 

can call it a “soft” approach. It’s depicted in Figure 6.4. 

 

Figure 6.4: Video quality affected by launching 3rd party process competing with MCU 

process for CPU resources 
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In this experiment we see how the two processes “fight” for the CPU resources. 

Until CPUK process claims 65% of CPU, such a way leaving 35% of CPU, necessary 

for normal MCU functioning, the quality of video remains Good. Then, following the 

increasing CPUK demand until 85% - 90% of CPU, the quality of video gradually 

degrades through Fair to Poor level. This demonstrates that Windows process 

scheduler arbitration in a real situation of two processes, competing for the CPU 

resources, allows MCU to keep some “acceptable” level of quality. By the way, 

further increasing CPU demand from CPUK makes the video quality Bad. 

In order to extract practically usable results from the graph, represented in Figure 

6.4, we would like to understand how video quality depends on the rate, with which 

media server and a 3rd party  process compete for the CPU resources. This info is 

drawn in  Figure 6.5. The X axis on this graph is marked with the delta between 

“provided CPU” (that is an amount of CPU resource, which is not demanded by 3rd 

party process) and “needed CPU” (that is amount of CPU resource, which is 

demanded by media server). In fact, this CPU delta means how much CPU resource 

is available for the media server without competition with the 3rd party process.  

 

Figure 6.5: Video quality affected by the level of competition for the CPU resource 

We can see that while the delta is greater than 0 (that is the processes do not 

compete for the CPU resource), the video quality is good. When competition starts, 

the quality gradually decreases until the level, when the 3rd party process starts to 

demand about 90% of CPU resource. This causes dramatic video quality decrease to 

unacceptable values, as Windows process scheduling mechanism does not have 

enough space to provide media server with the required CPU resource. 

Such a way, we observe here the clear trade-off between the video quality 

(varying between Good and Poor), and the amount of CPU resource, requested by 

the 3rd party process. Finally, it’s up to a user to decide, which level of quality she is 
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ready to tolerate in order to allow the cooperative use of the CPU by several 

processes. 
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7. Chapter 7. Conclusions and Future Work 

 

Chapter 7 

 

Conclusions and future work 

 

7.1. Conclusions 

In this thesis we studied a novel approach to organizing video conferences. 

Nowadays video conferencing in enterprises is organized primarily using central 

MCUs. MCU is responsible for controlling the conference as well as for video 

processing tasks, such as mixing or trans-coding. Due to the fact that MCUs are 

usually designed in the form of specialized hardware, they are an expensive 

equipment. Pure software MCUs also exist, they can be utilized in Cloud mode. 

However, due to the complex operations with media streams, they consume a lot of 

server resources. At the same time, Overlay Network approaches exist for video 

conferencing: Application Layer Multicast and Peer-To-Peer. These approaches are 

designed for video relays, while video mixing tasks are directly handled at the  

endpoints. Thereby, if an endpoint is not capable to mix several video streams, due 

to some hardware/software limitations, it will not benefit from modern telepresence 

experience. 

So the problem is to deliver rich video experience, available today through 

dedicated MCUs, without using dedicated hardware and without overloading existing 

servers with media processing operations.  

The proposed solution is to distribute MCUs on Enterprise Desktop Grid, which 

consists of all the PCs, available in the enterprise, with enough resources to accept 

video processing tasks. Prior art research shows that a lot of personal computers at 

an enterprise are not used during long periods, even during work hours. In modern 

terminology this approach is known as “Fog computing” in contrast to centralized 

“Cloud computing”. 

The requirements to build such a distributed MCU:  

 The network architecture  should be applicable to typical enterprise 

topology, containing sites with fast LAN connected by potentially slow 

Internet 
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 The architecture should take into account dynamic nature of Enterprise 

Desktop Grid, in particular the fact that PCs can be arbitrarily stopped or 

that 3rd party processes can be launched by end users 

The Desktop Grid Conferencing (DGC) system that we propose consists of a set 

of media servers (tackling video processing tasks), distributed on a cluster of ordinary 

office equipment (PCs, laptops, etc). The description of the DGC system is based on 

two main notions: Tasks and Processors.  

Task is a media related activity, traditionally provided by a MCU or a software 

media server: video mixing, video switching, trans-coding, trans-scaling or other 

manipulations on video streams.  

Processor is a media server deployed on a general purpose hardware, such as a 

PC. Users may turn on/off their PCs and launch third party applications consuming 

CPU power as well as start/stop calls and conferences randomly. This results in 

unpredictability of the sets of Tasks and Processors, which should be taken into 

account by the system. 

The main logic of the proposed architecture is to distribute and, if necessary, to 

redistribute Tasks on Processors taking into account changes in the set of Tasks, set 

of Processors and external constraints. The result of distribution should be “optimal” 

under some conditions.  

Optimization criteria can be divided into two sets: the Network and Platform ones. 

Network criteria that should be taken into account include WAN bandwidth consumed 

by a Task and End-to-end delay between endpoints. Platform criteria are related to 

the Processors that are available in the system: network connectivity, power supply, 

resource sharing, CPU load. 

All the optimization criteria are different in their nature and importance, leading us 

to choose a MADM (Multi-Attribute Decision Making) approach, where each criterion 

is associated with a weight. Application of a MADM method gives an integral metric 

of a deployment of a given Task to a given Processor, which is called Objective 

Result. A dedicated MADM method using “context aware normalization” has been 

designed to calculate the Objective Result. In this method normalization information 

is derived from the nature of the attributes. Such an approach allows applying the 

MADM procedure only when a Processor is added to the system or a specific 

attribute of the Processor is changed. In other words, no computation would be 

needed for a given Processor, whatever are the changes applied to other Processors, 

which is very important, taking into account the dynamic real-time nature of the DGC 

system.  

The DGC system itself cannot guarantee suitable SLA (Service Level Agreement) 

because its resources are controlled by end users, and not by the system itself. To 

solve this problem DGC system can be combined with the conference system in the 
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Cloud to provide both SLA and cost advantages at the same time. We elaborated the 

algorithms, combining Cloud/Fog approach with different types of media servers, the 

result provides an optimized conferencing solution in the terms of cost for both 

provider and consumer as well as in terms of end user experience. 

In order to test the Task distribution algorithms, the respective logic was 

implemented using a discrete event simulation approach.  

The first point we tackled in the simulation is the number of redeployments of 

Tasks during their execution. Each re-deployment represents a trade-off between 

optimization of Objective Result and the perturbation of user experience 

accompanying redeployment. 

The second item that we considered is the delta between Factual Result and 

Ideal Result. Factual Result is the result of applying of the algorithms, calculating 

Objective Result in the current situation in the system. Ideal Result is an output of the 

algorithm which, after arriving of each State Change Event, takes all Processors, all 

Tasks and calculates the theoretical deployment which minimizes the sum of 

Objective Results of all the Tasks. The Ideal Result value represents the optimal 

distribution of the Tasks on the Processors, not taking into account their order of 

arrival. 

These simulations show a clear trade-off between system optimality and level of 

user experience, affected by Tasks redeployments. In fact,  the Factual Result can 

approach the Ideal Result, even without too many re-deployments. However, the 

logic, responsible for the decision on redeployment, can only be determined with 

realistic parameters (qualified CPU consumption, tuned MADM weights), which may 

be only available after intensive testing of the system implementation based on the 

real media server deployed on the real hardware platforms. 

Then we investigated to which extent a PC can be used as a platform for hosting 

a media server, and how CPU load of this platform affects the quality of resulting 

video stream. For that we established a test bed with open source media server, 

deployed on a usual laptop, and connected several video soft phones playing the role 

of conference endpoints.  

To one of the endpoints we connected a hardware video quality measurement 

tool, which provided us with predicted Mean Opinion Score. We applied this tool to a 

video stream, generated by a video conferencing media server. The server, being 

deployed on a commodity laptop, was disturbed by a third party process, which 

consumed different amounts of CPU power. As a result we demonstrated that the 

commodity office hardware can really be used as a platform for media servers, 

carrying limited workload in the scope of our Enterprise Desktop Grid conferencing 

system. 
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7.2. Future Work 

 

Two applications of machine learning can be considered in order to improve the 

quality of the system. 

For a given platform with initial weights defined by executing a limited number of 

manual tests, during its exploitation we can:  

 Based on any given platform configuration/state to try to dynamically 

predict weights which will maximize QoE (ex: Wi-Fi blackout increases 

weight of "Network Connectivity"). For that we need continuously collect 

information on different aspects of the system environment: state of the 

network and networking gear, types of utilized personal computers and so 

on. Then after correlation of this information with resulting QoE we can 

deduce weights of existing or newly created criteria in order to maximize 

resulting QoE. 

 

 To take into account the history of system functioning for future 

distributions (ex: stable/not stable node observations introduce the node 

"rating"). Such a way we will be able to create some sort of “resources 

profiles”, that is typical paterns of resources usage and behavior, which 

affects overall stability of the system. Correlating thise patterns with days 

of week, time and other environment information we will be able to predict 

to some extent the behavious of given resources in the future. 
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Annex A 

Standalone DGC system design 

A.1 Design static view 

 

Figure A.1: Packages, interfaces and classes structure 

Structure of the description 

firstlevel – solution component 

secondlevel – Java package 

ThirdLevel – Java class or interface 
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forthLevel() – Java method 

Design description 

agent – classes and interfaces comprising Monitoring agent 

main - classes controlling overall Agent behavior 

AgentMain – registers Processor executed on this platform on Video 

processing controller 

controllerinterface - classes used to dialog with Video processing 

controller 

AgentWebService – services provided by Monitoring agent 

getPingResult() – returns ping result from this agent to a 

given network location 

ControllerWebServiceClient – client consuming services of 

Video processing controller 

 madm - classes providing values for MADM criteria 

CpuLoad – provides current CPU load 

PowerSupply – provides current status of power supply 

 topology - classes providing topology information 

PingExecutor – provides value of round trip time to a given network 

location 

sip – classes and interfaces comprising SIP server. The implementation of SIP 

server is extremely simplistic for this Proof-Of-Concept. A real SIP server should be 

used for real deployments. 

TaskDeployer – used to instruct SIP server of which operations 

should be applied to Tasks 

deployTask() – this method is called when a new task 

should be deployed: SIP Server asked Video processing 

controller to deploy a new Task so Video processing controller 

returns selected node by means of deployTask() method 

undeployTask() – this method is called when the DGC 

system can’t execute the given Task (e.g. the Processor has 

stopped) and can’t redeploy it to another Processor due to the 

lack of resources 
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redeployTask() – this method is called when the existing 

task should be redeployed from one node to another due to the 

changes of the system (node has stopped, CPU is overloaded, 

etc) 

refuseTask() – this method is called when SIP Server asked 

to distribute a new task, but Video processing controller could 

not find a Processor which is capable to execute a task so task is 

refused 

LegRegistry – used by SIP server to notify about arrival or 

departure of a conference participant 

legAdded() – a new participant connected. He should be 

added to an existing conference, or a new conference should be 

created, if this is the first participant. 

legRemoved() – an existing participant hung up. If he is the 

last participant in the conference, the conference should be 

removed from the DGC system. 

CallControl – when conference is redeployed to another 

Processor, this interface is used to instruct SIP server to make 

conference participants to reconnect to the conference in order to route 

the call to a new Processor 

refer() – makes participants to reconnect 

LegManager – logic of conference legs management 

SipProxy – listens to SIP signaling from the conference participants 

controller – classes and interfaces comprising Video processing controller 

 agentinterface - classes used to dialog with Monitoring agent 

ControllerWebServiceForAgent – services provided by Video 

processing controller to Monitoring agent 

registerProcessor() – a new Processor has appeared in 

the grid  

unregisterProcessor() – the Processor has left the grid 

keepAlive() – notifies that the Processor is still alive and 

passes current info about CPU load and power supply 
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AgentWebServiceClient – client consuming services of 

Monitoring agent 

statique - classes and interfaces, responsible for static aspects of tasks 

distribution, that is all the optimization criteria, except CPU load 

TaskRegistry – through this interface Video processing controller is 

notified about created and removed Tasks 

taskAdded() – this method is called when SIP Server is 

requested to organize a new conference. Video processing 

controller calculates the node on which the given Task should be 

deployed. 

taskRemoved() – this method is called when SIP Server is 

requested to stop the existing conference. Video processing 

controller updates its state according to the fact that the given 

Task is removed from the system. 

ProcListener – through this interface the changes in the list or 

state of Processors, which affect the results of Static Simulation, are 

reported 

procAdded() – this method is called when a new Processor 

is added to the grid and the procedure of Static Simulation 

should be applied to existing Tasks  

powerStatusChanged() – this method is called when the 

Power Status of a given Processor is changed and it affects the 

results of Static Simulation, which should be re-executed in this 

case 

StaticSimulator – through this interface the results of Static 

Sumulation are returned. Static Simulation is application of MADM to all 

optimization criteria, except CPU load 

calculateSsr() – calculates SSR (Static Simulation Result) 

for a given Task in application to a given Processor 

StaticManager – keeps Static Simulation Result info about Tasks 

on Processors 

StaticSimulatorImpl – logic of static simulation 

dynamique - classes and interfaces, responsible for dynamic aspects of 

tasks distribution, that is processing of CPU load 



84 
 

TopRegistry – through this interface information on “Task On 

Processor”, that is the results of Static Simulation of a given Task on a 

given Processor are passed from the package, responsible for static 

optimization criteria to the package, responsible for dynamic 

optimization criteria 

addProcQueue() – for an added Task the results of Static 

Simulation of this Task on all the Processors are passed to 

DynamicManager in order to apply Dynamic Simulation 

removeProcQueue() – for the removed Task 

DynamicManager is notified to remove the results of Static 

Simulation of this Task as they are no more needed 

addTaskQueue() – for an added Processor the results of 

Static Simulation of all the Tasks on this Processors are passed 

to DynamicManager in order to apply Dynamic Simulation 

updateTaskQueue() – for a Processor with changed static 

optimization criteria the results of Static Simulation of all the 

Tasks on this Processors are passed to DynamicManager in 

order to re-apply Dynamic Simulation 

ProcRegistry – through this interface DynamicManager is notified 

about changes in the list or state of Processors 

procAdded() – Processor is added to the grid 

procRemoved() – Processor is removed from the grid 

setCpuLoad() – CPU load of a Processor is changed 

setPowerStatus() – power status (AC/battery) of a 

Processor is changed 

DynamicManager – processes changes in Static Simulation Results 

and initiates Dynamic Simulation when needed. Based on both types of 

simulation selects the target Processor for Task deployment or re-

deployment 

DynamicSimulator – responsible for calculating Dynamic and Full 

Simulation Results, as well as Full Deployment Result, combining 

information about static and dynamic info about the system 

calculateDsr() – calculates DSR (Dynamic Simulation 

Result), which is the prediction of CPU load when a given Task 

is deployed on a given Processor 
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calculateFsr() – calculates FSR (Full Simulation Result), 

which is the combination of Static and Dynamic Simulation 

Results 

calculateRdr() – calculates RDR (Real Deployment Result), 

which is the metric, combining Full Simulation Result and actual 

CPU load on the Processor, currently occupied by a given Task 

 madm - classes and interfaces, implementing MADM logic 

Madm – provides access to MADM logic 

calculateObjectiveResult() – calculates Objective 

Result based on predefined Optimization Criteria 

MadmImpl – implementation of MADM logic 

OptimizationCriteria – provides access to Optimization Criteria, 

stored in a file 

topology - classes and interfaces, responsible for processing of topology 

information  represented in ALTO form 

NodeRegistry – through this interface Video processing controller is 

notified about created and removed Nodes. Node is a hardware 

platform on which Processor is deployed, the Node is used for 

processing topology informationj. 

nodeAdded() – this method is called when a new Node is 

added to the grid and ALTO information should be updated, if 

needed 

nodeRemoved() – this method is called when an existing  

Node has left the grid and ALTO information should be updated, 

if needed 

CostCalculator – through this interface ALTO cost is requested in 

the case when it’s not cached in CostProviderImpl 

calculateCost() – calculates ALTO cost between two 

network elements (Endpoints or Nodes) 

CostProvider – provides fast access to cached ALTO information 

getCost() – provides ALTO cost between two network 

elements (Endpoints or Nodes) 
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NetworkCostMapManager – manages Nodes and calculates ALTO 

information 

CostProviderImpl – servers as a cache for ALTO information, 

allowing fast access to this info during Static Simulation process 

config – classes, providing configuration information, gathered from 

external sources 

CpuConsumptionProvider – stores pre-computed values from 

CPU load Qualification Matrix 

A.2 Design dynamic view 

In this chapter the two use case are presented in the form of UML sequence 

diagrams:  

- Add Task 

- Add Processor 
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A.2.1 Add Task sequence 

       
Figure A.2: add Task sequence 

 

1: INVITE – Endpoint sends SIP INVITE to SipProxy in order to join a 

conference 
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2: legAdded() – SipProxy notifies LegManager that a new leg should be 

added to a given conference 

3: taskAdded() – LegManager understands that this Endpoint is the first 

participant of the conference as this conference doesn’t exist yet, so it should be 

created. LegManager notifies StaticManager that a new Task corresponding to this 

conference should be deployed to the DGC system 

4: calculateSsr() – StaticManager calls StaticSimulator in order to 

calculate Static Simulation Result for the Task on all the registered Processors 

5: getCost() – CostProviderImpl checks whether Cost (i.e., in the simplest 

case, Delay) between Network Location, to which pertains currently examined 

Processor, and the given Endpoint was already calculated and cached. If yes, the 

value is returned. If not, NetworkCostMapManager is called in order to calculate it. 

6: calculateCost() – NetworkCostMapManager can use different 

approaches in order to calculate Network Cost. It can use info from ALTO provider, or 

it can ask Endpoint to directly ping Processor under question and return ping result to 

NetworkCostMapManager 

7: getCpuDelay() – StaticSimulatorImpl requests the delay, caused by 

Processor CPU, which executes video treatment  

8: calculateObjectiveResult() – StaticSimulatorImpl calls Madm 

interface in order to apply Multi Attribute Decision Making procedure and get 

Objective Result for static Optimization Criteria  

9: getProperty() – MadmImpl calls OptimizationCriteria class in order to 

obtain a list of Optimization Criteria and their weights 

10: addProcQueue() – StaticManager passes obtained list of Static 

Simulation Results for added Task to DynamicManager 

11: calculateFsr() – DynamicManager uses DynamicSimulator in order to 

combine Static Simulation Results with CPU consumption information and calculate 

Full Simulation Results for added Task on all the Processors 

12: getCpuConsumption() – CpuConsumptionProvider returns a value 

from CPU Qualification Matrix 

13: deployTask() – DynamicManager selects a Processor and asks 

LegManager to address incoming request from Endpoint to this Processor 

14: legAdded() return – LegManager returns this Processor to SipProxy 

15: INVITE – SipProxy forwards SIP INVITE from Endpoint to selected 

Processor 

  



89 
 

A.2.2 Add Processor sequence 

 

Figure A.3: add Processor sequence 

1: registerProcessor() – when Processor starts AgentMain class solicits 

ControllerWebServiceClient in order to notify DGC system about its appearance 



90 
 

2: registerProcessor() – ControllerWebServiceClient sends this 

notification to ControllerWebServiceForAgent, which is the WebService API of DGC 

system 

3: nodeAdded() – ControllerWebServiceForAgent uses this method in order 

to notify NetworkCostMapManager about arriving of a new Node. 

4: procAdded() - ControllerWebServiceForAgent uses this method in order 

to notify StaticManager about arriving of a new Processor. 

5: calculateSsr() – StaticManager calculates Static Simulation Results for 

all the Tasks on this Processor. This step analogous to the step 4 from the algorithm 

“Add Task sequence”. 

6: addTaskQueue() - StaticManager passes obtained list of Static 

Simulation Results for added Processor to DynamicManager 

7: calculateFsr() - DynamicManager uses DynamicSimulator in order to 

combine Static Simulation Results with CPU consumption information and calculate 

Full Simulation Results for all the Tasks on the added Processor. This step 

analogous to the step 11 from the algorithm “Add Task sequence”. 

8: calculateRdr() - DynamicManager uses DynamicSimulator in order to 

obtain Real Deployment Results for the Tasks which are already deployed on DGC 

system. 

9: redeployTask() – Comparing Full Simulation Results and Full 

Deployment Results DynamicManager decides about each already deployed Task 

whether it should be redeployed to the added Processor. I this is the case, 

DynamicManager calls LegManager and passes the Task that should be redeployed. 

10: refer() – LegManager calls this method for each leg pertaining to the 

Task being redeployed 

11: REFER – SipProxy sends SIP REFER requests to each Endpoint 

communicating with a Task being redeployed  
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Annex B 

Cloud integrated DGC system design 

B.1 Design 

Here we describe several basic use cases of the DGC system composed with the 

Cloud. To simplify understanding we briefly remind necessary parts of APIs of SIP 

server and Video processing controller. 

 

Video processing controller: 

- addTask():  Video processing controller calculates the node on which the 

given task can be deployed. The method is called when SIP Server is 

requested by means of 1PCC or 3PCC to organize a new conference. 

- removeTask(): Video processing controller updates its state according to the 

fact that the given task is removed from the system. The method is called 

when SIP Server is requested by means of 1PCC or 3PCC to stop the existing 

conference. 

 

SIP Server: 

- deployTask(): method is called when a new task should be deployed. SIP 

Server called addTask() so Video processing controller returns selected node 

by means of deployTask() method 

- refuseTask(): SIP Server called addTask() to add a new task but Video 

processing controller can’t find a node which is capable to execute a task so 

task is refused 
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Figure B.1: Task “T” is added to the system and Video processing controller 

selects Fog node “N” for execution. Then SIP Server notifies conference participants 

that media server is on the node “N” where they should send their video streams. 

 

 
Figure B.2: Task “T” is added to the system but Video processing controller can’t 

find a Fog node capable to execute the task. It refuses the task so SIP Server notifies 

conference participants that media server is in the Cloud. 
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B.2 Algorithms 

Here we will describe the algorithm that allows moving Tasks from Fog to cloud 

(the cloud can be seen as a particular super node of the Fog) and from Cloud to Fog, 

in order to minimize the cost of conferences while maintaining a high level of service 

to the end user.  

 
 

Figure B.3: High level diagram of the algorithm of moving Tasks between Cloud 

and Fog 

The algorithm, presented in Figure B.3, deals dynamically with the evolution of 

resources. Adding a participant will have an impact on the management of the 

resources, so this operation is detailed in the algorithm. Removing a participant has 

low impact. It doesn’t require checking if we have enough resources. So this case is 

not described in the algorithm. 

When an event occurs (new participant wants to join a conference or leave a 

conference, or evolution of Fog resource), the algorithm checks this event and 

applies the required actions. 

If a new participant asks to join a conference, the algorithm checks if a 

conference  is already deployed (there are already participants in this conference) or 

no (the participant is the first joining this conference). If a new conference is required, 

a “New Task Deployment: PHASE A” is performed, else “Process Conference Add: 
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PHASE B” is performed. If an evolution of Fog resources the “Process Fog 

Resources: PHASE C” is performed. 

“New Task Deployment: PHASE A”: this part of the algorithm checks if the 

conference will be started in MCU mode or in SFU mode and where to deploy the 

conference. 

“Process Conference Add: PHASE B”: this part of the algorithm checks if there is 

enough resources to add the participant to the Fog if the conference is deployed in 

the Fog. If there are no more resources, the conference Task will be moved to the 

Cloud. If the conference is already in the Cloud, the participant is added to the Cloud 

conference. 

“Process Fog Resources: PHASE C”: two main evolutions can occur: 

- decrease of resources (a node is not available anymore, …)  

- increase of resources (some resources are released, new node available, …) 

If there is increase of resources, the algorithm will check if it can move a cloud 

conference to Fog. If there is decrease of resources, the algorithm will check if it’s 

necessary to move a conference to the Cloud. 

The Phase A and Phase B of the algorithm is triggered by the messages from 

SIP server when a participant asks to join a conference. 

The details of the PHASE A “New Task Deployment” are shown in Figure B.4:  
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Figure B.4: PHASE A “New Task Deployment” diagram 

In this algorithm, the decision to deploy the conference in the Cloud or in the Fog 

depends on the availability of resources in the Fog. The mode of the conference 

depends on the capacity of the first participant joining the conference. If the first 

participant support SFU mode the conference will start using SFU mode, else the 

conference will start using the MCU mode. 

The details of the PHASE B “Process Conference Add” are shown in Figure B.5:  
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Figure B.5: PHASE B “Process Conference Add” diagram 

 

In Figure B.5: 
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(*B1): Here the algorithm checks the policy to know if it will switch the conference 

mode from SFU to MCU when a non SFU participant is connected when the 

conference is performed in Cloud. The policy can be, for example, if at least one 

participant has no SFU capabilities, then switch to MCU mode, even if MCU mode is 

heavy in term of CPU load. 

(*B2): Th_CSFU: threshold to switch from Cloud based SFU to Cloud based MCU, 

which depends on the number of non SFU participants.  

(*B3): Move conference. Moving a conference from Fog/Cloud or MCU/SFU is 

done by the Video Processing Controller. It’s in charge of making SIP server to re-

invite all participants 

(*B4): Th_FSFU: threshold to switch from Fog based SFU to Fog based MCU, 

which depends on the number of non SFU participants. 

The algorithm doesn’t describe moving from MCU to SFU when an SFU 

participant joins the MCU conference or the number of non SFU participants is under 

the threshold because we do not want to fall back the experience of non SFU users 

connected to the MCU conference. 

The details of the PHASE C “Process Conference Add” are shown in Figure B.6. 

The Phase C of the algorithm is triggered by the message of Monitoring agents of 

Fog nodes. 
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Figure B.6: PHASE C “Process Conference Add” diagram 

In Figure B.6: 
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there is no   conference which satisfies the time criterion, the algorithm will wait until 

this criterion is satisfied and check again the resources criterion.  

(*C2) Process Cloud SFU to Fog SFU move:  

Same behavior as in (*C1), but applied to SFU conference 

(*C3) Choice of Conference to move to Cloud: 

If a Fog node, on which a conference is executed, is not available anymore, or 

becomes overloaded, the conference should be moved from this node. If the Fog 

contains other nodes, which are capable to accept this conference, the conference is 

moved to this node. If there are no such nodes in the Fog, the conference is moved 

to the Cloud.  
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