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Abstract
This work presents a novel end-to-end trainable
CNN model for high performance visual objec-
t tracking. It learns both low-level fine-grained rep-
resentations and a high-level semantic embedding
space in a mutual reinforced way, and a multi-task
learning strategy is proposed to perform the cor-
relation analysis on representations from both lev-
els. In particular, a fully convolutional encoder-
decoder network is designed to reconstruct the orig-
inal visual features from the semantic projections
to preserve all the geometric information. More-
over, the correlation filter layer working on the fine-
grained representations leverages a global context
constraint for accurate object appearance modeling.
The correlation filter in this layer is updated online
efficiently without network fine-tuning. Therefore,
the proposed tracker benefits from two complemen-
tary effects: the adaptability of the fine-grained cor-
relation analysis and the generalization capability
of the semantic embedding. Extensive experimen-
tal evaluations on four popular benchmarks demon-
strate its state-of-the-art performance.

1 Introduction
Visual tracking aims to estimate the trajectory of a target in
a video sequence. It is widely applied, ranging from human
motion analysis, human computer interaction, to autonomous
driving. Although much progress [Ross et al., 2008; Kalal et
al., 2010; Henriques et al., 2015] has been made in the past
decade, it remains very challenging for a tracker to work at a
high speed and to be adaptive and robust to complex tracking
scenarios including significant object appearance changes,
pose variations, severe occlusions, and background clutters.

Recent CNN based trackers [Tao et al., 2016; Held et
al., 2016; Bertinetto et al., 2016; Wang et al., 2018] have
shown great potential for fast and robust visual tracking. In
the off-line network pre-training stage, they learn a semantic
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Figure 1: Response maps learned by different methods for search
instances (gymnastics4 and basketball). (a) Search instance, (b) Re-
sponse map by SiamFC, (c) Response map by our Encoder-Decoder
SiamFC (EDSiam), and (d) Response map by our Encoder-Decoder
Correlation Filter (EDCF). EDSiam removes many noisy local min-
ima in the response map of SimaFC. EDCF further refines the re-
sponse map of EDSiam for more accurate tracking.

embedding space for classification [Bertinetto et al., 2016;
Valmadre et al., 2017] or regression [Held et al., 2016] on the
external massive video dataset ILSVRC2015 [Russakovsky
et al., 2015] using a backbone CNN architecture such as
AlexNet [Krizhevsky et al., 2012] and VGGNet [Simonyan
and Zisserman, 2015]. Different from hand-crafted features,
the representations projected in the learned semantic em-
bedding space contain rich high-level semantic information
and are effective for distinguishing objects of different cat-
egories. They also have certain generalization capabilities
across datasets, which ensure robust tracking. In the online
tracking stage, these trackers estimate the target position at a
high speed just through a single feed forward network pass
without any network fine tuning.

Despite the convincing design of the above CNN based
trackers, they still have some limitations. First, the rep-
resentations in the semantic embedding space usually have
low resolution and lose some instance specific details and
fine-grained localization information. These representation-
s usually serve the discriminative learning of the categories
in training data. Thus, on the one hand, they may be less
sensitive to the details and be confused when comparing t-
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wo objects with the same attributes or semantics as shown in
Fig. 1; on the other hand, the domain shift problem [Nam and
Han, 2016] may occur especially when trackers encounter tar-
gets of unseen categories or undergoing abrupt deformations.
Second, these models usually do not perform online network
updating to improve tracking speed, which inevitably affects
the model adaptability, and thus hurts the tracking accuracy.

To tackle the above limitations, we develop a novel
encoder-decoder paradigm for fast, robust, and adaptive vi-
sual tracking. Specifically, the encoder carries out correlation
analysis on multi-resolution representations to benefit from
both the fine-grained details and high-level semantics. On
one hand, we show that the correlation filter (CF) based on
the high-level representations from the semantic embedding
space has good generalization capabilities for robust tracking,
because the semantic embedding is additionally regularized
by the reconstruction constraint from the decoder. The de-
coder imposes a constraint that the representations in the se-
mantic space must be sufficient for the reconstruction of the
original image. This domain-independent reconstruction con-
straint relieves the domain shift problem and ensures that the
learned semantic embedding preserves all the geometric and
structural information contained in the original fine-grained
visual features. This yields a more accurate and robust cor-
relation evaluation. On the other hand, another CF working
on the low-level high-resolution representations contributes
to fine-grained localization. A global context constraint is in-
corporated into the appearance modeling process of this filter
to further boost its discrimination power. This filter serves
as a differentiable CF layer and is updated efficiently on-line
for adaptive tracking without network fine-tuning. The main
contributions of this work are three-fold:

• A novel convolutional encoder-decoder network is de-
veloped for visual tracking. The decoder incorporates a
reconstruction constraint to enhance the generalization
capability and discriminative power of the tracker.

• A differentiable correlation filter layer regularized by the
global context constraint is designed to allow efficient
on-line updates for continuous fine grained localization.

• A multi-task learning strategy is proposed to optimize
the correlation analysis and the image reconstruction in
a mutual reinforced way. This guarantees tracking ro-
bustness and the model adaptability.

Based on the above contributions, an end-to-end deep
encoder-decoder network for high performance visual track-
ing is presented. Extensive experimental evaluations
on four benchmarks, OTB2013 [Wu et al., 2013], OT-
B2015 [Wu et al., 2015], VOT2015 [Kristan et al., 2015],
and VOT2017 [Kristan et al., 2017], demonstrate its state-of-
the-art tracking accuracy and real-time tracking speed.

2 Related Work
Correlation filter based tracking. Recent advances of CF
have achieved great success by using multi-feature channel-
s [Danelljan et al., 2014b; Ma et al., 2015a], scale estima-
tion [Li and Zhu, 2014; Zhang et al., 2015; Danelljan et
al., 2014a], and boundary effect alleviation [Danelljan et al.,

2015b; Kiani Galoogahi et al., 2017; Lukezic et al., 2017;
Mueller et al., 2017]. However, with increasing accuracy
comes a dramatic decrease in speed. Thus, CFNet [Valmadre
et al., 2017] and DCFNet [Wang et al., 2017] propose to learn
tracking specific deep features from end to end, which im-
prove the tracking accuracy without losing the high speed.
Inspired by the above two trackers, we incorporate a global
context constraint into the correlation filter learning process
while still obtaining a closed-form solution, which ensures a
more reliable end-to-end network training process. Instead of
using deep features with wide feature channels and low res-
olution as in [Valmadre et al., 2017], we focus on learning
fine-grained features with fewer channels. This approach is
more suitable for efficient tracking and accurate localization.

Deep learning based tracking. The excellent performance
of deep convolutional networks on several challenging vision
tasks [Girshick, 2015; Long et al., 2015] encourages recen-
t works to either exploit existing deep CNN features within
CFs [Ma et al., 2015a; Danelljan et al., 2015a] and SVM-
s [Hong et al., 2015a], or design deep architectures [Wang
and Yeung, 2013; Wang et al., 2015; Nam and Han, 2016;
Tao et al., 2016] for discriminative visual tracking. Although
CNN features have shown high discrimination, extracting C-
NN features from each frame and training or updating track-
ers over high dimensional CNN features are computational-
ly expensive. Online fine-tuning a CNN to account for the
target-specific appearance also severely hampers a tracker’s
speed as discussed in [Wang et al., 2015; Nam and Han,
2016]. Siamese networks are exploited in [Tao et al., 2016;
Held et al., 2016; Bertinetto et al., 2016] to formulate visu-
al tracking as a verification problem without on-line updates.
We enhance a Siamese network based tracker by exploiting
an encoder-decoder architecture for multi-task learning. The
domain independent reconstruction constraint imposed by the
decoder makes the semantic embedding learned in the en-
coder more robust to avoid domain shifts.

Hybrid multi-tracker methods. Some tracking methods
maintain a tracker ensemble [Zhang et al., 2014; Wang et al.,
2015], so the failure of a single tracker can be compensat-
ed by other trackers. TLD [Kalal et al., 2010] decomposes
the tracking task into tracking, learning and detection where
tracking and detection facilitates each other. MUSTer [Hong
et al., 2015b], LCT [Ma et al., 2015b] and PTAV [Fan and
Ling, 2017] equip short-term correlation filter based track-
ing with long-term conservative re-detections or verification-
s. Our online adaptive correlation filter, working on the fine-
grained representations, complements with the lone-term cor-
relation filter based on the high-level generic semantic em-
bedding. They share network architectures and are learned
simultaneously in an end-to-end manner.

3 Encoder-Decoder Correlation Filter based
Tracking

The proposed framework named EDCF is illustrated in Fig. 2.
It is an encoder-decoder architecture to fully exploit multi-
resolution representations for adaptive and robust tracking. In
particular, a generic semantic embedding is learnt for robust
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Figure 2: Architecture of EDCF, an Encoder-Decoder Correlation Filter. It consists of two fully convolutional encoder-decoder. Convolutional
features are extracted from the initial exemplar patch z′ and the search patch x′t in frame t. The shallow features are exploited by the context-
aware correlation filter tracker (CACF). The deep features that capture a high-level representation of the image are used in a cross correlation
embedding without update online to avoid the drift problem. The reconstruction loss is used to enrich the detailed representation. Three
hybrid loss is jointly trained in a mutual reinforced way.

spatial correlation analysis. The embedding benefits from the
domain independent reconstruction constraint imposed by the
decoder. Fine-grained target localization is achieved using
the correlation filter working on the low-level fine-grained
representations. This correlation filter is regularized by a
global context constraint and implemented as a differentiable
layer. Finally, the whole network is trained from end to end
based on a multi-task learning strategy to reinforce both the
discriminative and generative parts.

3.1 Generic Semantic Embedding Learning for
Robust Tracking

Different from recent deep trackers [Tao et al., 2016;
Bertinetto et al., 2016], whose semantic embedding spaces
only serve discriminative learning, we propose to learn a
more generic semantic embedding space by equipping tra-
ditional discriminative learning with an extra image recon-
struction constraint. Since the image reconstruction is an un-
supervised task and is less sensitive to the characteristics of a
training dataset, our learned semantic embedding space has a
larger generalization capability, leading to more robust visual
tracking. Moreover, the reconstruction constraint ensures that
the semantic embedding space preserves all the geometric or
structural information contained in the original fine-grained
visual features. This increases the accuracy of the tracking.

The generic semantic embedding learning is based on an
encoder-decoder architecture. The encoder φ : RM×N×3 →
RP×Q×D consists of 5 convolution layers with two max
pooling layers and outputs a latent representation project-
ed from the semantic embedding space. The decoder ψ :
RP×Q×D → RM×N×3 maps this high-level low-resolution

representation back to the image space with the input reso-
lution, achieved by stacking 7 deconvolutional layers. Then,
the semantic embedding learning is optimized by minimizing
the combination loss of the reconstruction lossLrecon and the
tracking loss Lhigh:

Lsel = Lrecon + Lhigh, (1)
Lrecon = ‖ ψ(φ(z′;θe);θd)− z′ ‖22

+ ‖ ψ(φ(x′;θe);θd)− x′ ‖22,
(2)

where parameters of the encoder and the decoder are denoted
as θe and θd, z′ is the target image, and x′ is the search image.
The tracking loss is discussed as follows.

The spatial correlation operation in the semantic embed-
ding space is used to measure the similarities between the
target image and the search image:

fu,v =
m−1∑
i=0

n−1∑
j=0

〈φi,j(z′;θe), φu+i,v+j(x
′;θe)〉, (3)

where φi,j(z
′;θe) is a multi-channel entry for position

(i, j) ⊂ Z2 in the latent representation of the target image
z′, m× n corresponds to the spatial size for correlation anal-
ysis, and fu,v denotes the similarity between the target image
and the search image whose center is of (u, v) ⊂ Z2 pixels
in height and width away from the target center. Each search
image has a label y(u, v) ∈ {+1,−1} indicating whether it
is a positive sample or a negative sample. Thus, the tracking
problem can be formulated as the minimization of the follow-
ing logistic loss:

Lhigh =
1

|D|
∑

(u,v)∈D

log(1 + exp(−y(u, v)fu,v)), (4)
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where D ⊂ Z2 is a finite grid corresponding to the search
space and |D| denotes the number of search patches.

3.2 Context-Aware Correlation Filter based
Adaptive Tracking

Although the reconstruction constraint reinforces the seman-
tic embedding learning to preserve some useful structural de-
tails, it is still necessary to carry out correlation analysis on
the low-level fine-grained representations for accurate local-
ization. A global context constraint is incorporated into the
correlation analysis to suppress the negative effects of dis-
tractors. This is achieved by a differentiable correlation filter
layer. This layer permits end-to-end training and online up-
dates for adaptive tracking. Note that this correlation analysis
is implemented in the frequency domain for efficiency.

We begin with an overview of the general correlation filter
(CF). A CF is learned efficiently using samples densely ex-
tracted around the target. This is achieved by modeling all
possible translations of the target within a search window as
circulant shifts and concatenating their features to form the
feature matrix Z0. Note that both the hand-crafted features
and the CNN features can be exploited as long as they pre-
serve the structural or localization information of the image.
The circulant structure of this matrix facilitates a very effi-
cient solution to the following ridge regression problem in
the Fourier domain:

min
w
‖ Z0w − y ‖22 +λ ‖ w ‖22, (5)

where the learned correlation filter is denoted by the vector
w, each row of the square matrix Z0 contains the features ex-
tracted from a certain circulant shift of the vectorized image
patch z′0 and the regression objective y is a vectorized image
of a 2D Gaussian.

Inspired by the CACF method [Mueller et al., 2017], our
correlation filter is regularized by the global context for larg-
er discrimination power. In each frame, we sample k context
image patches z′i around the target image patch z′0. Their cor-
responding circulant feature matrices are Zi and Z0 based on
the low-level fine-grained CNN features. The context patches
can be viewed as hard negative samples which contain vari-
ous distractors and diverse background. Then, a CF is learned
that has a high response for the target patch and close to zero
response for context patches:

min
w
‖ Z0w − y ‖22 +λ1 ‖ w ‖22 +λ2

k∑
i=1

‖ Ziw ‖22 . (6)

The closed-form solution in the Fourier domain for our CF is:

ŵ =
ẑ∗0 � ŷ

ẑ∗0 � ẑ0 + λ1 + λ2
∑k

i=1 ẑ
∗
i � ẑi

, (7)

where z0 denotes the feature patch of the image patch z′0, i.e.,
z0 = ϕ(z′0), ϕ(·) is a feature mapping based on the low-level
convolutional layers in our decoder, ẑ0 denotes the discrete
Fourier transform of z0, z∗0 represents the complex conjugate
of z0, and � denotes the Hadamard product.

Different from CACF that directly adopts hand-crafted fea-
tures for correlation analysis, we propose to actively learn

low-level fine-grained representations fitting to a CF by trans-
forming the above correlation filter into a differentiable CF
layer which is cascaded behind a low-level convolutional lay-
er of the encoder. This design permits end-to-end training of
the whole encoder-decoder based network. In particular, the
representations provided by a low-level convolutional layer
of the encoder are designed to be fine-grained (without max-
pooling) and with thin feature maps which are quite sufficient
for accurate localization. The representations are denoted as
x = ϕ(x′;θel), where x′ is a search image and θel denotes
the parameters of these low-level convolutional layers. Then,
representations are learned via the following tracking loss:

Llow =‖ g(x′)− y ‖22=‖ Xw − y ‖22, (8)

g(x′) = Xw = F−1 (x̂� ŵ) , (9)
where X is the circulant matrix of the representations x for
the search image patch, and w is the learned CF based on the
representations z0 = ϕ(z′0;θel) for the target image patch
and the representations zi = ϕ(z′i;θel) for the global context
as in Eqn. (7). The derivatives of Llow in Eqn. (8) are then
obtained:

∇ĝ∗Llow = 2(ĝ(x)− ŷ), (10)

∇xLlow = F−1(∇ĝ∗Llow � ŵ∗), (11)
∇ŵLlow = ∇ĝ∗Llow � x̂∗, (12)

∇z0
Llow = F−1(∇ŵLlow �

ŷ∗ − 2Re(ẑ∗0 � ŵ)

D̂
), (13)

∇zi
Llow = F−1(∇ŵLlow �

−2Re(ẑ∗i � ŵ)

D̂
). (14)

where D̂ := ẑ∗0�ẑ0+λ1+λ2
∑k

i=1 ẑ
∗
i�ẑi is the denominator

of ŵ and Re(·) is the real part of a complex-valued matrix.

3.3 Multi-task Learning and Efficient Tracking
Considering above two differentiable functional components
which complement with each other in fine-grained localiza-
tion and discriminative tracking based on the multi-resolution
representations, we propose to utilize the multi-task learning
strategy to end-to-end train our network to simultaneously re-
inforce two components. Our multi-task loss function is:

Lall = Llow + Lhigh + Lrecon +R(θ) (15)

whereR(θ) is introduced as `2-norm of the network weights
in order to regularize the network for better generalization.

In the tracking stage, given an input video frame at time
t, we crop some large search patches centered at the previ-
ous target position with multiple scales, denoted as x′s. These
search patches are fed into the encoder to get two representa-
tions. The fine-grained representation is fed into the context
aware correlation filter layer given in Eqn. (9). The seman-
tic representation is evaluated based on the spatial correlation
operation given in Eqn. (3). Then, the target state is estimated
by finding the maximum of the fused correlation response:

argmax
(u,v,s)

fu,v(x
′
s) + gu,v(x

′
s). (16)

Note that the high-level spatial correlation response map f(·)
is up-sampled using the bilinear interpolation method to have
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a consistent resolution with the low-level response map g(·).
Because the tracking process only involves a network feed-
forward pass and correlation analysis in the frequency do-
main, it is quite efficient and works in real-time.

We propose to use a fusion of long/short-term update strat-
egy. The semantic representation of the target image φ(z′;θe)
in Eqn. (3) is only calculated in the first frame for generic
long-term tracking. The context aware correlation filter w
in Eqn. (7) is updated online to adapt to target appearance
changes via the linear interpolation:

wt = αtw + (1− αt)wt−1, (17)

αt = α · f∗(x′t)/f∗(x′1), (18)

where the dynamic learning rate αt is determined by the ba-
sic learning rate α, and the maxima of the spatial correlation
response maps in the first and current frames, i.e. f∗(x′1),
and f∗(x′t). Since the semantic representation of the target
template is fixed, variations of the correlation response indi-
cate target appearance changes and background disturbances.
Benefited from this update strategy, the two functional com-
ponents complement with each other in the temporal domain.

4 Experiments
4.1 Implementation Details
Network architecture. Our tracker exploits an encoder-
decoder architecture. The encoder has the same architecture
as the baseline tracker SiamFC [Bertinetto et al., 2016], using
an AlexNet by removing the fully connected layers. Its input
has a size of 255×255× 3. Its output is of size 22×22× 256
provided by the Conv5 layer, which is then fed to the spatial
cross correlation layer for correlation analysis and also fed to
the decoder for image reconstruction. The decoder contains
7 deconvolutional layers and is removed in the tracking pro-
cess. The fine-grained representations from the Conv2 layer
of size 125×125× 8 are fed into a context-aware CF layer for
accurate localization.
Training Data and method. Our network is end-to-end
trained on the video dataset from the ImageNet Large S-
cale Visual Recognition Challenge (ILSVRC) [Russakovsky
et al., 2015]. The data set contains more than 4000 sequences
and nearly two million annotated object image patches. It can
safely be used to train a deep model for tracking without over-
fitting to the domain of videos used in the tracking bench-
marks. Two frames containing the same object are randomly
picked. The target patch and the search patch are cropped
with a padding size of 2, and then resized to the input size of
255 × 255 × 3. We use the SGD solver with a learning rate
exponentially decaying from 1e− 2 to 1e− 5.
Online tracking parameters. Given the pre-trained mod-
els, the online tracking is only affected by the dynamic learn-
ing rate in Eqn. (18). The basic learning rate is set as
α = 0.017. The scale interval is set as S = 1.02 and 3 s-
cale layers are exploited. The regularization parameters in
Eqn. (6) are set as λ1 = 1e− 4 and λ2 = 0.1.
Tracking benchmarks. We provide ablation studies and
the overall evaluations of our tracker on the OTB2013 [Wu et
al., 2013], OTB2015 [Wu et al., 2015], VOT2015 [Kristan et

Trackers OTB-2013 OTB-2015 VOT15 FPS
OP DP OP DP EAO

SiamFC 77.8 80.9 73.0 77.0 0.289 86

EDSiam 79.0 83.9 75.4 80.7 0.293 86

CFNet 71.7 76.1 70.3 76.0 0.217 75
CACF 75.4 80.3 68.9 79.1 0.199 13

CACFNet 83.8 87.6 77.7 82.7 0.271 109
CACFNet+ 83.9 88.3 78.0 83.1 0.277 109

EDCF 84.2 88.5 78.5 83.6 0.315 65

Table 1: Ablation study of effectiveness of tracking components
on OTB using mean overlap precision (OP) at the threshold of 0.5,
mean distance precision (DP) of 20 pixels, VOT2015 using expected
average overlap (EAO), and mean speed (FPS). Tracker names with
bold fonts denote the variants of our EDCF. The bold fonts and italic
fonts indicate the best and the second best performance.

al., 2015], and VOT2017 [Kristan et al., 2017] datasets. Two
evaluation metrics are exploited on OTB datasets including
distance precision (DP) and overlap precision (OP). On VOT
datasets, the expected average overlap (EAO) is exploited to
quantitatively analyze the tracking performance.

4.2 Ablation Study
This section shows the effectiveness of the generic seman-
tic embedding learning and the fine-grained localization
achieved by the context-aware correlation filter. Table 1 gives
comparisons between the baseline trackers and the variations
of our tracker.
Generic Semantic Embedding. By introducing an image
reconstruction constraint into a SiamFC [Bertinetto et al.,
2016] tracker based on the encoder-decoder network architec-
ture, denoted EDSiam, large DP gains of 3.7% are obtained
on OTB2015 datasets. This domain independent constraint
improves the generalization capability of the learned seman-
tic embedding and ensures robust tracking.
Context Aware Correlation Filter. Our second function-
al part discussed in Section 3.2 is denoted as CACFNet,
which learns fine-grained Conv2 representations fitted to a
context aware CF for accurate tracking. Compared to the
CACF [Mueller et al., 2017] tracker, large OP gains of more
than 8% are obtained on OTB datasets, which proves that our
learned representations are much more discriminative than
traditional HOG features. Compared to the CFNet [Valmadre
et al., 2017] tracker that learns Conv2 representations for
a general CF, significant OP gains of more than 10% are
obtained by our tracker. Our tracker exploits fine-grained
Conv2 representations with thinner channels and incorpo-
rates a global context constraint into a general CF, leading
to a stable appearance modeling.

Multi-task Learning. CACFNet+ enhances CACFNet by
introducing the correlation analysis in the semantic embed-
ding space and the reconstruction constraint exploited in ED-
Siam to the training process of CACFNet+. In the tracking
stage, CACFNet+ estimates the target state only based on
the fine-grained correlation response from the context aware
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Figure 3: OPE Comparisons on OTB2013 (a) and OTB2015 (b).

CF. The performance gains of CACFNet+ over CACFNet
prove that the high-level constraint reinforces the learning
process of the fine-grained correlation appearance model-
ing for discriminative tracking. Finally, EDCF outperforms
CACFNet+, which shows the effectiveness of the fusion of
the fine-grained and the semantic correlation responses as dis-
cussed in Eqn. (16). The tracking speed of EDCF is also giv-
en in Table 1. The tracker achieves real-time tracking with
significant performances gains on both datasets.

4.3 Evaluations on OTB2013 and OTB2015
The EDCF tracker is compared with recent state-of-the-art
trackers including BACF [Kiani Galoogahi et al., 2017],
SAMF CA [Mueller et al., 2017], CFNet [Valmadre et al.,
2017], SiamFC [Bertinetto et al., 2016], SINT [Tao et al.,
2016], LCT [Ma et al., 2015b], MEEM [Zhang et al., 2014],
CF2 [Ma et al., 2015a], SRDCF [Danelljan et al., 2015b],
KCF [Henriques et al., 2015], and DSST [Danelljan et al.,
2014a] on OTB2013 and OTB2015 datasets. Fig. 3 shows
the success plots on the two datasets.

Among the compared trackers using deep features, ED-
CF provides the best results with AUC scores of 66.5%
and 63.5%, respectively. Compared to the Siamese network
based trackers [Valmadre et al., 2017; Bertinetto et al., 2016;
Tao et al., 2016], our tracker obtains significant AUC gains
especially on OTB2015 of more than 4.3%. Among the CF
trackers using pre-trained features, CF2 achieves an AUC s-
core of 57.7% at 15 FPS on OTB2015. Our tracker obtains a
relative gain of 10.4% in AUC with more than 3 times faster
tracking speed. Among the real-time trackers, BACF, LCT,
MEEM, DSST and KCF, are more likely to track the target
with lower accuracy and robustness or may lose the targets in
case of background clutters. The results prove that robust and
accurate target localization can be achieved by the coopera-
tion of our two complementary parts, namely the fine-grained
context-aware correlation filter based tracking and the generic
semantic embedding learning based tracking.

4.4 Evaluations on VOT2015 and VOT2017
Our tracker is evaluated on VOT2015 [Kristan et al., 2015]
and VOT2017 datasets [Kristan et al., 2017] as shown in
Fig. 4. The horizontal grey lines are the state-of-the-art
bounds. EDCF ranks 3rd and 8th respectively in the over-
all performance evaluations based on the EAO measure. In
particular, EDCF ranks first in the VOT2017 real-time exper-
iment as shown by the red polygonal line in Fig. 4b.
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Figure 4: Expected average overlap plot for VOT2015 (top) and
VOT2017 (bottom) benchmarks with the proposed EDCF tracker.
Legends are shown only for top performing trackers.

Among the top 10 compared trackers on VOT2015, only
NSAMF runs at real-time with an EAO score of 0.254. ED-
CF also operates in real-time (65 FPS) with an EAO score of
0.315. EDCF achieves comparable accuracy scores to Deep-
SRDCF and MDNet, while running at orders of magnitude
faster. Compared to the baseline tracker SiamFC [Bertinetto
et al., 2016] which has an EAO score of 0.188 on VOT2017,
EDCF substantially outperforms SiamFC by an absolute gain
of 7.0% in EAO and demonstrates its superiority in tracking
robustness and accuracy. To further evaluate the efficiency
in EDCF, we conduct the real-time experiment on VOT2017.
CSRDCF++ [Lukezic et al., 2017] achieves top performance
on real-time performance with an optimized C++ implemen-
tation. Our EDCF achieves state-of-the-art performance with
real-time EAO of 0.241, which obtains a 14% relative im-
provement over the VOT2017 winner.

5 Conclusions
We have proposed an end-to-end encoder-decoder network
for the CF based tracking. A domain independent image re-
construction constraint is incorporated to the semantic em-
bedding learning to generate high-level representations with
strong generalization capabilities while maintaining the struc-
tural information. A fine-grained context aware CF is learned
for accurate localization and online updated for adaptive
tracking. Experiments show that the proposed tracker signifi-
cantly boosts the accuracy of Siamese network based trackers
while maintains high speed. In future work, we plan to in-
corporate middle level feature representation learning in the
EDCF model to further improve its effectiveness.
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