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Abstract

For the development of innovative materials, construction types or main-
tenance strategies, experimental investigations are inevitable to validate the-
oretical approaches in praxis. Numerical simulations, embedded in a general
virtual testing approach, are alternatives to expensive experimental investi-
gations.

The statistical properties of the dynamic response in the frequency do-
main obtained from continuously measured data are often the basis for many
developments, such as the optimization of damage indicators for structural
health monitoring systems or the investigation of data-based frequency re-
sponse function estimates. Two straightforward numerical simulation ap-
proaches exist to derive the statistics of a response due to random excita-
tion and measurement errors. One approach is the sample-based technique,
wherein for each excitation sample a time integration solution is needed. This
can be computationally very demanding if a high accuracy of the statistical
properties is of interest. The other approach consists in using the relationship
between the excitation and the response directly in the frequency domain,
wherein a weakly stationary process is assumed. This approach is inher-
ently related to an infinite time response, which can hardly be derived from
measured data.

In this paper, a novel approach is proposed that overcomes the limitation
of both aforementioned methods, by providing a fast analytical probabilistic
framework for uncertainty quantification to determine accurately the statis-
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tics of short time dynamic responses. It is assumed that the structural system
is known and can be described by deterministic parameters. The influences
of signal processing techniques, such as linear combinations, windowing, and
segmentation used in Welch’s method, are considered as well. The perfor-
mance of the new algorithm is investigated in comparison to both previous
approaches on a three degrees of freedom system. The benchmark shows that
the novel approach outperforms the sample-based approach with respect to
accuracy and computational effort. In comparison with the approach based
on the estimator in the frequency domain, the results are more accurate
in the case of short time dynamic responses. To show the interest of the
technique, the novel approach is applied to the investigation of a damage in-
dicator, which allows developing a deep insight in the effect of typical signal
processing techniques on the statistics of quantities derived from response
Fourier transforms.

Keywords: uncertainty quantification, random vibrations, structural
dynamics, virtual testing, peak indicator, structural health monitoring
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1. Introduction

1.1. Motivation

In recent years, virtual testing techniques have become more and more
popular in various engineering disciplines to accelerate the design and devel-
opment process of new products. The general idea of virtual testing is the
replacement of expensive physical tests by efficient and flexible simulation
techniques. Applications can be found for example, in aerospace industry
[1][2], automotive industry [3][4], machine tool development [5], rail vehicle
dynamics [6][7][8], and train passage predictions [9][10]. Moreover, virtual
testing techniques are common to improve existing or to design new meth-
ods in several research domains.

Historically, due to limited computational resources and the absence of
computational efficient methods, virtual testing techniques were first applied
in a deterministic framework. Due to the increased demand from owners,
operators, and society to optimize structures and algorithms with respect to
their safety, reliability, and efficiency, the deterministic virtual testing tech-
niques were enhanced by uncertainty propagation techniques to be able to
take into account uncertainties from various sources, such as structural model
parameters, random excitations, inaccuracy of the model assumptions, and
simulated measurement noise. With these nondeterministic virtual testing
approaches, more realistic simulations can be performed and more robust
structures and methods can be designed. The drawback is the increased
computational effort, which is only partly compensated by recent develop-
ments in computational hardware technologies. Hence, uncertainty propa-
gation and quantification techniques need to be improved in the context of
virtual testing in order to find a wider practical acceptance.

Applications of uncertainty propagation and quantification in virtual test-
ing can be found in various research domains, such as stochastic model
updating [11][12][13], optimal test planning [14][15][16], and the prediction
of dynamic responses under structural model parameter variability [17][18].
Moreover, uncertainty propagation methods have been successfully applied
on various industrial structures such as wind-sensitive structures [19], off-
shore structures [20] and gearbox systems [21].

A specific field of virtual testing is the analysis of dynamics and vibration
of structures, which is usually computationally very demanding as time de-
pendent responses need to be analyzed caused by time dependent excitations.
In combination with the consideration of uncertainties and possible nonlin-
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ear structural and material behavior, this task is very challenging. Next to
the statistics of time domain responses [22][23], the statistics of frequency
domain responses, in the form of Fourier transforms, power spectral densi-
ties, or frequency response functions are of interest for many applications,
such as optimal sensor placement [14], damage detection [24][25][26][27], or
experimental modal parameter identification [28][29].

This paper aims at designing a virtual testing method for linear time in-
variant systems under random excitations, in which structural responses in
the frequency domain are of interest in the presence of measurement errors.
It is assumed that the system is known and can be described by deterministic
parameters. As an illustration, the novel method is applied to the problem
of damage detection in the context of the design of fully automatic struc-
tural health monitoring systems. For a three degrees of freedom system, the
probability density functions of damage indicators based on modal filters due
to the randomness of the excitation and measurement errors will be derived.
The knowledge about the shape and the tails of probability density functions
related to damage indicators is important to define control limits in control
charts used for decision making.

1.2. Review of uncertainty propagation and quantification approaches in struc-

tural dynamics

This subsection shortly reviews and discusses common approaches for
uncertainty forward propagation, applicable to virtual testing, with special
emphasis on probabilistic methods in structural dynamics with outputs in the
frequency domain. The aim of each uncertainty forward propagation method
is the uncertainty quantification of output variables based on the uncertainty
of input variables. Each uncertainty forward propagation approach requires
the modeling of uncertainties, the relationship between input and output
variables defined by a mathematical or numerical operator, and a method to
treat the uncertainty through the operator.

Uncertainty can be found in many phases of the virtual testing process.
Very often, uncertainty needs to be considered for the definition of the pa-
rameters of mathematical or numerical models (e.g., constitutive law parame-
ters, geometrical imperfections, joint stiffnesses) and excitation distributions
in time and space. Moreover, uncertainties from possible measurement er-
rors and noise should be taken into account for simulated measurement data.
Next to these parametric uncertainties, nonparametric uncertainties related
to the approximation of the reality during the modeling process need to be
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considered. Such nonparametric uncertainties are introduced into the process
by the mathematical description of the physical behavior, the discretization,
and numerical solution methods [30].

In structural dynamics, the influence of randomness of structural model
parameters, excitations, and errors are very interesting with respect to ex-
citation independent modal system properties, and time and frequency re-
sponses. Depending on what type of input uncertainty and what type of
output uncertainty is targeted, the applications of uncertainty quantification
in structural dynamics can be categorized into three main groups.

(i) The first group encompasses all applications which are independent
from the excitations. For example, many papers can be found related to
the uncertainty quantification of modal parameters (i.e., natural frequen-
cies [18][31][32][33]) caused by uncertainties of material laws or geometry
parameters. Stochastic model updating schemes [34][35][36] use uncertainty
propagation methods to fit distributions of measured modal parameters with
the distributions of numerically extracted modal parameters by changing the
distribution parameters of the structural system properties. In most cases,
the operator itself is defined by the generalized eigenvalue problem described
by the system’s mass and stiffness matrices. The uncertainty quantification
of the elements of the frequency response matrix, as excitation independent
functions described by structural system properties, was also in the focus of
diverse papers [37][38][39][40] due to its important applications in vibration-
based structural health monitoring and model updating. Most researchers
focused on structural model parameter uncertainties with an FRF definition
based on a finite element model.

(ii) The focus of the second group is put on the influence of the variation of
structural system parameters (e.g., material, geometry, boundary conditions)
on the dynamic time or frequency response. Because of the relative simplic-
ity of its formulation, the most common combination is the application of
sample-based methods with a numerical time integration scheme. For exam-
ple, the Monte Carlo simulation was used by [41] to perform the uncertainty
propagation on maximal internal forces and moments due to the lack of in-
formation on soil properties. Ref. [42] combined a variant of the polynomial
chaos expansion method with implicit Newmark time integration to deter-
mine the response statistics for a nonlinear system with uncertain model pa-
rameters but deterministic excitation. The results of this non-sample-based
method were compared with a standard Monte Carlo scheme. The effect of
finite element model parameter uncertainties on the statistics of the moduli
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of displacement responses in the frequency domain was addressed in [43],
wherein a Bayesian emulator was applied as surrogate model. The proposed
approach was benchmarked against Monte Carlo simulations. Also [17] in-
vestigated the variability of displacement responses in the frequency domain
due to uncertainties of finite element model parameters using Monte Carlo
sampling. Uncertainty quantification of structural responses was the research
interest in [44] and [19], where second order statistics and reliability analysis
were performed for crossing rates assuming model parameter uncertainties
and random excitation.

(iii) The third group embraces all applications in which the variation of ex-
citations and measurement errors is investigated regarding dynamic responses
in the time or frequency domain assuming a structural system with determin-
istically known parameters. The uncertainty of damage indicators based on
accelerations, velocities, and strains caused by random excitation and mea-
surement noise was investigated in [45][27] with the Monte Carlo method
using the modal superposition technique in combination with Duhamel in-
tegrals as time integration method. The mean values of acceleration power
spectral densities were predicted in [14] for random excitation defined in the
frequency domain by using a response-excitation-relation in the frequency
domain described in [46]. The statistics of Fourier transforms and power
spectral densities of strains were analytically derived in [47] from a given
multivariate normal distribution of excitations in the frequency domain un-
der consideration of measurement noise. A Latin hypercube sampling scheme
together with a time integration method was applied for comparison reasons.
Ref. [48] proposed an analytical method to predict the uncertainties of a
single-input-single-output frequency response function estimator based on
the assumption of normally distributed power spectral densities of responses
for random excitations and measurement noise. The authors stated that pos-
sible discrepancies between numerical and experimental results were related
to a violation of the assumptions (i.e., finite instead of infinite time series,
insufficient averaging), which are necessary conditions for this approach.

The application that is targeted in this paper can be integrated into group
(iii). The emphasis of this paper is to develop a virtual testing technique for
the prediction of uncertainties of Fourier transformed responses including
typical signal post-processing techniques related to randomly excited struc-
tures and measurement errors. It is assumed that the structural system is
known and can be described by deterministic properties. In the light of the
targeted application, the following statements can be made about existing
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methods:

1. Sample-based methods in combination with numerical time integration
schemes are the most frequently applied methods due to their flexibility
in application, but under the burden of high computational costs caused
by many operator runs.

2. Only few researchers (e.g., [14]) are using the response-excitation-relation
in the frequency domain [46] for the investigation of response uncertain-
ties, even though it is a fast approach with the capability to introduce
analytical uncertainty propagation methods. Its main limitations are
the strict assumptions with respect to infinite time series and weak
stationarity and the difficulty to introduce standard signal processing
techniques. Therefore, this approach derives only approximations for
the statistics of discrete finite Fourier transformed responses.

3. Even though uncertainty propagation for signal post-processing meth-
ods is important for the numerical generation of measured vibration
data, it is hardly addressed in the domain of structural dynamics.

1.3. Proposed approach

This paper suggests a novel efficient approach to perform an uncertainty
forward propagation through dynamic linear systems under random excita-
tion with the target to derive the statistics of responses in the frequency
domain assuming that the statistics of the excitation in the time domain are
known. With this approach, measurement errors defined in time domain can
be treated as well. The structural model and its parameters are assumed
to be sufficiently well known and are therefore considered as accurate and
deterministic. The statistics of the Fourier transformed dynamic responses
are essential for many applications, such as the numerical investigation of
damage indicators and data-based modal parameter and frequency response
functions estimation. This novel approach is referred to as ’approach 1’
throughout the paper.

In contrast to the sample-based methods, the statistics of the response
Fourier transforms are derived by a linear operator connecting time domain
excitations with frequency domain responses. This avoids a computationally
demanding evaluation of each sample with a time integration method. Be-
yond its computational efficiency the novel approach is more accurate than
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the sample-based approaches, because the uncertainty propagation is per-
formed analytically within the probabilistic theory framework. As the linear
operator of the novel approach is derived from the convolution of the impulse
response function in time domain, the application is not restricted to long
time series, which is required for the frequency-domain estimators for exam-
ple. In addition, the linear operator can deal with standard signal processing
techniques, such as linear combination of sensor signals, windowing and split-
ting into overlapping time frames as required in Welch’s method. The type
of distribution for the time domain excitations is limited to a multivariate
normal distribution, but with the possibility to consider correlations in time
and between excitation degrees of freedom. Since a linear operator is ap-
plied, the resulting responses in the frequency domain are also multivariate
normally distributed.

For comparison reasons, an ’approach 2’ based on the frequency domain
approach according to [46] is also studied. Modifications are introduced to be
able to deal with signal processing techniques. A linear operator is derived
for this approach that connects, in a similar way as approach 1, excitations
in the time domain with responses in the frequency domain. In addition,
a sample-based approach (’approach 3’) using a Latin hypercube scheme in
combination with time integration is used to validate results of approach
1 and approach 2. The performance of all three approaches is compared
by means of a three degrees of freedom system under multivariate normally
distributed excitation. It is demonstrated that the novel approach 1 is up to
30 times faster than the sample-based approach 3. For short time series, the
new approach 1 is more accurate than approach 2.

Next to this benchmark study, an application of approach 1 related to
the investigation of a damage indicator typically applied in the domain of
structural health monitoring is presented. In previous studies [27][49], this
damage indicator was investigated only by means of a sample-based uncer-
tainty propagation strategy. Due to the high computational demand, it was
not possible to generate a sufficient number of samples to investigate the tails
of the probability density function with sufficient accuracy. However, for a
proper design of a damage indicator this is very important. With the novel
approach 1 of the current paper, the computationally expensive calculation
of the Fourier transforms from each response time history sample generated
by a time integration method can be avoided. Based on the analytically de-
rived statistics of the response Fourier transforms, samples are generated and
evaluated to derive the damage indicator. Hence, an evaluation of samples
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is only necessary for the computationally cheap derivation of the damage
indicator from response Fourier transforms. This allows evaluating a large
number of samples which increases the accuracy of the sample statistics and
the probability density function estimation of the damage indicator. By
means of a probability density function estimator based on kernel densities,
the normality assumption of the distribution of the damage indicator can be
investigated.

Following the first section of this paper, Section 2 introduces the theoreti-
cal framework to describe all three approaches in details. Section 3 is devoted
to a benchmark of all three approaches using a three degrees of freedom sys-
tem. The application to a numerical investigation of damage indicators is
treated in Section 4, and the conclusions are presented in Section 5.
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2. Uncertainty quantification of discrete response Fourier trans-

forms

2.1. General concept and problem description

Assuming a set of continuous response time signals x(t) ∈ Rmx for mx

degrees of freedom over time t of a structure is given by

x(t) = xf (t) + xn(t). (1)

The random continuous time signal xf (t) ∈ Rmx is the true errorless response
resulting from a random continuous weakly stationary non-periodic excita-
tion signal f(t) ∈ Rmf at mf degrees of freedom. The random continuous
time signal xn(t) ∈ Rmx is the weakly stationary measurement error at the
respective degrees of freedom. In practical applications, many pre- and post-
processing techniques are applied on the measured response signal. A typical
operator is a linear combiner, which is defined as

g(t) = Ax(t) = A xf (t)︸ ︷︷ ︸
gf (t)

+A xn(t)︸ ︷︷ ︸
gn(t)

(2)

in the time domain, with g(t) ∈ Rmg and the time-invariant matrix of linear
combination coefficients A ∈ Rmg×mx . In addition, windowing in the time
domain is often applied before a further signal processing, such as Fourier
transformation.

From now on, the random continuous excitation f(t) is assumed to be a
multivariate normal distribution with known expectations and covariances.
By extracting a finite discrete random excitation signal fj from f(t) with
N discrete values for each excited degree of freedom j = 1, 2, . . . , mf the
corresponding random discrete vector

f̄ =




f1
f2
...

fmf


 (3)

of dimension Nmf can be defined as multivariate normally distributed

f̄ ∼ N
(
E(̄f),C(̄f , f̄)

)
(4)
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with an expectation vector E(̄f) ∈ RNmf and a covariance matrix C(̄f , f̄) ∈
RNmf×Nmf , including correlations in time and space. The correlation in time
and space can be defined, for example, using the random fields approach
[50, p.138], where only the time lag and spatial distance between two time-
space-coordinates are influencing the correlation and not the absolute value
of time and spatial position. The correlation is defined through the Pearson
coerrelation coefficient [51][52] and is directly related to the covariances. In
this paper, the correlation between time and space is neglected. For the
interested reader, this topic is addressed in [53].

The random continuous signal of measurement errors xn(t) is also as-
sumed to be multivariate normally distributed. The finite discrete random
errors xnj obtained from xn(t) with N discrete values for each measured re-
sponse degree of freedom j = 1, 2, . . . , mx are collected in a random discrete
vector

x̄n =




xn1

xn2
...

xnmx


 . (5)

This random vector can be described as normally distributed

x̄n ∼ N (E(x̄n),C(x̄n, x̄n)) (6)

with the expectation vector E(x̄n) ∈ RNmx and the covariance matrixC(x̄n, x̄n) ∈
RNmx×Nmx , which takes correlations in time and space into account. In this
paper, it is assumed that measurement errors and excitations are independent
from each other.

Three different approaches are investigated to derive the statistics of the
discrete Fourier transform of a linear combiner of responses based on the
known statistics of the excitations and the measurement error. In the first
two approaches a linear deterministic operator Z̄f∗ is derived to perform
analytically the uncertainty propagation between the random excitations in
the time domain and the response Fourier transforms of the linear combiner.
The symbol ∗ indicates the approach number. The uncertainty propagation
of the measurement errors defined in the time domain can also be realized
by a linear operator Z̄n. The mean value of the discrete Fourier transform
of the errorless linear combiner can be obtained by

E

([
Re (F ḡf∗

)
Im (F ḡf∗

)

])
=

[
Re
(
Z̄f∗

)

Im
(
Z̄f∗

)
]
E
(
f̄
)

(7)
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and its corresponding covariance matrix by

C

([
Re (F ḡf∗

)
Im (F ḡf∗

)

]
,

[
Re (F ḡf∗

)
Im (F ḡf∗

)

])
=

[
Re
(
Z̄f∗

)

Im
(
Z̄f∗

)
]
C
(
f̄ , f̄
) [ Re

(
Z̄f∗

)

Im
(
Z̄f∗

)
]T

,

(8)
where Re (·) and Im (·) are the real and imaginary parts of a complex scalar,
vector, or matrix. In analogy, the mean value and covariance matrix of the
measurement errors are obtained by

E

([
Re (F ḡn

)
Im (F ḡn

)

])
=

[
Re
(
Z̄n

)

Im
(
Z̄n

)
]
E (x̄n) (9)

and

C

([
Re (F ḡn

)
Im (F ḡn

)

]
,

[
Re (F ḡn

)
Im (F ḡn

)

])
=

[
Re
(
Z̄n

)

Im
(
Z̄n

)
]
C (x̄n, x̄n)

[
Re
(
Z̄n

)

Im
(
Z̄n

)
]T

,

(10)
respectively. As the measurement errors are assumed to be independent from
the errorless response signal and the excitations, the statistics of the discrete
Fourier transform of the linear combiner of the imperfect discretized signal
g∗ is obtained by

E

([
Re
(
Fg

∗

)

Im
(
Fg

∗

)
])

= E

([
Re (F ḡf∗

)
Im (F ḡf∗

)

])
+ E

([
Re (F ḡn

)
Im (F ḡn

)

])
(11)

and

C

([
Re
(
Fg

∗

)

Im
(
Fg

∗

)
]
,

[
Re
(
Fg

∗

)

Im
(
Fg

∗

)
])

= C

([
Re (F ḡf∗

)
Im (F ḡf∗

)

]
,

[
Re (F ḡf∗

)
Im (F ḡf∗

)

])
+C

([
Re (F ḡn

)
Im (F ḡn

)

]
,

[
Re (F ḡn

)
Im (F ḡn

)

])
.

(12)
A detailed description of the assembly of the vector g∗ and its discrete Fourier
transform Fg

∗

will be given in the following subsections. The diagonal of
an auto-covariance matrix C(·, ·) is the vector of variances V(·), which is
defined by

(V(·))i = (C(·, ·))i,i (13)

for all entries i. In addition, a correlation matrix ̺(·, ·) according to Pearson
[51][52] with entries

(̺(·, ·))i,j =
(C(·, ·))i,j√

(C(·, ·))i,i (C(·, ·))j,j
(14)
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can be derived from any covariance matrix C(·, ·) for all positions i and j

with C(·, ·)i,i 6= 0 and C(·, ·)j,j 6= 0 . The range of the correlation coefficients
(̺(·, ·))i,j is between -1 and 1, where -1, 0, and 1 indicate a strong negative
correlation, no correlation, and a strong positive correlation, respectively,
between two random variables. The third approach is the straightforward
sample-based uncertainty propagation scheme using a Latin hypercube sam-
pling approach in combination with a time integration method. This third
approach is used in subsequent sections to verify approach 1. In practice,
the statistics of the discrete Fourier transform varies with the length of the
response time history. While the first and the third approach are suitable
for short and long time series in the transient and steady state of a system,
the second approach gives only usable predictions for a sufficiently large
time series length in the steady state. Inherent errors are introduced for all
three approaches by the time discretization. However, in this paper, such
discretization errors are assumed to be negligible by choosing a sufficiently
small time step.

In the following subsections, the derivation of the linear operators is ex-
plained in details. The time-invariant modal system properties are assumed
to be deterministic. In addition, details for approach 3 are presented.

2.2. Approach 1: Analytical uncertainty propagation based on a time domain

operator

Using Duhamel’s integral for multiple inputs and multiple outputs given
in [54, p.95], the linear combination of the continuous response displacements
in the time domain of a proportional viscously damped linear system under
continuous excitation f(t) ∈ Rmf for t ≥ 0 can be obtained by

gf (t) =

t∫

0

h(t− τ)f(τ)dτ (15)

with gf (t) ∈ Rmg and the matrix of linear combination coefficients A ∈
R

mg×mx . The impulse response function h(t) ∈ R
mg×mf is given by

h(t) = AΦxd(t)Φf
T, (16)

where d(t) ∈ Rmλ×mλ represents the time dependent diagonal matrix with
diagonal elements

(d(t))l,l =
sin(
√

(λ)l(1− (ζ)2l )t)√
(λ)l(1− (ζ)2l )

exp(−
√

(λ)l(ζ)lt). (17)
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It is assumed that the modal properties of the system are time-invariant.
The modal properties for mλ considered modes are the classical undamped
eigenvalues λ ∈ Rmλ , the corresponding modal damping ratios ζ ∈ Rmλ , and
the eigenvector matrix Φ. The mode shape matrices of response degrees of
freedom Φx ∈ Rmx×mλ and of excitation degrees of freedom Φf ∈ Rmf×mλ

are assembled from the mass normalized eigenvector matrix Φ.
From the continuous infinite linear combiner g(t), mp finite possibly over-

lapping time frames with identical duration will be extracted. The pth finite
time frame is defined through a window function wp (t) with finite compact
support within (ts)p < t ≤ (te)p. The application of this window function
leads to the response of the ith linear combiner of the pth finite time frame

gfwi,p(t) = wp (t)

mf∑

j=1

t∫

0

(h(t− τ))i,j (f(τ))jdτ. (18)

By introducing a time step ∆t and defining (ts)p = (sp − 1) ∆t and (te)p =
ep ∆t with the non negative integer values sp, ep ∈ Z and sp < ep, the discrete
form of Equation (18)

gfwi,p = w ◦
mf∑

j=1

qi,j,p fj (19)

is derived within the time step interval [sp, ep] with gfwi,p ∈ Rmw and mw =
ep−sp+1. The symbol ◦ denotes the Schur product, also known as Hadamard
product or entry-wise product (e.g., [55]). The vectorw ∈ Rmw represents the
discretization of the window function wp of the support [sp, ep] assuming all
finite time frames p are designed with window functions of identical support
values. The vector of the jth degree of freedom of the excitation fj ∈ R

N is
given for all discrete time steps [1, N ] with

N = max
p

ep. (20)

The matrix qi,j,p ∈ Rmw×N is derived from the impulse response function
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related to the linear combiner i and the excitation degree of freedom j.

qi,j,p = ∆t




hi,j,sp hi,j,sp−1 hi,j,sp−2 . . . 0
hi,j,sp+1 hi,j,sp hi,j,sp−1 . . . 0
hi,j,sp+2 hi,j,sp+1 hi,j,sp . . . 0
... hi,j,sp+2 hi,j,sp+1 . . . 0

hi,j,ep−2
... hi,j,sp+2 . . . 0

hi,j,ep−1 hi,j,ep−2
...

. . . 0
hi,j,ep hi,j,ep−1 hi,j,ep−2 . . . hi,j,ep−N+1




∀ n < 0 : hi,j,n = 0

(21)
In a next step the discrete Fourier transformation is applied to Equation

(19) through a complex matrix operator B ∈ C
(mw

2
+1)×mw containing the

coefficients [46, p. 50]

(B)k,n = ∆t exp

(
−ι

2π

N
(k − 1)(n− 1)

)
(22)

with the imaginary unit ι =
√
−1 for n = 1, 2, . . . , mw and k = 1, 2, . . . , mw

2
+

1. This yields

Fgfw i,p
= B

(
w ◦

mf∑

j=1

qi,j,p fj

)
(23)

with Fgfw i,p
∈ C

(mw
2

+1). Equation (23), which represents the Fourier trans-
form of the ith linear combination related to the time frame p, can be refor-
mulated to

Fgfw i,p
=

mf∑

j=1

Z1i,j,p fj (24)

using
Z1i,j,p = B

((
11×N ⊗w

)
◦ qi,j,p

)
, (25)

where ⊗ denotes the Kronecker product. The matrix 11×N is an integer
matrix of dimension 1×N only filled with the value 1.

By combining the evaluations of Equation (24) for all linear combina-
tions i = 1, 2, . . . , mg, all finite time frames p = 1, 2, . . . , mp, and all exci-
tation degrees of freedom j = 1, 2, . . . , mf in the random vector and linear
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deterministic operator,

F ḡf1
=




Fgfw1,1

Fgfw1,2
...

Fgfw1,mp

Fgfw2,1

Fgfw2,2
...

Fgfw2,mp

...
Fgfwmg ,1

Fgfwmg ,2
...

Fgfwmg ,mp




and Z̄f1 =




Z11,1,1 Z11,2,1 . . . Z11,mf ,1

Z11,1,2 Z11,2,2 . . . Z11,mf ,2
...

...
. . .

...
Z11,1,mp

Z11,2,mp
. . . Z11,mf ,mp

Z12,1,1 Z12,2,1 . . . Z12,mf ,1

Z12,1,2 Z12,2,2 . . . Z12,mf ,2
...

...
. . .

...
Z12,1,mp

Z12,2,mp
. . . Z12,mf ,mp

...
...

. . .
...

Z1mg ,1,1 Z1mg,2,1 . . . Z1mg ,mf ,1

Z1mg ,1,2 Z1mg,2,2 . . . Z1mg ,mf ,2
...

...
. . .

...
Z1mg,1,mp

Z1mg ,2,mp
. . . Z1mg,mf ,mp




,

(26)
respectively, a simple linear relation

F ḡf1
= Z̄f1 f̄ with Z̄f1 ∈ C

(mw
2

+1)mgmp×Nmf (27)

between the random discrete excitation time series f̄ defined in Equation
(4) and the discrete Fourier transform of the linearly combined windowed
response displacement signals represented by F ḡf1

can be derived.

2.3. Approach 2: Analytical uncertainty propagation based on a frequency

domain estimator

The aim in this subsection is to derive a frequency domain estimator
of the discrete Fourier transforms of the linear combinations of windowed
responses. In a first step, the infinite continuous Fourier transform is applied
to Equation (15)

+∞∫

−∞

gf (t) exp(−ιωt)dt =

+∞∫

−∞

t∫

0

h(t− τ)f(τ)dτ exp(−ιωt)dt. (28)

By using the convolution time theorem of the infinite continuous Fourier
transform (e.g., [56]), the response-excitation-relation in the frequency do-
main can be obtained

G(ω) = H(ω)F(ω) (29)
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with the infinite continuous Fourier transforms

G(ω) =

+∞∫

−∞

gf (t) exp(−ιωt)dt,

H(ω) =

+∞∫

−∞

h(t) exp(−ιωt)dt, and

F(ω) =

+∞∫

−∞

f(t) exp(−ιωt)dt.

(30)

For the application of Equation (29), the existence of the infinite continuous
Fourier transform of the signals is required. Note, that the infinite contin-
uous Fourier transform of a random stationary signal is not existing as the
sufficient condition of absolute integrability is not fulfilled (e.g., [46, p.110]).

Of course, continuous and infinite signals are of little interest for virtual
testing applications. In real measurements, signals are finite. To obtain a
finite signal, a window function w(t) with a compact support 0 ≤ ts ≤ t ≤
te can be multiplied in the time domain on both signals gf (t) and f(t) in
Equation (30). The respective finite continuous Fourier transforms are

Gw(ω) =

te∫

ts

((w(t) 1mg) ◦ gf (t)) exp(−ιωt)dt and

Fw(ω) =

te∫

ts

((w(t) 1mf ) ◦ f(t)) exp(−ιωt)dt.

(31)

As the window function is zero for t < ts and t > te, the integration limits
can be set to ts and te. The integer vectors 1mg and 1mf of size mg and
mf , respectively, are only filled by the value 1. The symbol ◦ indicates the
entry-wise multiplication between two matrices or vectors of identical size.

Due to the truncation of the original infinite signals, information is lost
and errors εGw

(ω) and εFw
(ω) are introduced into Equation (29), which are

taken into account with

Gw(ω) + εGw
(ω) = H(ω) (Fw(ω) + εFw

(ω)) . (32)
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For a rectangular window function w(t), the errors εGw
(ω) and εFw

(ω) are
vanishing for increasing time length te − ts → ∞. Even though the choice
of a long time history in combination with a rectangular window is the best
choice to reduce the truncation errors, it is not always possible in practice.
Another possibility to reduce the truncation errors, especially leakage, is
the application of non rectangular window functions, such as the Hann and
Hamming window (e.g., [46, p.144]). If the window function is chosen in
accordance with the type of the signal, a reduction of the truncation errors
can be obtained at least for certain frequency bands. Note, that for a non
rectangular window the errors are not necessarily reduced for an increasing
time length te− ts. It is also interesting to mention that the finite continuous
Fourier transform exists for random signals. An equation similar to Equation
(32) has been derived by [46, p.186] for weakly stationary processes.

Another limitation of real measured signals is their discretization in time
needed for standard computer-based storage and processing. This can be
realized by the discrete Fourier transform by replacing the finite integrals of
Equation (31) with a finite discrete summation using the rectangular rule.
With the discrete time step ∆t, the discrete time instances of the lower limit
s and the upper limit e are defined through ts = (s − 1)∆t and te = e∆t.
The vector entries (w)n = w(t)((s+n− 1)∆t) and the vectors gfn = gf((s+
n−1)∆t) and fn = f((s+n−1)∆t) are defined for all discrete time instances
n = 1, 2, . . . , mw with mw = e− s+ 1. For the signals (w(t) 1mg) ◦ gf (t) and
(w(t) 1mf ) ◦ f(t) the equivalent discrete Fourier transforms are given for the
discrete circular frequency ωk by

Fgfw
(ωk) = ∆t

mw∑

n=1

(((w)n 1
mg) ◦ gfn) exp

(
−ι

2π

mw

(k − 1)(n− 1)

)
and

F fw(ωk) = ∆t

mw∑

n=1

(((w)n 1
mf ) ◦ fn) exp

(
−ι

2π

mw

(k − 1)(n− 1)

)
.

(33)
with k = 1, 2, . . . , mw

2
+ 1. Next, Equation (32) can be rewritten with the

discrete Fourier transforms as

Fgfw
(ωk) + εFgfw

(ωk) = H(ωk) (F fw(ωk) + εF fw
(ωk)) . (34)

The size of the errors εFgfw
(ωk) and εF fw

(ωk) are now depending on the
time length e∆t − s∆t, as well as the discrete time step ∆t and vanish
for e∆t − s∆t → ∞ and ∆t → dt in case a rectangular window has been
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applied. For other window types an improvement with increasing e∆t− s∆t

and decreasing ∆t is likely but cannot be guaranteed.
As only the discrete Fourier transform of the excitations F fw(ωk) can be

assumed to be known, all errors of Equation (34) are shifted to the left hand
side

Fgfw
(ωk) + εFgfw

(ωk)−H(ωk)εF fw
(ωk) = H(ωk)F fw(ωk) (35)

and an estimator for the discrete Fourier transform of the linear combiner of
windowed responses

F̃gfw
(ωk) = H(ωk)F fw(ωk) (36)

can be derived. The discrete Fourier transform of the linear combiner of win-
dowed responses Fgfw

(ωk) is the measure of interest that could be obtained
from real measured data. Approaches 1 and 3 are focusing on the virtual
generation of this measure. F̃gfw

(ωk) is an accurate estimator for Fgfw
(ωk),

if the errors are sufficiently small, which is the case for a small discrete time
step, a large time frame length, and a well-chosen window function. Time
discretization errors are assumed to be negligible. However, errors from an
insufficiently large time frame length and an inappropriate window function
influence strongly the results of approach 2. Hence, the following aspects
should be taken into account for the application of the estimator according
to Equation (36):

� The estimator is inaccurate if the compact finite support of the window
function [ts, te] contains a notable time period related to the transient
state of the structural system. The best estimations are obtained if the
time period defined by the support of the window function does not
include the transient state, but the steady state. This is approximately
equivalent to the interpretation of having a weakly stationary process,
where it is assumed that the statistics of the excitation is time-invariant
and applied since t = −∞.

� The shape of the window function is essential for the accurateness of the
estimator. For the case of random vibration, a suitable window function
goes smoothly to zero at the boundaries and is constant elsewhere. The
tradeoff between sharpness at the boundaries and flatness elsewhere has
been tackled by many researchers. Recommended window functions for
random Gaussian responses and excitations are the Hann, Hamming,
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and tapered cosine windows. However, for a very large time frame
length, a rectangular window is recommended.

� The energy of the windowed time signal has to be identical to the
energy of the original signal. Appropriate scaling factors for different
window functions can be found in [46, p.144].

Eventhough many restrictions exist for the application of the estimator ac-
cording to Equation (36), it is widely used in practice, for example, for op-
timal sensor position prediction [14]. A similar approach is often applied to
derive an estimation of the frequency response function (e.g., [57],[58],[48])
in case the discrete Fourier transforms of the excitation and the response
are known. In the following, the estimator of Equation (36) is enhanced to
consider multiple possibly overlapping time frames, which leads finally to
a linear operator between time domain excitations and frequency domain
responses similar to approach 1.

For a multiple-input multiple-output system the frequency response func-
tion is given by

H(ωk) = A Φx D(ωk) Φf
T, (37)

which can be directly derived from Equation (30) at frequency ωk for a linear
time invariant structural system. D(ωk) ∈ Cmλ×mλ is a complex diagonal
matrix. Its diagonal elements

(D(ωk))l,l =
(λ)l − ω2

k − ι
(
2ωk

√
(λ)l(ζ)l

)

(λ)2l − 2ω2
k(λ)l + ω4

k + 4ω2
k(λ)l(ζ)

2
l

(38)

depend on the circular frequency ωk.
A reformulation of Equation (36) leads to the estimator of the discrete

Fourier transform

F̃gfwi,p
(ωk) =

mf∑

j=1

(H(ωk))i,j
[
01×k 1 01×mw

2
−k
]
B qwpfj (39)

of the ith linear combiner and pth time frame for a certain circular frequency
ωk with F̃gfwi,p

(ωk) ∈ C1 and

qwp =
[
0mw×sp−1 wImw 0mw×N−ep

]
, (40)
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where Imw represents the identity matrix of dimension mw. The vector w is
assembled by the discrete values of the support values of the window function
wp(t) as defined in Subsection 2.2. The matrices 0mw×sp−1 and 0mw×N−ep are
zero valued matrices of dimension mw×sp−1 and mw×N −ep, respectively.
The expression qwpfj is the windowed pth time frame of the excitation at the

jth degree of freedom and
[
01×k−1 1 01×mw

2
+1−k

]
B represents row k of

the matrix of discrete Fourier coefficients B ∈ C
(mw

2
+1)×mw as introduced in

Equation (22).
By means of a reordering of the frequency response function valuesH(ωk))i,j

for all discrete frequencies ωk for k = 1, 2, . . . , mw

2
+ 1, a certain excitation

degree-of-freedom j and linear combiner i, a matrix

Pi,j =
[
(H(ω1))i,j (H(ω2))i,j . . . (H(ωmw

2
+1))i,j

]T
(41)

can be defined with Pi,j ∈ C
mw
2

+1. The discrete Fourier transforms of the
linear combiner for all circular frequency steps are described by

F̃gfwi,p
=

mf∑

j=1

((
Pi,j ⊗ 11×mw

)
◦B
)
qwpfj (42)

and F̃gfwi,p
(ωk) ∈ C

mw
2

+1. A replacement with

Z2i,j,p =
((
Pi,j ⊗ 11×mw

)
◦B
)
qwp (43)

leads to

F̃gfwi,p
=

mf∑

j=1

Z2i,j,pfj. (44)

Finally, the discrete Fourier transforms for all linear combiners i = 1, 2, . . . , mg,
time frames p = 1, 2, . . . , mp, and excitation degree of freedoms j = 1, 2, . . . , mf
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are described by the random vector and the linear deterministic operator,

F ḡf2
=




F̃gfw1,1

F̃gfw1,2

...

F̃gfw1,mp

F̃gfw2,1

F̃gfw2,2

...

F̃gfw2,mp

...

F̃gfwmg,1

F̃gfwmg,2

...

F̃gfwmg,mp




and Z̄f2 =




Z21,1,1 Z21,2,1 . . . Z21,mf ,1

Z21,1,2 Z21,2,2 . . . Z21,mf ,2
...

...
. . .

...
Z21,1,mp

Z21,2,mp
. . . Z21,mf ,mp

Z22,1,1 Z22,2,1 . . . Z22,mf ,1

Z22,1,2 Z22,2,2 . . . Z22,mf ,2
...

...
. . .

...
Z22,1,mp

Z22,2,mp
. . . Z22,mf ,mp

...
...

. . .
...

Z2mg,1,1 Z2mg ,2,1 . . . Z2mg,mf ,1

Z2mg,1,2 Z2mg ,2,2 . . . Z2mg,mf ,2
...

...
. . .

...
Z2mg ,1,mp

Z2mg ,2,mp
. . . Z2mg ,mf ,mp




,

(45)
respectively. This allows to define the linear relationship

F ḡf2
= Z̄f2 f̄ with Z̄f2 ∈ C

(mw
2

+1)mgmp×Nmf (46)

between the discrete Fourier transform of the linear combiners and the ex-
citation f̄ in the time domain. The vector f̄ is defined in Equation (4). In
general, the generation of matrix Z̄f2 is computationally less demanding than
the generation of Z̄f1, because Z̄f1 involves the computation of the discrete
time convolution integral.

2.4. Measurement error propagation for approaches 1 and 2

In analogy to Section 2.3, the ith linear combiner related to the measure-
ment errors is given by

gnwi,p =

mx∑

j=1

(A)i,jqwp xnj (47)

with gnwi,p ∈ Rmw . The vector xnj ∈ RN represents the measurement error
of the jth degree of freedom of the response signal. The matrix qwp is defined
in Equation (40).
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In a similar way to Section 2.2, the matrix of discrete Fourier coefficients
B is applied to Equation (47) to obtain the discrete Fourier transform of
linearly combined windowed measurements errors

Fgnw i,p
= B

mx∑

j=1

(A)i,j qwp xnj , (48)

which can be rewritten as

Fgnw i,p
=

mx∑

j=1

Znwi,j,p xnj (49)

with
Znwi,j,p = (A)i,j B qwp, (50)

where Fgnw i,p
∈ C(mw

2
+1) and Znwi,j,p ∈ C(mw

2
+1)×N .

The expressions

F ḡn
=




Fgnw1,1

Fgnw1,2
...

Fgnw1,mp

Fgnw2,1

Fgnw2,2
...

Fgnw2,mp

...
Fgnwmx,1

Fgnwmx,2
...

Fgnwmx,mp




and Z̄n =




Znw1,1,1 Znw1,2,1 . . . Znw1,mx,1

Znw1,1,2 Znw1,2,2 . . . Znw1,mx,2
...

...
. . .

...
Znw1,1,mp

Znw1,2,mp
. . . Znw1,mx,mp

Znw2,1,1 Znw2,2,1 . . . Znw2,mx,1

Znw2,1,2 Znw2,2,2 . . . Znw2,mx,2
...

...
. . .

...
Znw2,1,mp

Znw2,2,mp
. . . Znw2,mx,mp

...
...

. . .
...

Znwmx,1,1 Znwmx,2,1 . . . Znwmx,mx,1

Znwmx,1,2 Znwmx,2,2 . . . Znwmx,mx,2
...

...
. . .

...
Znwmx,1,mp

Znwmx,2,mp
. . . Znwmx,mx,mp




(51)
can be derived by evaluating Equation (49) for all possible linear combi-
nations i = 1, 2, . . . , mg, all possible time frames p = 1, 2, . . . , mp, and all
possible response degrees of freedom j = 1, 2, . . . , mx.

Finally, a linear combination

F ḡn
= Z̄n x̄n with Z̄n ∈ C

(mw
2

+1)mgmp×Nmx (52)
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can be found that relates the random measurement errors of the responses
indicated by x̄n ∈ RNmx defined in Equation (5) to the discrete Fourier trans-
form of the linearly combined windowed measurement errors summarized in
F ḡn

∈ C
(mw

2
+1)mgmp .

2.5. Approach 3: Sample-based uncertainty propagation

The third approach is a standard sample-based strategy based on a Latin
hypercube sampling scheme [59]. The samples are generated from the mul-
tivariate distributions of excitation f̄ and measurement error x̄n defined in
Equations (4) and (6), respectively. For each sample set a modal superposi-
tion [60] is performed for the structural system and the resulting single degree
of freedom systems are solved by a time integration method according to [61],
which is a special solver for the standard Duhamel integral. After adding a
sample set of measurement errors, the linear combination matrix A and the
window function wp are applied to the obtained response to obtain the lin-
ear combiners of each time frame p in the time domain. Subsequently, a
fast Fourier transformation (FFT) algorithm is applied to derive the discrete
Fourier transforms. The discrete Fourier transforms of all linear combiners
and all time frames are assembled according to the left hand side of Equation
(26). This assembled complex vector is then separated in real and imaginary
parts subsequently placed on top of each other. By performing a sample
statistics on the resulting vector, the sample mean value vector and the sam-
ple covariance matrix are computed, which are direct estimators of the mean
value vector and covariance matrix of the left hand side of Equations (11)
and (12), respectively. In general, the accuracy of these estimators can be
improved by increasing the number of sample sets.
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3. Benchmark study: Three-degree-of-freedom system

3.1. System description

A three degrees of freedom system similar to the system investigated in
[12] and [13] is considered with a mass matrix

M =




0.927 0.000 0.000
0.000 1.617 0.000
0.000 0.000 2.612


 kg,

a stiffness matrix

K =




200000 −40000 −120000
−40000 120000 −40000
−120000 −40000 200000


 N

m
,

and modal damping values

ζ =
[
0.01 0.015 0.02

]T
.

Figure 1 depicts the system, where the masses m1, m2, and m3 correspond
to the diagonal of the mass matrix. By solving the generalized eigenvalue
problem, the undamped eigenvalues

λ =
[
2.274 · 104 9.100 · 104 2.5286 · 105

]T rad2

s2

m1

m2

m3

x1

x2

x3

k1 = 4 · 104 N
m

k3 = 4 · 104 N
m

k6 = 12 · 104 N
m

k5 = 4 · 104 N
m

k4 = 4 · 104 N
m

k2 = 4 · 104 N
m

Figure 1: Three degrees of freedom mass-spring system

25



and the corresponding circular peak frequencies

ωp =
[
150.80 301.59 502.65

]T rad

s

of the system can be obtained with (ωp)l =
√
(λ)l (1− 2(ζ)2l ) ∀ l = 1, 2, 3.

The peak frequency is the frequency where the magnitude of the frequency
response function of a single degree of freedom system has its maximum, ac-
cording to Equation (37) . In this example, the chosen system properties and
time length result in discrete frequency values exactly at the peak frequency
positions of each mode for all considered configurations. This explains the
uncommon values within the mass matrix.

The system is excited by a random excitation at the first and second
degree of freedom, where the independent and identically distributed (i.i.d.)
random variables with respect to time and space follow a normal distribution
with mean value zero and variance 224N2. The unit of the (co)variances
of excitation is Newton to the power of two

[
N2
]
. Therefore, the random

excitation can be described by

f̄ ∼ N
(
E(f̄),C(f̄ , f̄)

)
(53)

with (
E(f̄)

)
i
= 0 and

(
C(f̄ , f̄)

)
i,j

= δi,j2
24N2 ∀i, j (54)

using the Kronecker delta

δi,j =

{
0 : i 6= j

1 : i = j
. (55)

Generally, the matrix of linear combination coefficients A can be arbi-
trarily chosen from Rmg×mλ . In this representative study, it is assumed that
only the relative displacements and not the total displacements are mea-
sured. As the numerically obtained eigenvectors Φ are usually related to
total displacements, a transformation matrix

T =

[
1 −1 0
0 1 −1

]
, (56)

has to be introduced to generate relative displacements between degrees of
freedom 1 and 2 (row 1) and degrees of freedoms 2 and 3 (row 2) from the
total displacements. Moreover, two modal filters are introduced. The first
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modal filter eliminates the third mode and the second modal filter eliminates
the first mode. Therefore, the second mode is present in both modal filters.
The coefficients of both modal filters are assembled row-wise in the matrix

Am =

[
−2.9837 22.2485
−0.99124 0.2746

]
. (57)

More details about the design of modal filters can be found in [62] and [47].
Finally, the matrix of linear combination coefficients is defined as

A = Am T =

[
−2.9837 25.2322 −22.2485
−0.9912 1.2659 −0.2746

]
, (58)

where the first and second rows correspond to the coefficients of the first
linear combiner (lc1) and second linear combiner (lc2), respectively.

Each approach detailed in Section 2 has been applied with a time step
∆t = 2−11s (corresponding to a sampling frequency of 2048Hz) and without
measurement errors to calculate the statistics of the discrete Fourier trans-
form of the two linear combinations. Due to the design of the modal filters,
the variances of the discrete Fourier transforms of the first linear combiner
(lc1) have peaks approximately at the first and second circular peak fre-
quency and the variances related to the second linear combiner (lc2) have
peaks approximately at the second and third circular peak frequency.

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500 600

1 25 50 75 100

V
(R

e
(F

ḡ
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Figure 2: Variance of the real part of the discrete Fourier transform of the first and second
linear combiner (lc) using a rectangular window with compact support between 8s and 9s.
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Figure 3: Correlation matrix for the real and imaginary (imag) parts of the discrete Fourier
transforms of both investigated linear combiners (lc).

As real and imaginary parts of the variances showed an almost identical
behavior over the frequency range, only the real part of the discrete Fourier
transforms of the two linear combiners are depicted in Figure 2 between 0
and 622.03 rad

s
. The presented frequency range embraces the first 100 discrete

frequency steps. The remaining frequency steps until 2π
2∆t

=6433.98 rad
s

were
not of interest in this study and were disregarded in the calculations and
figures. The steady state for this system was reached after about 8s. There-
fore, a rectangular window with a compact support between 8s and 9s has
been applied to create one single time frame p = 1 with a circular frequency
step ∆ω = 2π

T
= 2π rad

s
. The corresponding correlations are presented in

Figure 3. For the sample-based approach 3, 10000 independent sample sets
of excitations have been applied.

The differences between the results of the estimator in the frequency do-
main applied in approach 2 and the more accurate time domain approaches
1 and 3 are especially visible in Figure 3, but also in Figure 2. The results
of both time domain approaches are almost identical, which proves the cor-
rectness of the novel approach 1 against the straightforward sample-based
approach 3. With the exception of the diagonal and subdiagonals, all cor-
relation values obtained with approach 2 are zero. One can show that for
an increasing time length the off-diagonal-correlations of approach 1 and 3
converge to zero. Further discussions will be given in Subsection 3.4.
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Using one node and one core of a computing cluster with AMD Opteron
6100 2.3GHz Processors, the total computation time for approaches 1 and
2 are 15s and 5s, respectively. In comparison, the computation with the
sample-based approach 3 needed 492s. This shows the efficiency of the pro-
posed innovative approach 1, which produced the exact solution.

Based on this initial example, several investigations are performed in the
following subsections (a) to verify and to prove the consistency between the
three proposed approaches under different configurations and (b) to study
the effect of several signal processing techniques on the statistics of discrete
Fourier transforms.

3.2. Influence of window function type

The application of window functions in the time domain, such as rectan-
gular, Hann, or Hamming windows (e.g., [46, p.144]), are common practice
in experimental signal processing, for example, to reduce leakage effects. To
investigate the difference between a Hann and a rectangular window func-
tion, the example of Subsection 3.1 is recalculated applying a Hann window
instead of a rectangular window.

Figure 4 shows the variance of the real part of the discrete Fourier trans-
form of the first linear combiner. The results for a rectangular window and
a Hann window are very similar, if approach 2 is applied. The difference is
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Figure 4: Variance of the real part of the discrete Fourier transform of the first linear
combiner (lc) using a rectangular resp. Hann window with compact support between 8s
and 9s.
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Figure 5: Correlation matrix for the real and imaginary (imag) parts of the discrete Fourier
transforms of both investigated linear combiners (lc) using a Hann window.

hardly visible. Using approach 1 with a Hann window yields results that are
very close to the results of approach 2 in regions where no peak is present.
However, in the vicinity of the circular peak frequencies clear differences can
be observed. The only approach that produces clearly different results over
the whole frequency range is approach 1 combined with a rectangular win-
dow, which can be explained by the leakage effect. The variance obtained
with approach 1 and 3 are very close and are, therefore, not presented.

The correlation matrix between the discrete Fourier transforms of both
linear combiners is visualized in Figure 5. As expected, the results are very
similar for approach 1 and 3. The correlations obtained with approach 1 and
2 are closer if a Hann window is applied instead of the previously applied
rectangular window (see Figure 3). A typical effect when a non rectangu-
lar window function is used is demonstrated in Figure 6: for a rectangular
window the diagonals and subdiagonals of the correlation matrix have typ-
ically a bandwidth of one, whereas if a non rectangular window is applied
the bandwidth is usually spread over several values, indicating a strong cor-
relation between neighboring discrete frequency amplitudes. This effect is
explained by the convolution theorem of the Fourier transform (e.g., [63,
p.60]). The theorem states that an application of a window function in time
domain is equivalent to a convolution in frequency domain. Hence, whether
neighboring discrete frequencies are correlated or not depends on the number
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Figure 6: Comparison of a detail of the correlation matrices visualized in Figure 3 and
Figure 5 for approach 1.

of significant values of the Fourier transform of the window function around
its peak. A rectangular window has only one significant value, while the
Hann window has usually more than one significant value, depending on the
frequency resolution. Consequently, the significant bandwidth of the diago-
nals of the correlations matrix depends on the width of the significant values
around the peak of the window function in the frequency domain.

In summary, the application of a non rectangular window function reduces
the size of correlation in the off-diagonals terms, but introduces additional
correlations around the diagonals and subdiagonals. Furthermore, the leak-
age effect, visible in the variances, can be reduced for circular frequency steps
that are far from the circular peak frequencies.

3.3. Influence of start time

Weak stationarity or at least a system in steady state is usually assumed
in signal processing applied to structural health monitoring, condition mon-
itoring, and damage detection. From the investigated approaches, only the
frequency domain estimator of approach 2 requires a system in steady state
together with sufficiently long time histories to produce accurate estimations.
To make all three approaches comparable, the support of the window func-
tion must be related to the steady state of the system. In this example,
the statistics of the discrete Fourier transform of the linear combiners of re-
sponses are investigated to determine a start time after which the system
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can be assumed to be in steady state. The start time has no influence on the
approach 2, but on approaches 1 and 3.

This study is also based on the example described in Subsection 3.1, in
which the start time ts has been varied in binary logarithmic steps between
2−8s and 27s, keeping the length of the compact support of the window
function constant to 1s. As a consequence, a rectangular window function
with a compact support between [ts, ts + 1] was created. As measurement
errors were not considered and the mean values of the excitation are zero,
the first statistical moment of the discrete Fourier transforms of the linear
combiners will be also zero (see Equation (11)). The start time dependency
on the variance of the real part of the discrete Fourier transforms of the first
linear combiner at the first circular peak frequency is shown in Figure 7a.
In addition to the variance, the correlation coefficient between the real parts
of the discrete Fourier transforms of the first and second linear combiner
at the position of the first circular peak frequency is shown. For ts = 23s,
this correlation coefficient is identical to the values according to row 25 and
column 125 of the correlation matrices shown in Figures 3 and 6a.

It can be observed that the variance and the correlation do not change
significantly for ts ≥ 8s. The fluctuations of the results of approach 3 around
the results of approach 1 are explained by the variation of the 10000 sample
sets resampled for each start time variation step. Similar observations have
been made for all other variances and correlation coefficients. Using a Hann
instead of a rectangular window led to similar results.

Hence, it can be assumed that the considered system is in steady state
after 8s.

3.4. Influence of time frame length

The length of the considered time history has an impact on the statistics
of the linear combiners in the frequency domain. While the novel approach
1 and the sample-based approach 3 consider correctly the influence of the
length of a time frame, approach 2 based on the frequency domain estimator
produces only suitable estimations for sufficiently long time histories. Of
course, for an increasing time frame length, approaches 1 and 3 converge to
the results of approach 2.

In the following, the example described in Subsection 3.1 has been used,
but with a variation of the time frame length te − ts between 2−2s and 25s
in binary logarithmic steps. As a steady state is required for approach 2, a
constant start time ts = 8s has been defined. Hence, a rectangular window
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Figure 7: (a) Evolution of the variance of the real part of the discrete Fourier transform of
the first linear combiner and (b) evolution of the correlation coefficient between the real
parts of the discrete Fourier transform of the first and second linear combiner at the first
circular peak frequency with increasing start time ts.

function with a support length of te−8s was applied. According to Parseval’s
theorem (e.g., [63, p.60]) for discrete finite time series, a change of the length
of the time series results directly to a change of the squared magnitudes of
the discrete Fourier transform values. Hence, a doubling of the time frame
length would lead to a doubling of the respective variance of the discrete
Fourier transform. To remove this effect in the current study, the energies
of all investigated signals with different time frame lengths are scaled to the
energy of a signal with a time frame length of 1s.
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Figure 8: (a) Evolution of the variance of the real part of the discrete Fourier transform of
the first linear combiner and (b) evolution of the correlation coefficient between the real
parts of the discrete Fourier transform of the first and second linear combiner at the first
circular peak frequency with increasing time frame length te − ts.
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Figure 8a depicts the results for the real part of the discrete Fourier trans-
form of the first linear combiner at the first circular peak frequency. The cor-
relation coefficient between the real parts of the discrete Fourier transform of
both linear combiners at the first circular peak frequency is presented in Fig-
ure 8b. As expected, the statistics obtained from approach 2 are independent
from the time frame length and the results of approaches 1 and 3 converge to
the results of approach 2 for an increasing time frame length. Approaches 1
and 3 show very similar results. The differences are related to a limited num-
ber of 10000 samples sets applied for the sample-based approach 3. Identical
observations have been made for other circular frequencies. Similar conver-
gence curves can be produced with a Hann instead of a rectangular window
function.

3.5. Influence of measurement errors

As measurement errors are assumed to be independent in space and time
from the response of the system, the effect of measurement errors can be in-
vestigated separately from the excitations. As already shown in [13, p. 21],
the statistics of the discrete Fourier transform of i.i.d. normal random vari-
ables lead to constant mean values and variances over the discrete frequency
range, with the exception of the first and last discrete frequency values, which
is out of interest in the current application. Hence, if measurement errors and
errorless responses are be combined, the measurement errors will lead to a
constant amplitude shift of the second order statistics of the discrete Fourier
transforms of the response that will result finally in a constant amplitude
shift of the second order statistics of the discrete Fourier transforms of the
linear combiner. Eventhough measurement errors are assumed to be inde-
pendent and thus uncorrelated, additional correlations could be introduced,
if a linear combiner or a segmentation as used in the Welch’s method are be
applied.

The example described in Subsection 3.1 is used to illustrate the influence
of measurement errors. For this study the excitation is set to zero for the
mean values and (co)variances and only the measurement errors are mod-
eled as two i.i.d. normal random variables with zero mean and variances
of 8.192 10−5m2 and 2.048 10−5m2 related to the first and second relative
displacement, respectively.

Figure 9 shows the variance of the real part of the discrete Fourier trans-
form of the two considered linear combiners of measurement errors for a time
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history of 1s. The correlation coefficient matrix obtained from the covari-
ance matrix of the discrete Fourier transform of the two considered linear
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Figure 9: Variance of the real part of the discrete Fourier transform of the first and
second linear combiner (lc) applied to measurement errors using a rectangular window
with compact support between 8 and 9s.
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Figure 10: Correlation matrix for the real and imaginary (imag) parts of the discrete
Fourier transforms of both investigated linear combiners (lc) applied to measurement errors
using a rectangular window with compact support between 8 and 9s.
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combiners of measurement errors is shown in Figure 10. As the modeling of
measurement errors is identical for approach 1 and 2, only approaches 1 and
3 are compared. The results of the correlation matrix indicate, next to the
main diagonal with values of 1, some subdiagonals which correlate both the
real parts and the imaginary parts of the linear combiners. No correlation is
observed between real and imaginary parts due to the orthogonality of the
Fourier coefficients.

It can be observed that the agreement between both approaches is almost
perfect. Nevertheless, even for a high number of 10000 samples applied in
the sample-based approach 3, small inaccuracies are present for variances
and correlations.

3.6. Influence of overlapping time frames

For some applications, the statistics of the discrete Fourier transform of
overlapping time frames are important. An example is the averaging of power
spectral densities in the Welch method [64]. If the system is in steady state,
the variance and the mean values of the discrete Fourier transform do not
change significantly over time as illustrated in Subsection 3.3. Nevertheless,
the covariances and correlations of the response discrete Fourier transform
values depend strongly on the size of time overlap of two time frames.

The investigated illustrative example considers five equidistant time frames
of 1s extracted by a window function with support length 1s between 8s and
10s using the system described in Subsection 3.1. Hence, an overlap of 75
percent is present for neighboring time frames (e.g. time frame 1 and 2).
The time frames 1 and 5 have no overlap as they are defined within 8s-9s
and 9s-10s, respectively. The windowing is realized by a rectangular window
and a Hann window function. Figure 11 shows the correlation matrix for the
discrete Fourier transform of both linear combiners for all five time frames.

The correlation matrix computed by approach 1 using a rectangular win-
dow function according to Figure 11a is almost fully populated. The corre-
lation matrix in Figure 11b is derived by approach 2 in combination with a
rectangular window. It can be observed that only the diagonals and subdi-
agonals are significant. However, only the subdiagonals related to the same
time frame have a bandwidth of 1, all other subdiagonals have a bandwidth
larger than 1, which is explained by the overlapping of the time frames. The
results applying a Hann window instead of a rectangular window are shown
in Figures 11c and 11d. It can be clearly seen that the correlation matrices
obtained by approach 2 and 3 are very similar but not identical and that
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(c) approch 1 with Hann window
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(d) approch 2 with Hann window
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Figure 11: Correlation matrix for the real and imaginary (imag) parts of the discrete
Fourier transforms of both investigated linear combiners (lc) for five subsequent time
frames of 1s each. Neighboring time frames have an overlap of 75 percent.
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the matrix structure is sparse with several subdiagonals. The relevant band-
width of each subdiagonal is related to the significant values of the discrete
Fourier transform of the window function, as explained in Subsection 3.2. It
is interesting to mention that the correlations are decreasing with decreasing
overlap between two time frames in case of a Hann window. In contrast, the
lowest correlations are obtained for an overlap of 50 percent, if a rectangular
window is applied. The results obtained by the sample-based approach 3 are
almost identical to the ones obtained with the novel approach 1.

For the calculation of the statistics related to overlapping time frames
on one node and one core of a computing cluster with AMD Opteron 6100
2.3GHz Processors, the novel exact approach 1 was with 94s much faster
than the sample-based approach 3, which required 3452s. The computation
time required with approach 2 based on the estimator in frequency space was
42s.
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4. Application: Investigation of a damage indicator

4.1. Motivation and general remarks

In Section 3, it was shown that the novel approach 1 is exact and com-
putationally very efficient for the purpose of uncertainty quantification of
discrete Fourier transforms of linear combiners in comparison with the al-
ternatively investigated frequency domain approach 2 and the sample-based
approach 3. The proposed approach 1 is therefore very interesting for many
computational intensive applications in virtual testing, such as the estimation
of frequency response functions based on measured response and excitation
time histories (e.g., [48]) or the design of damage indicators in the field of
structural health monitoring (e.g., [27]).

The study in this section is related to the investigation of a previously
proposed damage indicator based on modal filters and a peak indicator [47],
which could be applied in fully automatic structural health monitoring sys-
tems. This damage indicator is derived from measured response time histo-
ries which are linearly combined according to the modal filter coefficients. In
practice, the modal filter coefficients need to be determined one single time
on the initial structural system. From the resulting linear combinations of the
structural responses in the time domain, the power spectral densities of the
linear combinations are derived. If a system change, like a damage, occurs,
spurious peaks will appear near the peak frequencies of the modes that were
eliminated previously by the modal filter. A peak indicator observes these
positions and serves as a damage sensitive feature in a structural health mon-
itoring system. As random excitation and measurement errors are present,
the peak indicators are varying in time, even for an unchanged structural
system. However, it can be shown that for weakly stationary systems, the
second order statistics of the peak indicator are time invariant. This allows
defining control limits to distinguish between a variation due to the random-
ness of excitation and measurement errors and a variation due to the change
of the structural system. If these control limits are set properly, the moni-
toring of the indicator over time in control charts provides a reliable tool for
damage detection. Theoretical aspects of control charts are provided in [65]
and [66], while discussions on the practical application of peak indicators can
be found in [27] and [67].

During the derivation of the peak indicators various signal processing
techniques can be applied, which have an influence on the final variation of
the indicator with respect to excitation, measurement errors, and damage.
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The time length and size of measurement errors also have an influence on
the statistics of the peak indicators. This is the focus of the investigations
in this section by means of using the statistical description of the discrete
Fourier transform of linear combiners according to approach 1.

4.2. Description of the structural system

For this investigation, the initial undamaged structure is the structural
three degrees of freedom system given in Subsection 3.1. By changing the
stiffness parameter k2 of the initial undamaged system to 75 percent of its
initial value, the damaged system is introduced. The stiffness matrix for the
damaged structure is then

Kd =




200000 −40000 −120000
−40000 110000 −40000
−120000 −40000 200000



 N

m
, (59)

which results in circular peak frequencies of

ωpd =
[
144.48 294.51 502.56

]T rad

s
(60)

for the damaged system assuming damage invariant modal damping values.
It can be observed that the change in the peak frequencies due to damage is
between 4.2 and 0 percent.

For both the initial and damaged structural system, the description of
excitation and the matrix of linear combination coefficients are applied as
described in Subsection 3.1. The discrete time steps are also chosen to
∆t = 2−11s. In addition, measurement errors are added to the first and
second relative displacements in the form of two different sets of i.i.d. nor-
mal random variables with respect to time and space with zero mean values
and variances of 8.192 10−5m2 and 2.048 10−5m2, respectively. The discrete
Fourier transforms of the linear combination of measurement errors were
already discussed in Subsection 3.5.

Based on the descriptions of approach 1, sample sets of discrete Fourier
transforms are generated by a Latin hypercube scheme. For each sample set
the power spectral density according to Welch’s method [64] is estimated.
The peak indicator algorithm according to [68] (see Appendix A for details) is
subsequently computed for each power spectral density sample related to the
first peak frequency of the second linear combiner within a frequency range
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of [75.3982, 226.1947] rad
s
. From the samples of peak indicators, a probability

density estimator based on kernel densities with a Gaussian kernel (e.g.,
[69]) is derived. This estimator can represent probability density functions
of a wide range of analytical and non analytical distribution types. The
high number of 200 000 Latin hypercube samples guarantees highly reliable
probability density estimates. The discrete Fourier transforms are related
to the steady state of the system after a start time of 8s, as a continuous
excitation is assumed. If not otherwise stated, a rectangular window function
is applied.

The combination of approach 1 with the subsequently sample-based deriva-
tion of the peak indicator is very fast, which allows evaluating a very high
number of sample sets and, therefore, a very high accuracy for the tails of
the probability density estimator of peak indicators can be obtained. In the
following subsections, various influences on the performance of the peak in-
dicator are investigated by comparing the probability densities of the peak
indicator derived from the undamaged and damaged structure. According to
the properties of the peak indicator, the distribution related to the undam-
aged structure is centered around 1 and the mean value related to the peak
indicator of the damaged structure is clearly smaller than one. The better
the distributions of the damage and undamaged structure are distinguish-
able, the more suitable is the peak indicator for damage detection. In the
following subsections, the influence of several signal processing techniques on
the peak indicator will be tested.

4.3. Influence of window function type

In the standard procedure to derive power spectral densities according to
Welch (e.g., [64]), the application of window functions in the time domain
is recommended to reduce leakage effects. To investigate this kind of signal
preprocessing on the peak indicator, the results of two window functions, a
rectangular and a Hann window, with a support of 8s to 16s are compared
for the damaged and undamaged structure. With only one time frame, a
time history length of 8s is derived.

Figure 12 shows the respective kernel densities. If a Hann window instead
of a rectangular window is applied, the peak positions of both probability
density functions are lowered, while their widths are increased. The widening
of the probability density functions increases the overlap between the dam-
aged and undamaged probability density functions. Hence, the application
of a Hann window decreases the performance of the peak indicator.
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Figure 12: Influence of the window function type on the probability density function
estimates of the peak indicator for the damaged and undamaged structure for one time
frame of length 8s.

4.4. Influence of measurement errors

Eventhough measurement errors can hardly be influenced by the user of
a structural health monitoring system, it is interesting to investigate this
influence to gather information about its robustness.

The configuration described in Subsection 4.2 is applied for a time history
of 8s with one frame of length 8s, in which the measurement error is varied
by a scale factor ν with respect to the original variance of the measurement
errors.

Using the definition of the signal-to-noise ratio given in Equation (B.4)
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Figure 13: Influence of measurement error scale ν on the probability density function
estimates of the peak indicator for the damaged and undamaged structure using one time
frame of length 8s.
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based on the total energies, signal-to-noise ratios

SNR1 =
26.1771

ν
and SNR2 =

109.1584

ν
(61)

can be obtained as a function of the scale factor ν for the first and second
degree of freedom related to the relative displacements, respectively. The
signal-to-noise ratios of SNR1 = 26.1771 and SNR2 = 109.1584 are obtained
for the original configuration with ν = 1. For ν = 64, the total energy of the
measurement errors of the first degree of freedom is higher than the signal
itself (SNR1 = 0.4090) and a very low signal-to-noise ratio of SNR2 = 1.7056
is derived for the second degree-of-freedom. Such low signal-to-noise ratios
are not preferable and should be avoided in practice.

Figure 13 illustrates the influence of the noise scale factor ν on the prob-
ability density function estimates of the peak indicator. First of all, the
measurement error size does not change significantly the statistics of the
peak indicator for the undamaged system. Moreover, even for a high scale
factor ν = 64, the probability density functions related to the damaged and
undamaged structure are still distinguishable. This shows the robustness of
the indicator with respect to measurement errors. For a typical measurement
error scale in the range of ν = 1, . . . , 16, the performance of the indicator is
more than acceptable.

4.5. Influence of time history length

The results of an investigation of the variation of the time history length
between 1s and 16s using a single time frame without overlap are shown in
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Figure 14: Influence of the time history length on the probability density function of the
peak indicator for the damaged and undamaged structure.
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Figure 14. It can be clearly observed that the width of the probability density
functions decreases with increasing time history length. This supports the
discrimination between the peak indicators obtained for the damaged and
undamaged structure. Moreover, a small peak position shift of the probabil-
ity density functions can be observed. Finally, the application of long time
histories should be preferred for the calculation of peak indicators. Simi-
lar results have been derived when using a Hann instead of a rectangular
window.
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Figure 15: Influence of the number of time frames on the probability density function
estimates of the peak indicator for the damaged and undamaged structure for a time
history of 8s without overlapping using a rectangular window.
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4.6. Influence of the number of time frames

According to Welch’s method, the estimation of power spectral densities
is improved by averaging the power spectral densities based on consecutive
time frames with identical time frame lengths extracted from the considered
time history. The peak indicator algorithm is then applied on the averaged
power spectral density.

The results of the investigation of this averaging on the statistics of the
peak indicator are depicted in Figure 15 for a rectangular window and in
Figure 16 for a Hann window. Different frame sets were investigated for a
given time history of 8s. The different frame sets range between one frame
with a time frame length of 8s and 32 frames with a time frame length of
0.25s.

The differences for the time frame length between 8s and 1s are of minor
order. However, using a Hann window a smaller time frame length leads to
an improvement, while using a rectangular window with a larger time frame
length should be preferred. Hence, an averaging is recommended for a Hann
window, but not for a rectangular window. The results obtained for the time
frame length 0.5s and 0.25s are significantly different. The reason is the poor
frequency resolution that leads to only 13 resp. 7 discrete frequency steps
within the considered interval. This is insufficient for the application of the
chosen peak indicator.

4.7. Influence of overlapping time frames

Another common possibility provided by the Welch’s method is the ap-
plication of overlapping time frames to derive averaged power spectral den-
sities. In general, a high overlapping improves the smoothness of the shape
of the power spectral densities, but introduces additional correlations. In
[64], an investigation on the size of overlap with respect to the accurateness
and smoothness of averaged power spectral densities has been performed,
and finally a 50% overlap was recommended, which represents the current
practice.

In the present study, the influence of overlapping on the statistics of peak
indicators is studied. The investigation is related to a given time history of 8s,
from which several combinations of overlapping time frames are derived. The
studied combinations are: eight time frames of 1s each with no overlapping
(0%), 10 time frames of 1s each with 0.25s overlap (25%), 15 time frames of
1s each with 0.5s overlap (50%), and 29 time frames of 1s each with 0.75s
overlap (75%). The respective results are illustrated in Figure 17 in case of
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Figure 18: Influence of the number of time frames on the probability density function
estimates of the peak indicator for the damaged and undamaged structure for a time
history of 8s and a time frame length of 1s with overlapping in % using a Hann window.

a rectangular window function and in Figure 18 in case of a Hann window
function.

For both investigated window function types an improvement of the peak
indicator can be observed and the improvement is more significant for a Hann
window than for a rectangular window. By investigating other combinations
of time history lengths and time frame lengths, it could be observed that for
a Hann window an overlap of 50% or 75% leads always to the best results. If
a rectangular window is applied, an overlap does not necessarily lead to an
improvement.
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4.8. Distribution fitting

Control charts, which are frequently applied to monitor damage indica-
tors over time, assume typically a normal distribution of the underlying data,
especially to define the control limits. A strong deviation from the normal-
ity assumption can lead to wrong control limits and, consequently, to an
inadequate decision making.

Hence, the distribution type related to the probability theory is investi-
gated in this subsection by means of the system explained in Subsection 4.2.
Figure 19 shows the results of two representative configurations. Based on
the derived damage indicator samples, a histogram is generated and a fitting
is performed for the analytical parametric distribution types normal, lognor-
mal, and gamma. In addition, the kernel density estimator with a Gaussian
kernel is applied as in previous subsections. Figure 19a presents the distribu-
tion of the peak indicator of the damaged system for a rectangular window
with a support between 8s and 9s, hence a time history of 1s with one time
frame of 1s. The distribution of the damage indicator for the undamaged
system using a rectangular window with a support between 8s and 24s (time
history length 16s) is shown in Figure 19b.

As the kernel density estimator is the most flexible distribution estima-
tor, it approximates almost perfectly the shape of both histograms. Almost
all investigated distribution types are suitable for the estimation of the his-
togram in Figure 19b. Notable differences can be observed for the analytical
distribution types in Figure 19a. In this case, the normal distribution is not
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adequate, while the gamma distribution gives the best approximation out of
the set of investigated analytical distribution types.

In general, the normality assumption is approximately valid, as long as
the probability density function has a sufficiently large distance to the lower
bound of the peak indicator, which is close to zero. If the distance is not
sufficiently large, the probability density function tends to be unsymmetric
as smaller values than zero are not possible for the peak indicator. Therefore,
for a mean value significantly smaller than one in relation to zero and/or a
large variance, the probability density functions can be considerably different
from a normal distribution. Usually, for an undamaged structure and a
sufficiently large time history the normality assumption can be assumed to
be valid. However, with increasing damage the probability density function
will deviate more and more from a normal distribution, as the probability
density function moves towards the lower bound of the peak indicator.

4.9. Summary

The investigations showed that a significant improvement of the perfor-
mance of the peak indicator can only be obtained if the amount of informa-
tion increases, which can be only gained by extracting longer time histories.
Improvements of the performance of the peak indicator using standard sig-
nal processing techniques such as windowing and segmentation according to
Welch’s method are rather limited. However, the study shows that if a rect-
angular window is chosen, segmentation and overlapping do not guarantee
an improvement at all. In contrast, for a Hann window, segmentation and
overlapping is rather beneficial.

Moreover, for a sufficiently long time history, the distribution of peak
indicators regarding damaged and undamaged systems can be approximated
by a normal distribution.
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5. Conclusions

This paper contributes with a novel time-domain approach to the problem
of uncertainty propagation and quantification in virtual testing with respect
to Fourier transformed responses of a dynamical system with a determinis-
tic structural system description, but random excitations and measurement
errors. Under the assumption of a multivariate normal distribution of exci-
tations and measurement errors in time domain, the statistics of the Fourier
transformed responses have been derived analytically. In addition, the novel
approach considered typical signal processing techniques, such as linear com-
binations, windowing, or segmentation as used in Welch’s method.

To verify the novel approach, it was compared to a sample-based ap-
proach using a Latin hypercube sampling scheme. The evaluation of the
results related to a three degrees of freedom system showed that the novel
approach was 30 times faster and more precise. In comparison to the addi-
tionally investigated approach based on a frequency domain estimator, the
novel approach was clearly more accurate, especially for short time response
histories. For an increasing length of the time series, it has been shown that
the results obtained by the novel approach converged to the results derived
by the approach based on the frequency domain estimators. This validated
additionally the correctness of the proposed novel approach.

The novel approach can be practically applied to all problems, where an
existing linear structural system is investigated under random excitations and
measurement errors. One example, presented in this paper, is the investiga-
tion of a damage indicator for the design of a structural health monitoring
system, where detailed information is needed for the tails of the distribution
function of the damage indicator. In this application, the novel approach
was applied to derive analytically the statistics of response Fourier trans-
forms on which subsequently a Latin hypercube sampling has been used to
create sample sets of response Fourier transforms. Samples of damage indi-
cators were then derived from response Fourier transform sample sets, which
is a nonlinear, but computationally cheap operation. In contrast to a straight
sample-based approach, the expensive derivation of response Fourier trans-
forms from time domain responses generated by a time integration method
could be avoided. This allowed the evaluation of 200 000 sample sets for the
estimation of the probability density function in a reasonable time. Due to
the high number of samples, the tails could be estimated with high accu-
racy, which is important for the assessment of the damage indicator with
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respect to a variation of the measurement error size, window type, time his-
tory length and degree of overlapping in Welch’s method. It could be derived
that only an increase of information in the signal (equivalent to an increase of
the time history length) leads significantly to an improvement of the perfor-
mance of the damage indicator in terms of separability between undamaged
and damaged states. The influence of window type and averaging according
to Welch’s method was of minor order for the investigated system. For typ-
ical measurement error sizes the performance of the damage indicator was
not strongly decreased, which proved the robustness of the damage indicator.
Moreover, the distribution type of the probability density function has been
investigated with respect to the normality assumption typically needed for
applications in control charts. For undamaged structures and a sufficiently
long time history length, the distribution of the damage indicator could not
clearly be distinguished from a normal distribution, while for the damaged
structure and very short time histories, notable deviations from a normal
distribution have been observed.

Further research is needed to investigate the performance of the new ap-
proach for real-sized structures under more complex excitations, such as cor-
related excitations typical of wind loads. Furthermore, the novel time-domain
approach offers several possibilities for the investigation and design of exist-
ing or new damage indicators in the context of structural health monitoring.
The presented approach is also capable to derive the statistics of data-based
frequency response function estimators based on virtually measured response
and excitation signals, which will be also the focus of subsequent studies.
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Appendix A. Peak indicator

The peak indicator was initially proposed in [68] that interprets any func-
tion of interest s with discrete equidistant values (s)k defined in the interval
[kl, ku] as a discrete probability density function. The peak indicator

Ip = σ2
s

√
12

ku − kl
(A.1)

according to [68] is derived from the quotient between the variance σ2
s of

the investigated probability density function s within the interval [kl, ku]

and the variance of a fitted uniform distribution, which is equal to
√
12

kl−ku
.

Consequently, if the function s is constant within [kl, ku] the indicator will
be equal to one. Otherwise, the indicator is lower than one. Investigations
of [68] showed that the indicator is close to one, even if the function s is not
constant in the interval [kl, ku], but follows a monotonic trend. Higher values
than one are possible, if a peak is placed near the boundaries kl or ku of the
interval.

The mean value of a discrete distribution calculated from a nonnormalized
discrete probability density function s defined in the interval [kl, ku] is given
by

µs =
ku∑

k=kl

k (s)k

(
ku∑

k=kl

(s)k

)−1

. (A.2)

The second centered statistical moment, which is the variance, yields

σ2
s =

ku∑

k=kl

(k − µs)
2(s)k

(
ku∑

k=kl

(s)k

)−1

. (A.3)

Appendix B. Signal-to-noise ratio of random signals

A finite random time discrete signal x ∈ RN with a discrete constant
time step ∆t and time instances (x)i ∀ i = 1, . . . , N is given together with
its discrete Fourier transform

(Fx)k = ∆t

N∑

i=1

xi exp

(
−ι

2π

N
(k − 1)(i− 1)

)
(B.1)
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for all k = 1, 2, . . . , N . According to Parseval’s theorem (e.g., [63, p.60]) for
discrete finite signals , the total energy of a signal x ∈ RN calculated in the
time domain and in the frequency domain is identical to

Px = ∆t

N∑

i=1

(x)2i

=
1

N ∆t

N∑

k=1

(Fx)k (Fx)
∗
k,

(B.2)

where (Fx)
∗
k is the complex conjugate of (Fx)k. For a random signal with

zero mean and a given variance for the real and imaginary part of the discrete
Fourier transforms, V(Re(Fx)) ∈ RN and V(Im(Fx)) ∈ RN respectively,
the expected value of the total energy

E(Px) =
1

N ∆t

N∑

k=1

(V(Re(Fx)))k + (V(Im(Fx)))k (B.3)

can be derived from Equation (B.2).
If a random signal x ∈ RN with zero mean is disturbed by a random

measurement error n ∈ R
N with zero mean, the signal-to-noise ratio

SNR =
E(Px)

E(Pn)
(B.4)

of the signal with measurement errors x + n can be defined by the ratio of
the expected values of the total energy of the errorless signal E(Px) and the
total energy of the measurement errors E(Pn). The definition of the signal-
to-noise ratio according to Equation (B.4) is especially useful, if the time
signal is not known explicitly and if the mean value of the power spectral
density is not constant over the frequency.
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