
Bonfring International Journal of Software Engineering and Soft Computing, Vol. 8, No. 2, April 2018 1

Abstract--- In this paper describe a specific type of
summaries that Query facet the main topic of given text.
Existing summarization algorithms are classified into different
categories in terms of their summary construction methods
(abstractive or extractive), the number of sources for the
summary (single document or multiple documents), types of
information in the summary (indicative or informative), and
the relationship between summary and query (generic or
query-based). QD Miner aims to offer the possibility of finding
the main points of multiple documents and thus save users’
time on reading whole documents. The difference is that most
existing summarization systems dedicate themselves to
generating summaries using sentences extracted from
documents. In addition, return multiple groups of semantically
related items, while they return a flat list of sentences. In this
paper, adding these lists may improve both accuracy and
recall of query facets. Part-of-speech information can be used
to check the homogeneity of lists and improve the quality of
query facets. The side-information could not be incorporate
into the mining process, because it can either improve the
quality of the representation for the mining process, or can
add noise to the process. Therefore, a principle way is
required to perform the mining process, so as to maximize the
advantages from using this side information. This dissertation
proposes an algorithm which combines classical partitioning
algorithms with probabilistic models in order to create an
effective clustering approach.

Keywords--- Data Mining, Classification, TF-IDF, K-
Mean Clustering, Statistical Mean Validation.

I. INTRODUCTION
ATA Clustering is an automatic learning technique
aimed at grouping a set of objects into subsets or clusters.

The goal is to create clusters that are coherent internally, but
substantially different from each other. In plain words, objects
in the same cluster should be as similar as possible, whereas
objects in one cluster should be as dissimilar as possible from
objects in the other clusters. The aim of this thesis is to
improve the efficiency and accuracy of document clustering.
In this proposed system two clustering algorithms and the
fields where these perform better than the known standard
clustering algorithms.

K. Vidhya, M.Tech Student, Department of Information Technology,
K.S.R College of Engineering, Tiruchengode, Tamilnadu, India. E-mail:
vidhyait1994@gmail.com

N. Saravanan, Assistant Professor, Department of Information
Technology, K.S.R College of Engineering, Tiruchengode, Tamilnadu, India.
DOI:10.9756/BIJSESC.8387

In other words, the goal of a good document clustering
scheme is to minimize intra-cluster distances between
documents, while maximizing inter-cluster distances (using an
appropriate distance measure between documents). A distance
measure (or, dually, similarity measure) thus lies at the heart
of document clustering.

Clustering is the most common form of unsupervised
learning and this is the major difference between clustering
and classification. No super-vision means that there is no
human expert who has assigned documents to classes. In
clustering, it is the distribution and makeup of the data that
will determine cluster membership. Clustering is sometimes
erroneously referred to as automatic classification; however,
this is inaccurate, since the clusters found are not known prior
to processing whereas in case of classification the classes are
pre-defined.

In clustering, it is the distribution and the nature of data
that will determine cluster membership, in opposition to the
classification where the classifier learns the association
between objects and classes from a so called training set, i.e. a
set of data correctly labeled by hand, and then replicates the
learnt behavior on unlabeled data.

The goal of a document clustering scheme is to minimize
intra-cluster distances between documents, while maximizing
inter-cluster distances (using an appropriate distance measure
between documents). A distance measure (or, dually,
similarity measure) thus lies at the heart of document
clustering. The large variety of documents makes it almost
impossible to create a general algorithm which can work best
in case of all kinds of datasets.

Challenges in Document Clustering
Document clustering is being studied from many decades

but still it is far from a trivial and solved problem. The
challenges are:

• Selecting appropriate features of the documents that
should be used for clustering.

• Selecting an appropriate similarity measure between
documents.

• Selecting an appropriate clustering method utilising
the above similarity measure.

• Implementing the clustering algorithm in an efficient
way that makes it feasible in terms of required
memory and CPU resources.

• Finding ways of assessing the quality of the
performed clustering.

Enhanced Automatically Mining Facets for Queries
and Clustering with Side Information Model

K. Vidhya and N. Saravanan

D

ISSN 2277-5099 | © 2018 Bonfring

Bonfring International Journal of Software Engineering and Soft Computing, Vol. 8, No. 2, April 2018 2

Figure 1.1: Cluster Structure

II. LITERATURE SURVEY
Weize Kong and James Allan [1] describe a Faceted search

helps users by offering drill-down options as a complement to
the keyword input box, and it has been used successfully for
many vertical applications, including ecommerce and digital
libraries. However, this idea is not well explored for general
web search, even though it holds great potential for assisting
multi-faceted queries and exploratory search. In this paper,
explore this potential by extending faceted search into the
open-domain web setting, which is call Faceted Web Search.
To tackle the heterogeneous nature of the web, propose to use
query-dependent automatic facet generation, which generates
facets for a query instead of the entire corpus. To incorporate
user feedback on these query facets into document ranking, we
investigate both Boolean filtering and soft ranking models.

Krisztian Balog, Edgar Meij and Maarten de Rijke et al [2]
explore the potential of combining IR with SW technologies to
improve the end-to-end performance on a specific entity
search task. We arrive at and motivate a proposal to combine
text-based entity models with semantic information from the
Linked Open Data cloud. The problem of entity search has
been and is being looked at by both the Information Retrieval
(IR) and Semantic Web (SW) communities and is, in fact,
ranked high on the research agendas of the two communities.
The entity search task comes in several flavors. One is known
as entity ranking (given a query and target category, return a
ranked list of relevant entities), another is list completion
(given a query and example entities, return similar entities),
and a third is related entity finding (given a source entity, a
relation and a target type, identify target entities that enjoy the
specified relation with the source entity and that satisfy the
target type constraint.

Chengkai Li, Ning Yan et al. Et al [3] describes a faceted
retrieval system for information discovery and exploration in
Wikipedia. Given the set of Wikipedia articles resulting from
a keyword query, Facetedpedia generates a faceted interface
for navigating the result articles. Compared with other faceted
retrieval systems, Facetedpedia is fully automatic and dynamic
in both facet generation and hierarchy construction, and the
facets are based on the rich semantic information from
Wikipedia.

Wisam Dakka, Panagiotis G. Ipeirotis [4] describe a text-
annotated data constitute a significant fraction of the
information available in electronic form. Searching and
browsing are the typical ways that users locate items of
interest in such databases. Faceted interfaces represent a new
powerful paradigm that proved to be a successful complement
to keyword searching. Thus far, the identification of the facets
was either a manual procedure, or relied on apriori knowledge
of the facets that can potentially appear in the underlying
collection. In this paper, we present an unsupervised technique
for automatic extraction of facets useful for browsing text
databases. In particular, observed through a pilot study, that
facet terms rarely appear in text documents, showing that we
need external resources to identify useful facet terms. For this,
first identify important phrases in each document. Then,
expand each phrase with “context” phrases using external
resources, such as WordNet and Wikipedia, causing facet
terms to appear in the expanded database.

Amaç Herdagdelen et al [5] describe a novel approach to
query reformulation which combines syntactic and semantic
information by means of generalized Levenshtein distance
algorithms where the substitution operation costs are based on
probabilistic term rewrite functions. We investigate
unsupervised, compact and efficient models, and provide
empirical evidence of their effectiveness. Further it explores a
generative model of query reformulation and supervised
combination methods providing improved performance at
variable computational costs. Among other desirable
properties, our similarity measures incorporate information-
theoretic interpretations of taxonomic relations such as
specification and generalization.

X. Xue and W. B. Croft et al [6] describe a Query
reformulation modifies the original query with the aim of
better matching the vocabulary of the relevant documents, and
consequently improving ranking effectiveness. Previous
models typically generate words and phrases related to the
original query, but do not consider how these words and
phrases would fit together in new queries. In this paper, a
novel framework is proposed that models reformulation as a
distribution of queries, where each query is a variation of the
original query. This approach considers a query as a basic unit
and can capture important dependencies between words and
phrases in the query. Previous reformulation models are
special cases of the proposed framework by making certain
assumptions.

Idan Szpektor, Aristides Gionis, Yoelle Maarek et al [7]
describe the ability to aggregate huge volumes of queries over
a large population of users allows search engines to build
precise models for a variety of query-assistance features such
as query recommendation, correction, etc. Yet, no matter how
much data is aggregated, the long-tail distribution implies that
a large fraction of queries are rare. As a result, most query
assistance services perform poorly or are not even triggered on
long-tail queries. We propose a method to extend the reach of
query assistance techniques (and in particular query
recommendation) to long-tail queries by reasoning about rules
between query templates rather than individual query
transitions, as currently done in query-flow graph models.

ISSN 2277-5099 | © 2018 Bonfring

Bonfring International Journal of Software Engineering and Soft Computing, Vol. 8, No. 2, April 2018 3

III. PROPOSED METHODOLOGY

A. Query Facets Mining
A is query facet is a set of items which describe and

summarize query one important aspect of a query. Here a facet
item is typically a word or a phrase. A query may have
multiple facets that summarize the information about the
query from different perspectives. To automatically mining
query facets from the top retrieved documents, QDMiner
which discovers query facets by aggregating frequent lists
within the top results.

Important information is usually organized in list formats
by websites. They may repeatedly occur in a sentence that is
separated by commas, or be placed side by side in a well-
formatted structure (e.g., a table). This is caused by the
conventions of webpage design. Listing is a graceful way to
show parallel knowledge or items and is thus frequently used
by webmasters. Important lists are commonly supported by
relevant websites and they repeat in the top search results,
whereas unimportant lists just infrequently appear in results.
This makes it possible to distinguish good lists from bad ones
and to further rank facets in terms of importance.

B. Overview of the System
In the proposed approach, given a query q, retrieve the top

K results from a search engine and fetch all documents to form
a set R as input. Then, query facets are mined by: List and
context extraction Lists and their context are extracted from
each document in R. “men’s watches, women’s watches,
luxury watches ...” is an example list extracted.

List weighting All extracted lists are weighted, and thus
some unimportant or noisy lists, such as the price list “299.99,
349.99, 423.99 ...” that occasionally occurs in a page, can be
assigned by low weights. List clustering Similar lists are
grouped together to compose a facet. For example, different
lists about watch gender types are grouped because they share
the same items “men’s” and “women’s”.

Facet and item ranking Facets and their items are evaluated
and ranked. For example, the facet on brands is ranked higher
than the facet on colors based on how frequent the facets occur
and how relevant the supporting documents are. Within the
query facet on gender categories, “men’s” and “women’s” are
ranked higher than “unisex” and “kids” based on how frequent
the items appear, and their order in the original lists.

C. Extracting List and Context
From each document d in the search result set R, extract a

set of lists Ld ={l’} from the HTML content of d based on
three different types of patterns, namely free text patterns,
HTML tag patterns, and repeat region patterns. For each
extract list, we extract its container node together with the
previous and next sibling of the container node as its context.

Free Text Patterns
In the free text patterns, extract all text within document d

and split it into sentences. We then employ the pattern item{,
item}* (and | or) {other} item, to extract matched items from
each sentence. We name this sentence based pattern as TEXT.

Further use the pattern {^item (:|-) .+$}+ to extract lists from
some semi-structured paragraphs. It extracts lists from
continuous lines that are comprised of two parts separated by a
dash or a colon.

For a list extracted by the pattern TEXTS, its container
node is the sentence containing the extracted list.

HTML Tag Patterns
In the Html tag patterns, extract lists from several list-style

HTML tags, including SELECT, UL, OL, and TABLE. It is
named these simple HTML tag based patterns as HTMLTAG.
SELECT For the SELECT tag, we simply extract all text from
their child tags (OPTION) to create a list. Moreover, we
remove the first item if it starts with some predefined text,
such as “select” or “choose”. UL/OL For these two tags, we
also simply extract text within their child tags (LI).

TABLE, it extracts one list from each column or each row.
For a table containing m rows and n columns, extracts at most
m þ n lists. For each column, the cells within THEAD or
TFOOT tags are regarded as table headers and are dropped
from the list. For a list extracted from a HTML element like
SELECT, UL, OL, or TABLE by pattern HTMLTAG, its
context is comprised of the current element and the previous
and next element if any.

Repeat Region Patterns
The peer information is sometimes organized in well-

structured visual blocks in web pages. Each block contains a
restaurant record that includes four attributes: picture,
restaurant name, location description and rating. In this
method, extract three lists from this region: a list of restaurant
names, a list of location descriptions, and a list of ratings.

To extract these lists, we first detect repeat regions in Web
pages based on vision-based DOM trees. Here a repeat region
is the region that includes at least two adjacent or nonadjacent
blocks, e.g., M blocks, with similar DOM and visual
structures. And then extract all leaf HTML nodes within each
block, and group them by their tag names and display styles.

The names in the web page have the same tag name (<a>)
and displaying style (in blue color), and they can be grouped
together. Each group usually contains M nodes. Each two of
them are from different blocks. At last, for each group, we
extract all text from its nodes as a list.

For a list extracted from a repeat region, choose the lowest
common ancestor element of all blocks of the repeat region as
a container node (i.e., the smallest element containing the
entire repeat region).

D. List Weighting
Some of the extracted lists are not informative or even

useless. Some of them are extraction errors. The lists are
navigational links which are designed to help users navigate
between web pages. They are not informative to the query.
The list is actually an extraction error: several types of
information are mixed together. Then it is dispute that these
types of lists are useless for finding facets. To should punish
these lists, and rely more on better lists to generate good

ISSN 2277-5099 | © 2018 Bonfring

Bonfring International Journal of Software Engineering and Soft Computing, Vol. 8, No. 2, April 2018 4

facets. The system finds that a good list is usually supported
by many websites and appears in many documents, partially or
exactly. Finally, sort all lists by final weights for the given
query.

E. List Clustering
In the system, do not use individual weighted lists as query

facets because: (1) an individual list may inevitably include
noise. For example, in the above Table 1, “watch brands” is
noise. It is difficult to identify it without other information
provided; (2) an individual list usually contains a small
number of items of a facet and thus it is far from complete; (3)
many lists contain duplicated information. They are not
exactly same, but share overlapped items. To conquer the
above issues, it group similar lists together to compose facets.
Two lists can be grouped together if they share enough items.
This means that two groups of lists can only be merged
together when every two lists of them are similar enough.

The weight of a cluster is computed based on the number
of websites from which its lists are extracted. More
specifically, wc=|Sites (c)| where Sites(c) is the set of websites
that contain lists in c. Note that, use websites instead of web
pages because web pages from the same website usually share
the same page templates and contribute duplicated lists. After
that the clustering process, similar lists will be grouped into a
candidate query facet.

F. Facet Ranking
After the candidate query facets are generated, it is

evaluate the importance of facets and items, and rank them
based on their importance. A facet c is more important if: the
lists in c are extracted from more unique content of search
results; and the lists in c are more important, i.e., they have
higher weights. Here it is highlighted unique content, because
sometimes there are duplicated content and lists among the top
search results.

Unique Website Model
Because of the same website usually deliver similar

information, multiple lists from a same website within a facet
are usually duplicated. A simple method for dividing the lists
into different groups is checking the websites they belong to.
It is assume that different websites are independent, and each
distinct website has one and only one separated vote for
weighting the facet. i.e, let C (c) = Site(c) and recall that Sites
(c) is the set of unique websites containing lists in c.

Context Similarity Model
In the Unique Website Model, the system used website as

a simple signal for creating groups. Here it is assumed that
lists from a same website might contain duplicated
information, whereas different websites are independent and
each can contribute a separated vote for weighting facets.
Mirror websites are using different domain names but are
usually publishing duplicated content. Different websites may
publish content using the same software.

G. Item Ranking
In a facet, the importance of an item depends on how many

lists contain the item and its ranks in the lists. As a better item
is usually ranked higher by its creator than a worse item in the
original list, calculate Se|c, the weight of an item e within a
facet c, by:

where w(c,e,G) is the weight contributed by a group of

lists G, and AvgRankc,e,G is the average rank of item e within
all lists extracted from group G.

For each query, it first ask a subject to manually create
facets and add items that are covered by the query, based on
knowledge after a deep survey on any related resources (such
as web sites related to the query).

H. Clustering with Side Information
The clustering text data with side information is a corpus S

of text documents. The total number of documents is N, and
they are denoted by T1 ... TN. It is assumed that the set of
distinct words in the entire corpus S is denoted by W.
Associated with each document Ti have a set of side attributes
Xi. Each set of side attributes Xi has d dimensions, which are
denoted by (xi1 ... xid). We refer to such attributes as auxiliary
attributes. For ease in notation and analysis, we assume that
each side-attribute xid is binary, though both numerical and
categorical attributes can easily be converted to this format in
a fairly straightforward way.

 This is because the different values of the categorical
attribute can be assumed to be separate binary attributes,
whereas numerical data can be discretized to binary values
with the use of attribute ranges. Some examples of such side-
attributes are as follows:

• In a web log analysis application, we assume that xir
corresponds to the 0-1 variable, which indicates
whether or not the ith document has been accessed by
the rth user.

• This information can be used in order to cluster the
web pages in a site in a more informative way than a
techniques which is based purely on the content of
the documents. As in the previous case, the number
of pages in a site may be large, but the number of
documents accessed by a particular user may be
relatively small.

• In a network application, corresponds to the 0-1
variable corresponding to whether or not the ith
document Ti has a hyperlink to the rth page Tr.

• If desired, it can be implicitly assumed that each page
links to itself in order to maximize linkage-based
connectivity effects during the clustering process.
Since hyperlink graphs are large and sparse, it
follows that the number of such auxiliary variables
are high, but only a small fraction of them take on the
value of 1.

• In a document application with associated GPS or
provenance information, the possible attributes may

ISSN 2277-5099 | © 2018 Bonfring

Bonfring International Journal of Software Engineering and Soft Computing, Vol. 8, No. 2, April 2018 5

be drawn on a large number of possibilities. Such
attributes will naturally satisfy the sparsity property.

I. Content and Auxiliary Attribute [COATES Algorithm]
Content and auxiliary attribute-based text classification

algorithm. The algorithm uses a supervised clustering
approach in order to partition the data into k different clusters.
This partitioning is then used for the purposes of
classification. The steps used in the training algorithm are as
follows:

• Feature Selection: In the first step, we use feature
selection to remove those attributes, which are not
related to the class label. This is performed both for
the text attributes and the auxiliary attributes.

• Initialization: In this step, we use a supervised k-
means approach in order to perform the initialization,
with the use of purely text content. The main
difference between a supervised k-means
initialization, and an unsupervised initialization is
that the class memberships of the records in each
cluster are pure for the case of supervised
initialization. Thus, the k-means clustering algorithm
is modified, so that each cluster only contains records
of a particular class.

• Cluster-Training Model Construction: In this phase, a
combination of the text and side-information is used
for the purposes of creating a cluster-based model. As
in the case of initialization, the purity of the clusters
in maintained during this phase.

Once the features have been selected, the initialization of
the training procedure is performed only with the content
attributes. This is achieved by applying a k-means type
algorithm as discussed to the approach, except that class label
constraints are used in the process of assigning data points to
clusters. Each cluster is associated with a particular class and
all the records in the cluster belong to that class. This goal is
achieved by first creating unsupervised cluster centroid, and
then adding supervision to the process. In order to achieve this
goal, the first two iterations of the k-means type algorithm are
run in exactly the clusters are allowed to have different class
labels. After the second iteration, each cluster centroid is
strictly associated with a class label, which is identified as the
majority class in that cluster at that point. In subsequent
iterations, the records are constrained to only be assigned to
the cluster with the associated class label. Each iteration for a
given document, its distance is computed only to clusters
which have the same label as the document. The document is
then assigned to that cluster. This approach is continued to
convergence. The algorithm requires two phases:

• Initialization: We use a lightweight initialization
phase in which a standard text clustering approach is
used without any side-information. For this purpose
the algorithm described. The centroids and the
partitioning created by the clusters formed in the first
phase provide an initial starting point for the second
phase. We note that the first phase is based on text
only, and does not use the auxiliary information.

• Main Phase: The main phase of the algorithm is
executed after the first phase. This phase starts off

with these initial groups, and iteratively reconstructs
these clusters with the use of both the text content
and the auxiliary information. This phase performs
alternating iterations which use the text content and
auxiliary attribute information in order to improve the
quality of the clustering. We call these iterations as
content iterations and auxiliary iterations
respectively. The combination of the two iterations is
referred to as a major iteration and each major
iteration thus contains two minor iterations,
corresponding to the auxiliary and text-based
methods.

IV. CONCLUSION
The novel COATES Algorithm is used for high

dimensional data. The algorithm involves removing irrelevant
features based data preprocessing process and selecting
representative features. In the proposed algorithm, a cluster
consists of features. Each cluster is treated as a single feature
and thus dimensionality is drastically reduced.

The significantly better results are found for the proposed
method compared to existing methods, irrespective of the
classifiers used. All the results reported in this paper
demonstrate the feasibility and effectiveness of the proposed
method. It is capable of identifying co-regulated clusters of
genes whose average expression is strongly associated with
the sample categories. The identified gene clusters may
contribute to revealing underlying class structures, providing a
useful tool for the exploratory analysis of biological data.

REFERENCES
[1] W. Kong and J. Allan, “Extending faceted search to the general web”,

Proc. ACM Int. Conf. Inf. Knowl. Manage., Pp. 839–848, 2014.
[2] E.M. Balog and M. de Rijke, “Entity search: Building bridges between

two worlds”, Proc. 3rd Int. Semantic Search Workshop, Pp. 9:1–9:5,
2010.

[3] C. Li, N. Yan, S.B. Roy, L. Lisham and G. Das, “Facetedpedia:
Dynamic generation of query-dependent faceted interfaces for
Wikipedia”, Proc. 19th Int. Conf. World Wide Web, Pp. 651–660, 2010.

[4] W. Dakka and P.G. Ipeirotis, “Automatic extraction of useful facet
hierarchies from text databases”, Proc. IEEE 24th Int. Conf. Data Eng.,
Pp. 466–475, 2008.

[5] A. Herdagdelen, M. Ciaramita, D. Mahler, M. Holmqvist, K. Hall,
S. Riezler and E. Alfonseca, “Generalized syntactic and semantic
models of query reformulation”, Proc. 33rd Int. ACM SIGIR Conf. Res.
Develop. Inf. retrieval, Pp. 283–290, 2010.

[6] X. Xue and W.B. Croft, “Modeling reformulation using query
distributions”, ACM Trans. Inf. Syst., Vol. 31, No. 2, Pp. 6:1–6:34,
2013.

[7] W.L. Bing, T.L. Wong and S. Jameel, “Web query reformulation via
joint modeling of latent topic dependency and term context”, ACM
Trans. Inf. Syst., Vol. 33, No. 2, Pp. 6:1–6:38, 2015.

[8] A.G. Szpektor and Y. Maarek, “Improving recommendation for long-tail
queries via templates”, Proc. 20th Int. Conf. World Wide Web, Pp. 47–
56, 2011.

[9] M. Damova and I. Koychev, “Query-based summarization: A survey”,
Proc. S3T, Pp. 142–146, 2010.

[10] K. Latha, K.R. Veni and R. Rajaram, “Afgf: An automatic facet
generation framework for document retrieval”, Proc.Int. Conf. Adv.
Comput. Eng., Pp. 110–114, 2010.

[11] J. Pound, S. Paparizos and P. Tsaparas, “Facet discovery for structured
web search: A query-log mining approach”, Proc. ACM SIGMOD Int.
Conf. Manage. Data, Pp. 169–180, 2011.

ISSN 2277-5099 | © 2018 Bonfring

Bonfring International Journal of Software Engineering and Soft Computing, Vol. 8, No. 2, April 2018 6

[12] W. Kong and J. Allan, “Extracting query facets from search results”,
Proc. 36th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, Pp. 93–
102, 2013.

[13] Y. Liu, R. Song, M. Zhang, Z. Dou, T. Yamamoto, M.P. Kato,
H. Ohshima and K. Zhou, “Overview of the NTCIR-11 imine task”,
Proc. NTCIR-11, Pp. 8–23, 2014.

ISSN 2277-5099 | © 2018 Bonfring

	Introduction
	Challenges in Document Clustering

	Literature Survey
	Proposed Methodology
	Query Facets Mining
	Overview of the System
	Extracting List and Context
	Free Text Patterns
	HTML Tag Patterns
	Repeat Region Patterns
	List Weighting
	List Clustering
	Facet Ranking
	Unique Website Model
	Context Similarity Model
	Item Ranking
	Clustering with Side Information
	Content and Auxiliary Attribute [COATES Algorithm]

	Conclusion
	References

