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Abstract--- In this paper describe a specific type of 
summaries that Query facet the main topic of given text. 
Existing summarization algorithms are classified into different 
categories in terms of their summary construction methods 
(abstractive or extractive), the number of sources for the 
summary (single document or multiple documents), types of 
information in the summary (indicative or informative), and 
the relationship between summary and query (generic or 
query-based). QD Miner aims to offer the possibility of finding 
the main points of multiple documents and thus save users’ 
time on reading whole documents. The difference is that most 
existing summarization systems dedicate themselves to 
generating summaries using sentences extracted from 
documents. In addition, return multiple groups of semantically 
related items, while they return a flat list of sentences. In this 
paper, adding these lists may improve both accuracy and 
recall of query facets. Part-of-speech information can be used 
to check the homogeneity of lists and improve the quality of 
query facets. The side-information could not be incorporate 
into the mining process, because it can either improve the 
quality of the representation for the mining process, or can 
add noise to the process. Therefore, a principle way is 
required to perform the mining process, so as to maximize the 
advantages from using this side information. This dissertation 
proposes an algorithm which combines classical partitioning 
algorithms with probabilistic models in order to create an 
effective clustering approach. 

Keywords--- Data Mining, Classification, TF-IDF, K-
Mean Clustering, Statistical Mean Validation. 

I. INTRODUCTION 
ATA Clustering is an automatic learning technique 
aimed at grouping a set of objects into subsets or clusters. 

The goal is to create clusters that are coherent internally, but 
substantially different from each other. In plain words, objects 
in the same cluster should be as similar as possible, whereas 
objects in one cluster should be as dissimilar as possible from 
objects in the other clusters. The aim of this thesis is to 
improve the efficiency and accuracy of document clustering. 
In this proposed system two clustering algorithms and the 
fields where these perform better than the known standard 
clustering algorithms. 
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In other words, the goal of a good document clustering 
scheme is to minimize intra-cluster distances between 
documents, while maximizing inter-cluster distances (using an 
appropriate distance measure between documents). A distance 
measure (or, dually, similarity measure) thus lies at the heart 
of document clustering. 

Clustering is the most common form of unsupervised 
learning and this is the major difference between clustering 
and classification. No super-vision means that there is no 
human expert who has assigned documents to classes. In 
clustering, it is the distribution and makeup of the data that 
will determine cluster membership. Clustering is sometimes 
erroneously referred to as automatic classification; however, 
this is inaccurate, since the clusters found are not known prior 
to processing whereas in case of classification the classes are 
pre-defined.  

In clustering, it is the distribution and the nature of data 
that will determine cluster membership, in opposition to the 
classification where the classifier learns the association 
between objects and classes from a so called training set, i.e. a 
set of data correctly labeled by hand, and then replicates the 
learnt behavior on unlabeled data. 

The goal of a document clustering scheme is to minimize 
intra-cluster distances between documents, while maximizing 
inter-cluster distances (using an appropriate distance measure 
between documents). A distance measure (or, dually, 
similarity measure) thus lies at the heart of document 
clustering. The large variety of documents makes it almost 
impossible to create a general algorithm which can work best 
in case of all kinds of datasets. 

Challenges in Document Clustering 
Document clustering is being studied from many decades 

but still it is far from a trivial and solved problem. The 
challenges are: 

• Selecting appropriate features of the documents that 
should be used for clustering. 

• Selecting an appropriate similarity measure between 
documents. 

• Selecting an appropriate clustering method utilising 
the above similarity measure. 

• Implementing the clustering algorithm in an efficient 
way that makes it feasible in terms of required 
memory and CPU resources. 

• Finding ways of assessing the quality of the 
performed clustering. 
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Figure 1.1: Cluster Structure 

II. LITERATURE SURVEY 
Weize Kong and James Allan [1] describe a Faceted search 

helps users by offering drill-down options as a complement to 
the keyword input box, and it has been used successfully for 
many vertical applications, including ecommerce and digital 
libraries. However, this idea is not well explored for general 
web search, even though it holds great potential for assisting 
multi-faceted queries and exploratory search. In this paper, 
explore this potential by extending faceted search into the 
open-domain web setting, which is call Faceted Web Search. 
To tackle the heterogeneous nature of the web, propose to use 
query-dependent automatic facet generation, which generates 
facets for a query instead of the entire corpus. To incorporate 
user feedback on these query facets into document ranking, we 
investigate both Boolean filtering and soft ranking models.  

Krisztian Balog, Edgar Meij and Maarten de Rijke et al [2] 
explore the potential of combining IR with SW technologies to 
improve the end-to-end performance on a specific entity 
search task. We arrive at and motivate a proposal to combine 
text-based entity models with semantic information from the 
Linked Open Data cloud. The problem of entity search has 
been and is being looked at by both the Information Retrieval 
(IR) and Semantic Web (SW) communities and is, in fact, 
ranked high on the research agendas of the two communities. 
The entity search task comes in several flavors. One is known 
as entity ranking (given a query and target category, return a 
ranked list of relevant entities), another is list completion 
(given a query and example entities, return similar entities), 
and a third is related entity finding (given a source entity, a 
relation and a target type, identify target entities that enjoy the 
specified relation with the source entity and that satisfy the 
target type constraint. 

Chengkai Li, Ning Yan et al. Et al [3] describes a faceted 
retrieval system for information discovery and exploration in 
Wikipedia. Given the set of Wikipedia articles resulting from 
a keyword query, Facetedpedia generates a faceted interface 
for navigating the result articles. Compared with other faceted 
retrieval systems, Facetedpedia is fully automatic and dynamic 
in both facet generation and hierarchy construction, and the 
facets are based on the rich semantic information from 
Wikipedia.  

Wisam Dakka, Panagiotis G. Ipeirotis [4] describe a text-
annotated data constitute a significant fraction of the 
information available in electronic form. Searching and 
browsing are the typical ways that users locate items of 
interest in such databases. Faceted interfaces represent a new 
powerful paradigm that proved to be a successful complement 
to keyword searching. Thus far, the identification of the facets 
was either a manual procedure, or relied on apriori knowledge 
of the facets that can potentially appear in the underlying 
collection. In this paper, we present an unsupervised technique 
for automatic extraction of facets useful for browsing text 
databases. In particular, observed through a pilot study, that 
facet terms rarely appear in text documents, showing that we 
need external resources to identify useful facet terms. For this, 
first identify important phrases in each document. Then, 
expand each phrase with “context” phrases using external 
resources, such as WordNet and Wikipedia, causing facet 
terms to appear in the expanded database.  

Amaç Herdagdelen et al [5] describe a novel approach to 
query reformulation which combines syntactic and semantic 
information by means of generalized Levenshtein distance 
algorithms where the substitution operation costs are based on 
probabilistic term rewrite functions. We investigate 
unsupervised, compact and efficient models, and provide 
empirical evidence of their effectiveness. Further it explores a 
generative model of query reformulation and supervised 
combination methods providing improved performance at 
variable computational costs. Among other desirable 
properties, our similarity measures incorporate information-
theoretic interpretations of taxonomic relations such as 
specification and generalization. 

X. Xue and W. B. Croft et al [6] describe a Query 
reformulation modifies the original query with the aim of 
better matching the vocabulary of the relevant documents, and 
consequently improving ranking effectiveness. Previous 
models typically generate words and phrases related to the 
original query, but do not consider how these words and 
phrases would fit together in new queries. In this paper, a 
novel framework is proposed that models reformulation as a 
distribution of queries, where each query is a variation of the 
original query. This approach considers a query as a basic unit 
and can capture important dependencies between words and 
phrases in the query. Previous reformulation models are 
special cases of the proposed framework by making certain 
assumptions.  

Idan Szpektor, Aristides Gionis, Yoelle Maarek et al [7] 
describe the ability to aggregate huge volumes of queries over 
a large population of users allows search engines to build 
precise models for a variety of query-assistance features such 
as query recommendation, correction, etc. Yet, no matter how 
much data is aggregated, the long-tail distribution implies that 
a large fraction of queries are rare. As a result, most query 
assistance services perform poorly or are not even triggered on 
long-tail queries. We propose a method to extend the reach of 
query assistance techniques (and in particular query 
recommendation) to long-tail queries by reasoning about rules 
between query templates rather than individual query 
transitions, as currently done in query-flow graph models. 
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III. PROPOSED METHODOLOGY 

A. Query Facets Mining 
A is query facet is a set of items which describe and 

summarize query one important aspect of a query. Here a facet 
item is typically a word or a phrase. A query may have 
multiple facets that summarize the information about the 
query from different perspectives. To automatically mining 
query facets from the top retrieved documents, QDMiner 
which discovers query facets by aggregating frequent lists 
within the top results.  

Important information is usually organized in list formats 
by websites. They may repeatedly occur in a sentence that is 
separated by commas, or be placed side by side in a well-
formatted structure (e.g., a table). This is caused by the 
conventions of webpage design. Listing is a graceful way to 
show parallel knowledge or items and is thus frequently used 
by webmasters. Important lists are commonly supported by 
relevant websites and they repeat in the top search results, 
whereas unimportant lists just infrequently appear in results. 
This makes it possible to distinguish good lists from bad ones 
and to further rank facets in terms of importance. 

B. Overview of the System 
In the proposed approach, given a query q, retrieve the top 

K results from a search engine and fetch all documents to form 
a set R as input. Then, query facets are mined by: List and 
context extraction Lists and their context are extracted from 
each document in R. “men’s watches, women’s watches, 
luxury watches ...” is an example list extracted.  

List weighting All extracted lists are weighted, and thus 
some unimportant or noisy lists, such as the price list “299.99, 
349.99, 423.99 ...” that occasionally occurs in a page, can be 
assigned by low weights. List clustering Similar lists are 
grouped together to compose a facet. For example, different 
lists about watch gender types are grouped because they share 
the same items “men’s” and “women’s”.  

Facet and item ranking Facets and their items are evaluated 
and ranked. For example, the facet on brands is ranked higher 
than the facet on colors based on how frequent the facets occur 
and how relevant the supporting documents are. Within the 
query facet on gender categories, “men’s” and “women’s” are 
ranked higher than “unisex” and “kids” based on how frequent 
the items appear, and their order in the original lists. 

C. Extracting List and Context 
From each document d in the search result set R, extract a 

set of lists Ld ={l’} from the HTML content of d based on 
three different types of patterns, namely free text patterns, 
HTML tag patterns, and repeat region patterns. For each 
extract list, we extract its container node together with the 
previous and next sibling of the container node as its context. 

Free Text Patterns 
In the free text patterns, extract all text within document d 

and split it into sentences. We then employ the pattern item{, 
item}* (and | or) {other} item, to extract matched items from 
each sentence. We name this sentence based pattern as TEXT. 

Further use the pattern {^item (:|-) .+$}+ to extract lists from 
some semi-structured paragraphs. It extracts lists from 
continuous lines that are comprised of two parts separated by a 
dash or a colon. 

For a list extracted by the pattern TEXTS, its container 
node is the sentence containing the extracted list. 

HTML Tag Patterns 
In the Html tag patterns, extract lists from several list-style 

HTML tags, including SELECT, UL, OL, and TABLE. It is 
named these simple HTML tag based patterns as HTMLTAG. 
SELECT For the SELECT tag, we simply extract all text from 
their child tags (OPTION) to create a list. Moreover, we 
remove the first item if it starts with some predefined text, 
such as “select” or “choose”. UL/OL For these two tags, we 
also simply extract text within their child tags (LI).  

TABLE, it extracts one list from each column or each row. 
For a table containing m rows and n columns, extracts at most 
m þ n lists. For each column, the cells within THEAD or 
TFOOT tags are regarded as table headers and are dropped 
from the list. For a list extracted from a HTML element like 
SELECT, UL, OL, or TABLE by pattern HTMLTAG, its 
context is comprised of the current element and the previous 
and next element if any. 

Repeat Region Patterns 
The peer information is sometimes organized in well-

structured visual blocks in web pages. Each block contains a 
restaurant record that includes four attributes: picture, 
restaurant name, location description and rating. In this 
method, extract three lists from this region: a list of restaurant 
names, a list of location descriptions, and a list of ratings. 

To extract these lists, we first detect repeat regions in Web 
pages based on vision-based DOM trees. Here a repeat region 
is the region that includes at least two adjacent or nonadjacent 
blocks, e.g., M blocks, with similar DOM and visual 
structures. And then extract all leaf HTML nodes within each 
block, and group them by their tag names and display styles. 

The names in the web page have the same tag name (<a>) 
and displaying style (in blue color), and they can be grouped 
together. Each group usually contains M nodes. Each two of 
them are from different blocks. At last, for each group, we 
extract all text from its nodes as a list.  

For a list extracted from a repeat region, choose the lowest 
common ancestor element of all blocks of the repeat region as 
a container node (i.e., the smallest element containing the 
entire repeat region). 

D. List Weighting 
Some of the extracted lists are not informative or even 

useless. Some of them are extraction errors. The lists are 
navigational links which are designed to help users navigate 
between web pages. They are not informative to the query. 
The list is actually an extraction error: several types of 
information are mixed together. Then it is dispute that these 
types of lists are useless for finding facets. To should punish 
these lists, and rely more on better lists to generate good 
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facets. The system finds that a good list is usually supported 
by many websites and appears in many documents, partially or 
exactly. Finally, sort all lists by final weights for the given 
query. 

E. List Clustering 
In the system, do not use individual weighted lists as query 

facets because: (1) an individual list may inevitably include 
noise. For example, in the above Table 1, “watch brands” is 
noise. It is difficult to identify it without other information 
provided; (2) an individual list usually contains a small 
number of items of a facet and thus it is far from complete; (3) 
many lists contain duplicated information. They are not 
exactly same, but share overlapped items. To conquer the 
above issues, it group similar lists together to compose facets. 
Two lists can be grouped together if they share enough items. 
This means that two groups of lists can only be merged 
together when every two lists of them are similar enough. 

The weight of a cluster is computed based on the number 
of websites from which its lists are extracted. More 
specifically, wc=|Sites (c)| where Sites(c) is the set of websites 
that contain lists in c. Note that, use websites instead of web 
pages because web pages from the same website usually share 
the same page templates and contribute duplicated lists. After 
that the clustering process, similar lists will be grouped into a 
candidate query facet. 

F. Facet Ranking 
After the candidate query facets are generated, it is 

evaluate the importance of facets and items, and rank them 
based on their importance. A facet c is more important if: the 
lists in c are extracted from more unique content of search 
results; and the lists in c are more important, i.e., they have 
higher weights. Here it is highlighted unique content, because 
sometimes there are duplicated content and lists among the top 
search results. 

Unique Website Model 
Because of the same website usually deliver similar 

information, multiple lists from a same website within a facet 
are usually duplicated. A simple method for dividing the lists 
into different groups is checking the websites they belong to. 
It is assume that different websites are independent, and each 
distinct website has one and only one separated vote for 
weighting the facet. i.e, let C (c) = Site(c) and recall that Sites 
(c) is the set of unique websites containing lists in c. 

Context Similarity Model 
In the Unique Website Model, the system used website as 

a simple signal for creating groups. Here it is assumed that 
lists from a same website might contain duplicated 
information, whereas different websites are independent and 
each can contribute a separated vote for weighting facets.  
Mirror websites are using different domain names but are 
usually publishing duplicated content. Different websites may 
publish content using the same software. 

G. Item Ranking 
In a facet, the importance of an item depends on how many 

lists contain the item and its ranks in the lists. As a better item 
is usually ranked higher by its creator than a worse item in the 
original list, calculate Se|c, the weight of an item e within a 
facet c, by: 

 
where w(c,e,G) is the weight contributed by a group of 

lists G, and AvgRankc,e,G is the average rank of item e within 
all lists extracted from group G.  

For each query, it first ask a subject to manually create 
facets and add items that are covered by the query, based on 
knowledge after a deep survey on any related resources (such 
as web sites related to the query). 

H. Clustering with Side Information  
The clustering text data with side information is a corpus S 

of text documents. The total number of documents is N, and 
they are denoted by T1 ... TN. It is assumed that the set of 
distinct words in the entire corpus S is denoted by W. 
Associated with each document Ti have a set of side attributes 
Xi. Each set of side attributes Xi has d dimensions, which are 
denoted by (xi1 ... xid). We refer to such attributes as auxiliary 
attributes. For ease in notation and analysis, we assume that 
each side-attribute xid is binary, though both numerical and 
categorical attributes can easily be converted to this format in 
a fairly straightforward way. 

 This is because the different values of the categorical 
attribute can be assumed to be separate binary attributes, 
whereas numerical data can be discretized to binary values 
with the use of attribute ranges. Some examples of such side-
attributes are as follows: 

• In a web log analysis application, we assume that xir 
corresponds to the 0-1 variable, which indicates 
whether or not the ith document has been accessed by 
the rth user. 

•  This information can be used in order to cluster the 
web pages in a site in a more informative way  than a 
techniques which is based purely on the content of 
the documents. As in the previous case, the number 
of pages in a site may be large, but the number of 
documents accessed by a particular user may be 
relatively small. 

• In a network application, corresponds to the 0-1 
variable corresponding to whether or not the ith 
document Ti has a hyperlink to the rth page Tr.  

• If desired, it can be implicitly assumed that each page 
links to itself in order to maximize linkage-based 
connectivity effects during the clustering process. 
Since hyperlink graphs are large and sparse, it 
follows that the number of such auxiliary variables 
are high, but only a small fraction of them take on the 
value of 1. 

• In a document application with associated GPS or 
provenance information, the possible attributes may 
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be drawn on a large number of possibilities. Such 
attributes will naturally satisfy the sparsity property. 

I. Content and Auxiliary Attribute [COATES Algorithm] 
Content and auxiliary attribute-based text classification 

algorithm. The algorithm uses a supervised clustering 
approach in order to partition the data into k different clusters. 
This partitioning is then used for the purposes of 
classification. The steps used in the training algorithm are as 
follows:  

• Feature Selection: In the first step, we use feature 
selection to remove those attributes, which are not 
related to the class label. This is performed both for 
the text attributes and the auxiliary attributes. 

• Initialization: In this step, we use a supervised k-
means approach in order to perform the initialization, 
with the use of purely text content. The main 
difference between a supervised k-means 
initialization, and an unsupervised initialization is 
that the class memberships of the records in each 
cluster are pure for the case of supervised 
initialization. Thus, the k-means clustering algorithm 
is modified, so that each cluster only contains records 
of a particular class. 

• Cluster-Training Model Construction: In this phase, a 
combination of the text and side-information is used 
for the purposes of creating a cluster-based model. As 
in the case of initialization, the purity of the clusters 
in maintained during this phase. 

Once the features have been selected, the initialization of 
the training procedure is performed only with the content 
attributes. This is achieved by applying a k-means type 
algorithm as discussed to the approach, except that class label 
constraints are used in the process of assigning data points to 
clusters. Each cluster is associated with a particular class and 
all the records in the cluster belong to that class. This goal is 
achieved by first creating unsupervised cluster centroid, and 
then adding supervision to the process. In order to achieve this 
goal, the first two iterations of the k-means type algorithm are 
run in exactly the clusters are allowed to have different class 
labels. After the second iteration, each cluster centroid is 
strictly associated with a class label, which is identified as the 
majority class in that cluster at that point. In subsequent 
iterations, the records are constrained to only be assigned to 
the cluster with the associated class label. Each iteration for a 
given document, its distance is computed only to clusters 
which have the same label as the document. The document is 
then assigned to that cluster. This approach is continued to 
convergence. The algorithm requires two phases: 

• Initialization: We use a lightweight initialization 
phase in which a standard text clustering approach is 
used without any side-information. For this purpose 
the algorithm described. The centroids and the 
partitioning created by the clusters formed in the first 
phase provide an initial starting point for the second 
phase. We note that the first phase is based on text 
only, and does not use the auxiliary information. 

• Main Phase: The main phase of the algorithm is 
executed after the first phase. This phase starts off 

with these initial groups, and iteratively reconstructs 
these clusters with the use of both the text content 
and the auxiliary information. This phase performs 
alternating iterations which use the text content and 
auxiliary attribute information in order to improve the 
quality of the clustering. We call these iterations as 
content iterations and auxiliary iterations 
respectively. The combination of the two iterations is 
referred to as a major iteration and each major 
iteration thus contains two minor iterations, 
corresponding to the auxiliary and text-based 
methods.  

IV. CONCLUSION 
The novel COATES Algorithm is used for high 

dimensional data. The algorithm involves removing irrelevant 
features based data preprocessing process and selecting 
representative features. In the proposed algorithm, a cluster 
consists of features. Each cluster is treated as a single feature 
and thus dimensionality is drastically reduced. 

The significantly better results are found for the proposed 
method compared to existing methods, irrespective of the 
classifiers used. All the results reported in this paper 
demonstrate the feasibility and effectiveness of the proposed 
method. It is capable of identifying co-regulated clusters of 
genes whose average expression is strongly associated with 
the sample categories. The identified gene clusters may 
contribute to revealing underlying class structures, providing a 
useful tool for the exploratory analysis of biological data. 
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