
HAL Id: tel-01791111
https://pastel.archives-ouvertes.fr/tel-01791111

Submitted on 14 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Video conference based on enterprise desktop grid
Roman Sorokin

To cite this version:
Roman Sorokin. Video conference based on enterprise desktop grid. Distributed, Parallel, and Cluster
Computing [cs.DC]. Télécom ParisTech, 2017. English. �NNT : 2017ENST0006�. �tel-01791111�

https://pastel.archives-ouvertes.fr/tel-01791111
https://hal.archives-ouvertes.fr

N°: 2009 ENAM XXXX

Télécom ParisTech
école de l’Institut Mines Télécom – membre de ParisTech

46, rue Barrault – 75634 Paris Cedex 13 – Tél. + 33 (0)1 45 81 77 77 – www.telecom-paristech.fr

TT

HH

EE

SS

EE

2017-ENST-006

 EDITE ED 130

 présentée et soutenue publiquement par

 Roman SOROKIN

 le 24 février 2017

 Vidéoconférence basée sur les ressources

internes de l'entreprise

 Doctorat ParisTech

 T H È S E

 pour obtenir le grade de docteur délivré par

 Télécom ParisTech

 Spécialité “ Informatique et Réseaux ”

Directeur de thèse : Jean-Louis ROUGIER

T

H

È

S

E

Jury

M. André-Luc BEYLOT, Professeur, IRIT / ENSEEIHT Président du jury

M. Nadjib ACHIR, Maître de Conférences HDR, L2TI - Institut Galilée, Université Paris 13 Rapporteur

M. Yacine GHAMRI-DOUDANE, Professeur, L3i, Université de La Rochelle Rapporteur

Mme. Annie GRAVEY, Professeur, Telecom Bretagne Examinateur

M. Khaled BOUSSETTA, Maître de Conférences, L2TI - Institut Galilée, Université Paris 13 Examinateur

M. Nicolas TRANQUART, Ingénieur de Recherche, ALE International Invité

Résumé

Contexte et Motivation

Conférence vidéo est un sujet de télécommunications bien connu, qu’on étudiait

pour les décades. Récemment ce sujet a reçu une nouvelle pulsion grâce à la bande

passante accrue de réseau local et réseau étendu, et l’apparition de l’équipement

vidéo de bon marché. Au même temps le vidéo de bonne qualité, comme "Full HD",

peut demander les ressources computationnelles significatives pour son traitement.

Le traitement vidéo pour les conférences comprend quelques manipulations

nécessaires pour obtenir une expérience utilisateur avancée (mélange de plusieurs

flux vidéo ou de passer l'image au participant qui parle actuellement), ainsi que les

opérations causées par l'incompatibilité des paramètres, par exemple transcodage

dans le cas où les participants utilisent différents codecs vidéo.

Actuellement, deux architectures distinctes pour le traitement de ces tâches de

manipulation de vidéo sont utilisés .

La solution traditionnelle utilise Multipoint Control Unit (MCU) [1]. MCU est un

composant puissant qui centralise toutes les opérations de traitement vidéo et

distribue les flux résultant. MCU peut être mis en œuvre comme une unité matérielle

intégrée avec Digital Signal Processors (DSP) ou un composant logiciel installé sur

les serveurs type Commercial Off-The-Shelf (COTS). Aussi MCU peut être déployé

dans le nuage où au mode local. Dans tous les scénarios de déploiement, MCU

représente une ressource dédiée, qui doit être acheté ou loué.

Une autre solution consiste à utiliser des clients vidéo en tant que ressources

pour le traitement vidéo. Ceci peut être réalisé en exploitant de la stratégie Peer-to-

Peer (P2P) ou de Selective Forwarding Unit (SFU) [2]. L’approche P2P a été

soigneusement étudié, mais cette technique n'a pas gagné du terrain dans les

communications de l'entreprise, car elle ne fournit pas de moyens faciles

d'intégration avec les applications d'entreprise, ainsi que la mise en œuvre des

exigences des entreprises importantes comme l'accès aux annuaires LDAP

hétérogènes. SFU est un composant logiciel qui transmet les paquets vidéo basés

sur les limites des capacités des clients vidéo. Il ne fait pas de traitement des médias

sur les flux vidéo, en effet il filtre et relaie les paquets. Par conséquent, la capacité

d'un système de vidéoconférence entraîné par SFU dépend des capacités des

clients vidéo. Si paramètres sont incompatibles en termes de codecs alors SFU n’est

pas utile, en tant que les clients vidéo n’ont normalement pas fonctionnalité

transcodage.

Dans cette thèse un système de Desktop Grid Conferencing (DGC) est proposé,

qui utilise les ressources de la grille des ordinateurs d’entreprise (PCs, ordinateurs

portables, etc. déployés dans le réseau de l'entreprise) pour l'attribution des services

de traitement vidéo nécessaires pour l'organisation de vidéoconférences. Les

recherches antérieures sur les grilles des ordinateurs d’entreprise [3] montre qu'une

quantité importante de ressources CPU de PC utilisés dans les entreprises ne sont

pas occupés à toute activité.

Figure [1]: Pourcentage du temps lorsque la disponibilité du processeur est

supérieure à un seuil donné (à partir de [3]).

Ces ressources pourraient être utilisées pour le traitement vidéo, de façon

similaire à la notion de "l’Informatique en Brouillard" [12]. Bien sûr, en raison de la

nature dynamique des ressources de la grille, fournissant Service Level Agreement

(SLA) est difficile, par rapport à MCU dédié. Dans la pratique, le système DGC peut

être soutenu par un service de la vidéoconférence en nuage, qui sera utilisé lorsque

le système DGC n'a pas assez de ressources. En combinant le système DGC avec

un service de vidéoconférence en nuage, on peut obtenir des avantages financiers

évidents, comme la grille existe déjà avec aucune dépense supplémentaire

nécessaire.

Le système est conçu pour les topologies typiques de réseau d'entreprise,

contenant des sites avec la réseau locale rapide inter-relié par potentiellement plus

lents liens Internet. Les algorithmes proposés analysent les caractéristiques du

réseau, tels que le retard entre les sites et la bande passante Internet requis pour les

flux vidéo ainsi que les caractéristiques de nœud de réseau, comme la charge CPU,

le type de connectivité réseau et le type d'alimentation afin de fournir la meilleure

possible Quality of Experience (QoE) dans les circonstances actuelles. Pour

comparer d'autres variantes de la répartition des tâches, une méthode de Multi

Attribute Decision Making (MADM) spécialement adaptée à ce cadre est introduit.

Prenons un exemple du système DGC déployé sur les trois sites. Plusieurs

utilisateurs organisent une conférence vidéo. Trois ordinateurs sont enregistrés dans

le système, leurs caractéristiques sont comparées et le système décide de déployer

le traitement vidéo nécessaire à la conférence sur l'un d'entre eux (Fig. [2]).

Figure [2]: le traitement de la conférence vidéo est hébergé sur Processeur 1

À un certain moment, un processus tiers, consommant beaucoup de puissance

CPU, est lancé sur le PC, qui héberge le traitement de la conférence de sorte que le

système décide de re-hôte le traitement de la conférence à un autre PC (Fig. [3]).

Figure [3]: Le traitement de la conférence vidéo est accueilli à Processeur 3 en

raison de l'augmentation de la charge CPU sur Processeur 1

La description du système

La description du système DGC repose sur deux notions principales: Tâches et

Processeurs.

Tâche est une activité sur les flux médias, traditionnellement fourni par un MCU

ou un serveur multimédia logiciel: mixage vidéo, basculement le flux vidéo sur la

personne qui parle, transcodage ou d'autres manipulations sur les flux vidéo. Les flux

audio accompagnent traditionnellement les flux vidéo et sont simplement mélangés

ensemble par le même serveur de médias. Par exemple, une tâche associé à la

conférence vidéo représenté sur la Fig. [2] est une mélange vidéo de 4 flux en un

seul flux résultant (généralement avec l'accent sur la personne en cours de parler) et

potentiellement transcodage, en cas de codecs incompatibles des terminaux vidéo

d’utilisateurs.

Le Processeur est un serveur média déployé sur une plate-forme générale

comme un PC. Les utilisateurs peuvent activer/désactiver leur PC et de lancer des

applications tierces qui consomment la puissance du CPU, ainsi que le

démarrage/arrêt des appels et des conférences au hasard. Cela se traduit par

l'imprévisibilité des ensembles de Tâches et Processeurs, qui doit être prise en

compte par le système.

La logique principale de l'architecture proposée est de distribuer et, le cas

échéant, de redistribuer les Tâches sur les Processeurs prenant en compte les

changements dans l'ensemble des Tâches, ensemble de Processeurs et des

contraintes externes (qui sont énumérés ci-dessous). Le résultat de la distribution

doit être «optimale» dans certaines conditions.

Critères d'optimisation peuvent être divisés en deux groupes: ceux du réseau et

de la plate-forme.

Critères de réseau qui doivent être prises en compte comprennent:

1) Bande passante de WAN consommée par une Tâche. Le but est d'essayer

d'économiser la bande passante de WAN qui est généralement à la charge (par

opposition à la bande passante de LAN qui est considéré comme gratuit et donc pas

contrôlé).

2) Délai de bout en bout entre les terminaux vidéo. Le délai est très important

caractéristique représentant le niveau de QoE, comme le délai important rend difficile

une conversation interactive, voire impossible.

Les critères de la plate-forme sont liés aux Processeurs qui sont disponibles dans

le système:

1) La connectivité réseau: prend en compte le fait que la plate-forme utilise la

connectivité réseau filaire ou sans fil (Wi-Fi). Les connexions filaires offrent

généralement la plus grande stabilité et moins de retard, ce qui les rend préférables

pour les communications vidéo interactives par rapport aux connexions sans fil.

2) Alimentation: prend en compte le fait que la plate-forme est alimenté par le

circuit électrique ou par sa batterie. Il est particulièrement important que les

opérations de traitement vidéo sont très intensives au niveau de CPU.

3) Le partage des ressources: prend en compte le fait que la plate-forme (PC)

héberge uniquement Processeur (serveur média) ou elle est partagé avec d'autres

activités de l'utilisateur sans rapport avec le système DGC. Ce critère donne la

préférence aux plates-formes où aucune applications des utilisateurs exécutent. Telle

préférence donne la stabilité aux système DGC, comme la consommation CPU est

plus prévisible. Dans le même temps, cette logique empêche de déployer les Tâches

sur les plates-formes utilisées activement par les utilisateurs afin de ne pas les

déranger.

4) La charge CPU: fournit l'estimation de la charge CPU prévue après une Tâche

donnée est déployée sur un Processeur donné. Le système tente de répartir les

Tâches de manière à ce que la charge CPU sur chaque plate-forme serait minimisé

afin de sécuriser les processus si leur demande de ressources CPU devait

augmenter.

Potentiellement d'autres critères d'optimisation peuvent être facilement intégrés

dans la logique de la répartition des Tâches, sur la base de l'expérience de

l'utilisation de la mise en œuvre réelle du système DGC.

Tous les critères d'optimisation sont différents dans leur importance, ce qui nous

permet de choisir une approche MADM (Multi-Attribute Decision Making), où chaque

critère sera associé à un poids.

Les changements dans le système qui nécessitent la distribution des Tâches ou,

dans certaines circonstances, la redistribution forment une file d'attente des

événements de changement d'état (State Change Event = SCE). Il existe plusieurs

types de tels événements:

1) La Tâche est ajoutée: par exemple, une nouvelle conférence est créé et la

Tâche de mixage vidéo doit être distribué à un certain Processeur (voir la figure [2]).

2) La Tâche est supprimée: une Tâche déployée sur certain Processeur est plus

nécessaire dans le système. Suppression d'une Tâche peut entraîner la redistribution

d’autres Tâches dans le système pour l'optimisation globale.

3) Le Processeur est ajouté: un nouveau Processeur est ajouté au système.

Certaines Tâches peuvent être redistribuées en prenant en compte le Processeur

ajouté.

4) Le Processeur est supprimé: un Processeur est retiré du système. Si des

Tâches ont été déployées sur ce Processeur alors ces Tâches doivent être

redistribuées à d'autres Processeurs.

5) Valeur d'un critère d'optimisation est changé: la configuration du système a été

modifiée, par exemple, la connectivité réseau d'un Processeur a été modifiée à partir

de Wireline à Wireless. Dans ce cas, certaines Tâches peuvent être redistribuées, si

nécessaire.

La file d'attente de SCE fonctionne comme un file d'attente FIFO (First In, First

Out) avec des priorités strictes. Les priorités sont les suivantes (par ordre

décroissant):

1) Processeur est supprimé (avec des Tâches déployées sur lui).

2) La charge CPU est augmentée d'une manière telle qu'elle peut bloquer

l'exécution des Tâches.

3) Tâche est supprimée, Processor est ajouté, Processor est retiré (sans tâches

sur lui), la charge CPU est réduite, d'autres critères d'optimisation (à savoir pas de

charge CPU) sont modifiés.

4) Tâche est ajoutée.

La plus haute priorité est réglé sur l’événement "Processeur est supprimé"

comme certaines Tâches sont bloquées dans cette situation, ce qui conduit à une

mauvaise expérience utilisateur. La deuxième priorité est réglé sur l’événement "La

charge CPU est augmentée" pour la même raison potentiellement aggraver

l'expérience utilisateur. L’événement "Tâche est ajoutée" a la priorité la plus faible

car il a le sens de prendre en compte tous les changements dans le système avant

de distribuer une nouvelle Tâche afin d'éviter les redistributions consécutifs.

Au cours de traitement des SCEs les Tâches sont déployées / redéployé une par

une. Voilà une fois qu'une décision est prise sur le déploiement / redéploiement, la

Tâche est effectivement déployée / redéployée et le système attend jusqu'à ce que la

Tâche se met à consommer des cycles CPU (le système est alors dans un état

stable). Ensuite, le déploiement / redéploiement d’une Tâche suivante peut être

traitée en fonction de la nouvelle valeur de la charge CPU.

L'objectif de la procédure d'optimisation consiste à calculer une valeur

d'estimation numérique, en tenant compte de la diversité des critères, ce qui

permettrait la comparaison des distributions possibles des Tâches sur les différents

processeurs. La Tâche sera ensuite déployée sur le processeur avec la valeur cible

optimale. Une méthode MADM volontairement créée en utilisant «normalisation au

courant de contexte» est appliquée pour calculer la valeur d'estimation.

Une des spécificités des algorithmes de MADM est la nécessité de normaliser les

valeurs des attributs. Dans le cas général, aucune hypothèse ne peut être faite sur

eux. Plusieurs méthodes de la normalisation des valeurs dans la matrice de MADM

sont bien connus (Sij sont des éléments de la matrice d'origine):

Dans toutes ces méthodes, processus de normalisation implique des opérations

sur les attributs de tous les cas possibles (par exemple somme des valeurs, valeur

maximale, etc.). Cela signifie que lorsque l'ensemble des alternatives est modifié (à

savoir Processeur est ajouté / supprimé ou la valeur du critère d'optimisation est

modifiée), le processus de normalisation devrait être ré-exécuté. En tenant compte

de la nature dynamique du système DGC, il serait hautement souhaitable de pouvoir

effectuer les calculs nécessaires pour chaque alternative, indépendamment des

autres. Une telle approche permet d'appliquer la procédure de MADM uniquement

lorsqu'un Processeur est ajouté au système ou un attribut spécifique du Processeur

est modifié. En d'autres termes, aucun calcul serait nécessaire pour un Processeur

donné, quelles que soient les modifications appliquées à d'autres Processeurs.

Dans le contexte spécifique de notre problème, nous introduisons le processus

de normalisation simple qui élimine ces dépendances. Nous savons en fait la nature

de tous les attributs, leurs valeurs optimales et limites pratiques. Considérons les

attributs de MADM utilisés dans le système DGC.

1) Retard End-to-end: La valeur optimale de retard est évidemment 0 (si l'on

compte en millisecondes). Pour une valeur de retard normalisé, nous utilisons

l'expression suivante:

normalized_delay = real_delay / delay_threshold

delay_threshold peut être défini de différentes façons. Par exemple,

recommandation l'UIT-T G.114 peut être utilisé. Cette recommandation indique les

retards vocaux acceptables dans des applications interactives. Retard inférieur à 150

ms est considérée comme acceptable, plus grand que 400 ms comme inacceptable

et les valeurs entre les deux signifie qu'il y aura des problèmes de qualité. Une telle

manière que nous pouvons définir la valeur 400 comme delay_threshold et cela

signifie que tous les retards de plus de 400 ms ne seront pas distingués les uns des

autres parce que tous les valeurs de normalized_delay plus grandes que 1 sont

arrondies à 1.

2) Bande passante WAN utilisée: La valeur théorique optimale pour la bande

passante WAN (WBW = WAN Bandwidth) utilisée par une Tâche est également 0, il

est atteint lorsque tous les terminaux et le Processeur sont dans le même réseau

local. Pour la bande passante WAN normalisée (normalized_WBW) la valeur que

nous allons considérer est défini par l'expression suivante:

normalized_WBW = real_WBW / max_WBW

La valeur de max_WBW peut être considérée comme la somme des largeurs de

bande de tous les flux vidéo d'une Tâche donnée. Cette valeur est connue au

moment de la création de la Tâche.

3) Les critères de la plate-forme: Tous les critères de la plate-forme, à l'exception

de la charge CPU (à savoir la connectivité réseau, l'alimentation, le partage des

ressources) sont binaires par leur nature, c'est-à-dire ils sont «positif» ou «négatif».

Positifs sont:

- La connectivité réseau = filaire

- Alimentation = circuit électrique

- Le partage des ressources = dédié

Négatifs sont:

- La connectivité = réseau sans fil

- Alimentation = batterie

- Le partage des ressources = partagé

Pour la conformité nous avons mis la valeur "0" pour le cas positif et la valeur "1"

pour le cas négatif. Grace à cela nous avons la situation quand variante idéale de la

valeur de l'attribut est "0" et la normalisation n’est pas nécessaire.

La valeur de critère de charge de CPU est présentée dans les pourcentages

d'utilisation du CPU prise après une Tâche donnée ont été déployés sur un

Processeur donné. Il donne la valeur théorique optimale de "0" (pas réalisable dans

la pratique) et la pire valeur de "100". Pour la valeur de la charge CPU normalisée,

nous allons considérer l'expression suivante:

normalized_CPU_load = REAL_ CPU_load / 100

Critère de la charge CPU a quelques particularités, qui sont décrites ci-dessous.

Tous les critères d'optimisation utilisées dans les calculs sont représentés dans

le tableau [1].

Tableau [1]: Critères d'optimisation

Attribute name
Ideal
value

Worst value Normalization divisor

End-to-end delay 0 ∞
400, if delay <= 400
delay, if delay > 400

WAN bandwidth 0 Sum of all video streams Sum of all video streams

Network
connectivity

0 1 Not needed

Power supply 0 1 Not needed

Resource sharing 0 1 Not needed

CPU load 0 100 100

Le problème est finalement formulé sous la forme d'une méthode "Simple

Additive Weighting" (SAW), mais inversée et normalisée:

où:

ORj : Résultat Objectif pour Processeur j

wi : poids du critère i

aij : valeur normalisée du critère i sur le Processeur j

M: nombre des critères

La méthode SAW inversée signifie que nous devons prendre comme résultat la

valeur la plus petite d’ORj au lieu de la plus grande. La méthode SAW normalisée

signifie que la valeur ORj est dans l'intervalle [0, 1]. Cette formule implique que ORj

est calculée pour chaque Processeur indépendamment et uniquement lorsque le

Processeur apparaît dans le système ou la valeur d'un critère d'optimisation est

modifié.

La charge de CPU du Processeur est différent des autres critères d'optimisation

parce que sa valeur change en continu par rapport aux changements plutôt rares

d'autres valeurs des critères. Du point de vue de la mise en œuvre pratique, cela

signifie que nous pouvons calculer ORj pour tous les critères sauf la charge de CPU

et le stocker dans un cache pendant que nous devons observer la valeur de la

charge de CPU en temps réel.

En outre, afin d'être en mesure de calculer l'impact d'un type particulier de Tâche

sur la charge de CPU d'un Processeur particulier, un processus de qualification

préliminaire est nécessaire. Le processus de qualification signifie que le fournisseur

du système DGC installe un Processeur sur une plate-forme particulière, tous les

types des Tâches sont exécutées et les niveaux de consommation de CPU sont

collectés et stockés. Ensuite, ces valeurs pré-collectées peuvent être utilisées

comme une estimation du besoin de ressources de CPU lorsque le système DGC

simule la distribution d'une Tâche sur un Processeur installé sur la plate-forme

qualifiée sur un site du client.

Afin d'améliorer la perception de la conférence, nous introduisons le taux de

redéploiements d’une Tâche, définie comme le nombre de fois que la Tâche

existante est transférée de l'un Processeur à l'autre. Redéploiements conduiront à

des interruptions dans les flux de médias, il est donc hautement souhaitable de les

minimiser.

Un paramètre spécial "Redeployment Penalty" est utilisé par les algorithmes afin

de réguler le nombre de redéploiements potentiels. Lorsqu'un Processeur est

considéré comme un candidat à l'accueil d'une Tâche, le gain en "Objective Result"

doit être au-dessus de ce seuil, afin que la Tâche d'être redéployé sur ce Processeur.

Notez également qu'un mécanisme simple d'hystérésis est appliqué sur la charge de

CPU pour éviter des redéploiements cycliques lorsque la charge du CPU change de

façon sporadique.

Intégration avec Cloud

Comme il a été mentionné dans "Contexte et Motivation", le système DGC elle-

même ne peut pas garantir SLA (Service Level Agreement) approprié parce que ses

ressources sont contrôlées par les utilisateurs finaux, et non par le système lui-même.

Pour résoudre ce problème système DGC peut être combiné avec le système de

conférence dans le Cloud afin de fournir à la fois SLA et des avantages de coûts en

même temps. Dans ce chapitre, nous utilisons le terme "Fog" pour les ressources de

la grille de bureau afin de souligner son opposition à "Cloud".

Afin d'obtenir encore plus d'avantages, nous combinons une approche Cloud/Fog

avec les différents types de serveurs de médias, notamment MCU et SFU, qui

fournissent différentes caractéristiques d'exploitation. Toutes les combinaisons et les

circonstances possibles, dans lesquelles leur utilisation donne le plus d'intérêt, sont

pris en compte dans ce chapitre.

Récemment, conférence vidéo dans le Cloud est devenu populaire grâce à un

certain nombre de propriétés utiles, telles que la flexibilité et modèle pay-per-use.

Dans le même temps, du point de vue du fournisseur de conférence vidéo dans le

Cloud, il existe un certain nombre de problèmes avec cette approche, nous

mentionnons ici deux d'entre eux:

- Nécessité de ressources de traitement importantes dans le Cloud parce

que tous les calculs sont concentrés en un seul endroit

- Augmentation du délai de bout en bout parce que les données sont

envoyées à partir du client vers le Cloud et retour, souvent via des liaisons

Internet lentes et peu fiables

Ces deux problèmes peuvent être résolus par le choix approprié du type de

conférence vidéo établie par le fournisseur. Le type peut être la conférence

traditionnelle "MCU" qui a besoin de plus de décodage/encodage sur le serveur et

résulte dans une plus grande consommation de CPU et retard bout en bout, ou il

peut être conférence SFU qui n'a pas besoin de traitement des flux vidéo. Dans le

même temps un concept de "Fog" peut être engagée afin de choisir le type de

ressources sur lesquelles le serveur multimédia sera déployé.

En combinaison dynamique MCU/SFU et Cloud/Fog on est capable de:

- Economiser des ressources de fournisseur de conférence vidéo dans le

Cloud en termes de cycles de CPU et la consommation de bande

passante réseau

- Réduire de manière significative le retard bout en bout, pour améliorer le

QoE final

Figure [4]: Structure du système DGC intégré avec Cloud

L'idée est la suivante: nous combinons les techniques mentionnées ci-avant et

obtient quatre approches possibles pour la vidéoconférence. Serveur de signalisation

peut être dans le Cloud ou sur le site. Nous parlons ici que de serveur de médias et

des flux de médias.

SFU dans le Fog:

'+': Pas d’utilisation de CPU dans le Cloud

'+': Pas d’utilisation de WAN

'+': Pas de décodage/encodage supplémentaire

MCU dans le Fog:

'+': Pas d’utilisation de CPU dans le Cloud

'+': Pas d’utilisation de WAN

'-': Décodage/encodage supplémentaire

SFU dans le Cloud:

'+/-': Modéré utilisation de CPU dans le Cloud

'-': Utilisation de WAN étendue

'+': Pas de décodage/encodage supplémentaire

MCU dans le Cloud:

'-': Grande utilisation de CPU dans le Cloud

'-': Utilisation de WAN étendue

'-': Décodage/encodage supplémentaire

Nous pouvons voir que du point de vue des deux parties (fournisseurs et clients)

les quatre approches peuvent être priorisés (du meilleur au pire):

1. SFU dans le Fog

2. MCU dans le Fog

3. SFU dans le Cloud

4. MCU dans le Cloud

L'utilisation des ressources de Fog sur les locaux sont prescrits par les politiques

qui sont négociés entre le fournisseur et le client. Les conditions peuvent varier de

permissives ("toutes les ressources non occupées peuvent être utilisées pour la

conférence") à restrictive ("client interdit l'utilisation des ressources sur site", qui se

traduit par une solution de Cloud pure).

Figure [5]: Les types possibles de vidéoconférence

Évaluation par simulation

L'objectif de la simulation était notamment de découvrir comment la valeur de

Redeployment Penalty affecte différents aspects de la solution. Pour la raison de la

performance l'exécution des calculs sont mises en œuvre dans des nombres entiers

avec toutes les valeurs normalisées dans l'intervalle [0, 100].

Le premier point important que nous avons abordé est le nombre de

redéploiements des Tâches au cours de leur exécution. Chaque redéploiement

représente un compromis entre l'optimisation d’Objective Result et la perturbation de

l'expérience utilisateur provoquée par ces redéploiements, comme les flux vidéo

doivent être réacheminés vers un nouveau Processeur. Dans la Fig. [6] est

représenté le nombre de Tâches déployées (pour chaque simulation avec le

Redeployment Penalty donné) et le nombre de Tâches redéployées. Pour

Redeployment Penalty > 60, il n'y a plus de redéploiements dans le système.

Figure. [6]. Nombre de Tâches déployées et redéployées en fonction de

Redeployment Penalty

Le deuxième point que nous avons considéré est le delta entre Factual Result

(FR) et Ideal Result (IR). FR est le résultat de l'application des algorithmes décrits ci-

dessus. IR est une sortie de l'algorithme qui, après l'arrivée de chaque State Change

Event, prend tous les Processeurs, Toutes les Tâches et calcule le déploiement

théorique qui minimise la somme des Objective Results de toutes les Tâches. Dans

la topologie limitée que nous avons considéré, l'IR peut être simplement calculée par

une énumération exhaustive (comparant tous les déploiements possibles). La valeur

IR représente la répartition optimale des Tâches sur les Processeurs, ne tenant pas

compte de leur ordre d'arrivée. Dans la figure [7] nous pouvons observer le

compromis entre une valeur basse de Redeployment Penalty (provoquant une

certaine perturbation de l'expérience utilisateur en raison de redéploiement des

Tâches) mais au même temps les valeurs proches de FR et IR; et une valeur haute

de Redeployment Penalty causant faible perturbation de l'expérience utilisateur, mais

écart augmenté entre FR et IR.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

Ta
sk

s

Redeployment Penalty

Deployed
Tasks

Redeployed
Tasks

Figure [7]. Factual Result et Ideal Result en fonction de Redeployment Penalty

Ces simulations montrent un compromis clair entre optimalité du système et le

nombre de redéploiements. Dans ces figures, Factual Result peut approcher Ideal

Result, même sans trop de redéploiements. Cependant, quelle valeur de

Redeployment Penalty devrait être pris dans l'exploitation réelle ne peut être

déterminée que avec des paramètres réalistes (consommation CPU qualifié, le poids

des MADM accordés), qui peuvent être disponibles seulement après l'essai de la

mise en œuvre du système basé sur la plate-forme matérielle réelle avec le vrai

serveur multimédia.

Conclusions et Directions des Travaux Futures

Dans cette thèse, nous avons étudié une approche novatrice pour l'organisation

de vidéoconférences. De nos jours, la vidéoconférence dans les entreprises est

organisée principalement à l'aide de MCU centrales. MCU est responsable du

contrôle de la conférence ainsi que des tâches de traitement vidéo, telles que le

mixage ou le codage trans. En raison du fait que les MCU sont généralement conçus

sous la forme de matériel spécialisé, ils sont un équipement coûteux. Les MCU de

logiciels purs existent également, elles peuvent être utilisées en mode Cloud.

Cependant, en raison des opérations complexes avec les flux média, ils consomment

beaucoup de ressources de serveur. Dans le même temps, les approches Overlay

Network existent pour la vidéoconférence: Application Layer Multicast et Peer-To-

Peer. Ces approches sont conçues pour les relais vidéo, tandis que les tâches de

mixage vidéo sont directement traitées aux points finaux. Par conséquent, si un point

final n'est pas capable de mélanger plusieurs flux vidéo, en raison de certaines

limitations matérielles / logicielles, il ne bénéficiera pas de l'expérience de

téléprésence moderne.

56

58

60

62

64

66

68

0 10 20 30 40 50 60 70

O
b

je
ct

iv
e

 R
e

su
lt

Redeployment Penalty

Factual

Ideal

Le problème est donc de fournir une expérience vidéo enrichissante, disponible

aujourd'hui grâce à des MCU dédiés, sans utiliser de matériel dédié et sans

surcharger les serveurs existants avec des opérations de traitement des médias.

La solution proposée consiste à distribuer des MCU sur Enterprise Desktop Grid,

qui comprend tous les PC disponibles dans l'entreprise, avec suffisamment de

ressources pour accepter les tâches de traitement vidéo. Les recherches antérieures

montrent que beaucoup d'ordinateurs personnels dans une entreprise ne sont pas

utilisés pendant de longues périodes, même pendant les heures de travail. Dans la

terminologie moderne, cette approche est connue sous le nom de «Cloud

computing» contrairement au «Cloud computing» centralisé.

Les exigences pour construire une telle MCU distribuée:

• L'architecture du réseau devrait s'appliquer à la topologie d'entreprise

typique, contenant des sites avec un réseau local rapide connecté par Internet

potentiellement lent

• L'architecture doit prendre en compte la nature dynamique de Enterprise

Desktop Grid, en particulier le fait que les PC peuvent être arbitrairement arrêtés

ou que les processus tiers peuvent être lancés par les utilisateurs finaux

Le système de conférence Desktop Grid Conferencing (DGC) que nous

proposons consiste en un ensemble de serveurs multimédia (aborder les tâches de

traitement vidéo), distribués sur un cluster de matériel de bureau ordinaire (PC,

ordinateurs portables, etc.). La description du système DGC repose sur deux notions

principales: les tâches et les processeurs.

La tâche est une activité liée aux médias, fournie traditionnellement par un MCU

ou un serveur multimédia logiciel: mélange vidéo, commutation vidéo, codage trans,

trans-mise à l'échelle ou d'autres manipulations sur les flux vidéo.

Processor est un serveur multimédia déployé sur un matériel général, tel qu'un

PC. Les utilisateurs peuvent activer / désactiver leurs PC et lancer des applications

tierces consommant de l'énergie CPU ainsi que des appels de démarrage / arrêt et

des conférences au hasard. Il en résulte une imprévisibilité des ensembles de tâches

et de processeurs, qui doit être pris en compte par le système.

La logique principale de l'architecture proposée est de distribuer et, si nécessaire,

de redistribuer les Tâches sur les Processeurs en tenant compte des changements

dans l'ensemble des Tâches, ensemble de processeurs et contraintes externes. Le

résultat de la distribution devrait être «optimal» dans certaines conditions.

Les critères d'optimisation peuvent être divisés en deux ensembles: les réseaux

et les plateformes. Les critères de réseau qui devraient être pris en compte

comprennent la bande passante WAN consommée par une tâche et un délai de bout

en bout entre les points finaux. Les critères de la plate-forme sont liés aux

processeurs disponibles dans le système: connectivité réseau, alimentation, partage

des ressources, chargement de la CPU.

Tous les critères d'optimisation sont différents selon leur nature et leur

importance, ce qui nous conduit à choisir une démarche MADM (Multi-Attribute

Decision Making), où chaque critère est associé à un poids. L'application d'une

méthode MADM donne une métrique intégrale d'un déploiement d'une tâche donnée

à un processeur donné, appelé Objective Result. Une méthode MADM dédiée

utilisant "normalisation contextuelle" a été conçue pour calculer le résultat objectif.

Dans cette méthode, la normalisation est dérivée de la nature des attributs. Une telle

approche permet d'appliquer la procédure MADM uniquement lorsqu'un processeur

est ajouté au système ou qu'un attribut spécifique du processeur est modifié. En

d'autres termes, aucun calcul n'est nécessaire pour un processeur donné, quels que

soient les changements appliqués aux autres processeurs, ce qui est très important,

compte tenu de la nature dynamique en temps réel du système DGC.

Le système DGC lui-même ne peut garantir un accord de niveau de service (SLA)

approprié car ses ressources sont contrôlées par les utilisateurs finaux et non par le

système lui-même. Pour résoudre ce problème, le système DGC peut être combiné

avec le système de conférence dans le Cloud pour fournir à la fois SLA et avantages

de coûts en même temps. Nous avons développé les algorithmes, combinant

l'approche Cloud / Fog avec différents types de serveurs multimédias. Le résultat

fournit une solution de conférence optimisée en termes de coût tant pour le

fournisseur que pour le consommateur, ainsi que sur l'expérience de l'utilisateur final.

Afin de tester les algorithmes de distribution de tâches, la logique respective a

été implémentée à l'aide d'une approche de simulation d'événement discrète.

Le premier point abordé dans la simulation est le nombre de redéploiements de

Tâches lors de leur exécution. Chaque redéploiement représente un compromis

entre l'optimisation de Objective Result et la perturbation de l'expérience de

l'utilisateur qui accompagne le redéploiement.

Le deuxième élément que nous avons considéré est le delta entre le résultat

factuel et le résultat idéal. Le résultat factuel est le résultat de l'application des

algorithmes, calculant Objective Result dans la situation actuelle du système. Le

résultat idéal est une sortie de l'algorithme qui, après l'arrivée de chaque événement

de changement d'état, prend tous les processeurs, toutes les tâches et calcule le

déploiement théorique qui minimise la somme des résultats objectifs de toutes les

tâches. La valeur du résultat idéal représente la répartition optimale des tâches sur

les processeurs, sans tenir compte de leur ordre d'arrivée.

Ces simulations montrent un compromis clair entre l'optimisation du système et le

niveau d'expérience de l'utilisateur, affecté par les redéploiements de tâches. En fait,

le résultat factuel peut s'approcher du résultat idéal, même sans trop de

redéploiements. Cependant, la logique, responsable de la décision sur le

redéploiement, ne peut être déterminée qu'avec des paramètres réalistes

(consommation de CPU qualifiée, pondérations MADM accordées), qui peuvent être

disponibles uniquement après un test intensif de l'implémentation du système en

fonction du serveur multimédia réel déployé sur le Plates-formes matérielles réelles.

Ensuite, nous avons étudié dans quelle mesure un PC peut être utilisé comme

plate-forme pour héberger un serveur multimédia et comment la charge CPU de

cette plate-forme affecte la qualité du flux vidéo résultant. Pour cela, nous avons créé

un banc d'essai avec un serveur multimédia open source, déployé sur un ordinateur

portable habituel, et connecté plusieurs téléphones portables vidéo jouant le rôle de

terminaux de conférence.

Pour l'un des points d'extrémité, nous avons connecté un outil de mesure de la

qualité de la vidéo, qui nous a fourni un indice d'opinion moyen prévu. Nous avons

appliqué cet outil à un flux vidéo, généré par un serveur de médias de

vidéoconférence. Le serveur, déployé sur un ordinateur portable de commodité, a été

perturbé par un processus de tierce partie, qui a consommé différentes quantités de

puissance de l'UC. En conséquence, nous avons démontré que le matériel de

bureau de commodité peut vraiment être utilisé comme une plate-forme pour les

serveurs de médias, transportant une charge de travail limitée dans la portée de

notre système de conférence Enterprise Desktop Grid.

Deux applications de l'apprentissage par machine peuvent être envisagées afin

d'améliorer la qualité du système.

Pour une plate-forme donnée avec des poids initiaux définis en exécutant un

nombre limité de tests manuels, lors de son exploitation, nous pouvons:

• Basé sur une configuration / état de plate-forme donnée pour essayer de

prédire dynamiquement des poids qui maximiseront la QoE (ex: la panne de Wi-

Fi augmente le poids de "Connectivité réseau"). Pour cela, nous avons besoin de

recueillir continuellement des informations sur différents aspects de

l'environnement système: état du réseau et de l'équipement de réseau, types

d'ordinateurs personnels utilisés, etc. Ensuite, après la corrélation de cette

information avec QoE résultante, nous pouvons déduire les poids des critères

existants ou nouvellement créés afin de maximiser la QoE qui en résulte.

• Pour tenir compte de l'historique du fonctionnement du système pour les

distributions futures (ex: les observations de nœud stables / non stables

présentent le "notation" du nœud). De cette façon, nous pourrions créer une sorte

de «profils de ressources», c'est-à-dire les caractéristiques typiques de

l'utilisation et du comportement des ressources, ce qui affecte la stabilité globale

du système. En corrélatant ces modèles avec des jours de semaine, de temps et

d'autres informations sur l'environnement, nous pourrons prévoir dans une

certaine mesure le comportement de ressources données dans le futur.

2

Contents

Glossary …………………………………………………………………………… 5

1. Introduction …………………………………………………………………… 7

2. Video conferencing state-of-the-art ………………………….............. 11

2.1. Video conferencing industry …………………………………… 11

2.1.1. Introduction …………………………………………………… 11

2.1.2. Functional architecture example …………………………… 12

2.1.3. Video coding …………………………………………………… 15

2.1.4. Video processing …………………………………………… 20

2.1.5. Protocols …………………………………………………… 22

2.1.6. Types of media servers …………………………………… 26

2.1.7. Types of clients …………………………………………… 28

2.1.8. Topologies …………………………………………………… 29

2.1.9. Current trends …………………………………………… 33

2.2. Academic research of video conferencing …………………… 34

2.2.1. Application Level Multicast …………………………………… 34

2.2.2. Peer-to-Peer …………………………………………………… 35

2.2.3. Video streaming …………………………………………… 36

2.2.4. Conclusion …………………………………………………… 36

3. Node selection algorithms ………….……………………………………...... 37

3.1. General system description …………………………………… 37

3.2. Optimization criteria …………………………………………………… 37

3.3. State Change Events …………………………………………… 38

3.4. MADM approach …………………………………………………… 39

3.5. CPU load criterion …………………………………………………… 42

3.6. MADM Example …………………………………………………… 43

3.6.1. Description …………………………………………………… 43

3

3.6.2. Calculations …………………………………………………… 45

3.7. Redeployment Penalty …………………………………………… 48

3.8. Algorithms of Processor selection …………………………… 48

3.8.1. Notation conventions for algorithms …………………… 48

3.8.2. Task is added …………………………………………… 48

3.8.3. Task is removed …………………………………………… 48

3.8.4. Processor is added …………………………………………… 49

3.8.5. Processor is removed …………………………………… 49

3.8.6. Processor CPU load is increased …………………………… 49

3.8.7. Processor CPU load is decreased …………………… 49

3.9. Possible extensions …………………………………………… 50

3.9.1. Media stream relays …………………………………… 50

3.9.2. Taking RTCP feedback into account …………………… 51

3.10. Analysis of the process …………………………………………… 52

3.10.1.Scalability …………………………………………………… 52

3.10.2.Algorithms complexity ……….………………………….. 52

4. Solution architecture …………………………………………………… 54

4.1. Standalone DGC system …………………………………………… 54

4.1.1. DGC architecture …………………………………………… 54

4.1.2. Delay estimation …………………………………………… 55

4.1.3. Example of ALTO usage …………………………………… 56

4.2. Cloud integrated DGC system …………………………………… 59

5. Evaluation by simulation …………………………………………………… 63

5.1. Simulation input …………………………………………………… 63

5.2. Simulation topology …………………………………………………… 65

5.3. Simulation results …………………………………………………… 66

6. Impact of CPU Load on Video Quality …………………………………… 69

4

6.1. Introduction …………………………………………………………… 69

6.2. Description of the testbed …………………………………………… 70

6.3. Results of the experimentation …………………………………… 71

7. Conclusions and Future Work …………………………………………… 76

7.1. Conclusions …………………………………………………………… 76

7.2. Future Work …………………………………………………………… 79

Annex A. Standalone DGC system design …………………………………… 80

A.1 Design static view …………………………………………………… 80

A.2 Design dynamic view …………………………………………… 86

A.2.1 Add Task sequence …………………………………………… 87

A.2.2 Add Processor sequence …………………………………… 89

Annex B. Cloud integrated DGC system design …………………………… 91

B.1 Design …………………………………………………………… 91

B.2 Algorithms …………………………………………………………… 93

List of publications …………………………………………………………… 100

References …………………………………………………………………… 101

5

Glossary

CPU Load Qualification Matrix – matrix containing information on CPU load for a

given type of Tasks deployed on Processor installed on a given type of platform

Desktop Grid Conferencing (DGC) – general name of the overall system

DGC stable state – a state of DGC system when all the Tasks are deployed and

consume CPU resource or waiting in SCE queue, that is there is no distribution process

ongoing

Dynamic Simulation – procedure of simulation of CPU load for a given Task being

distributed to a given Processor

Dynamic Simulation Result (DSR) – numerical result of dynamic simulation

Endpoint – a user’s device which originates/terminates media streams (PC, laptop,

tablet, deskphone, mobile device, conference specialized hardware, …)

Full Simulation Result (FSR) – numerical value reflecting integrated evaluation of

distribution of a given Task to a given Processor. SSR and DSR are used for calculation of

FSR

Leg – a connection between an Endpoint and a Conference. Consists of two flows:

signaling flow (SIP) and media flow (RTP)

Node – hardware resource on which a Processor can be installed (PC, laptop, tablet, …)

Objective Result (OR) – integral metric of a deployment of a given Task to a given

Processor

Optimization criteria - the rules that determine by which criteria the variants of

distribution are compared with each other in order to understand which one is better

Processor – software component (media server) which is installed on a Node and

which executes Tasks by processing media streams

Real CPU Load (RCL) – real CPU load of a given Processor

Real Deployment Result (RDR) – numerical value calculated by the same formula as

FSR but with RCL used instead of DSR. Such a way RDR reveals the integrated

characteristic of real deployment of a given Task on a given Processor contrary to FSR

which reveals the integrated characteristic of simulation of such a deployment

SCE queue – prioritized queue of State Change Events. Priorities reflect the urgency

with which a given event should be taken into account

6

State Change Event (SCE) – an event reflecting the change in the set of Tasks, set of

Processors or in external conditions which causes Task distribution or consideration of

Tasks re-distribution

Static Simulation - procedure of calculation of a numerical value reflecting how “good”

is a given Processor for deploying a given Task in terms of location in network and

characteristics of hardware of the platform on which Processor is installed. Several

optimization policies are estimated by a Multi-attribute Decision Making Method to get the

final value.

Static Simulation Result (SSR) – numerical result of static simulation

Task – a set of manipulations executed by Processor on input video streams with a

target to produce required output video streams. Manipulations include video mixing, video

switching, trans-coding, trans-scaling, streams relay, etc

Task deployment – a process of actual assigning of a Task to a Processor, that is

instructing Endpoints to send their video streams to the given Processor for execution of the

Task

Task distribution – a process of choosing of an appropriate Processor for a Task

based on static and dynamic simulation results

7

1. Chapter 1. Introduction

Chapter 1

Introduction

Video conferencing is a well-established area of communications, which have been

studied for decades. Recently this area has received a new impulse due to significantly

increased bandwidth of Local and Wide area networks and appearance of low-priced video

equipment. At the same time high quality video images such as Full HD may require

significant computational resources for their processing. Video processing for conferencing

includes some manipulations necessary to get advanced user experience (mixing together

several video streams or switch the image to the currently speaking participant) as well as

operations caused by the incompatibility of endpoints, e.g. trans-coding in the case when

participants use different video codecs.

Currently, two distinct architectures for handling these video-processing tasks are used.

The traditional solution is using Multipoint Control Unit (MCU) [29]. MCU is a powerful

component that centralizes all video processing operations and distributes the resulting

streams. MCU can be implemented as a hardware unit with integrated Digital Signal

Processors (DSP) or a software component installed on commercial off-the-shelf (COTS)

servers. Also MCU can be deployed in both cloud and on-premises mode. In all deployment

scenarios, MCU represents a dedicated resource, which needs to be purchased or leased.

Another solution is to use endpoints as resources for video processing. This can be

achieved by exploiting Peer-to-Peer (P2P) or Selective Forwarding Unit (SFU) [29] strategy.

P2P approach has been thoroughly researched but this technique has not gained traction in

enterprise communications, as it doesn’t provide easy means of integration with business

applications as well as implementation of important enterprise requirements like access to

heterogeneous LDAP directories. SFU is a software component, which forwards video

packets based on endpoints capabilities. It doesn’t perform any media processing on video

streams, it only filters and relays packets. As a result, the capacity of a conferencing system

driven by SFU depends on the capabilities of endpoints. If endpoints are incompatible in

terms of codecs then SFU is not useful, as endpoints normally don’t have trans-coding

functionality.

In this thesis a Desktop Grid Conferencing (DGC) system is proposed, which uses

resources of the enterprise desktop grid (PCs, laptops etc. deployed within the enterprise

network) for allocating video processing services needed for organizing videoconferences.

8

Previous research on enterprise desktop grids [39] demonstrates that a significant amount

of CPU resources of PCs used within enterprises are not occupied with any activity.

Figure 1.1: Percentage of time when CPU availability is above a given threshold (from [39]).

These resources could be used for video processing, similarly to the concept of “Fog

Computing” [38]. Of course, due to the dynamic nature of the grid resources, providing

Service Level Agreement (SLA) is challenging, as compared to dedicated MCU. In practice,

the DGC system can be backed by a cloud video conferencing service, which will be used

when the DGC system doesn’t have enough resources. Combining the DGC system with a

cloud conferencing service, one can obtain clear financial benefits, as the grid already

exists with no extra expenditure needed.

The system is designed for typical enterprise network topologies, containing sites with

fast LAN inter-connected by potentially slower Internet links. The proposed algorithms

analyze network characteristics, such as delay between sites and Internet bandwidth

required for video streams as well as grid node characteristics, such as CPU load, network

connectivity type and power supply type in order to provide the best possible Quality of

Experience (QoE) under current circumstances. To compare alternative variants of task

distribution, a Multi Attribute Decision Making (MADM) method specially customized to this

framework is introduced.

Let’s consider an example of the DGC system deployed on three sites. Several users

organize a video conference. Three PCs are registered in the system, their characteristics

are compared and the system decides to deploy video processing needed for the

conference on one of them (see Figure 1.2).

9

Figure 1.2: Video conference processing is hosted on Processor1

At some moment a third-party process, consuming a lot of CPU power, is started on the

PC hosting video conference processing so the system decides to re-host conference

processing to another PC (see Figure 1.3).

Figure 1.3: Video conference processing is re-hosted to Processor3 due to the increase

of CPU load on Processor1

Structure of the thesis

In Chapter 2 we provide an overview of industrial and academic state-of-the-art of video

conferencing. Methods and technologies, employed in modern video conferencing solutions

are comprehensively introduced, and the positioning of a proposed approach is highlighted

among them. In academic research overview we list the topics, elaborated by the present

time, noting that the research focuses mostly on Internet topologies, oriented to general

public, with no results applicable to the specific enterprise grade solution needs.

Chapter 3 describes the algorithms that allow manipulations on video conferences and

desktop grid resources, on which the conferences are deployed. The chapter begins with

the list of criteria, that we consider in order to provide an optimized solution for the task of

deploying conferencing on grid nodes. Then we present a customized Multi-Attribute

Decision Making (MADM) method, which combines proposed criteria in one resulting value

in order to make the nodes comparable between each other. The difference between our

10

MADM method and the traditional ones is that our approach is applicable in real-time to

constantly changing set of options without the need of extra calculations. And finally we

elaborate detailed algorithms for all possible events, that can occur in a grid based

conference system.

In chapter 4 we present the architecture of the solution. In the first part we describe the

standalone system, which uses only grid resources. The problematic of delay estimation is

tackled. The static design view with all necessary interfaces as well as dynamic design view

with several key workflows are elaborated. In the second part we provide the description of

the grid based system combined with the cloud based system. This combination allows

providing guaranteed level of the solution service, even when grid resources are lacking.

In chapter 5 we discuss the simulation, which verifies the algorithms from chapter 3,

based on implementation described in chapter 4. We use the statistics of utilization of a real

conference system, deployed at an enterprise, and a conference topology, typical for an

enterprise grade conferencing system. In simulation we demonstrate the trade-off between

the optimality of the system at any given moment and its stability, that is the frequency of

redeployments of conference activities from one node to another. As a result we show that

good results in the terms of system optimality can be achieved without significant

disturbance of user experience.

In chapter 6 we consider the question of using a PC as a platform for a soft media

server. For that we demonstrate which level of conference quality can provide a PC, being

loaded at the same time by third party processes. For that we use several types of software,

which allow loading the CPU in a controlled manner, and a hardware solution, which is

capable to estimate the quality of a video stream from the end-user point of view.

Chapter 7 concludes the thesis and contains suggestions for further work.

Annex A presents the standalone DGC system design and Annex B presents the design

of the Cloud integrated DGC system.

11

2. Chapter 2. Video conferencing state-of-the-art

Chapter 2

Video conferencing state-of-the-art

This chapter presents the main technologies behind the modern IP-based

videoconferencing services, with a particular focus on codecs, network protocols and

architectures. Traditional industrial disposition as well as modern innovative approaches are

both addressed. Results of academic research on video conferencing are also presented.

Legacy analog/digital technologies, together with the gateways between the traditional

and the IP videoconferencing systems, are not considered.

The proposed Desktop Grid Conferencing system is also regarded in line with other

technologies in order to demonstrate its potential positioning in the industry.

2.1. Video conferencing industry

2.1.1. Introduction

Video conferencing is a two-way interactive communication, delivered over networks of

different nature, which allows people from several locations to participate in a meeting.

Conference participants use video conferencing endpoints of different types. Generally

a video conference endpoint has a camera and a microphone. The video stream, generated

by the camera, and the audio stream, coming from the microphone, are both compressed

and sent to the network interface. Some additional info like instant messages, the shared

screen or a document can be also exchanged between participants.

IP video conferencing, considered in this tutorial, is based on the TCP/IP technology as

a transport network for all these flows. In the past, specially designed analog lines and

digital telephonic lines (ISDN) had been employed for that purpose. IP started to be used in

the 1990s and has become the prominent vehicle for video conferencing since then.

Today IP video conferencing is a well known and widely used service. However, most

users might not realize that it has a notably complex architecture, involving a wide range of

technologies. This tutorial aims at providing an overview of possible architectures and

technologies, involved in the realization of videoconferencing services.

12

2.1.2. Functional architecture example

There exist two fundamental means to set up videoconference calls between

participants. Basic conference functions can be offered in peer-to-peer mode, in which all

the participants are connected directly with each other (see Figure 2.1).

Figure 2.1: Peer-to-peer video conference

Conferences, which provide more services, such as central management of participants

or conference recording, generally make use of a central point of control (“Middlebox”) in

order to implement these additional services (see Figure 2.2).

Figure 2.2: Video conference with a middlebox

In this section, we present an example of a possible functional architecture of a

conferencing solution, using several dedicated servers (defined hereafter), as depicted in

Figure 2.3. These servers play a role of the “middlebox” in the centralized conferencing

architecture. Such architecture is typical for advanced video conferences in enterprises.

2.1.2.1. Functional elements

Endpoint: A software application or dedicated hardware equipment, which allows a

user to participate in a conference. It consists of the following elements:

 Equipment for capturing and rendering both audio and video: a screen, a

microphone and a loudspeaker or headphones

 Audio/video coder and decoder, in order to limit the throughput of streams sent

on the network

 A signaling protocol stack, which is responsible for the registering the user in the

conferencing system, joining or leaving a conference, negotiation of media

formats, etc.

13

 A media transport protocol stack, which delivers encoded media over the network

between endpoints and the middlebox

Figure 2.3: An example of a video conference functional architecture

Conference Control Application: A Graphic User Interface application, which allows

the conference leader to fulfill different operations on the conference, such as reserving

media resources for a future conference, inviting new participants or removing existing

participants. Web technologies are often used for this type of applications, which can also

be integrated with the endpoint software.

Media Server: Software component or hardware appliance, which comprises resources

for media processing, like:

 Audio mixing, that allows the voices of conference participants to be mixed into

one stream, that can be sent to all the participants

 Video mixing, that allows the images of several participants to be shown

simultaneously on the screen (see Figure 2.4)

Figure 2.4: Multi image video conference endpoint

Basic media processing facilities, like media mixing, can be integrated into endpoints

and can thus be used in peer-to-peer mode. The use of a centralized Media Server gives

some advantages like:

14

 Media trans-coding if media is encoded by different endpoints in incompatible

formats

 Generating additional media streams based on the conference ones, for example

for recording

Application server: A software component or hardware appliance, which plays the

central management role between other functional parts of the video conferencing solution

(Endpoints, Conference Control Application and Media Server). Its functionality

encompasses:

 Localization of Endpoints (Endpoints register in the Application Server so their

network locations are known) and management of Call Signaling sessions

 Conference management: processing the requests of the conference leader

made with the Conference Control Application (inviting/removing users, etc.) and

translating them to Call Signaling session commands towards respective

Endpoints

 Media Server management: based on the logic of the conference Application

Server, the Media Server applies different media treatment to the conference

participants, like playing a voice message to the participants, recording the

session, etc.

Having management functions centralized allows the conference to continue smoothly

even while some Endpoints leave the conference --- which is hardly possible in the case

when management logic resides on one of the Endpoints. Furthermore, centralized

management facilitates integration with different enterprise software, like corporate directory

with information about employees, shared calendars, etc.

Application and Media Servers can be combined in one box with specifically selected

hardware optimized for delivering high quality audio/video experience.

2.1.2.2. Workflow example

The dynamic view of the architecture, presented in Figure 2.3, is demonstrated with the

scenario below. The technologies and the protocols, used for this demonstration, are quite

typical for videoconferencing, deployed in modern enterprises: SIP (Session Initiation

Protocol)[10] is used for call signaling, RTP (Real-time Transfer Protocol)[9] is used for

streaming media on the network and MSML (Media Server Markup Language)[15] for

media resources control. All these technologies are highlighted below. The scenario,

depicted in Figure 2.3 follows several steps:

1. The conference leader creates a conference using the Conference Control

Application (step 1).

15

2. The Application Server sends a MSML command to the Media Server with

instructions on how the conference must be configured and which resources are

needed (step 2).

3. At this stage, Endpoint1 wants to join the conference. It sends the SIP request to

the Application Server to join the video conference (step 3). The request includes

information about the media session parameters.

4. The Application Server forwards the request towards the Media Server (step 4),

which in turn sends a SIP answer to Endpoint1, with its own media session

parameters.

5. A connection between Endpoint 1 and the Media Server is now opened (step 5).

This is a direct RTP session as the Application Server does not process media

streams. The connection between Endpoint1 and the Media Server is

operational but nothing is transported yet, as we need to attach this session to a

source of media in the Media Server (for instance to a video mixing function).

6. The Application Server sends a MSML command, which allows the connection of

Endpoint1 to be attached to the videoconference session (step 6). From this

moment, the media flows generated by Endpoint1 will be mixed with the streams

of other participants.

If another endpoint (Endpoint2) joins the conference, the procedure will be exactly the

same as described in steps 3-6 above.

2.1.3. Video coding

2.1.3.1. Why video coding

End user’s device for capturing video (i.e. web camera integrated into laptop) produces

raw (uncompressed) digital video stream. Video processing (i.e. video mixer in media

server) and video rendering (i.e. video conferencing endpoint) also require uncompressed

digital video streams. However, raw digital video streams are usually too heavy (i.e. they

consume too much bandwidth) to be sent through the network, so they should be

compressed.

Video encoding is a process of converting raw digital video to a compressed format,

video decoding is the opposite process. A hardware or software component that fulfills

encoding and decoding is called “codec” (which is a concatenation of “coder” and “decoder”)

[1].

The format of the compressed streams normally conforms to some video compression

standards. The standards typically define lossy compression, meaning that the compressed

stream loses some of the original information present in the raw stream. As a result,

compressed/decompressed streams have lower quality than the original ones.

https://en.wikipedia.org/wiki/Video_compression_specification
https://en.wikipedia.org/wiki/Video_compression_specification
https://en.wikipedia.org/wiki/Lossy_compression

16

2.1.3.2. Types of video coding

The codecs differ by the quantity of the data, needed to transport the video stream

(which is called “bitrate”), the complexity of the encoding and decoding algorithms,

robustness to data losses and errors, which occur when the stream traverses the network,

end-to-end delay, and a lot of other parameters.

User endpoints vary in their capabilities to accept and process video streams. These

differences can be explained by:

 Different bandwidth capabilities

 Different decoding complexity and power constraints

For example, a specialized hardware based video conferencing endpoint, which is

normally installed in a meeting room, is typically able to process high quality video streams.

However, a participant using a smart phone is only able to process low quality streams

using small bitrates. Generally, this problem is resolved by a “Transforming middlebox”,

which can adjust streams to the recipients’ needs (see Figure 2.5).

Figure 2.5: Logic of transforming middlebox

Scalable Video Coding (SVC) is another approach, allowing different types of devices to

participate in the same video conference. With SVC, a high-quality video stream is divided

into several layers of quality. For instance in Figure 2.6, the three layers are sent on the

network. The mobile terminal (with poor network reception) will only receive the base layer,

which corresponds to the lowest video quality. The other terminals, which can benefit from a

better network throughput and/or CPU power, can receive additional layers (on top of the

base layer) in order to get a better video quality.

The advantage of this technique is that processing at the SVC middlebox is extremely

light, as the middlebox just needs to filter the different built-in layers, and processing of the

content of the video stream is not required.

One of the following methods can be used to build the different layers:

 Temporal scalability (frame rate): a low frame rate is used for the base layer,

while additional frames are added on advanced layers, providing more fluidity to

the video.

17

 Spatial scalability (picture size): the base layer has a low image resolution, while

advanced layers add additional pixels increasing it.

 Quality scalability (coding quality): the coding quality corresponds to the number

of bits associated with each pixel. The base layer is coded with the low coding

quality, advanced layers with the better one.

It is also possible to combine several of the above scalability techniques.

The flexibility of SVC comes at a price, since the layer encoding adds a bandwidth

overhead of roughly 10% - 20%, as compared with a non SVC stream of the same quality.

Unfortunately, SVC technique is not currently fully standardized, so implementations of

different vendors are not compatible with each other, except for the base low bitrate layer,

which is coded as standard stream (and can thus be decoded by decoders which

understand only standard coding).

Figure 2.6: Logic of SVC middlebox

In order to overcome this obstacle, another method called Simulcast Video Coding was

proposed. Simulcast Video Coding is the parallel encoding of multiple independent video

streams with different quality strategies (see Figure 2.7). Each endpoint in the video

conference chooses the most appropriate stream which it can process. This allows

traditional endpoint, which doesn’t support Scalable Video Coding technology to participate

in the conference with the appropriate quality level (compatible with their bandwidth and

CPU limitations).

Figure 2.7: Logic of Simulcast middlebox

18

In Table 2.1 traditional, scalable and simulcast coding methods are compared by the

following parameters:

 upstream bandwidth: the bandwidth needed to pass the client streams to the

middlebox

 middlebox processing load: the amount of computations, the middlebox needs to

execute in order to prepare the resulting streams for the clients

 downstream bandwidth: the bandwidth needed to pass the streams, prepared by

the middlebox, to the client

 interoperability: to which extent the standard clients, which don’t support a given

technology, are able to receive the streams, coded by using this technology

Table 2.1: Comparison Of Coding Methods

 Upstream
bandwidth

Middlebox
processing load

Downstream
bandwidth

Interoperability

Standard
Coding

Low High Low High

SVC Low
(with small
overhead)

Low Low
(with small
overhead)

Low
(except base
layer)

Simulcast High Low Low High

2.1.3.3. Codecs

Several codecs are used in modern IP video conferencing. They are divided into several

families.

2.1.3.3.1. H.264/H.265

H.264 and H.265 are the codecs standardized by ITU-T and ISO.

H.264 Advanced Video Coding (AVC) [2] was standardized in 2003. It provides a

standard (non scalable) encoding with different quality levels, associated with the different

sets of constraints imposed by decoder performance. The level defines the maximum

picture resolution, frame rate and bitrate, that a decoder may use.

The H.264 standard was designed to be used by a wide variety of video applications,

such as video conferencing, mobile video and high definition broadcast. Different types of

target applications are addressed by profiles, which represent sets of coding tools and

algorithms, used by the specific application (independently from the levels).

Videoconferencing is typically based on the so called Baseline Profile (BP) or Constrained

Baseline Profile (CBP).

19

H.264 is widely accepted in all areas and implemented in both hardware and software.

H.264 is protected by a group of patents, which are managed by a holding of patent holders

called “MPEG-LA”.

H.264 Scalable Video Coding (SVC) [3] was standardized in 2007 and provides H.264

implementation of Scalable Video Coding.

H.265 High Efficiency Video Coding (HEVC) [4] is a successor to H.264 AVC. It was

standardized in 2013. H.265 generally doubles the data compression ratio compared to

H.264 AVC at the same level of video quality or, if used at the same bitrate, it substantially

improves quality. H.265 SHVC (HEVC Scalability Extension) provides implementation of

Scalable Video Coding technique and was published in 2015.

2.1.3.3.2. VP8/VP9/VP10

VP8, VP9 and VP10 are owned by Google. In 2010 Google exposed the source code of

VP8 [5] under a 3-clause BSD license and the VP8 bitstream format is published by IETF.

VP8 only supports temporal scalability.

VP9 [6] is a successor of VP8. It is also open and royalty free. Its bitstream description

was published by IETF in 2013. The main improvement over VP8 is close to that of H.265

vs. H.264 – roughly half of bitrate is needed to deliver the same video quality. Scalable

Video Coding version of VP9 is under development. VP10 is the latest evolution of this

family which is in the early stage of development.

2.1.3.3.3. NETVC

In 2015 an Internet Video Codec (NETVC) working group was created at IETF with the

target to produce a high-quality video codec meeting following requirements:

 competitive in terms of performance with best-of-the-breed existing codecs

 optimized for use in interactive web applications

 patent and royalty free allowing wide implementation and deployment

As for the mid of 2016 two codecs were submitted to IETF NETVC group: Daala and

Thor.

Daala [7] is a free open source codec under development by Xiph.Org Foundation. The

codec is developed based on the new principles compared to existing widely adopted

codecs, which will allow avoiding patent infringement. The ideas of the codec are covered

by some patents which are freely licensed to everybody.

Thor [8] is a free open source codec under development by Cisco. The target is to

propose a codec of moderate complexity to allow real-time implementation in software on

common hardware, as well as new hardware designs. Thor is based on technologies used

in currently widespread standards.

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/3-clause_BSD_license
https://en.wikipedia.org/wiki/Bitstream_format
https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/Royalty_free
https://en.wikipedia.org/wiki/Xiph.Org_Foundation

20

2.1.3.3.4. Alliance for Open Media

The Alliance for Open Media [37] was founded by leading media related companies in

2015. The first target of the alliance is developing a new open royalty-free video codec

specification and open-source implementation. VP10, Daala and Thor are considered for

the development of this new codec.

2.1.3.3.5. Other codecs

In existing deployments, a wide variety of other codecs is present such as legacy

codecs (H.261, H.263, …) and non-standard private codecs (Microsoft RTV, …).

2.1.4. Video processing

Given the set of video streams produced by conference participants’ endpoints, the

conferencing software needs to apply necessary processing in order to guarantee that all

participants receive the streams that they are able to render. Processing generally consists

of two parts: video presentation and video transformation.

2.1.4.1. Video presentation

Video presentation combines the streams, generated by the participants, in order to

propose necessary user experience to stream recipients. Video presentation takes place in

the middlebox or in the recipient endpoint. Today several types of user experience can be

offered, depending on the capabilities of conferencing hardware/software and on the type of

the conference considered.

2.1.4.1.1. Video mixing (Continuous presence)

Continuous presence mode is the most common method used in virtual meetings.

Usually in this mode the screen is split into one large and several smaller surrounding

windows. The conferencing software sends the video of the current speaker to the large

window and other participants to the small ones. It’s also possible to use equal windows for

all the participants. If the number of participants is too large to show them all, only the latest

speakers are displayed.

2.1.4.1.2. Video switching

Voice switch mode has only one window to which the conferencing software switches

the current speaker.

2.1.4.1.3. Lecturer mode

In lecturer mode, the lecturer is shown all the time in the sole window. This mode is

used for lectures and presentations.

2.1.4.1.4. Chair mode

In chair mode, a human moderator manually controls who “owns the floor”, that is who

can speak and who is shown on the screen at any given time.

21

2.1.4.1.5. Augmented reality

In augmented reality mode, participants are put into virtual meeting room by replacing

background, and some additional video effects (like manipulation of the objects) can be

added. At the present time, this mode is considered as experimental and is not widely

implemented in the commercial products.

2.1.4.2. Video transformation

Video transformation is needed in order to adjust streams to the receivers’ needs in the

case when they can’t be accepted in the original form. Video conferencing middlebox can

process video streams on the level of stream content or on the level of stream packets, as

explained hereafter.

2.1.4.2.1. Content transformation

Content processing means that some changes are introduced to the content of the

video stream. This type of processing requires two-step. The first step is decoding, that is

the stream encoded in original format is transferred to an uncompressed format. The

second step is re-encoding, that is the uncompressed stream is encoded in a new format,

taking into account the necessary changes, which should be introduced to the stream.

During this two-step process the quality of the video stream suffers as lossy codecs are

used in videoconferencing.

Content processing includes:

 TransCoding: change codec format in the case when the consumer doesn’t use

the same codec as the producer

 TransScaling: change the video frame size in the case when the receiver can’t

process big frames

 TransFrameRating: decrease video frame rate in the case when the receiver

can’t process too frequent frames

 TransBitRating: decrease the video codec bitrate which is the result of a

decreased picture quality (i.e. bit per pixel).

The last three techniques are used in the case of scarce receiver resources or available

network bandwidth.

2.1.4.2.2. Packet transformation

Packet processing implies that the middlebox processes IP packets without

decoding/encoding the stream. Such processing contains:

 Packet filtering

 Packet forwarding

22

 Packet header correction

Packet processing mode can be used only when all the endpoints are compatible in the

terms of codecs and their configuration, as packet processing server only decides which

streams should be sent to each participant, filters necessary packets, changes header if

necessary and forwards the packets to the respective endpoints. This technique is used

extensively in Selective Forwarding Unit (which is described in section VI.C).

2.1.5. Protocols

The protocols, used in videoconferencing systems, can be considered on three levels:

 Media plane

 Signaling plane

 Media resources control

2.1.5.1. Media plane

The media plane (or data plane) consists of a set of protocols, used for transportation of

audio and video streams on an IP packet network. Video conferences use Real-time

Transport Protocol (RTP) [9] as a means of delivery of audio and video between endpoints

and middleboxes. RTP is an application layer protocol based on UDP. The specificity of

real-time audio and video favors the speed of delivery of the packets over reliability.

TCP is generally used to get a reliable transfer, and is used for video streaming for

instance. However, retransmission mechanisms of TCP introduce additional delay and jitter,

which significantly lowers the quality of real-time interactive media sessions. That’s why

UDP is generally preferred for video conferencing. However, UDP itself is not sufficient and

RTP provides facilities for jitter compensation and detection of out of sequence arrival in

data, which are common during transmissions on an IP network. This is ensured by the

addition of timestamps and sequence numbers.

RTP is used with its pair protocol “RTP Control Protocol” (RTCP), which provides

statistics on the Quality of Service (QoS) and control information for an RTP session.

To overcome potential packet loss, some advanced technologies may be used in

addition to RTP.

Packet Loss Concealment (PLC) is a technique to mask the fact that some video

stream packets are lost, corrupted or arrived too late to be rendered. PLC uses info from

neighboring parts to the lost segment of the frame, and/or previous frames and future

frames, in order to estimate the lost content.

Forward Error Correction (FEC) is a technique, which adds redundant information to

the video stream that can be used in order to recover lost packets of the stream.

https://en.wikipedia.org/wiki/Jitter

23

Packet Retransmission (RTX) is a technique for retransmitting lost RTP packets by

the source. This approach has limited use as it adds end-to-end delay, which consists of the

time to make a request for retransmission and the time for a retransmitted packet to be

delivered to a destination. Good Quality of Experience (QoE) [30] prescribes maximum one

way delay of 150 ms in order to provide good media quality. If the resulting delay,

introduced by packet retransmission, is bigger – this technique can’t be employed.

2.1.5.2. Signaling plane

The signaling plane contains the protocols, that negotiate the

creation/modification/termination of calls between the endpoints and the middleboxes.

There exist both standard as well as proprietary signaling protocols.

Session Initiation Protocol (SIP) [10] is a text based protocol standardized by IETF. Its

design is close to HTTP. Nowadays SIP is the main standard protocol for new

developments in video conferencing area. Session Description protocol (SDP) is used by

SIP as a means to exchange media related information, like the list of supported codecs,

etc.

H.323 [11] is a binary protocol standardized by ITU-T. Before the wide adoption of SIP,

it was the main protocol for videoconferencing, so many existing videoconferencing

installations are still based on H.323. Currently, a lot of equipment supports dual SIP/H.323

stack.

Jingle [12] is an extension of eXtensible Messaging and Presence Protocol (XMPP),

originally developed for chat services, which provides peer-to-peer signaling for multimedia

sessions. It was developed by Google and the XMPP Standards Foundation, and used in a

list of products, first of all open sourced.

Many well known products use their own proprietary signaling, for example Skype.

Network Announcement (NETANN) [13] provides a user with a possibility to call a

conference (i.e. a virtual meeting room) using SIP. NETANN provides a way to use

standard SIP messages, which were initially designed to locate and call a user, in order to

locate and invoke a conferencing service. NETANN covers only very basic functionalities,

not allowing rich conferencing user experience.

In the scope of the SIPPING working group, the IETF presented a more advanced

conference framework, based on SIP and described in [14]. The framework defines the

logical entities and terminology used for conferencing. By the way, it was stated that while

some conference management requirements can be implemented with SIP, some can’t be

implemented. Hence additional means are needed, as presented in the next section.

2.1.5.3. Media resources control

Media resource signaling takes place between the application server and the media

server functions, in order to provide advanced conference control, such as:

https://en.wikipedia.org/wiki/Multimedia
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/XMPP_Standards_Foundation

24

 in-conference user interaction, like playing a voice message to the participants

 managing sub-conferences

 recording

 modification of the volume of a participant

 muting a participant

 conference event reporting (new participant is added, etc.)

There have been efforts to standardize the centralized control of a video conference at

the IETF XCON working group [17]. There has also been work to standardize the control of

a media server at the IETF MEDIACTRL working group [18]. However, these approaches

are not widely implemented in the commercial products.

Media Server Markup Language (MSML) [15] is a XML based language, which is used

to control conferencing features, such as video layout and audio mixing, configure media

streams, create sidebar conferences or personal mixes. MSML was described by IETF in

2010.

Media Server Control Markup Language (MSCML) [16] is another XML based language,

which also provides features to manage a conference similar to MSML. MSCML was

described by IETF in 2006. MSCML and NETANN are related languages, as MSCML is an

extension of NETANN.

In both cases, the XML messages are exchanged using the SIP protocol. Both MSML

and MSCML are royalty-free and well adopted by the industry.

There also exists a “JSR 309: Media Server Control API” [19], which exposes media

server control concepts in a form of Java API.

Finally, it’s worth noting that the IETF CLUE working group (ControLling mUltiple

streams for tElepresence) [20] has been created to develop a standardized approach to

control immersive telepresence systems (see section VII.A). The management of such a

system is much more complex, with its large number of screens and cameras, and requires

specific exchange of capabilities and layout of the meeting rooms (e.g. spatial relationships

of cameras, displays and microphones).

2.1.5.4. Protocols security

Network connections, used by video conferences, in particular when used over the

Internet, are vulnerable to different security threats. Besides well known threats, such as

Denial of Service (DoS) attacks, there exist specific security attacks, associated with the

protocols listed above.

25

Signaling/media eavesdropping: this is an interception of signaling messages or

media packets and extracting their content, which allows an attacker to know who is in

communication with whom and what they are talking about.

Signaling/media spoofing: if signaling or media messages are intercepted, and their

content is extracted, it becomes possible for an attacker to substitute the original participant

with another one and to send false media streams to the conference participants — with

eventually offending content for instance.

In order to avoid these problems, the video conferencing connections should be

secured with the following requirements:

 authentication: in order to insure that each participant know with whom exactly it

talks to

 encryption: packets should be encrypted in order to make it impossible to read

the contents

 integrity: packets should be resistant to any changes introduced by an attacker

Secure version of SIP is called SIPS and consists in SIP over TLS, which gives SIP all

necessary characteristics.

The media plane of video conferences can’t be protected by TLS because it uses UDP

(while TLS is based on TCP). The Secure RTP (SRTP) protocol has thus been defined at

IETF [21]. SRTP requires participants to exchange cryptographical keys, and several

mechanisms have been proposed: ZRTP [22], MIKEY [23], SDES [24] and DTLS-SRTP

[25].

2.1.5.5. Protocols network border traversal

Enterprise network borders are normally protected by a firewall, which provides Network

Address Translation (NAT) and traffic filtering functions. Firewalls pose certain problems for

both video conferencing signaling and media traffic, which can’t bypass the network border.

Special protocols were introduced for traversing a NAT device. Session Traversal

Utilities for NAT (STUN) protocol [26] is used by an endpoint to determine public IP address

and port allocated to it by a NAT device. Traversal Using Relays around NAT (TURN)

protocol [27] is used, when knowledge of a public IP address is not sufficient in order to

traverse a NAT device, and an external server, which relays media streams is needed.

TURN allows an endpoint to control the operation of such a relay.

STUN and TURN are combined in Interactive Connectivity Establishment (ICE) protocol

[28], which enables the procedure of discovery and exchange of the info, which is needed

to establish a media connection in the presence of NAT.

The filtering function for video conferencing is usually executed by a Session Border

Controller (SBC). SBC is deployed at the network border and provides firewall function for

26

both signaling and media traffic. SBC can provide a video transformation function (see

section IV.B) as well.

2.1.5.6. Protocols compatibility

One of the main problems of the industry has been incompatibility of the solutions of

different vendors for a long time. Signaling protocols as well as configuration of codecs in

use were implemented differently within the limits of the respective standards.

Several industry organizations, like International Multimedia Telecommunications

Consortium (IMTC) [34] and International IP Interconnection Forum (i3forum) [35] unite

leading video conferencing players in order to eliminate discrepancies in protocols

implementation.

2.1.6. Types of media servers

Media servers, used in videoconferencing, can be of several types, reflecting their

design and functionality.

2.1.6.1. Multipoint Control Unit

Multipoint Control Unit (MCU) [29] is a hardware appliance or software component,

which provides both video presentation and video transformation functionalities. It means

that it is capable of providing any type of stream presentation (mixing, switching, other types

of presentation, requiring stream content processing) as well as stream modification (trans-

coding, etc). An MCU can also be referred to as a ”conference bridge”.

The standard MCU functionality is to decode all incoming media streams, compose a

particular stream for each conference participant and encode these streams to send them

through the network. MCU performance is counted in ports, one port being capable to

receive one video stream.

Traditionally, hardware MCUs utilize Digital Signal Processors (DSP) in order to make

operations over video streams more efficient. Evidently, hardware MCUs are not easily

scalable, as if you need more ports you need to buy more physical instances of the

hardware.

A Software MCU is a software component, which is deployed on standard general

purpose server hardware. Latest advancements in CPU technologies and associated

programming libraries, such as the Intel Integrated Performance Primitives (Intel IPP) library

[36], have made it possible for general purpose CPUs to be used for video processing.

Contrary to a hardware MCU, Software MCU provides efficient scalability and flexibility.

Software MCUs can be deployed in the cloud with the access to the exact amount of

hardware resources, which are needed. That makes the operation of adding and removing

of MCU ports very simple. Furthermore, Software MCUs benefit from easy operations of

update and upgrade compared to hardware MCUs.

Hardware and software MCU logic is depicted in Figure 2.8.

27

Figure 2.8: Logic of MCU

2.1.6.2. Video gateway

A video gateway is a hardware appliance or a software component, which provides

video transformation functions, being a mediator between two incompatible video

conferencing systems (e.g. from two different vendors). The incompatibility may be on

signaling and/or media level. Such a way video gateway can provide:

 signaling: connecting different protocols (e.g. H.323/SIP), or aligning different

flavors of SIP

 transport: changing the transport protocol (TCP/UDP)

 media: trans-coding, adjusting modes of the same codec

 security: interworking between secure side (SRTP) and insecure side (RTP)

Video gateway can also be used for some additional services, which are based on

information passing through it, for example for conference recording.

2.1.6.3. Selective Forwarding Unit

Selective Forwarding Unit (SFU) [29] is a software component, which relays the

received video streams to the different conference participants. For that purpose SFU can

apply packet transformation functionalities. As SFU doesn’t provide content processing, it

doesn’t consume a lot of CPU cycles as compared to MCU.

Often SFU may receive different resolutions of the stream from one conference

participant based on SVC or simulcast technology, so it should apply some logic in order to

decide which resolution to send to each recipient. This logic can use the physical

characteristics of the recipient in order to choose appropriate resolution. It may also be

used to detect active speaker among conference participants in order to send her stream

with better resolution than others.

SFU can be based on:

 standard video coding, in the case when the endpoints are all supporting this

encoding

 Scalable Video Coding

28

 Simulcast Video Coding

In Figure 2.9 an SFU based conference with three participants is depicted. All the three

participants send two levels of SVC coding. Two non-active participants, using devices with

relatively small screens, receive one high quality stream with the active speaker and one

low quality stream with the other non-active participant. Active speaker, using a device with

a big screen, is able to benefit from receiving all the streams in high quality level (even if

these are two stream of non speaking participants).

Figure 2.9: Logic of SFU based on Scalable Video Coding

2.1.7. Types of clients

2.1.7.1. Immersive telepresence

Immersive telepresence is the most advanced (and also the most expensive) form of

the video conferencing, providing the users with the experience that all the conference

participants are located in the same room. Purposely designed conferencing rooms

equipped with several large screens and a variety of cameras are usually used for

immersive telepresence.

2.1.7.2. Hardware clients

Video conferencing hardware clients are dedicated appliance, that can be used in

meeting rooms or at working desks in order to participate in a conference. Usually such a

client comprises a webcam and a loudspeaker. Also it can be equipped with a screen or it

can use a 3rd party screen.

2.1.7.3. Video desk phones

Modern desk phones have big screens, which can host an image produced by a

videoconference. Integrated or external webcam is used with such a solution.

29

2.1.7.4. PC clients

PC clients are installed on user’s computers and use webcam and screen of this

computer. The quality of video stream which is produced/consumed by such a client

depends on CPU of the hosting computer.

2.1.7.5. Browser clients

The software clients, which don’t need installation, but are instead downloaded from a

web site and ready to be used immediately. This category is now gaining traction especially

after the introduction of the WebRTC technology. WebRTC standardizes interaction

between conferencing web application and web browser, based on JavaScript API [32].

Also it provides a full media stack (protocols, codecs, …) [33].

2.1.7.6. Mobile clients

With the rise of smart phones and tablets, mobile devices have become a popular

platform for video conferencing clients. Taking into account that such clients are battery

powered, the codec implementation shout pay special attention to energy consumption.

2.1.8. Topologies

2.1.8.1. Dedicated on-premises

Videoconference systems are traditionally implemented as a hardware appliance,

deployed in the LAN of an enterprise, or as a software component, installed on one or more

servers in the data center of an enterprise.

2.1.8.2. Hosted

A Hosted deployment means that hardware appliance is physically located in the data

center of a service provider and operated by its IT team (see Figure 2.10). Deployed

hardware can be used by several clients or it can be locked to a single client in order to

provide more security. Hosted deployment should not be confused with Cloud, as the

former still uses hardware appliances, and, as such, doesn’t provide easy scalability.

Figure 2.10: Hosted hardware MCU

30

2.1.8.3. Cloud

A Cloud deployment refers to a software component in the form of a virtual machine,

which is physically located in the data center of a service provider (see Figure 2.11). All

types of middleboxes (MCU, SFU, gateway) can be deployed in the Cloud. Service is

offered either as a subscription (customer pays for each registered user) or on a usage

basis (cost per port per minute).

Figure 2.11: Software MCU in the Cloud

A Cloud deployment has, as defined in [31], the following properties:

 On-demand self-service

 Broad network access

 Resource pooling

 Rapid elasticity

 Measured service

2.1.8.4. Enterprise Desktop Grid

An Enterprise Desktop Grid deployment means that video processing software

component is deployed on the grid of usual office hardware, that is desktop and laptop PCs

(see Figure 2.12). The machines, which are not occupied with other activities, are selected

to host videoconferencing processing tasks. All types of middleboxes (MCU, SFU, gateway)

can be deployed on Enterprise Desktop Grid. This is an experimental type of deployment,

which is under investigation in this thesis.

The different approaches to video conference deployments are compared in Table 2.2.

The following criteria are considered:

 Expenditure : how the conference service is paid for

 Support: who is responsible for day-by-day operations and administration

31

 Data: where and how the data, related to the conferencing solution (recorded

video, logs, …), is stored and who can have access to it

 Elasticity: to which extent the conferencing solution can be scaled

Figure 2.12: Video conferencing deployed on Enterprise Desktop Grid

Table 2.2: Comparison Of Deployment Approaches

2.1.8.5. Conference endpoints

The video presentation logic can be located in the conference endpoints. In this case a

conference is organized without a middlebox, in a peer-to-peer fashion (see Figure 2.13).

Advantages:

 No additional resources are required

 Hosted Cloud On-premises

hardware

On-premises

software

Enterprise

Desktop Grid

Expenditure Operational

(OPEX)

Capital

(CAPEX)

Capital

(CAPEX),

general

purpose servers

are used

Free, as already

existing

hardware is

reused.

Support Service provider Local IT

Data

Questionable when

contract is stopped,

potentially can be

accessed by 3rd parties

Always accessible by owner, not accessible by 3rd

parties

Elasticity Limited by

hardware

MCU

Not limited Limited by

hardware

MCU

Limited by

servers in

datacenter

Depends on load

of the grid

32

Disadvantages:

 It is not possible to support many participants, as any endpoint is required to

keep a separate video connection with all the other participants.

 It is not possible to support heterogeneous endpoints: all the participants must

use the same type of client software or hardware so that codecs and their

parameters (resolution, frame rate, etc) match. There is actually no gateway

functionality in peer-to-peer topology, by construction.

 Absence of enterprise conferencing features: enterprise use cases often require

more advanced features like conference recording, possibility to add/remove

participants by a moderator, etc., which is difficult to offer in this distributed

environment.

Figure 2.13: Full mesh conference topology

In order to optimize video streams, multicast technology can be utilized. Two types of

multicast technologies are available: Application Level Multicast (ALM), where the

distribution of flows towards the different receivers is performed by endpoints themselves

(i.e. at the application layer) (see Figure 2.14), or directly by the network (IP Multicast).

Figure 2.14: Conference topology based on Application Level Multicast

IP multicast has, however, not gained traction, because:

 Internet Service Providers usually don’t offer IP multicast services, by reason of

management complexity, scalability concerns and security risks, associated with

this technology. As a consequence, this technology is not available when the

videoconference takes place over the Internet (involving participants from

different networks).

33

 In an intranet context, multicast is much widely available. However, in the

enterprise environment, additional services are needed, which can only be

provided by a middlebox. ALM is thus more natural in this context.

Selective Forwarding Units can also be used in the context, when video processing is

integrated in the endpoints:

Advantages:

 Often the most cost-effective choice

Disadvantages:

 No trans-coding of different video and audio codecs

 Limited number of participants (usually less than 6)

 Bandwidth requirements aggregate to increase demand on the organizer’s

network

2.1.8.6. Hybrid topologies

Different types of hybrid topologies are possible. Particularly on-premises + cloud

deployments are popular nowadays. If a company has got through mergers and

acquisitions a fleet of several MCUs of different vendors, it can use a cloud multi-vendor

interoperability service, which allows using these MCUs in the same conference. Or a

company can decide to physically protect its data in the form of recordings of the meetings,

and place the recording and storage server in their data center while the conferences

consume resources in the cloud.

2.1.9. Current trends

Currently, several trends of video conferencing evolution can be identified.

In the codec area, there is a significant move towards open royalty-free codecs, which is

supported by a great number of industry players through “Alliance for Open Media” and

IETF NETVC working group. Further increase of resolution from today’s standards HD

(1280×720) and Full HD (1920×1080) towards 4k (4096×2180) also gains traction for big

screens.

Pure software technologies, on which both server infrastructure and clients are based,

are extensively developed nowadays.

On the server side they allow virtualization, which is a necessary requirement in order to

place video conferencing to the cloud and expose it in the form of VCaaS (Video

Conferencing as a Service).

At the same time, we can wait evolutions of a Fog approach [38], which moves

processing burden from the cloud to the resources in proximity of the end users, for

34

example to the network edge devices. The Fog technique can potentially spare needed

WAN bandwidth as well as reduce end-to-end delay.

On the client side, software technologies allow using commodity hardware (PC screens,

integrated cameras and microphones), instead of purchasing expensive one-purpose

videoconferencing endpoints. This trend is especially important with wide adoption of

mobile clients (smart phones, tablets) as video conferencing endpoints for the workers,

which are not attached to a fixed working place.

WebRTC technology becomes very popular, as it enables browser based clients, which

are accessed by the users as standard web pages. This removes the necessity of client

installation, significantly improving end user experience. Being oriented to numerous web

developers, the technology is very popular and benefits from wide support of the

community.

In today’s world, video conferencing is less considered as a stand-alone technology and

more as a part of “collaboration”, which is a wider notion, comprising different means of

meeting organization like instant messaging and screen sharing as well as integration of

video conferencing functionality to business and vertical applications, which prescribes its

efficient usage in the context of business and industrial processes of the organization.

2.2. Academic research of video conferencing

Generally, distributed on end user devices video conferencing is well researched in two

forms:

 Application Level Multicast

 Peer-To-Peer

The literature on these two approaches is analyzed in the following sections, the state of

research as of 2011 is done in [43].

Active efforts were also dedicated to research of video streaming, supported by the

distributed “helpers”. The respective articles are analyzed below as well.

Energy consumption of media processing operations, which is very important for battery

greedy mobile devices is considered in [83], [84], [85].

Cloud-assisted video conferencing is analyzed in [90], [91], [103], [104].

Conferences, based on IP Multicast technology, are regarded in [96-98], [107].

Scalable Video Coding based conferences are described in [99], [105], [108-112].

2.2.1. Application Level Multicast

In particular, the structure and efficiency of Application Level Multicast trees for video

distribution are well elaborated in the literature.

35

For instance, the construction of optimal overlay video distribution trees has been well

investigated. In [44], it is considered as a utility maximization problem in the context of

multi-rate video coding, where the utility function is represented by the Peak-Signal-to-

Noise-Ratio (PSNR) of the decoded video.

In [45], the authors propose to establish an overlay network of specialized Media

Control Servers responsible for a transmission path selection. User Endpoints can also be

engaged in this activity if they are capable enough. Several methods for selecting a media

transmission path are considered. All these works concentrate on video routing but video

processing (e.g. mixing, trans-coding) is not considered.

[77] proposes a method for creating ALM trees used for video conferencing. The

suggested approach considers the number of clients, the available bandwidth, the available

RAM, processor speed of the peers and hop distance to sort the various nodes that

participate in a conference. The most powerful participants play the role of LAN gateways

through which the video stream is passed from the source to the participants of the given

LAN which is applicable to our situation too. The subject of this paper is video routing, video

mixing is not analyzed.

[78] proposes bandwidth fair algorithm for ALM distribution tree construction and a new

protocol for ALM packet replication and distribution. Neither video mixing nor media

negotiation is analyzed.

[79] describes an ALM approach to video conferencing and lists some criteria for the

ALM tree building. DNS server is used as a controller of the tree. Some criteria interesting

in scope of our research are mentioned, for example choosing a peer in the same LAN. The

tree is used for video distribution only, the question of video mixing is not covered.

[80] describes decentralized P2P conferencing and presents an ALM-based architecture

that is enhanced by leveraging conferencing specific behavior of the participating peers with

different capabilities. The approach proposes to use the most powerful nodes as media

mixers. The idea is pretty close to the one I’m going to research but the paper describes

only audio streams without analyzing video specific behavior which in nature very different

from the audio.

2.2.2. Peer-to-Peer

In the context of Peer-to-Peer networking, P2P conferencing systems have been

considered, such as in [46]. The proposed method takes into account the capability of peers

while assigning video distribution tasks. Here, again, no media processing is considered.

The proposed in [76] approach improves P2P video conferencing introducing “helpers”

which address bandwidth deficiency inherent to pure P2P conferencing. So the authors

study the optimal bandwidth sharing in multiparty P2P video-conferencing systems with the

helpers. Video mixing is out of the scope of this paper, only video routing is considered.

36

A pretty close to our topic paper was presented in 2015 by Hossain and Khan [88]. They

describe an election protocol for a P2P conference, which allows Multipoint Control Units to

dynamically migrate among peers when new peer joins or leaves. But their algorithms take

into account only video traffic, minimizing the necessary amount of hops as the metric.

While it will work for geographically distributed servers, for which we consider the resources

of the platform itself are big enough, it’s not applicable for our problem, where we should

base our calculations not only on network characteristics, but also on platform ones, like

CPU load.

P2P based conferences are also researched in [92-95], [100-102], [106].

2.2.3. Video streaming

The strategy of using distributed “helpers” can be applied to video streaming

functionality, where helpers are used to compose the final stream.

[81] considers a multi-source streaming network with distributed mixers, where streams

originated from multiple sources are mixed before presented to distributed users. The

proposed approach minimizes the worst-case delay from the source to users via the mixers.

An adaptive and distributed protocol called “MixN-Stream” is proposed, which continuously

reduces the network diameter in the presence of churns.

[82] investigates the question of composable services in media gateways. A user can

request a computation to be performed on a set of media streams. The system then

distributes the computation over multiple gateways for execution. An algorithm for

decomposing the computation into sub-computations and an application-level protocol that

locates appropriate media gateways to run these sub-computations is presented.

Different technological approaches to distributed video streaming are also considered in

[86], [87], [89].

Generally the proposed methods are applied to broadcasted video streaming and

doesn’t take into account interactive video conference requirements, first of all strict end to

end delay. Such a way they are not directly applicable to our problematic.

2.2.4. Conclusion

To summarize, no results were found on the issue of distributing of video processing in

the context of enterprise desktop grid. However, we believe that nowadays it is crucial to

have a video processing entity in the middle of a conference, given the diversity of codecs

and features, implemented by different vendors and often non-compatible with each other.

37

3. Chapter 3. Node selection algorithms

Chapter 3

Node selection algorithms

3.1. General system description

The DGC system consists of a set of media servers (tackling video processing tasks),

distributed on a cluster of ordinary office equipment (PCs, laptops, etc).

The description of the DGC system is based on two main notions: Tasks and

Processors.

Task is a media related activity, traditionally provided by a MCU or a software media

server: video mixing, video switching, trans-coding, trans-scaling or other manipulations on

video streams. Audio streams traditionally accompany video streams and are just mixed

together by the same media server. For example, the Task associated to the video

conference depicted in Figure 1.2 is video mixing of 4 streams into a single stream (with

typically an emphasis on the current speaker) and potentially transcoding, in case of

incompatible codecs of the user terminals.

Processor is a media server deployed on a general purpose hardware platform like a

PC. Users can turn on/off their PCs and launch third party applications consuming CPU

power as well as start/stop calls and conferences randomly. This results in unpredictability

of the sets of Tasks and Processors, which should be taken into account by the system.

The main logic of the proposed architecture is to distribute and, if necessary, to

redistribute Tasks on Processors taking into account changes in the set of Tasks, set of

Processors and external constraints (that are enumerated below). The result of distribution

should be “optimal” under some conditions.

3.2. Optimization criteria

Optimization criteria can be divided into two sets: the Network and Platform ones.

Network criteria that should be taken into account include:

1) WAN bandwidth consumed by a Task. The goal is to try to economize WAN

bandwidth which is generally chargeable (as opposed to LAN bandwidth which is

considered free of charge and thus not controlled).

38

2) End-to-end delay between endpoints. Delay is very important characteristic

representing the level of QoE, as large delay makes an interactive conversation difficult or

even impossible.

Platform criteria are related to the Processors that are available in the system:

1) Network connectivity: takes into account whether the platform uses wired or wireless

(Wi-Fi) network connectivity. Wired connections generally provide more stability and less

delay, which makes them preferable for interactive video communications as compared to

wireless connections.

2) Power supply: takes into account whether the platform is powered by electric circuit

or by its battery. It is particularly important as video processing operations are very CPU

intensive.

3) Resource sharing: takes into account whether the platform hosts only Processor or it

is shared with other user activities unrelated to the DGC system. This criterion gives the

preference to the platforms where no users applications run. Such a preference gives

stability to the DGC system, as CPU consumption is more predictable. At the same time,

this prevents from deploying Tasks on the platforms actively employed by the users in order

not to disturb them.

4) CPU load: provides the estimation of planned CPU load after a given Task is

deployed on a given Processor. The system tries to distribute Tasks in such a way that

CPU load on each platform would be minimized in order to secure the processes if their

demand of CPU resources were to increase.

Potentially other optimization criteria could be easily integrated into the logic of Task

distribution, based on the utilization experience of the real implementation of the DGC

system.

All the optimization criteria are different in their importance, leading us to choose a

MADM (Multi-Attribute Decision Making) approach, where each criterion will be associated

with a weight. Before presenting the chosen MADM algorithm, we need to analyze the

system behavior.

3.3. State Change Events

The changes in the system that require Task distribution or, under some circumstances,

redistribution form a queue of State Change Events (SCE). There are several types of such

events:

1) Task is added: for example a new conference is created and video mixing Task

should be distributed to some Processor.

2) Task is removed: a Task deployed on some Processor is no more needed in the

system. Removal of a Task may cause some Tasks redistribution for overall optimization.

39

3) Processor is added: a new Processor is added to the system. Some Tasks may be

redistributed taking added Processor into account.

4) Processor is removed: a Processor is removed from the system. If any Tasks were

deployed on this Processor then these Tasks should be redistributed to other Processors.

5) Value of an optimization criterion is changed: the configuration of the system has

been modified, for example the network connectivity of a Processor has been altered from

Wireline to Wireless. In this case, some Tasks redistribution may be performed, if needed.

State Change Events queue functions as a FIFO (First In, First Out) queue with strict

priorities. The priorities are the following (from highest to lowest):

1) Processor is removed (with Tasks deployed on it).

2) CPU load is increased such a way that it may block the Tasks execution.

3) Task is removed, Processor is added, Processor is removed (with no Tasks on it),

CPU load is decreased, other (i.e. not CPU load) optimization criteria are changed.

4) Task is added.

The highest priority is set to “Processor is removed” SCE as some Tasks are blocked in

this situation, leading to bad user experience. The second priority is set to “CPU load is

increased” SCE for the same reason of potentially worsening user experience. The “Task is

added” SCE has the lowest priority as it has sense to take into account all changes in the

system before distributing a new Task in order to avoid consecutive redistributions.

During State Change Events processing Tasks are deployed/redeployed one by one.

That is once a decision is taken about deployment/redeployment, the Task is actually

deployed/redeployed and the system waits until the Task starts consuming CPU cycles (the

system is then in a stable state). Then deployment/redeployment of the next Task can be

processed based on the new value of CPU load.

3.4. MADM approach

The target of the optimization procedure is to calculate a numerical estimation value,

taking into account the variety of criteria, which would allow comparing potential

distributions of the Tasks on the different Processors. The Task will then be deployed on

the Processor with the optimal target value. A purposely-created MADM method using

“context aware normalization” is applied to calculate the estimation value.

One of the specificities of MADM algorithms is the requirement to normalize values of

attributes. In the general case, no assumptions can be made on them. From the state-of-

the-art [41], several methods of normalization of values in MADM matrix are well-known (Sij

are elements of original matrix):

40

In all these methods, normalization process involves operations on attributes of all the

possible cases (e.g. sum of values, maximum value, etc). It means that when the set of

alternatives is changed (i.e. Processor is added/removed or value of optimization criterion is

changed), the normalization process should be re-executed. Taking into account dynamic

nature of the DGC system, it would be highly desirable to be able to make the necessary

computations for each alternative independently from the other ones. Such an approach

allows applying the MADM procedure only when a Processor is added to the system or a

specific attribute of the Processor is changed. In other words, no computation would be

needed for a given Processor, whatever are the changes applied to other Processors.

In the specific context of our problem, we introduce in the following a simple

normalization process that eliminates such dependencies. We actually know the nature of

all the attributes, their optimal values and practical limitations. Let’s consider the MADM

attributes used in the DGC system.

 1) End-to-end Delay: The optimal value of delay is evidently 0 (if we count it in

milliseconds). For normalized delay value we use the following expression:

normalized_delay = real_delay / delay_threshold

Delay threshold can be defined in different ways. For example, ITU-T recommendation

G.114 [47] can be used. This recommendation states acceptable voice delays in interactive

applications. Delay smaller than 150 ms is considered as acceptable, bigger than 400 ms

as inacceptable and values between the two imply that there will be some quality issues.

Such a way we can set the value 400 as delay_threshold and it will mean that all delays

more than 400 ms will not be distinguishable from each other as all the normalized_delay

values bigger than 1 are rounded to 1.

 2) Used WAN Bandwidth: The optimal theoretical value for WAN Bandwidth (WBW)

used by a Task is also 0, it’s achieved when all the endpoints and the Processor are in the

same LAN. For normalized WAN bandwidth value we will consider the following expression:

normalized_WBW = real_WBW / max_WBW

The value of max_WBW can be taken as the sum of bandwidths of all the video streams

of a given Task. This value is known at the moment of creation of the Task.

 3) Platform criteria: All platform criteria, except CPU load (i.e. network connectivity,

power supply, resource sharing) are binary by their nature that is they are “positive” or

“negative”. Positives are:

41

- Network connectivity = wireline

- Power supply = electric circuit

- Resource sharing = dedicated

Negatives are:

- Network connectivity = wireless

- Power supply = battery

- Resource sharing = shared

For conformity we set “0” value for positive case and “1” value for negative case.

Thanks to that we have the situation when ideal variant of attribute value is “0” and

normalization is not needed.

CPU load criterion value is presented in percents of CPU usage taken after a given

Task were deployed on a given Processor. It gives the optimal theoretical value of “0” (while

not achievable in practice) and the worst value of “100”. For normalized CPU load value we

will consider the following expression:

normalized_CPU_load = real_ CPU_load / 100

CPU load criterion has some particularities, which are described below.

All optimization criteria used in calculations are represented in Table 3.1.

Table 3.1: Optimization Criteria

Attribute name
Ideal
value

Worst value Normalization divisor

End-to-end delay 0 ∞
400, if delay <= 400
delay, if delay > 400

WAN bandwidth 0 Sum of all video streams Sum of all video streams

Network connectivity 0 1 Not needed

Power supply 0 1 Not needed

Resource sharing 0 1 Not needed

CPU load 0 100 100

The problem is finally formulated as an inverse normalized Simple Additive Weighting

(SAW) method [42]:

where:

ORj : Objective Result for Processor j

42

wi : weight of criterion i

aij : normalized value of criterion i on Processor j

M : number of criteria

Inverse SAW means that we need to take as the result the smallest ORj instead of the

biggest one. Normalized SAW means that ORj value is in the range [0, 1]. This formula

implies that ORj is calculated for each Processor independently and only when the

Processor appears in the system or value of an optimization criterion is changed.

3.5. CPU load criterion

The Processor CPU load is different from other optimization criteria as its value

changes continuously compared to rather rare changes of other criteria values. From the

point of view of the practical implementation, this means that we can calculate ORj for all

the criteria except CPU load and store it in a cache while we need to observe the value of

CPU load in real time.

Furthermore, in order to be able to compute the impact of a particular type of Task on

the CPU load of a particular Processor, a preliminary Qualification process is needed.

Qualification process means the vendor of the DGC system installs a Processor on a

particular platform, then all types of Tasks are executed and CPU consumption level is

collected and stored. Then these pre-collected values can be used as an estimation of

necessary CPU resource when the DGC system simulates distribution of a Task on a

Processor installed on the qualified platform at a customer site.

Table 3.2: Example of Load Qualification Matrix

 Platform
Type of Task

PC Intel core Quad2 CPU
@ 2.40 GHz

IPhone 5S Alcatel-Lucent
8082 deskphone

Mixing 3 H264 streams
in HD

X1% CPU Load Not possible Not possible

Trans-coding H264 to
VP8 in HD

X2% CPU Load Not possible Y1% CPU Load

Trans-scaling H264
from HD to CIF

X3% CPU Load Not possible Y2% CPU Load

Comparing columns of Load Qualification Matrix we can understand which of two Tasks

is more resource-intensive so we can sort all the Tasks by their CPU consumption – it’s

needed in some algorithms.

Merging information from Load Qualification Matrix with information about real CPU load

of Processors we obtain the Deployment matrix, which is used in some algorithms

described further.

Table 3.3: Example of Deployment matrix (bold means real values, not simulated)

43

 Proc1
(Real CPU Load: 70)

Proc2
(Real CPU Load: 30)

Proc3
(Real CPU Load: 80)

Task1
(Deployed on
Proc1)

Load Qualification: 30
SSR: 40
RCL: 70
RDR: 55

Load Qualification: 20
SSR: 70
DSR: 50
FSR: 60

Load Qualification: 20
SSR: 50
DSR: 100
FSR: 75

Task2
(Deployed on
Proc1)

Load Qualification: 40
SSR: 40
RCL: 70
RDR: 55

Load Qualification: 30
SSR: 50
DSR: 60
FSR: 55

Load Qualification: 30
SSR: 50
DSR: 110
FSR: 80

Task3
(Deployed on
Proc2)

Load Qualification: 20
SSR: 40
DSR: 90
FSR: 65

Load Qualification: 15
SSR: 50
RCL: 30
RDR: 40

Load Qualification: 15
SSR: 50
DSR: 95
FSR: 72

How numbers in the matrix are produced:

Task1 on Proc1 (Real CPU Load: 70)

Load Qualification: 30 = got by qualification process

SSR: 40 = calculated by Static Simulation

RCL: 70 = 40 [CPU load by other processes] + 30 [Load qualification]

RDR: 55 = (40 [SSR] + 70 [RCL]) / 2

Task1 on Proc2 (Real CPU Load: 30)

Load Qualification: 20 = got by qualification process

SSR: 70 = calculated by Static Simulation

DSR: 50 = 20 [RCL] + 30 [Load Qualification]

FSR: 60 = (70 [SSR] + 50 [DSR]) / 2

3.6. MADM Example

3.6.1. Description

The proposed approach is illustrated by the following example.

Let’s we have 2 Endpoints on 2 sites:

- Endpoint1 on Site1

- Endpoint2 on Site2

These endpoints use different video codecs so for direct communication trans-coding is

needed.

Also there are the following Nodes in the system:

44

- Node1 on Site1: PC with circuit supply using wireline connection

- Node2 on Site1: Laptop with battery supply using Wi-Fi connection

- Node3 on Site3: PC with circuit supply using wireline connection

One way delay between any 2 sites is 30 ms. Delay of trans-coding executed on PC is 5

ms. Delay of trans-coding executed on laptop is 12 ms. Delay of Wi-Fi link is 7 ms. (Note:

values are just illustrative, they may differ from values in real life).

Bandwidth consumed by both codecs is 1 mb/s.

Figure 3.1: Topology fog MADM illustration

45

3.6.2. Calculations

The calculations in MADM are made using the standard decision table (see Figure 3.2):

Figure 3.2: MADM decision table format

Taking into account our modifications which introduce a predefined norm for each

attribute, we add an additional column with the norm.

Let’s see which results we will have for described above topology while modifying some

values and weights. In bold are the performances which we are going to modify.

Let’s for beginning chose the weights that put stress to Bandwidth and Delay, and

especially to Power:

Weight Attribute Node1 Node2 Node3 Norm

20 Bandwidth 2 2 4 4

20 Delay 42 63 72 400

10 Network WIRELINE WIRELESS WIRELINE 1

40 Power CIRCUIT BATTERY CIRCUIT 1

10 Shared SHARED DEDICATED DEDICATED 1

Result 22 63 23

We see that Node1 and Node3 are very close, while Node2 is much worse, mostly

because it’s powered by a battery.

46

Now we change the type of alimentation of Node2 from Battery to Circuit:

Weight Attribute Node1 Node2 Node3 Norm

20 Bandwidth 2 2 4 4

20 Delay 42 63 72 400

10 Network WIRELINE WIRELESS WIRELINE 1

40 Power CIRCUIT CIRCUIT CIRCUIT 1

10 Shared SHARED DEDICATED DEDICATED 1

Result 22 23 23

The result is that all the three nodes are almost equal.

Now let’s imagine that Site3 becomes very far from the other two sites and delay

becomes 500 ms:

Weight Attribute Node1 Node2 Node3 Norm

20 Bandwidth 2 2 4 4

20 Delay 42 63 500 400

10 Network WIRELINE WIRELESS WIRELINE 1

40 Power CIRCUIT CIRCUIT CIRCUIT 1

10 Shared SHARED DEDICATED DEDICATED 1

Result 22 23 40

This logically leads to the worsening of the result of the Node3.

47

Now let’s change the weights, putting additional stress to Power and reducing all other

weights. In this case the initial version logically has even more expressive results:

Weight Attribute Node1 Node2 Node3 Norm

15 Bandwidth 2 2 4 4

15 Delay 42 63 72 400

5 Network WIRELINE WIRELESS WIRELINE 1

60 Power CIRCUIT BATTERY CIRCUIT 1

5 Shared SHARED DEDICATED DEDICATED 1

Result 13 74 17

With such disposition the battery powered node is significantly worse that the other two.

Even if we put again the big delay for the Node3 it can’t change the situation radically:

Weight Attribute Node1 Node2 Node3 Norm

15 Bandwidth 2 2 4 4

15 Delay 42 63 500 400

5 Network WIRELINE WIRELESS WIRELINE 1

60 Power CIRCUIT BATTERY CIRCUIT 1

5 Shared SHARED DEDICATED DEDICATED 1

Result 13 74 30

The Node2 remains the worst one.

Such a way we see how changes in weights and attribute values can affect significantly

the decision which node to select for Task deployment.

48

3.7. Redeployment Penalty

In order to improve user’s perception of the conference, we introduce the rate of Task

redeployments, defined as the number of times the existing Task is redeployed from one

Processor to another. Redeployments will lead to interruptions in the media streams, so it's

highly desirable to minimize them.

A special parameter "Redeployment Penalty" is employed by the algorithms in order to

regulate the number of potential redeployments. When a Processor is considered as a

candidate to host a Task, the gain in Objective Result must be above this threshold in order

for the Task to be redeployed to this Processor. Note also that a simple hysteresis

mechanism is applied on the CPU load to prevent from cyclic redeployments when the CPU

load changes sporadically.

3.8. Algorithms of Processor selection

3.8.1. Notation conventions for algorithms

A Task is denoted by T, a set of Tasks is denoted by {T}. For identification purpose, the

Task I is denoted by Ti. Similarly are used P, {P} and Pi for Processors.

SR stands for Simulation Result and equals OR (see (1)) resulting from the simulation

process, that is from calculating OR for a Task in application to a Processor but the Task is

not really deployed on this Processor. DR stands for Deployment Result which is OR of a

given Task really deployed on a given Processor and consuming CPU cycles of this

Processor. DR values are stored in the system.

SR of Task Ti simulated on Processor Pj is denoted by SRij, DR uses the same notation

for deployed Tasks.

Redeployment Penalty, denoted by λ, is a constant in the range [0, 1] which reflects the

threshold of the difference between SR and DR of a Task that triggers its redeployment.

That is if DRim – SRin > λ, then Task Ti is redeployed from Processor Pm to Processor Pn.

3.8.2. Task is added

1. Compute SR for added Task Ta on all the Processors {Pj} registered in the system. The
result is {SRaj}.

2. Deploy Task Ta on Processor Pd for which SRad = minj {SRaj}. If no Processor is able to
accept Task Ta then the Task is considered as lost.

3.8.3. Task is removed

Generally to remove a Task we need only to remove appropriate objects from the

program. No Tasks redeployment is triggered by Task removal itself. However, CPU

resources are freed and this fact will be notified to the DGC system, which might in turn

trigger redeployment (see algorithm IV.G “Processor CPU load is decreased”).

49

3.8.4. Processor is added

1. Compute {SRia} for all the Tasks in the system {Ti} simulated on added Processor Pa.

2. Retrieve from the system {DRij} for all the Tasks {Ti} deployed on the respective
Processors {Pj}.

3. Calculate {Dia} = {DRij – SRia} for Tasks {Ti}.

4. Let’s Dxa = maxi{Dia} which corresponds to Task Tx. If Dxa > λ then redeploy Task Tx from
Processor Pj on which it’s currently deployed to Processor Pa.

5. If Task Tx was redeployed on step 4 then wait until system is in stable state and return to
step 1.

3.8.5. Processor is removed

1. Using the results of Qualification process, select the most resource-intensive Task Tx
from the set {Tf} of Tasks deployed on the removed Processor Pr. Compute {SRxj} for
Task Tx simulated on all the Processors {Pj} registered in the system.

2. Let’s SRxy = minj{SRxj} which corresponds to Processor Py. Redeploy Task Tx from
Processor Pr to Processor Py. Remove Task Tx from {Tf}. If no Processor is able to
accept Task Tx then the Task is considered as lost.

3. If {Tf} is not empty then wait until the system is in stable state and return to step 1.

3.8.6. Processor CPU load is increased

1. Retrieve from the system {DRic} for Tasks {Ti} deployed on Processor Pc for which CPU
load is increased.

2. Compute {SRij} for Tasks {Ti} simulated on all Processors registered in the system {Pj}
except Pc.

3. Calculate {Dij} = {DRic – SRij} for Tasks {Ti}.

4. Let’s Dxy = maxij{Dij} which corresponds to Task Tx and Processor Py. If Dxy > λ then
redeploy Task Tx from Processor Pc to Processor Py.

5. If Task Tx was redeployed on step 4 then wait until system is in stable state and return to
step 1.

3.8.7. Processor CPU load is decreased

1. Retrieve from the system {DRij} for Tasks {Ti} on respective Processors {Pj} on which
they are deployed.

2. Compute {SRic} for Tasks {Ti} on Processor Pc for which CPU load is decreased.

3. Calculate {Dic} = {DRij – SRic} for Tasks {Ti}.

4. Let’s Dxc = maxi{Dic} which corresponds to Task Tx. If Dxc > λ then redeploy Task Tx from
Processor Pj to Processor Pc.

5. If Task Tx was redeployed on step 4 then wait until system is in stable state and return to
step 1.

50

3.9. Possible extensions

3.9.1. Media stream relays

One of the main requirements that are posed to DGC system is sparing WAN bandwidth.

To reduce WAN bandwidth the situations when several media streams delivering the same

content, originating on one Network Location and terminating on another Network Location

should be optimized. Such situations are possible when several stream consumers, located

on one site, use the same output of a Processor located on another site. For example 4

persons participate in a conference: users A and B on Site 1, users C and D on Site 2.

Processor 1 is located on Site 1 and plays the role of video mixer. Each conference

participant receives the image of all 4 participants. Such a way without a Relay the resulting

video stream is sent twice over the WAN from Site 1 to Site 2.

The role of Relay is to accept the stream and fork it to all necessary recipients. In our

case with a Relay deployed on Site 2 the resulting stream is sent only once and then forked

by the Relay for Users C and D.

Without a Relay the streams are sent twice over WAN:

Figure 3.3: Topology without Relay

With a Relay only one stream is sent over WAN and then forked locally:

Figure 3.4: Topology with Relay

Trigger: a new Task Ta is added to the system and should be distributed to some

Processor taking into account that additional Processors can be used as Relays.

51

Basic algorithm:

1. For each Processor Pj on which Task Ta can be deployed consider respective

topology of video streams distribution and determine all pairs of Network Locations in

a form NetLocPairk = [Srck, Dstk] where at least two streams from Network Location

‘Src’ to Network Location ‘Dst’ have the same contents. As a result a set

{NetLocPairjk} is formed for each Processor Pj.

2. For each pair NetLocPairjk find the best Relay located in Network Location Dstk. Best

relay is determined by application of static and dynamic simulations but from the set

of optimization policies used for static simulation the network policies are removed as

the scope of a Relay is one Network Location. As a result the set of Relays {Pjk} is

defined for each Processor Pj.

3. Execute static simulation, dynamic simulation and calculate Full Simulation Results

for Task Ta on all Processors {Pj} taking into account spared WAN bandwidth thanks

to respective set of Relays {Pjk}. As a result the set {FSRaj
relay} is formed.

4. Task Ta is deployed on Processor Pd for which FSRad
relay

 = minj {FSRaj
relay}.

3.9.2. Taking RTCP feedback into account

The standard way for the sender of a video stream to receive a feedback on how

successfully it was received is RTCP feedback described in IETF RFC 3611. Normally

video encoder takes into account info on degraded user experience caused by increased

delay/jitter/packet loss and reduces size/frame rate/ quality of the video stream.

In DGC system it’s also possible to try to resolve the problems with the stream delivery

by changing Processor if there are some alternatives. To implement this logic a new type of

SCE should be added: “Network problems reported in real-time”. When the system receives

this SCE via SCE queue then it considers the variants of re-distribution.

The idea is to remove problematic link from network optimization policies, calculate new

FSR value and re-deploy Task Tp which experiences problems from the Processor Pf on

which it’s factually deployed to another Processor according to the new FSR value.

Basic algorithm:

1. Retrieve Real Deployment Result for Task Tp on Processor Pf: RDRpf.

2. Remove problematic link from network optimization policies.

3. Execute static simulation, dynamic simulation and calculate Full Simulation Results

for Task Tp on all Processors {Pj} from {P} \ Pf. As a result a set {FSRpj} is formed.

4. Select FSRpy = minj {FSRpj} which corresponds to Processor Py.

5. If (FSRpy - RDRpf) < DISTURBANCE_RATE then re-deploy Task Tp to Processor Py.

52

3.10. Analysis of the process

3.10.1. Scalability

The situation is possible when an enterprise where DGC system is installed is big

enough to experience problems in supporting the full Deployment Matrix and using it in all

the algorithms. To make DGC system scalable and to limit the amount of necessary

calculations the following approach is proposed.

The idea is to limit the number of Processors considered for distribution of a given Task.

Using this approach N Processors with smallest SSR values are selected and only these

Processors are used in further calculations.

Let’s consider the use case of Added Task in the context of Scalability. A new Task Ta

is added to the system with big number of Processors and should be distributed to some

Processor.

Basic algorithm:

1. Execute static simulation of Task Ta on all the Processors from {P} and select N

smallest values of SSR. These values form the set {SSRaj
s}.

2. Select the set of Processors {Pj
s} corresponding to the values in {SSRaj

s}.

3. Execute dynamic simulation of Task Ta on Processors from { Pj
s}. As a result a set of

Dynamic Simulation Results {DSRaj
s} is created.

4. A set of Full Simulation Results {FSRaj
s} is created using elements of {SSRaj

s} and

{DSRaj
s}.

5. Task Ta is deployed on Processor Pd for which FSRad
s
 = minj {FSRaj

s}.

3.10.2. Algorithms complexity

Analysis of algorithms complexity is performed by application of the standard method of

loops execution number counting.

Let’s introduce the following notation:

- P: number of Processors

- Ts: number of Tasks in the system, value can be potentially big

- Tp: number of Tasks deployed on one Processor, value is small

- C: number of clients in a given Task

- N: number of Network Locations in the system

The complexities:

- Static Simulation O(1)

- Dynamic Simulation O(1)

- Use case: Task is added O(P)

53

- Use case: Task is removed O(1)

- Use case: Processor is added O(Ts
2)

- Use case: Processor is removed O(Tp
2 + P)

- Use case: CPU load is increased O(PTp
2)

- Use case: CPU load is decreased O(Tp
2)

- Media Stream Relays O(P + C + N)

- Taking RTCP feedback into account O(P)

- Scalability O(P) with coefficient lesser than for the

 use case “Task is added”

54

4. Chapter 4. Solution architecture

Chapter 4

Solution architecture

We consider the static and dynamic aspects of DGC architecture, implemented while
using two distinctive approaches.

At first, we see how the DGC system looks like and functions when it’s implemented as
a standalone system (i.e. in “fog” mode). That is when only the resources available at
enterprise premises can be used for organizing a conference. The system based on this
approach evidently can’t guarantee any predefined SLA (Service Level Agreement) as it
depends on quantity of available resources at enterprise premises.

To avoid this limitation, the DGC system can be coupled with Cloud based conferencing,
which we consider at second. In this case on-premises resources are utilized at available
extent, all the requests beyond this capacity are served by Cloud.

4.1. Standalone DGC system

4.1.1. DGC architecture

The structure of components of the DGC system is depicted in Figure 4.1.

Figure 4.1: Structure of DGC standalone system

55

Components:

- User equipment: a device, employed by a user, in order to participate in a
conference (PC, laptop, tablet PC, smart phone)

- Video endpoint: a software application capable of treating SIP call signaling
and RTP flow delivering audio and video. It’s not part of our research - we use
existing software.

- Enterprise communications platform: a centralized dispatcher of clients requests,
responsible of deciding which Tasks are executed on which Processors

- SIP server: processes standard telephony/conferencing signaling for call
establishing and tearing. It’s not part of our research - we use existing
software.

- Video processing controller: distributes Tasks and observes status of Nodes

- Fog node: a hardware platform (PC, laptop) used to host media server
- Monitoring agent: responsible for observing the state of the node, first of all

CPU load, and reporting this info to Video processing controller. This reporting
is combined with Heartbeat functionality (that is with the regular check that the
Node is still functioning and not halted). As well it measures delay to different
network locations, these results are used by Video Processing Controller in
Tasks distribution logic.

- Media server: the component which actually executes media processing tasks
like audio/video stream mixing. A general purpose off-the-shelf media server
can be used, no development specifically done for DGC is needed. It’s not
part of our research - we use existing software.

Interfaces:

- SIP signaling: standard SIP signaling is utilized, no special modifications for DGC
are needed

- RTP stream: standard RTP flows are employed, no special modifications for DGC
are needed

- API for video processing tasks control: through this API SIP server notifies Video
Processing Controller about creating/removing/updating of conferences and Video
Processing Controller notifies SIP server which manipulations with endpoints should
be executes.

- API for fog node monitoring: through this API Monitoring Agent notifies Video
Processing Controller about the fact that a Fog node joins/disjoins the Desktop Grid
and regularly updates the info about CPU load as a part of Heartbeat mechanism.
Also through this API Video Processing Controller requests Monitoring Agent to
measure delay to some network location.

4.1.2. Delay estimation

Information about the characteristics of the links between the enterprise sites is critically
important for efficient functioning of DGC system. This information comprises several
factors:

56

- delay
- bandwidth
- cost

A possible solution for this problematic is ALTO (Application-Layer Traffic Optimization)
[64]. ALTO provides a possibility for a network element to ask a server, which is aware
about network characteristics, to get access to this info in convenient form. ALTO provides
information in the form of a network map and a cost map.

Network map defines groups of network elements which are close to each other so that
they can be considered as a one logical entity. An identifier is assigned to each group. In
our context these are nodes and endpoints which are physically located on one enterprise
site and connected by LAN.

Cost map provides costs between groups defined in network map. Cost map is a
generic notion that can reflect a variety of different link characteristics, like distance
between network location expressed in number of hops. Some integer number is used to
express the link cost so the costs can be compared with each other.

As of the year 2016 the IETF working group has defined several main ALTO documents
and continues working on details. Such a way we have a chance to see the results of this
work in production in some time.

While there are no industrial deployments of ALTO services for the moment, we can
estimate delay between enterprise sites and remote endpoints using other means. The
simplest method is just direct probing. We can ask endpoints to ping different nodes in
order to know exact round-trip time.

There also exist an academic research on the topic of delay estimation. The two general
approaches can be applied on application layer to our problem:

- Coordinates-based Systems (GNP [65], Vivaldi [66], PIC [67], Sequoia [68], ICS [69],
Pharos [70])

- Path Selection Services (IDMaps [71], Meridian [72], OASIS [73])

Comprehensive overview of practical aspects of existing methods of discovering and
using network topology information for estimating network delays is done in [113]. Based on
this overview it seems that Meridian is the most appropriate as it doesn’t need any
additional infrastructure and gives exact values instead of estimated.

4.1.3. Example of ALTO usage

Let’s consider example of integration of ALTO info into our algorithms. Let’s we have 2
Endpoints on 2 sites and one remote Endpoint connected to the third site. Three endpoints
join the conference. Each participant wants to see two other participants mixed into one
image.

There are also 2 Nodes which can be used for video processing on the first and the
third sites.

(Note: described video transformations are chosen for demonstration purpose only so
the result doesn’t necessarily expose the real life transformations required for good end
user experience.)

57

 Figure 4.2: Topology for example of ALTO usage

Let’s the configuration of endpouints is the following:

Endpoint1

- Produces: H264 HD
- Consumes: H264 VGA

Endpoint2

- Prod: H264 VGA
- Cons: H264 HD

Endpoint3

- Produces: VP8 CIF
- Consumes: VP8 CIF

ALTO Service provides costs between network locations. In our case we are interested
in WAN links so network locations are sites and remote devices.

Network map (Identifiers mapped to network locations, in our case sites and remote
devices):

- PID1: {Site1 = [Endpoint1, Node1]}
- PID2: {Site2 = [Endpoint2]}
- PID3: {Site3 = [Node2]}
- PID4: {Endpoint3}

Cost map (Integers, reflecting link costs between network locations):

- PID1: {PID1:1, PID2:3, PID3:5, PID4:4}
- PID2: {PID1:3, PID2:1, PID3:6, PID4:4}
- PID3: {PID1:4, PID2:6, PID3:1, PID4:2}

58

- PID4: {PID1:4, PID2:4, PID3:2}

Then we need to provide Tasks definition, that is which exactly operations on video
streams should be executed in order to provide appropriate user experience.

On the streams addressed to Endpoint1 (Ep1):

- Stream from Ep2 must be mixed with stream from Ep3
- Stream from Ep3 must be transcoded VP8->H264, upscaled CIF->VGA and then

mixed with stream from Ep2

On the streams addressed to Endpoint2 (Ep2):

- Stream from Ep1 must be mixed with stream from Ep3
- Stream from Ep3 must be transcoded VP8->H264, upscaled CIF->HD and then

mixed with stream from Ep1

On the streams addressed to Endpoint3 (Ep3):

- Stream from Ep1 must be transcoded H264->VP8, downscaled HD->CIF and then
mixed with stream from Ep2

- Stream from Ep2 must be transcoded H264->VP8, downscaled VGA->CIF and then
mixed with stream from Ep1

Taking all the above info we need to distribute these Tasks. Distribution of the tasks is
possible with different policies, it depends whether only delay, delay + bandwidth or some
other parameters should be optimized. In this example let’s consider bandwidth as not
lacking/expensive resource so we optimize only delay.

To do that we should avoid extra encodings as the most expensive operation[114]. The
best place to fulfil a task in this case is on the consumer immediately before rendering.

In our example only Ep1 can execute necessary stream processing. It means that Ep2
and Ep3 just send their streams directly to Ep1.

Ep2 can’t fulfil necessary stream transformations so they are done on Node1 and
resulting stream is sent to Ep2.

For Ep3 we need to transcale and downscale streams from Ep1 and Ep2. The best
place for it is Site1 as streams from Ep1 and Ep2 are already there. But if Node1 is not
capable to fulfil the second task (in parallel with processing streams for Ep2) we need to
send streams from Ep1 and Ep2 to Node2 on Site3 and then send resulting stream to Ep3.

59

Figure 4.3: Video streams disposition in example of ALTO usage

4.2. Cloud integrated DGC system

As it was mentioned in “Introduction”, DGC system itself can’t guarantee appropriate

SLA (Service Level Agreement) as its resources are controlled by the end users, and not by

the system itself. To resolve this problem DGC system can be combined with the cloud

conferencing system in order to provide both SLA and cost benefits at the same time.

In order to get even more benefits, we combine Cloud/Fog approach with the different

types of media servers, notably MCU and SFU, which provide different exploitation

characteristics. All the possible combinations and circumstances, under which their usage

gives the most interest, are considered in this chapter.

Recently the cloud video conferencing has gain traction thanks to a number of useful

properties, such as flexibility and pay-per-use model. At the same time, from the point of

view of the cloud video conferencing provider, there exists a number of problems with this

approach, we mention here two of them:

- Need of significant processing resources in cloud as all calculations are concentrated

in one place

- Increased end-to-end delay as data is sent from the client to the cloud provider data

center and back, often via slow and unreliable Internet links

The two problems may be resolved by the proper choice of the type of video conference

established by the provider. The type may be traditional “MCU” conference which needs

additional decoding/encoding on the server and results in greater CPU consumption and

end-to-end-delay, or it may be “SFU” conference which doesn’t need video stream

processing. At the same time a concept of “Fog” can be engaged in order to choose the

type of resources on which media server will be deployed.

60

Combining dynamically MCU/SFU and Cloud/Fog approaches we can:

- Spare cloud video conferencing provider resources in terms of CPU cycles and

network bandwidth consumption

- Significantly reduce end-to-end delay, improving end user QoE

Figure 4.7: Structure of DGC system integrated with Cloud

The idea is the following: we combine before mentioned techniques and obtain four

possible approaches to video conferencing. Signaling server can be in Cloud or on-

premises. We are talking here only about media server and media flows.

SFU in Fog:

‘+’: No Cloud CPU utilization

‘+’: No WAN utilization

‘+’: No additional decoding/encoding

MCU in Fog:

‘+’: No Cloud CPU utilization

‘+’: No WAN utilization

‘-’: Additional decoding/encoding

SFU in Cloud:

‘+/-’: Moderate Cloud CPU utilization

61

‘-’: WAN utilization

‘+’: No additional decoding/encoding

MCU in Cloud:

‘-’: Extensive Cloud CPU utilization

‘-’: WAN utilization

‘-’: Additional decoding/encoding

We can see that from the point of view of the both stakeholders (provider and client) the

four approaches can be prioritized (from the best to the worst):

1. SFU in Fog

2. MCU in Fog

3. SFU in Cloud

4. MCU in Cloud

Cloud provider keeps its revenue as it controls the overall solution and charges for its

usage. Utilization of on-premises fog resources are prescribed by policies which are

negotiated between the provider and the client. Policies may vary from permissive (“all not

occupied resources may be used for the conferencing”) to restrictive (“client prohibits using

any on-premises resources”, which results in pure cloud solution).

Figure 4.8: Possible types of video conferencing

62

In Figure 4.8:

- The cloud SFU & the cloud MCU are located in the cloud. The use of these

resources will introduce extra charges depending on the policies of the cloud

provider.

- The signaling server can be located in the cloud for the cloud based solution using

Fog resources.

- The signaling server can be located in the Fog, for the on-premise based solution

using cloud based MCU/SFU resources.

- Fog part will not introduce extra charges.

When a new video conference is going to be organized, an algorithm is applied to

choose dynamically which type of conference will be performed (SFU or MCU), and where

the media server is instantiated (Fog or Cloud).

Media server can be moved dynamically from Fog to Cloud or from Cloud to Fog

according to the available resources in the Fog. And it can be switched from SFU mode to

MCU mode according to the capacity of the end users equipment.

In the proposed solution SIP signaling and RTP video streams are standard, that is no

extensions, designed specifically for our solution, are needed. Video processing controller

calculates the possibilities of deploying a given video processing Task to a Fog node or

refuses the task if Fog is not capable to accept it. In the case of refusal the Task is

deployed to the Cloud.

63

5. Chapter 5. Evaluation by simulation

Chapter 5

Evaluation by simulation

5.1. Simulation input

The developed task distribution algorithms have been tested using Discrete Event

Simulation approach. Discrete Events in the simulation are mapped to State Change Events

reflecting the typical load of an enterprise communication system.

The characteristics of a typical enterprise communications system were collected using

the platform, deployed at a real enterprise (Alcatel-Lucent Enterprise) for its internal use. In

Figures 5.1 and 5.2 the collected statistics of call arrivals is depicted in two formats. We can

clearly see peaks and dips during working hours, peaks are aligned with the beginning of

hours (XX:00) and half-hours (XX:30) when scheduled meetings are normally planned.

Figure 5.1: Distribution of call arrivals by day and by hour

64

Figure 5.2: Distribution of call arrivals by hour

In Figure 5.3 the distribution of call durations is demonstrated. Most of durations are

concentrated around thirty minutes and one hour calls which reflects the standard durations

of regular scheduled conferences.

Figure 5.3: Distribution of call durations

65

The algorithms have been developed in Java programming language using DESMO-J

library [74] for Discrete Event Simulation and JFreeChart library [75] for graphics.

5.2. Simulation topology

The simulation topology includes 4 sites with 2 Processors and 4 to 8 endpoints on

each site:

- Site A: Processors (PA1, PA2), Endpoints (EA1, … EA4)

- Site B: Processors (PB1, PB2), Endpoints (EB1, … EB8)

- Site C: Processors (PC1, PC2), Endpoints (EC1, … EC4)

- Site D: Processors (PD1, PD2), Endpoints (ED1, … ED8)

The delays between the sites:

- Site A - Site B : 20 ms

- Site A - Site C : 40 ms

- Site A - Site D : 50 ms

- Site B - Site C : 50 ms

- Site B - Site D : 60 ms

- Site C - Site D : 80 ms

The Tasks are represented by the conferences comprising random number of

participants (2 to 4) located on 1, 2 or 3 sites. All the Tasks have the same nominal type

and consume CPU power proportionally to the number of conference participants. Tasks

are added to the system during extended business hours (7:00 - 21:00) for a period of a

month, with the duration of each Task from several minutes to 2 hours. Both arrival times

and durations are generated following statistical distributions taken from a real enterprise

communication system. Weights of all the optimization criteria were equal in these tests.

This is somewhat arbitrary but they can only be tuned properly once real media server

implementation on desktop equipment is used.

66

Figure 5.4: Graphical representation of simulation topology

5.3. Simulation results

The target of the simulation was in particular to discover how Redeployment Penalty

value affects different aspects of the solution. For the performance reason calculations are

implemented in integer numbers with all values normalized in the range [0, 100].

The first important point we tackled is the number of redeployments of Tasks during

their execution. Each redeployment represents a trade-off between optimization of

Objective Result and the perturbation of user experience caused by these redeployments,

as video streams should be re-routed to a new Processor. In Figure 5.5 is shown the

number of deployed Tasks (for each simulation with a given Redeployment Penalty) and the

number of redeployed Tasks. For Redeployment Penalty > 60, there are no more

redeployments in the system.

67

Figure 5.5: Number of Deployed and Redeployed Tasks depending on Redeployment

Penalty

The second item that we considered is the delta between Factual Result (FR) and Ideal

Result (IR). FR is the result of applying the algorithms described above. IR is an output of

the algorithm which, after arriving of each State Change Event, takes all Processors, all

Tasks and calculates the theoretical deployment which minimizes the sum of ORs of all the

Tasks. In the limited topology that we considered, the IR can be simply computed by an

exhaustive enumeration (comparing all possible deployments). The IR value represents the

optimal distribution of the Tasks on the Processors, not taking into account their order of

arrival. In Figure 5.6 we can observe the trade-off between low Redeployment Penalty

(causing some perturbation of user experience due to Tasks redeployment) but at the same

time close values of FR and IR; and high Redeployment Penalty causing low perturbation of

user experience but increased gap between FR and IR.

Figure 5.6: Factual Result and Ideal Result as a function of the Redeployment Penalty

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

Ta
sk

s

Redeployment Penalty

Deployed
Tasks

Redeployed
Tasks

56

58

60

62

64

66

68

0 10 20 30 40 50 60 70

O
b

je
ct

iv
e

 R
e

su
lt

Redeployment Penalty

Factual

Ideal

68

These simulations show a clear trade-off between system optimality and the number of

redeployments (which will affect user experience). In these figures, the Factual Result can

approach the Ideal Result, even without too many re-deployments.

Of course, the results shown above are plotted for specific and somewhat arbitrary

parameters (qualified CPU consumption, MADM weights). The optimal value of

Redeployment Penalty and Weights can only be chosen in real exploitation conditions,

which may be only available after testing of the implementation of the system with the real

media server deployed on the real hardware platforms. It is out of scope of the current

thesis as it is a pre-deployment engineering task that is extremely resource consuming: for

instance, qualified CPU consumptions require extensive tests on a broad range of typical

office hardware.

69

6. Chapter 6. Impact of CPU Load on Video Quality

Chapter 6

Impact of CPU load on video quality

6.1. Introduction

Utilizing a PC as a platform for a media server poses a question on whether this

commodity hardware can really be used for this purpose, even at limited scale, as

traditionally media servers are deployed on powerful hardware in data centers. And, once

the media server is deployed on a PC, how 3rd party processes, executing on the same

machine and consuming the CPU resource, affect the quality of video conferencing service,

which is provided by this media server. In this paper we answer these questions by

elaborating an approach for estimating a quality of a video stream, which is sent to a

conference participant from the media server, and fulfilling some experiments to

demonstrate the results of application of this approach to a conference, hosted on a

standard PC, while the CPU undergoes different levels of the load, perturbating execution

of the media server.

The question of video quality is researched intensively in the presence of the complex of

network impairments: delay, jitter, packet loss [60], [61], as well as separately for jitter [62]

and for packet loss [57], [58]. Potential impact of video content on quality is also considered

[63].

Regarding influence of CPU load the question to some extent was tackled for the video

endpoints. Azzazi et al [56] describes how CPU is loaded at endpoint, processing video

streams, when these streams are delivered by ATM network configured with different

quality attributes.

At the same time no prior research was found on how CPU load affects the quality of

video stream provided by MCU. While the MCU is a central part in modern video

conferencing solutions, and we can assume that impediments to its functioning have

dramatic consequences on conference quality.

Videoconference contents over packet networks can be impaired by compression

coding, packet loss, delay jitter, signal decoding and reconstruction process. The end-user

may perceive a loss in image clearness-sharpness (like blurring and artefacts) and fluidity

impairments (like freezing and jerky motion) [53] on the visual information. These

70

impairments can have a negative impact on the end-user quality assessment and

satisfaction of the videoconference service.

The current way of measuring the video quality is mainly based on technical parameters

of the service like encoding parameters, network errors and bitrates; however, these

parameters are not directly related with the end-user quality perception. For instance, given

a video bitrate, perceived quality may be strongly different from content to content [54].

Given that signal integrity is not guaranteed and that the final receptor is a human, it is

therefore necessary to measure video quality by taking into account end-user visual

perception and judgment. In addition, given that videoconference services are in real time,

the most practical approach for measuring video quality is using a No-reference metrics. In

this work, we use Perceptiva VIVO [59] to measure the impact of CPU load on video

conferencing perceived quality.

Perceptiva VIVO is an automatic tool for measuring and analysing video quality from

end-user assessment stand point. We use the version specifically adapted to

videoconference contents. The tool is a No-Reference metric because there is no need for

a reference or test signal to analyze quality, its technology is based on human vision

perception and customer behavior when assessing video quality. Perceptiva VIVO is a

proprietary technology based on a low-level human vision model reproducing the first stage

of eyes images processing combined with cognitive models of brain judgment mechanisms.

Subjective quality tests, respecting the standardised SAMVIQ methodology [55], were

conducted for modelling and validation proposes. This technology reproduces end-user

behaviour when assessing videoconference services.

The tool receives signals from a digital video output interface. The solution then

provides, in real time, a Mean Opinion Score Predicted (MOSp) representative of end-

users subjective opinion. A numerical scale (0-100) for rating quality is used. This scale is

related to five quality categories (bad, poor, fair, good, excellent) that are uniformly

distributed. The subjective quality scale used to represent customer’s opinion is in

accordance to SAMVIQ [55] international standard.

6.2. Description of the testbed

For our experiments we use a testbed, comprising typical office hardware and an

operating system. Open source MCU as well as special software, managing the CPU load,

is installed on the platform. Perceived video quality measurement is conducted using

Perceptiva VIVO version Visio v2.0. The equipment receives videoconference signal from

the HDMI interface of the participant desktop.

As a platform a laptop Dell Latitude E5450 with the CPU Intel Core i5-5200U @ 2.20

GHz and 8 GB RAM is employed. The operating system is Windows 7 Enterprise with

Service Pack 1.

71

OpenMCU-ru [49] of the version 4.1.4 plays the role of media server in our experiments.

OpenMCU-ru is an MCU providing video mixing, trans-coding and other functionalities.

Linphone [50] of the version 3.9.1 is our choice for conference participants endpoints.

Linphone is a software video phone, which is installed, for our experiments, on desktop and

laptop computers with Windows 7 operating system. The computers are equipped with

Logitech HD Pro C920 webcam or an integrated webcam (see Figure 6.1).

Figure 6.1: Configuration of the testbed: User1 receives video stream from the MCU

and via HDMI connection sends it to the Video Quality Measurement Tool

We use Session Initiation Protocol [10] in order to connect video endpoints to the media

server. The video is encoded by VP8 codec [5]. Clients send video streams with the

resolution 800x600 pixels (SVGA). The CPU mixes these streams in one stream with the

resolution 704x576 pixels (4CIF). The frequency is 50 fps (frame per second).

The scenario is the following: several participants connects to the same “virtual meeting

room”, their video streams are mixed and the resulted stream is sent back to each

participant. The video streams, sent from the video cameras of the participants, correspond

to the real video conferencing picture with a person’s head in the frame, without any

changes of the scene. We capture the screen of one of the participants and analyze the

quality of the video stream rendered on its screen.

6.3. Results of the experimentation

The first thing we would like to know is to which extent a standard laptop can be used

as a platform for an MCU. For that we are going to measure which CPU resources are

needed to organize a “virtual meeting room” (with one participant, as a basic case), and

which resources are needed in order to add a participant to an existing room. Normally the

most demanding operation is video encoding, so we can expect that each new room, which

needs a new encoding of the result of the mixing of all the participants streams, will

increase significantly the CPU load. We see the confirmation of that in Figure 6.2, in which

the X axis is marked by the following format: “r1:X, r2:Y”, where “r1” and “r2” are two “virtual

meeting rooms”, X and Y are the number of participants in a respective room.

User1 User3User2

MCU

Video stream

Video Quality
Measurement Tool

72

Figure 6.2: CPU load caused by video processing tasks. X axis titles “r1:X, r2:Y” mean

X participants in room1, Y participants in room 2

We can see that creation of a “virtual meeting room” adds 30% - 35% of CPU load:

these are resources, needed to encode the output video stream of a room. At the same

time adding a participant to the existing room increases CPU load very moderately, if

increases at all. This graph proves our idea that a standard user equipment can be used as

a platform for media server executing a limited number of video processing tasks. In this

exact case a mediocre laptop holds two conferences each with three participants (and the

number of participants can be extended to some meaningful value) and consumes about

60% - 65% of CPU power, which excludes battle for the resources between the media

processing tasks and leaves enough resources for 3rd party processes.

Further, we would like to know how limitation of CPU resources, dedicated to MCU,

affects the quality of resulting video stream. As a media processing task, executed by

media server, we organized a conference for three participants, consuming about 33% of

CPU power. Then we investigate this problem by means of two experiments. The first

experiment is slowing down the target process, in our case OpenMCU-ru, by making the

CPU to go to idle mode for short periods of time. This functionality is implemented in an

application “Battle Encoder Shirase” (BES) [51]. We use the version 1.6.2. We can call it a

“hard” approach as it does not allow Windows process scheduling mechanism to intervene

into the game and optimize the execution. This approach gives very visual results but it

does not reflect the real modes in which processes compete for the resources.

In Figure 6.3 we see that we can reduce CPU resources, used by MCU, leaving about

10-15% as the reserve to keep Good quality (the reserve is the distance between green and

red lines). When the reserve is about 5-10%, the quality becomes Poor to Fair, and when

reserve goes to 0% - the quality gets Bad level.

73

Figure 6.3: Video quality affected by MCU process CPU consumption limitation

The second experiment employs a special process, which consumes a preconfigured

amount of CPU, such a way competing with the target process. The special process in our

case is a “CPU Killer 3” (CPUK) application [52], in the version 1.0.7. CPUK tries to load the

CPU to the preconfigured level and then Windows process scheduling mechanism assigns

the real amount of CPU cycles, taking into account other processes, executed on the same

CPU. Here we use the assumption that all processes have the same “standard” priority.

This rather well simulates the concurrent applications launched on the same platform, we

can call it a “soft” approach. It’s depicted in Figure 6.4.

Figure 6.4: Video quality affected by launching 3rd party process competing with MCU

process for CPU resources

74

In this experiment we see how the two processes “fight” for the CPU resources.

Until CPUK process claims 65% of CPU, such a way leaving 35% of CPU, necessary

for normal MCU functioning, the quality of video remains Good. Then, following the

increasing CPUK demand until 85% - 90% of CPU, the quality of video gradually

degrades through Fair to Poor level. This demonstrates that Windows process

scheduler arbitration in a real situation of two processes, competing for the CPU

resources, allows MCU to keep some “acceptable” level of quality. By the way,

further increasing CPU demand from CPUK makes the video quality Bad.

In order to extract practically usable results from the graph, represented in Figure

6.4, we would like to understand how video quality depends on the rate, with which

media server and a 3rd party process compete for the CPU resources. This info is

drawn in Figure 6.5. The X axis on this graph is marked with the delta between

“provided CPU” (that is an amount of CPU resource, which is not demanded by 3rd

party process) and “needed CPU” (that is amount of CPU resource, which is

demanded by media server). In fact, this CPU delta means how much CPU resource

is available for the media server without competition with the 3rd party process.

Figure 6.5: Video quality affected by the level of competition for the CPU resource

We can see that while the delta is greater than 0 (that is the processes do not

compete for the CPU resource), the video quality is good. When competition starts,

the quality gradually decreases until the level, when the 3rd party process starts to

demand about 90% of CPU resource. This causes dramatic video quality decrease to

unacceptable values, as Windows process scheduling mechanism does not have

enough space to provide media server with the required CPU resource.

Such a way, we observe here the clear trade-off between the video quality

(varying between Good and Poor), and the amount of CPU resource, requested by

the 3rd party process. Finally, it’s up to a user to decide, which level of quality she is

75

ready to tolerate in order to allow the cooperative use of the CPU by several

processes.

76

7. Chapter 7. Conclusions and Future Work

Chapter 7

Conclusions and future work

7.1. Conclusions

In this thesis we studied a novel approach to organizing video conferences.

Nowadays video conferencing in enterprises is organized primarily using central

MCUs. MCU is responsible for controlling the conference as well as for video

processing tasks, such as mixing or trans-coding. Due to the fact that MCUs are

usually designed in the form of specialized hardware, they are an expensive

equipment. Pure software MCUs also exist, they can be utilized in Cloud mode.

However, due to the complex operations with media streams, they consume a lot of

server resources. At the same time, Overlay Network approaches exist for video

conferencing: Application Layer Multicast and Peer-To-Peer. These approaches are

designed for video relays, while video mixing tasks are directly handled at the

endpoints. Thereby, if an endpoint is not capable to mix several video streams, due

to some hardware/software limitations, it will not benefit from modern telepresence

experience.

So the problem is to deliver rich video experience, available today through

dedicated MCUs, without using dedicated hardware and without overloading existing

servers with media processing operations.

The proposed solution is to distribute MCUs on Enterprise Desktop Grid, which

consists of all the PCs, available in the enterprise, with enough resources to accept

video processing tasks. Prior art research shows that a lot of personal computers at

an enterprise are not used during long periods, even during work hours. In modern

terminology this approach is known as “Fog computing” in contrast to centralized

“Cloud computing”.

The requirements to build such a distributed MCU:

 The network architecture should be applicable to typical enterprise

topology, containing sites with fast LAN connected by potentially slow

Internet

77

 The architecture should take into account dynamic nature of Enterprise

Desktop Grid, in particular the fact that PCs can be arbitrarily stopped or

that 3rd party processes can be launched by end users

The Desktop Grid Conferencing (DGC) system that we propose consists of a set

of media servers (tackling video processing tasks), distributed on a cluster of ordinary

office equipment (PCs, laptops, etc). The description of the DGC system is based on

two main notions: Tasks and Processors.

Task is a media related activity, traditionally provided by a MCU or a software

media server: video mixing, video switching, trans-coding, trans-scaling or other

manipulations on video streams.

Processor is a media server deployed on a general purpose hardware, such as a

PC. Users may turn on/off their PCs and launch third party applications consuming

CPU power as well as start/stop calls and conferences randomly. This results in

unpredictability of the sets of Tasks and Processors, which should be taken into

account by the system.

The main logic of the proposed architecture is to distribute and, if necessary, to

redistribute Tasks on Processors taking into account changes in the set of Tasks, set

of Processors and external constraints. The result of distribution should be “optimal”

under some conditions.

Optimization criteria can be divided into two sets: the Network and Platform ones.

Network criteria that should be taken into account include WAN bandwidth consumed

by a Task and End-to-end delay between endpoints. Platform criteria are related to

the Processors that are available in the system: network connectivity, power supply,

resource sharing, CPU load.

All the optimization criteria are different in their nature and importance, leading us

to choose a MADM (Multi-Attribute Decision Making) approach, where each criterion

is associated with a weight. Application of a MADM method gives an integral metric

of a deployment of a given Task to a given Processor, which is called Objective

Result. A dedicated MADM method using “context aware normalization” has been

designed to calculate the Objective Result. In this method normalization information

is derived from the nature of the attributes. Such an approach allows applying the

MADM procedure only when a Processor is added to the system or a specific

attribute of the Processor is changed. In other words, no computation would be

needed for a given Processor, whatever are the changes applied to other Processors,

which is very important, taking into account the dynamic real-time nature of the DGC

system.

The DGC system itself cannot guarantee suitable SLA (Service Level Agreement)

because its resources are controlled by end users, and not by the system itself. To

solve this problem DGC system can be combined with the conference system in the

78

Cloud to provide both SLA and cost advantages at the same time. We elaborated the

algorithms, combining Cloud/Fog approach with different types of media servers, the

result provides an optimized conferencing solution in the terms of cost for both

provider and consumer as well as in terms of end user experience.

In order to test the Task distribution algorithms, the respective logic was

implemented using a discrete event simulation approach.

The first point we tackled in the simulation is the number of redeployments of

Tasks during their execution. Each re-deployment represents a trade-off between

optimization of Objective Result and the perturbation of user experience

accompanying redeployment.

The second item that we considered is the delta between Factual Result and

Ideal Result. Factual Result is the result of applying of the algorithms, calculating

Objective Result in the current situation in the system. Ideal Result is an output of the

algorithm which, after arriving of each State Change Event, takes all Processors, all

Tasks and calculates the theoretical deployment which minimizes the sum of

Objective Results of all the Tasks. The Ideal Result value represents the optimal

distribution of the Tasks on the Processors, not taking into account their order of

arrival.

These simulations show a clear trade-off between system optimality and level of

user experience, affected by Tasks redeployments. In fact, the Factual Result can

approach the Ideal Result, even without too many re-deployments. However, the

logic, responsible for the decision on redeployment, can only be determined with

realistic parameters (qualified CPU consumption, tuned MADM weights), which may

be only available after intensive testing of the system implementation based on the

real media server deployed on the real hardware platforms.

Then we investigated to which extent a PC can be used as a platform for hosting

a media server, and how CPU load of this platform affects the quality of resulting

video stream. For that we established a test bed with open source media server,

deployed on a usual laptop, and connected several video soft phones playing the role

of conference endpoints.

To one of the endpoints we connected a hardware video quality measurement

tool, which provided us with predicted Mean Opinion Score. We applied this tool to a

video stream, generated by a video conferencing media server. The server, being

deployed on a commodity laptop, was disturbed by a third party process, which

consumed different amounts of CPU power. As a result we demonstrated that the

commodity office hardware can really be used as a platform for media servers,

carrying limited workload in the scope of our Enterprise Desktop Grid conferencing

system.

79

7.2. Future Work

Two applications of machine learning can be considered in order to improve the

quality of the system.

For a given platform with initial weights defined by executing a limited number of

manual tests, during its exploitation we can:

 Based on any given platform configuration/state to try to dynamically

predict weights which will maximize QoE (ex: Wi-Fi blackout increases

weight of "Network Connectivity"). For that we need continuously collect

information on different aspects of the system environment: state of the

network and networking gear, types of utilized personal computers and so

on. Then after correlation of this information with resulting QoE we can

deduce weights of existing or newly created criteria in order to maximize

resulting QoE.

 To take into account the history of system functioning for future

distributions (ex: stable/not stable node observations introduce the node

"rating"). Such a way we will be able to create some sort of “resources

profiles”, that is typical paterns of resources usage and behavior, which

affects overall stability of the system. Correlating thise patterns with days

of week, time and other environment information we will be able to predict

to some extent the behavious of given resources in the future.

80

Annex A

Standalone DGC system design

A.1 Design static view

Figure A.1: Packages, interfaces and classes structure

Structure of the description

firstlevel – solution component

secondlevel – Java package

ThirdLevel – Java class or interface

81

forthLevel() – Java method

Design description

agent – classes and interfaces comprising Monitoring agent

main - classes controlling overall Agent behavior

AgentMain – registers Processor executed on this platform on Video

processing controller

controllerinterface - classes used to dialog with Video processing

controller

AgentWebService – services provided by Monitoring agent

getPingResult() – returns ping result from this agent to a

given network location

ControllerWebServiceClient – client consuming services of

Video processing controller

 madm - classes providing values for MADM criteria

CpuLoad – provides current CPU load

PowerSupply – provides current status of power supply

 topology - classes providing topology information

PingExecutor – provides value of round trip time to a given network

location

sip – classes and interfaces comprising SIP server. The implementation of SIP

server is extremely simplistic for this Proof-Of-Concept. A real SIP server should be

used for real deployments.

TaskDeployer – used to instruct SIP server of which operations

should be applied to Tasks

deployTask() – this method is called when a new task

should be deployed: SIP Server asked Video processing

controller to deploy a new Task so Video processing controller

returns selected node by means of deployTask() method

undeployTask() – this method is called when the DGC

system can’t execute the given Task (e.g. the Processor has

stopped) and can’t redeploy it to another Processor due to the

lack of resources

82

redeployTask() – this method is called when the existing

task should be redeployed from one node to another due to the

changes of the system (node has stopped, CPU is overloaded,

etc)

refuseTask() – this method is called when SIP Server asked

to distribute a new task, but Video processing controller could

not find a Processor which is capable to execute a task so task is

refused

LegRegistry – used by SIP server to notify about arrival or

departure of a conference participant

legAdded() – a new participant connected. He should be

added to an existing conference, or a new conference should be

created, if this is the first participant.

legRemoved() – an existing participant hung up. If he is the

last participant in the conference, the conference should be

removed from the DGC system.

CallControl – when conference is redeployed to another

Processor, this interface is used to instruct SIP server to make

conference participants to reconnect to the conference in order to route

the call to a new Processor

refer() – makes participants to reconnect

LegManager – logic of conference legs management

SipProxy – listens to SIP signaling from the conference participants

controller – classes and interfaces comprising Video processing controller

 agentinterface - classes used to dialog with Monitoring agent

ControllerWebServiceForAgent – services provided by Video

processing controller to Monitoring agent

registerProcessor() – a new Processor has appeared in

the grid

unregisterProcessor() – the Processor has left the grid

keepAlive() – notifies that the Processor is still alive and

passes current info about CPU load and power supply

83

AgentWebServiceClient – client consuming services of

Monitoring agent

statique - classes and interfaces, responsible for static aspects of tasks

distribution, that is all the optimization criteria, except CPU load

TaskRegistry – through this interface Video processing controller is

notified about created and removed Tasks

taskAdded() – this method is called when SIP Server is

requested to organize a new conference. Video processing

controller calculates the node on which the given Task should be

deployed.

taskRemoved() – this method is called when SIP Server is

requested to stop the existing conference. Video processing

controller updates its state according to the fact that the given

Task is removed from the system.

ProcListener – through this interface the changes in the list or

state of Processors, which affect the results of Static Simulation, are

reported

procAdded() – this method is called when a new Processor

is added to the grid and the procedure of Static Simulation

should be applied to existing Tasks

powerStatusChanged() – this method is called when the

Power Status of a given Processor is changed and it affects the

results of Static Simulation, which should be re-executed in this

case

StaticSimulator – through this interface the results of Static

Sumulation are returned. Static Simulation is application of MADM to all

optimization criteria, except CPU load

calculateSsr() – calculates SSR (Static Simulation Result)

for a given Task in application to a given Processor

StaticManager – keeps Static Simulation Result info about Tasks

on Processors

StaticSimulatorImpl – logic of static simulation

dynamique - classes and interfaces, responsible for dynamic aspects of

tasks distribution, that is processing of CPU load

84

TopRegistry – through this interface information on “Task On

Processor”, that is the results of Static Simulation of a given Task on a

given Processor are passed from the package, responsible for static

optimization criteria to the package, responsible for dynamic

optimization criteria

addProcQueue() – for an added Task the results of Static

Simulation of this Task on all the Processors are passed to

DynamicManager in order to apply Dynamic Simulation

removeProcQueue() – for the removed Task

DynamicManager is notified to remove the results of Static

Simulation of this Task as they are no more needed

addTaskQueue() – for an added Processor the results of

Static Simulation of all the Tasks on this Processors are passed

to DynamicManager in order to apply Dynamic Simulation

updateTaskQueue() – for a Processor with changed static

optimization criteria the results of Static Simulation of all the

Tasks on this Processors are passed to DynamicManager in

order to re-apply Dynamic Simulation

ProcRegistry – through this interface DynamicManager is notified

about changes in the list or state of Processors

procAdded() – Processor is added to the grid

procRemoved() – Processor is removed from the grid

setCpuLoad() – CPU load of a Processor is changed

setPowerStatus() – power status (AC/battery) of a

Processor is changed

DynamicManager – processes changes in Static Simulation Results

and initiates Dynamic Simulation when needed. Based on both types of

simulation selects the target Processor for Task deployment or re-

deployment

DynamicSimulator – responsible for calculating Dynamic and Full

Simulation Results, as well as Full Deployment Result, combining

information about static and dynamic info about the system

calculateDsr() – calculates DSR (Dynamic Simulation

Result), which is the prediction of CPU load when a given Task

is deployed on a given Processor

85

calculateFsr() – calculates FSR (Full Simulation Result),

which is the combination of Static and Dynamic Simulation

Results

calculateRdr() – calculates RDR (Real Deployment Result),

which is the metric, combining Full Simulation Result and actual

CPU load on the Processor, currently occupied by a given Task

 madm - classes and interfaces, implementing MADM logic

Madm – provides access to MADM logic

calculateObjectiveResult() – calculates Objective

Result based on predefined Optimization Criteria

MadmImpl – implementation of MADM logic

OptimizationCriteria – provides access to Optimization Criteria,

stored in a file

topology - classes and interfaces, responsible for processing of topology

information represented in ALTO form

NodeRegistry – through this interface Video processing controller is

notified about created and removed Nodes. Node is a hardware

platform on which Processor is deployed, the Node is used for

processing topology informationj.

nodeAdded() – this method is called when a new Node is

added to the grid and ALTO information should be updated, if

needed

nodeRemoved() – this method is called when an existing

Node has left the grid and ALTO information should be updated,

if needed

CostCalculator – through this interface ALTO cost is requested in

the case when it’s not cached in CostProviderImpl

calculateCost() – calculates ALTO cost between two

network elements (Endpoints or Nodes)

CostProvider – provides fast access to cached ALTO information

getCost() – provides ALTO cost between two network

elements (Endpoints or Nodes)

86

NetworkCostMapManager – manages Nodes and calculates ALTO

information

CostProviderImpl – servers as a cache for ALTO information,

allowing fast access to this info during Static Simulation process

config – classes, providing configuration information, gathered from

external sources

CpuConsumptionProvider – stores pre-computed values from

CPU load Qualification Matrix

A.2 Design dynamic view

In this chapter the two use case are presented in the form of UML sequence

diagrams:

- Add Task

- Add Processor

87

A.2.1 Add Task sequence

Figure A.2: add Task sequence

1: INVITE – Endpoint sends SIP INVITE to SipProxy in order to join a

conference

88

2: legAdded() – SipProxy notifies LegManager that a new leg should be

added to a given conference

3: taskAdded() – LegManager understands that this Endpoint is the first

participant of the conference as this conference doesn’t exist yet, so it should be

created. LegManager notifies StaticManager that a new Task corresponding to this

conference should be deployed to the DGC system

4: calculateSsr() – StaticManager calls StaticSimulator in order to

calculate Static Simulation Result for the Task on all the registered Processors

5: getCost() – CostProviderImpl checks whether Cost (i.e., in the simplest

case, Delay) between Network Location, to which pertains currently examined

Processor, and the given Endpoint was already calculated and cached. If yes, the

value is returned. If not, NetworkCostMapManager is called in order to calculate it.

6: calculateCost() – NetworkCostMapManager can use different

approaches in order to calculate Network Cost. It can use info from ALTO provider, or

it can ask Endpoint to directly ping Processor under question and return ping result to

NetworkCostMapManager

7: getCpuDelay() – StaticSimulatorImpl requests the delay, caused by

Processor CPU, which executes video treatment

8: calculateObjectiveResult() – StaticSimulatorImpl calls Madm

interface in order to apply Multi Attribute Decision Making procedure and get

Objective Result for static Optimization Criteria

9: getProperty() – MadmImpl calls OptimizationCriteria class in order to

obtain a list of Optimization Criteria and their weights

10: addProcQueue() – StaticManager passes obtained list of Static

Simulation Results for added Task to DynamicManager

11: calculateFsr() – DynamicManager uses DynamicSimulator in order to

combine Static Simulation Results with CPU consumption information and calculate

Full Simulation Results for added Task on all the Processors

12: getCpuConsumption() – CpuConsumptionProvider returns a value

from CPU Qualification Matrix

13: deployTask() – DynamicManager selects a Processor and asks

LegManager to address incoming request from Endpoint to this Processor

14: legAdded() return – LegManager returns this Processor to SipProxy

15: INVITE – SipProxy forwards SIP INVITE from Endpoint to selected

Processor

89

A.2.2 Add Processor sequence

Figure A.3: add Processor sequence

1: registerProcessor() – when Processor starts AgentMain class solicits

ControllerWebServiceClient in order to notify DGC system about its appearance

90

2: registerProcessor() – ControllerWebServiceClient sends this

notification to ControllerWebServiceForAgent, which is the WebService API of DGC

system

3: nodeAdded() – ControllerWebServiceForAgent uses this method in order

to notify NetworkCostMapManager about arriving of a new Node.

4: procAdded() - ControllerWebServiceForAgent uses this method in order

to notify StaticManager about arriving of a new Processor.

5: calculateSsr() – StaticManager calculates Static Simulation Results for

all the Tasks on this Processor. This step analogous to the step 4 from the algorithm

“Add Task sequence”.

6: addTaskQueue() - StaticManager passes obtained list of Static

Simulation Results for added Processor to DynamicManager

7: calculateFsr() - DynamicManager uses DynamicSimulator in order to

combine Static Simulation Results with CPU consumption information and calculate

Full Simulation Results for all the Tasks on the added Processor. This step

analogous to the step 11 from the algorithm “Add Task sequence”.

8: calculateRdr() - DynamicManager uses DynamicSimulator in order to

obtain Real Deployment Results for the Tasks which are already deployed on DGC

system.

9: redeployTask() – Comparing Full Simulation Results and Full

Deployment Results DynamicManager decides about each already deployed Task

whether it should be redeployed to the added Processor. I this is the case,

DynamicManager calls LegManager and passes the Task that should be redeployed.

10: refer() – LegManager calls this method for each leg pertaining to the

Task being redeployed

11: REFER – SipProxy sends SIP REFER requests to each Endpoint

communicating with a Task being redeployed

91

Annex B

Cloud integrated DGC system design

B.1 Design

Here we describe several basic use cases of the DGC system composed with the

Cloud. To simplify understanding we briefly remind necessary parts of APIs of SIP

server and Video processing controller.

Video processing controller:

- addTask(): Video processing controller calculates the node on which the

given task can be deployed. The method is called when SIP Server is

requested by means of 1PCC or 3PCC to organize a new conference.

- removeTask(): Video processing controller updates its state according to the

fact that the given task is removed from the system. The method is called

when SIP Server is requested by means of 1PCC or 3PCC to stop the existing

conference.

SIP Server:

- deployTask(): method is called when a new task should be deployed. SIP

Server called addTask() so Video processing controller returns selected node

by means of deployTask() method

- refuseTask(): SIP Server called addTask() to add a new task but Video

processing controller can’t find a node which is capable to execute a task so

task is refused

92

Figure B.1: Task “T” is added to the system and Video processing controller

selects Fog node “N” for execution. Then SIP Server notifies conference participants

that media server is on the node “N” where they should send their video streams.

Figure B.2: Task “T” is added to the system but Video processing controller can’t

find a Fog node capable to execute the task. It refuses the task so SIP Server notifies

conference participants that media server is in the Cloud.

93

B.2 Algorithms

Here we will describe the algorithm that allows moving Tasks from Fog to cloud

(the cloud can be seen as a particular super node of the Fog) and from Cloud to Fog,

in order to minimize the cost of conferences while maintaining a high level of service

to the end user.

Figure B.3: High level diagram of the algorithm of moving Tasks between Cloud

and Fog

The algorithm, presented in Figure B.3, deals dynamically with the evolution of

resources. Adding a participant will have an impact on the management of the

resources, so this operation is detailed in the algorithm. Removing a participant has

low impact. It doesn’t require checking if we have enough resources. So this case is

not described in the algorithm.

When an event occurs (new participant wants to join a conference or leave a

conference, or evolution of Fog resource), the algorithm checks this event and

applies the required actions.

If a new participant asks to join a conference, the algorithm checks if a

conference is already deployed (there are already participants in this conference) or

no (the participant is the first joining this conference). If a new conference is required,

a “New Task Deployment: PHASE A” is performed, else “Process Conference Add:

Waiting

event

Fog evolution ?

New participant?

Check

Conference task

Need New Task ?

New Task

Deployment

yes

no

yes

Process Fog

Ressources

Process

participant Add

INIT

A

B

C

no

no

94

PHASE B” is performed. If an evolution of Fog resources the “Process Fog

Resources: PHASE C” is performed.

“New Task Deployment: PHASE A”: this part of the algorithm checks if the

conference will be started in MCU mode or in SFU mode and where to deploy the

conference.

“Process Conference Add: PHASE B”: this part of the algorithm checks if there is

enough resources to add the participant to the Fog if the conference is deployed in

the Fog. If there are no more resources, the conference Task will be moved to the

Cloud. If the conference is already in the Cloud, the participant is added to the Cloud

conference.

“Process Fog Resources: PHASE C”: two main evolutions can occur:

- decrease of resources (a node is not available anymore, …)

- increase of resources (some resources are released, new node available, …)

If there is increase of resources, the algorithm will check if it can move a cloud

conference to Fog. If there is decrease of resources, the algorithm will check if it’s

necessary to move a conference to the Cloud.

The Phase A and Phase B of the algorithm is triggered by the messages from

SIP server when a participant asks to join a conference.

The details of the PHASE A “New Task Deployment” are shown in Figure B.4:

95

Figure B.4: PHASE A “New Task Deployment” diagram

In this algorithm, the decision to deploy the conference in the Cloud or in the Fog

depends on the availability of resources in the Fog. The mode of the conference

depends on the capacity of the first participant joining the conference. If the first

participant support SFU mode the conference will start using SFU mode, else the

conference will start using the MCU mode.

The details of the PHASE B “Process Conference Add” are shown in Figure B.5:

PHASE A

Start

on-premises allowed?

Fog SFU Resources

available?

SFU

Participant?

Check on-permises

ressources usage

policies

Check the capacity

of the participant

Check fog MCU

resources

Fog MCU Resources

available? Start Cloud SFU

Conference Task

Start Fog MCU

Conference Task

Start Fog SFU

Conference Task

SFU

Participant?

Start Cloud SFU

Conference Task

Start Cloud MCU

Conference Task

PHASE A end

Start Cloud MCU

Conference Task

no

yes

yes

yes

yes

no

no

96

Figure B.5: PHASE B “Process Conference Add” diagram

In Figure B.5:

PHASE B

Start

Cloud MCU

Conference

Add Participant

the Cloud MCU

yes

Cloud SFU

Conference

Check capacity of

the new participant

SFU

Participant

Add Participant

the Cloud SFU

Check policies (*B1)

to know if we need

MCU

(*B2)
Nb non SFU participants >

Th_CSFU

yes

yes

yes

Move Conference

to MCU mode(*B3)

Add Participant

the Cloud MCU

Add Participant

the Cloud SFU

Fog SFU

Conference

SFU

Participant

Check fog SFU

resources

Check fog MCU

resources

Fog SFU

Resources availables ?

Add Participant

the Fog SFU

yes

yes

yes

no

Move Conference

to Cloud SFU (*B3)

Add Participant

the Cloud SFU

Check policies

to know if we need

MCU

(*B4)
Nb non SFU participants >

Th_FSFU Need MCU

Fog MCU

Resources availables ?

Move Conference

to Fog MCU (*B3)

Move Conference to

Cloud MCU (*B3)

Conference

remains SFU

S_A

S_A

Add Participant

the Fog MCU

Add Participant

the Cloud MCU

S_B

S_B

PHASE B end
PHASE B end

PHASE B end

yes

yes

no

no

97

(*B1): Here the algorithm checks the policy to know if it will switch the conference

mode from SFU to MCU when a non SFU participant is connected when the

conference is performed in Cloud. The policy can be, for example, if at least one

participant has no SFU capabilities, then switch to MCU mode, even if MCU mode is

heavy in term of CPU load.

(*B2): Th_CSFU: threshold to switch from Cloud based SFU to Cloud based MCU,

which depends on the number of non SFU participants.

(*B3): Move conference. Moving a conference from Fog/Cloud or MCU/SFU is

done by the Video Processing Controller. It’s in charge of making SIP server to re-

invite all participants

(*B4): Th_FSFU: threshold to switch from Fog based SFU to Fog based MCU,

which depends on the number of non SFU participants.

The algorithm doesn’t describe moving from MCU to SFU when an SFU

participant joins the MCU conference or the number of non SFU participants is under

the threshold because we do not want to fall back the experience of non SFU users

connected to the MCU conference.

The details of the PHASE C “Process Conference Add” are shown in Figure B.6.

The Phase C of the algorithm is triggered by the message of Monitoring agents of

Fog nodes.

98

Figure B.6: PHASE C “Process Conference Add” diagram

In Figure B.6:

(*C1): Process Cloud MCU to Fog MCU move:

This block checks which cloud MCU to move to the Fog. It estimates the required

CPU resources of all current Cloud MCU conferences.

The algorithm will select a conference that satisfies two criteria:

- CPU resources

- Elapsed time from the last move of the conference from Fog to Cloud

For all the conferences which satisfy resource criterion the time criterion is

checked. The conference with the biggest elapsed time is chosen for the move. If

PHASE C

Start

New fog

Resources availables ?

Check if a Cloud Conf

can be moved to fog

Cloud MCU conference

is in use ?

MCU fog

Resources availables ?

Process Cloud MCU to

Fog MCU move (*C1)

Fog Resources enough for

current fog conference?

Choice of Conf to move

to cloud (*C3)

Move Conf to cloud

Cloud SFU conference

is in use ?

PHASE C

end

yes

yes

yes

Check if we can move a

cloud SFU to fog SFU

yes

SFU fog

Resources availables ?

yes

yes

Process Cloud SFU to

Fog SFU move (*C2)

PHASE C end

no

99

there is no conference which satisfies the time criterion, the algorithm will wait until

this criterion is satisfied and check again the resources criterion.

(*C2) Process Cloud SFU to Fog SFU move:

Same behavior as in (*C1), but applied to SFU conference

(*C3) Choice of Conference to move to Cloud:

If a Fog node, on which a conference is executed, is not available anymore, or

becomes overloaded, the conference should be moved from this node. If the Fog

contains other nodes, which are capable to accept this conference, the conference is

moved to this node. If there are no such nodes in the Fog, the conference is moved

to the Cloud.

100

List of publications

Published papers

 R. Sorokin, J.-L. Rougier, “Video conference based on enterprise desktop

grid”, 23rd International Conference on Telecommunications (ICT), May

2016

Submitted papers

 R. Sorokin, J.-L. Rougier, R. Pastrana-Vidal, N. Tranquart, "Impact of CPU

Load on Video Conferencing Quality", submitted to IEEE International

Conference on Communications (ICC) 2017

 R. Sorokin, J.-L. Rougier, “Video Conference in the Fog: An economical

approach based on Enterprise Desktop Grid”, submitted to Annals of

Telecommunications, Springer

 R. Sorokin, J.-L. Rougier, “IP Video Conferencing: A Tutorial”, submitted to

International Journal of Computer Science and Engineering Survey

(IJCSES), AIRCC

Patents

 R. Sorokin, M. Fadili, “A method for allocating a video conferencing task to

a processing device”, Deposit number: EP15305454

 R. Sorokin, M. Fadili, S. Coulon, “Methods and nodes for controlling a

conference communication”, Deposit number: US 15/076,821

101

References

[1] Jin Zeng, Oscar C. Au, Wei Dai, Yue Kong, Luheng Jia, Wenjing Zhu, “A tutorial

on image/video coding standards”, Signal and Information Processing

Association Annual Summit and Conference (APSIPA), 2013 Asia-Pacific,

October 2013

[2] “H.264 : Advanced video coding for generic audiovisual services”, ITU-T, May

2003

[3] “H.264 : Advanced video coding for generic audiovisual services”, Annex G,

ITU-T, May 2007

[4] “H.265 : High efficiency video coding”, ITU-T, April 2013

[5] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, Y. Xu, “VP8 Data

Format and Decoding Guide”, IETF RFC 6386, November 2011

[6] J. Uberti, S. Holmer, M. Flodman, J. Lennox, D. Hong, “RTP Payload Format for

VP9 Video”, IETF Work in Progress, March 2016

[7] https://xiph.org/daala/

[8] A. Fuldseth, G. Bjontegaard, S. Midtskogen, T. Davies, M. Zanaty, "Thor Video

Codec", IETF Work in Progress, October 2016

[9] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport

Protocol for Real-Time Applications”, IETF RFC 3550, July 2003

[10] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.

Sparks, M. Handley, E. Schooler, “SIP: Session Initiation Protocol”, IETF RFC

3261, June 2002

[11] “H.323 : Packet-based multimedia communications systems”, ITU-T, November

1996

[12] Scott Ludwig, Peter Saint-Andre, Sean Egan, Robert McQueen, Diana Cionoiu,

“XEP-0167: Jingle RTP Sessions”, XMPP Standards Foundation, December

2009

[13] E. Burger, J. Van Dyke, A. Spitzer, “Basic Network Media Services with SIP”,

IETF RFC 4240, December 2005

[14] J. Rosenberg, “A Framework for Conferencing with the Session Initiation

Protocol (SIP)”, IETF RFC 4353, February 2006

[15] A. Saleem, Y. Xin, G. Sharratt, “Media Server Markup Language (MSML)”, IETF

RFC 5707, February 2010

102

[16] J. Van Dyke, E. Burger, A. Spitzer, “Media Server Control Markup Language

(MSCML) and Protocol”, IETF RFC 4722, November 2006

[17] M. Barnes, C. Boulton, O. Levin, "A Framework for Centralized Conferencing",

IETF RFC 5239, June 2008

[18] T. Melanchuk (editor), "An Architectural Framework for Media Server Control",

IETF RFC 5567, June 2009

[19] “JSR 309: Media Server Control API”, Java Community Process, December

2009

[20] R. Presta, S. Romano, "CLUE protocol", IETF Work in Progress, November

2016

[21] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman, “The Secure

Real-time Transport Protocol (SRTP)”, IETF RFC 3711, March 2004

[22] P. Zimmermann, A. Johnston, J. Callas, “ZRTP: Media Path Key Agreement for

Unicast Secure RTP” , IETF RFC 6189, April 2011

[23] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, K. Norrman, “MIKEY: Multimedia

Internet KEYing”, IETF RFC 3830, August 2004

[24] F. Andreasen, M. Baugher, D. Wing, “Session Description Protocol (SDP)

Security Descriptions for Media Streams”, IETF RFC 4568, July 2006

[25] D. McGrew, E. Rescorla, “Datagram Transport Layer Security (DTLS) Extension

to Establish Keys for the Secure Real-time Transport Protocol (SRTP)”, IETF

RFC 5764, May 2010

[26] J. Rosenberg, R. Mahy, P. Matthews, D. Wing, “Session Traversal Utilities for

NAT (STUN)”, IETF RFC 5389, October 2008

[27] R. Mahy, P. Matthews, J. Rosenberg, “Traversal Using Relays around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)”, IETF

RFC 5766, April 2010

[28] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol for

Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, IETF

RFC 5245, April 2010

[29] M. Westerlund, S. Wenger, “RTP Topologies”, IETF RFC 7667, November 2015

[30] Fernando Kuipers, Robert Kooij, Danny De Vleeschauwer, Kjell Brunnström,

“Techniques for Measuring Quality of Experience”, 8th International Conference

WWIC 2010, Luleå, Sweden, June 2010

103

[31] “The NIST Definition of Cloud Computing”, National Institute of Standards and

Technology, September 2011

[32] http://www.w3.org/TR/webrtc/

[33] C. Holmberg, S. Hakansson, G. Eriksson, "Web Real-Time Communication Use

Cases and Requirements", IETF RFC 7478, March 2015

[34] http://www.imtc.org/

[35] http://i3forum.org/

[36] https://software.intel.com/en-us/intel-ipp

[37] http://aomedia.org/

[38] L. M. Vaquero, L. Rodero-Merino, “Finding your Way in the Fog: Towards a

Comprehensive Definition of Fog Computing”, ACM SIGCOMM CCR, vol.44,

no.5, October 2014

[39] D. Kondo, M. Taufer, C. Brooks, H. Casanova, A. Chien, “Characterizing and

Evaluating Desktop Grids: An Empirical Study”, in Proceedings of IPDPS, 2004

[40] G. Novelli, G. Pappalardo, C. Santoro, E. Tramontana, “A Grid-based

Infrastructure to Support Multimedia Content Distribution”, in Proceedings of the

second workshop on Use of P2P, GRID and agents for the development of

content networks, pp. 57–64, 2007

[41] S. Chakraborty, C.H. Yen, “A Simulation Based Comparative Study of

Normalization Procedures in Multiattribute Decision Making”, Proceedings of the

6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and

Data Bases, Vol.6, pp 102–109, 2007

[42] K. Yoon, C.L. Hwang, "Multiple Attribute Decision Making Introduction", Sage

Publication, 1995

[43] A. Alalousi, A. Osman, S. Noori, A. Hussain, A. Munther, H. El-Taj, “A Study on

Video Conferencing using Overlay Network”, European Journal of Scientific

Research, Vol.59, Issue 3, September 2011

[44] M. Chen, M. Ponec, S. Sengupta, J. Li, P. Chou, “Utility Maximization in Peer-

to-Peer Systems With Applications to Video Conferencing”, IEEE/ACM ToN,

Vol.20, No.6, December 2012

[45] X. Yu, Z. Yu, “A Distributed Architecture of Video Conference Using P2P

Technology”, Journal of Networks, vol.7, no.11, November 2012

http://libra.msra.cn/Conference/80/ipdps-ipps-international-parallel-and-distributed-processing-symposium-international-parallel

104

[46] A. Munther, S. Noori, A. Osman, A. Hussain, I. Jasim, A. Shanoon, “Peer-to-

Peer Video Conferencing Using Hybrid Content Distribution Model”, Journal of

Computer Science, Vol. 8, No.7, 2012

[47] “G.114 : One-way transmission time”, ITU-T G.114, May 2003.

[48] “P.910 : Subjective video quality assessment methods for multimedia

applications”, ITU-T P.910, April 2008.

[49] http://openmcu.ru/eng.htm

[50] http://www.linphone.org/

[51] http://mion.faireal.net/BES/

[52] http://www.cpukiller.com/

[53] R. Pastrana-Vidal et al., “Sporadic Frame Dropping Impact on Quality

Perception”, Human Vision and Electronic Imaging IX, SPIE, San José, 2004

[54] R. Pastrana-Vidal, J.-C. Gicquel, “Looking at the relationship between video

bitrates and end-user quality assessment: subjective tests approach”, ETSI

Workshop Effect of transmission performance on Multimedia Quality Service,

Prague, 2008

[55] ITU-R BT.1788, 207. SAMVIQ – Subjective Assessment Methodology for Video

Quality, Recommendation, ITU, January 2007

[56] A. Azzazi, H. Abusaimeh, S. R. Masadeh, “CPU Utilization for a Multiple Video

Streaming Over a Fiber Optic ATM-Network when Varying the Quality of

Service”, Journal of Emerging Trends in Computing and Information Sciences,

Vol.5, No.3, March 2014

[57] M. Goudarzi, L. Sun, E. Ifeachor, “Impact of Bursty Packet Loss on Voice and

Video Quality in Wireless Networks”, Postgraduate Conference for Computing:

Applications and Theory (PCCAT), June 2010

[58] A. Tarakanov, O. Gushchina, I. Nenakhov, “Influence of Packets Losses on

Video Quality in Case of Using Multiple Description Coding with Time Division

into Two and Three Substreams”, Proceedings of the 17th conference of

FRUCT association, April 2015

[59] http://www.perceptiva-labs.com/

[60] S. Murphy, M. Searles, C. Rambeau, L. Murphy, “Evaluating the Impact of

Network Performance on Video Streaming Quality for Categorised Video

Content”, 14th International Packet Video Workshop, 2004.

http://www.cpukiller.com/

105

[61] A. Kwon, J. Xiao, S. Seo, JWK Hong, R. Boutaba, “The Impact of Network

Performance on Perceived Video Quality in H.264/AVC”, 2012 IEEE Network

Operations and Management Symposium, 2012

[62] M. Claypool, J. Tanner, “The Effects of Jitter on the Perceptual Quality of

Video”, ACM Multimedia, Vol.2, November 1999

[63] A. Khan, L. Sun, E. Ifeachor, “Impact of Video Content on Video Quality for

Video over Wireless Networks”, 5th International Conference on Autonomic and

Autonomous Systems (ICAS 2009), April 2009

[64] R. Alimi, R. Penno, Y. Yang (editors), “Application-Layer Traffic Optimization

(ALTO) Protocol”, IETF RFC 7285, September 2014.

[65] T. S. Ng, H. Zhang, “Predicting Internet Network Distance with Coordinates-

Based Approaches”, INFOCOM’02, June 2002

[66] F. Dabek, R. Cox, F. Kaashoek, R. Morris, “Vivaldi: A Decentralized Network

Coordinate System”, ACM SIGCOMM, August 2004.

[67] M. Costa, M. Castro, R. Rowstron, P. Key, “PIC: practical Internet coordinates

for distance estimation”, 24th International Conference on Distributed

Computing Systems, 2004

[68] V. Ramasubramanian, D. Malkhi, F. Kuhn, I. Abraham, M. Balakrishnan, A.

Gupta, A. Akella, “A Unified Network “Coordinate” System for Bandwidth and

Latency”, Technical Report MSR-TR-2008-124, Microsoft Research, September

2008

[69] H. Lim, J.C. Hou, C. Choi, "Constructing internet coordinate system based on

delay measurement", ACM IMC, October 2003

[70] Y. Chen, Y. Xiong, X. Shi, J. Zhu, B. Deng, X. Li, “Pharos: accurate and

decentralised network coordinate system”, IET Communications, Vol. 3, Issue

4, April 2009

[71] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang, “IDMaps: A

Global Internet Host Distance Estimation Service”, IEEE/ACM Transactions on

Networking, Vol. 9, Issue 5, October 2001

[72] B. Wong, A. Slivkins, E. G. Sirer, “Meridian: A Lightweight Network Location

Service without Virtual Coordinates”, ACM SIGCOMM, Vol. 35 Issue 4, October

2005

[73] M. J. Freedman, K. Lakshminarayanan, D. Mazières, “OASIS: Anycast for Any

Service”, NSDI'06 Proceedings of the 3rd conference on Networked Systems

Design & Implementation, Vol. 3, 2006

[74] http://desmoj.sourceforge.net/

106

[75] http://www.jfree.org/jfreechart/

[76] L. Chao, Z. Miao, L. Yong, “Optimal Bandwidth Sharing in Multiswarm Multiparty

P2P Video-Conferencing Systems”, IEEE/ACM Transactions On Networking,

Vol.19, No.6, December 2011

[77] T. Ruso, C. Prabhu, C. Chellappan, “NetRawALM: Network Based Resource

Aware Application Layer Multicast for Multiparty Video Conference”,

International Journal of Distributed and Parallel Systems, Vol.2, No.5,

September 2011

[78] E. Karrupiah, E. Lin, T. Phan, N. Thoai, E. Muramoto, P. Tan, “Bandwidth Fair

Application Layer Multicast for Multi-Party Video Conference Application”,

Consumer Communications and Networking Conference, 2009

[79] A. Abbasi, T. Mehmood, “Dynamic Scalable Model for Video Conferencing

(DSMVC) using Request Routing”, International Journal of Video & Image

Processing and Network Security, Vol.9, Issue 9, October 2009

[80] X. Wu, K. Dhara, V. Krishnaswamy, “Enhancing Application-Layer Multicast for

P2P Conferencing”, Consumer Communications and Networking Conference,

2007

[81] P. Yuen, G. Chan, “MixNStream: multi-source video distribution with stream

mixers”, Proceedings of the 2010 ACM workshop on Advanced video streaming

techniques for peer-to-peer networks and social networking, New York, USA,

2010

[82] W. Ooi, R. Renesse, “Distributing Media Transformation Over Multiple Media

Gateways”, Proceedings of the ninth ACM international conference on

Multimedia, 2001

[83] D. Maggiorini, D. Riboni, “Continuous Media Adaptation for Mobile Computing

Using Coarse-Grained Asynchronous Notifications”, SAINT-W'05 Proceedings

of the 2005 Symposium on Applications and the Internet Workshops, 2005

[84] S. E. Restrepo, P. Pinaud, J. E. Pezoa, S. Sobarzo, “Energy-aware Image

Allocation for Distributed Video Processing on Handheld Devices”, IEEE 32nd

International Performance Computing and Communications Conference

(IPCCC), December 2013

[85] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, N. Venkatasubramanian,

“Integrated Power Management for Video Streaming to Mobile Handheld

Devices”, Proceedings of the 11th ACM international conference on Multimedia,

2003

[86] R. Lienhart, I. Kozintsev, Y.-K. Chen, M. Holliman, M. Yeung, A. Zaccarin, R.

Puri, "Challenges in Distributed Video Management and Delivery", Handbook of

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Karrupiah,%20E.K..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lin,%20E.%20S..QT.&searchWithin=p_Author_Ids:38185993500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Phan,%20Truong%20Khoa.QT.&searchWithin=p_Author_Ids:38186045400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Thoai,%20Nam.QT.&searchWithin=p_Author_Ids:37394578000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Muramoto,%20E..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tan,%20P.%20Y..QT.&searchWithin=p_Author_Ids:37397117600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4784683
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dhara,%20Krishna%20Kishore.QT.&searchWithin=p_Author_Ids:37297082100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Krishnaswamy,%20Venkatesh.QT.&searchWithin=p_Author_Ids:37297108100&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4199087
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4199087

107

Video Databases Design and Applications, Edited by John C . Munson, CRC

Press, 2003

[87] M. Kim, Y. Cui, H. Lee, H. Lee, “Performance Evaluation of a Hadoop-based

Distributed Video Transcoding System for Mobile Media Service”, Proceedings

of IST 2012 International Conference, April 2012

[88] M. Hossain, J. Khan, “Dynamic MCU Placement for Video Conferencing on

Peer-to-Peer Swarm”, 2015 IEEE International Symposium on Multimedia,

December 2015

[89] P. Troubil, H. Rudova, P. Holub, “Media Streams Planning with Transcoding”,

12th IEEE International Symposium on Network Computing and Applications,

August 2013

[90] Yu Wu, Chuan Wu, Bo Li, Francis C.M. Lau, “vSkyConf: cloud-assisted multi-

party mobile video conferencing”, Proceedings of the second ACM SIGCOMM

workshop on Mobile cloud computing, August 2013

[91] Yuan Feng, Baochun Li, Bo Li, “Airlift: Video Conferencing as a Cloud Service

using Inter-Datacenter Networks”, Proceedings of 20th IEEE International

Conference on Network Protocols, October 2012

[92] Chao Liang, Yong Liu, “Optimal Resource Allocation in Multi-Source Multi-

Swarm P2P Video Conferencing Swarms”, accepted for publication in

IEEE/ACM Trans. on Networking, 2011

[93] Yongxiang Zhao, Yong Liu, Changjia Chen, Jianyin Zhang, “Enabling P2P One-

View Multiparty Video Conferencing”, IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 1, January 2014

[94] Han Zhao, Daniel Smilkov, Paolo Dettori, Julio Nogima, Frank A. Schaffa, Peter

Westerink, Chai Wah Wu, “A Feasibility Study of Collaborative Stream Routing

in Peer-to-Peer Multiparty Video Conferencing”, IEEE International Symposium

on Multimedia, December 2011

[95] Daniel Smilkov, Han Zhao, Paolo Dettori, Julio Nogima, Frank A. Schaffa, Peter

Westerink, Chai Wah Wu, “Non-intrusive Adaptive Multi-media Routing in Peer-

to-Peer Multi-party Video Conferencing”, IEEE International Symposium on

Multimedia, December 2010

[96] Li Xin, Guan Jianfeng, Zhang Hongke, “Distortion Optimized Mobile Multiparty

Video Conferencing”, International Conference on Communications and Mobile

Computing, January 2009

[97] Dhiman Chattopadhyay, Aniruddha Sinha, T. Chattopadhyay, “A Low Cost

Multiparty H.264 Based Video Conference Solution for Corporate Environment”,

108

International Conference on Computational Intelligence and Communication

Networks, November 2010

[98] Xuan Zhang, Chongrong Li, Xing Li, “Multi-party Videoconferencing Based on

Hybrid Multicast with Peer-Forwarding”, IEEE 16th International Conference on

Parallel and Distributed Systems, December 2010

[99] M. Ponec, S. Sengupta, Minghua Chen, Jin Li, P.A. Chou, “Optimizing Multi-

Rate Peer-to-Peer Video Conferencing Applications”, IEEE Transactions on

Multimedia, Vol.13, Issue: 5, October 2011

[100] S. Nari, H. R. Rabiee, A. Abedi, M. Ghanbari, “An Efficient Algorithm for Overlay

Multicast Routing in Videoconferencing Applications”, Proceedings of 18th

International Conference on Computer Communications and Networks, August

2009

[101] Xiangwen Chen, Minghua Chen, Baochun Li, Yao Zhao, Yunnan Wu, Jin Li,

“Celerity: a low-delay multi-party conferencing solution”, Proceedings of the

19th ACM international conference on Multimedia, November 2011

[102] Zhi Wang, Jizhong Zhao, Wei Xi, Zhiping Jiang, “A Scalable P2P Video

Conferencing System Based on VCStream Model”, 11th International

Conference on Computer and Information Science, May 2012

[103] K. Singh, V. Krishnaswamy, “Building Communicating Web Applications

Leveraging Endpoints and Cloud Resource Service”, IEEE 6th International

Conference on Cloud Computing, June 2013

[104] Fang Zhiyuan, Li Wei, Feng Zhang, Zhou Fang, Donghang Huang, Xin Dai, “A

Cloud-Based Pan-Terminal Video Conferencing System”, IEEE 10th

International Conference on e-Business Engineering, September 2013

[105] Tien Anh Le, Hang Nguyen, “Application-aware cost function and its

performance evaluation over scalable video conferencing services on

heterogeneous networks”, IEEE Wireless Communications and Networking

Conference, April 2012

[106] D. Ben Khedher, “A Peer-to-Peer self-organizing scheme for multiparty

session”, IEEE International Conference on Communications, June 2012

[107] HaiYan Liu, Zhiyuan An, Yangang Lv, “Audio-video conference systems design

and implementation base on P2P and multicast”, 2011 International Conference

on Electronics, Communications and Control, September 2011

[108] Tien Anh Le, Hang Nguyen, “Perception-Based Application Layer Multicast

Algorithm for Scalable Video Conferencing”, IEEE Global Telecommunications

Conference, December 2011

109

[109] Tien Anh Le, Hang Nguyen, “Centralized and distributed architectures of

scalable video conferencing services”, Second International Conference on

Ubiquitous and Future Networks, June 2010

[110] Istemi Ekin Akkus, Oznur Ozkasap, M. Reha Civanlar, “Peer-to-peer multipoint

video conferencing with layered video”, Journal of Network and Computer

Applications, no.34, 2011

[111] Tien Anh Le, Hang Nguyen, “Perception-based Application Layer Multicast

Algorithm for scalable video conferencing”, IEEE Global Telecommunications

Conference, December 2011

[112] Tien A. Le, H. Nguyen, “Human perception-based distributed architecture for

scalable video conferencing services: theoretical models and performance”,

Annals of telecommunications, Vol. 69, Issue 1-2, February 2014

[113] I. Rimac, V. Hilt, M. Tomsu, V. Gurbani, E. Marocco, "A Survey on Research on

the Application-Layer Traffic Optimization (ALTO) Problem", IETF RFC 6029,

October 2010

[114] D. Finstad, H. Stensland, H. Espeland, P. Halvorsen, "Improved Multi-Rate

Video Encoding", Proceedings of the IEEE International Symposium on

Multimedia (ISM), December 2011

