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Comparison of Numerical
Approaches to Bayesian Updating

Bojana Rosić, Jan Sýkora, Oliver Pajonk, Anna Kučerová
and Hermann G. Matthies

Institute of Scientific Computing, TU Braunschweig
wire@tu-bs.de

This paper investigates the Bayesian process of identifying unknown
model parameters given prior information and a set of noisy measure-
ment data. There are two approaches being adopted in this research:
one that uses the classical formula for measures and probability densi-
ties and one that leaves the underlying measure unchanged and updates
the relevant random variable. The former is numerically tackled by a
Markov chain Monte Carlo procedure based on the Metropolis-Hastings
algorithm, whereas the latter is implemented via the ensemble/square
root ensemble Kalman filters, as well as the functional approximation
approaches in the form of the polynomial chaos based linear Bayesian
filter and its corresponding square root algorithm.

The study attempts to show the principal differences between full and
linear Bayesian updates when a direct or a transformed version of mea-
surements are taken into consideration. In this regard the comparison
of both strategies is provided on the example of a steady state diffusion
equation with nonlinear and transformed linear measurement operators.

Keywords: polynomial chaos based linear Bayesian update, Markov
chain Monte Carlo, square root algorithm, ensemble Kalman filter
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1 Introduction

In many applications one would like to predict the behaviour of a physical system
with the help of a mathematical model whose parameters are not directly observable.
In order to obtain the desired information about the system state or to allow for a
prediction of a system response beyond observed localities, the model parameters
are estimated from noisy data gathered by measuring some of the observable system
responses. Most of the existing studies have tackled the issue by tuning the model pa-
rameters such that the distance between the observed and predicted system responses
is minimised in a certain norm (e.g. [31, 9]). However, the resulting optimisation
problem is often ill-posed – the minimised function is multimodal, non-smooth or
non-differentiable — and hence a regularisation procedure [6] or a soft-computing-
based method [13] is required. Yet, such a fitting-based approach provides only a
one point estimate and hence omits the related uncertainties in measurements, im-
perfections of the numerical model as well as the preliminary knowledge about the
material parameters arising from their physical occurrence. Unlike point-estimation
techniques, the probabilistic concept transforms the prior expert-based probability
description to a posterior via the incorporation of observations. From a Bayesian
point of view this further means that the unknown parameters are taken to be uncer-
tain and are modelled with the help of random variables (RVs)/fields (RFs), whose
probability descriptions are coming from expert knowledge and the maximum en-
tropy law [27]. This prior knowledge is then updated to a posterior distribution via
Bayes’s rule given in terms of conditional probabilities. In this regard, the process of
assimilating more information obtained via experiments becomes well-posed. As a
final outcome, the posterior distribution summarizes all available information about
the model parameters such as the mean value, variance, probability of occurrence
etc.

The primary computational challenge in Bayesian inference consist in extracting in-
formation from the posterior by evolving the probability measure. The Markov chain
Monte Carlo (MCMC) method [10] is one of the most commonly used techniques
for this kind of parameter estimation. In MCMC methods, the Markov chain is
constructed such that the asymptotic distribution of the chain is the Bayesian pos-
terior distribution. The posterior is sampled by letting the Markov chain run for a
sufficiently long time. With the intention of accelerating the MCMC method some
authors (e.g. [15, 16, 14, 29]) have introduced stochastic spectral methods into the
computation. Expanding the prior random process into a polynomial chaos (PCE) or
a Karhunen-Loève expansion (KLE), the inverse problem becomes an inference on
the weights of the KLE or PCE coefficients. Another solution is to combine poly-
nomial chaos theory with the maximum likelihood estimation and to calculate the
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parameter estimates in a recursive manner (see [20]), or to apply a local linearisation
of the forward model to improve the acceptance probability of proposed moves [5].
However, the previously mentioned methods are all based on pure sampling proce-
dures, or a combination of spectral approximations and MCMC. Therefore, they are
slowly convergent and often computationally infeasible especially when one deals
with large-scale problems.

To mitigate this issue, the authors of [21, 19, 22, 18] constructed a more efficient
approach based on conditional expectation, which is an equivalent way to formulate
the Bayesian update. The conditional expectation can be approximated by linear or
higher order maps, which have to be found during the updating. In this way the
Bayesian update (BU) is an algebraic formula, which can be computed in a purely
analytical way as indicated in [21, 19, 22, 18]. In a simpler version, this idea appeared
independently in [2], whereas in [23] it appears as a variant of the Kalman filter
[12].

The aim of this study is to investigate the differences between full and linear Bayesian
updates on a simple linear diffusion model with one uncertain parameter. For this
purpose two scenarios are considered: one that features a direct—classical Bayesian
update—and a second one that introduces a transformed measurement operator—a
transformed Bayesian update. The transformation is studied from the mathematical
and numerical point of view in order to better understand the linear Bayesian update.
In addition, the paper proposes the use of the proxy modelling in the assimilation
process in order to reduce the required computational time.

The paper is organised in the following way: Section 2 gives a short introduction
into the model problem for which the Bayesian inference is presented in Section 3.
Section 4 gives a brief overview of the available methods for the computation of a
Bayesian update. The methods are analysed and compared in Section 5. Finally, the
paper is concluded in Section 6.

2 Model problem

The problem considered in this paper is a steady state heat transfer expressed by an
energy balance equation

−div(κ∇u(x)) = f (x), ∀x ∈ G ⊂ R2, (1)
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in which the scalar conductivity coefficient κ ∈K together with the loading f (x)
and initial conditions u0 determine the system response u. In computational prac-
tice u is very often evaluated assuming that the conductivity parameter κ is known.
This process is called the prediction of the system response, or the forward problem.
However, the aim of this paper is to not to determine u but κ given the set of observa-
tion data z—the measurements of the system response in a few points of the physical
domain of consideration.

Usually, the measurement set is mathematically formalised by an observation opera-
tor H, which relates the complete model response u ∈U to an observation y in some
vector space Y [21, 22]:

H : (κ,u(x)) 7→ y(x) = H(κ;u(x)) ∈ Y . (2)

Since the modelled values y differ from the real data set z, the previous equation
transforms to

y = z− ε = H(κ;u(x)), (3)

in which the variable ε subsumes both model imperfections and the measurement
error. A key aspect of this is that one may try to compute the non-observable thermal
conductivity κ given z from Eq. (3). This further agrees with the inversion of the
operator H, which in general may not be invertible or has a non-continuous inverse—
the ill-posed problem. To ensure the existence and uniqueness of the solution, the
previous issue can be resolved by, for example, taking the additional information
into consideration. In a Bayesian point of view this corresponds to the prescription
of a prior distribution on the model parameter κ .

3 Identification via Bayesian regularisation

The Bayesian inference treats the problem in Eq. (3) by acquiring additional knowl-
edge on the parameter set next to the observation data. Such a description has two
ingredients, the measurable function or random variable, and the probability mea-
sure. One group of methods updates the measure—the classical Bayesian updating
[10], the other group changes the function—the linear Bayesian updating [22]. In
this section we show connection between these methods as well as give their short
description.

The prior information on κ comes from expert knowledge about its realistic values
and can be modelled in a form of a prior probability density function p(κ) with the
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help of the maximum entropy approach [27]. In this manner, κ in Eq. (3) can be
described by the finite-variance K -valued RV/ RF

κ(ω) : Ω →K (4)

on a probability space S := L2(Ω ,A,P). Here, Ω denotes the space of elementary
events ω , A is the σ -algebra and P stands for the probability measure.

Once the prior is chosen, the posterior density can be obtained with the help of clas-
sical Bayes’s rule:

πa(κ) := p(κ|z) = p(z|κ)
p(z)

p(κ) ∝ L(κ)p(κ) (5)

given in terms of the conditional probability density functions. Here, πa(κ) and p(κ)
stand for the posterior and prior density functions of κ , and L(κ) is the likelihood
giving a measure of how good the model is explaining the data z.

The law described in Eq. (5) is not the one used further. Namely, the random vari-
able κ is restricted to the positive cone in the vector space, and hence requires a
transformation, see [22]. By defining the bijective differentiable mapping

Tq : K →Q (6)

from the model K to the assimilation Q space, κ is transformed to a random vari-
able

q = Tq(κ) (7)

which lives in a vector space. As a consequence, Bayes’s rule in Eq. (5) obtains the
form

πq(q) =
p(z|q)
p(z)

pq(q), (8)

where pq(q) and πq(q) are the prior and posterior density of q, respectively. Once
the assimilation is performed, the back-transformation to the model space is applied
such that

πa(κ) = πq(q)
dTq(κ)

dκ
(9)

holds, where dTq(κ)/dκ denotes the Radon-Nikodým derivative of the assimila-
tion measure with respect to the original measure. In this manner the process of
computing πa(κ) is equivalent to the problem of evaluating the likelihood function
L(q) = p(z|q). The likelihood is incorporating the information from the data into
the updating process, and hence, it is shaped by the measurement density [28]. For

4

http://www.digibib.tu-bs.de/?docid=00057895 28/10/2014



the measurements that one assumes a Gaussian distribution, the likelihood takes the
form

L(q) = exp
(
−1

2
(d)TC−1

ε (d)
)
, (10)

in which d denotes the difference

d = z− y (11)

between the forecast y = Y (q,u) and the measurement z, whereas Cε stands for the
measurement covariance.

Following this, the evaluation of Eq. (8) corresponds to the simulation of the forward
problem

−div(Tq(q)∇u(x)) = f (x), (12)

and the response forecast

y(x,ω) = Y (q(ω);u(x,ω)). (13)

Here, Y denotes the observation operator with respect to the transformed parameter
q such that

z = H(κ) = Y (q), Y = H ◦T−1
q (14)

holds.

Note that in a special case when the random variable κ follows a lognormal distribu-
tion the transformation in Eq. (7) coincides with the Gaussian anamorphosis [25, 24].
Indeed, by defining q as log(κ), the non-Guassian RV κ transforms to the Gaussian
RV q.

The transformations previously mentioned are especially important when the second
version of Bayes’s rule is applied—the one that upates the measurable function. This
alternative formulation of Bayes’s rule can be achieved by expressing the conditional
probabilities in Eq. (8) in terms of conditional expectation. Following the mathe-
matical derivation in [21, 22], this approach boils down to a quadratic minimisation
problem:

qa(ω) = PQsnq = arg min
η∈Qsn

‖q−η‖2
L2
, (15)

in which PQsn is the orthogonal projection operator of q onto the space of the new in-
formation Qsn := Q⊗Sn. This space of Q-valued random variables with finite vari-
ance is defined by the triplet Sn := L2(Ω,S,P), where S := σ(Y ) denotes the sub-
σ -algebra generated by Y . According to the Doob-Dynkin lemma [3], one may state
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that η := φ ◦Y ◦q, in which φ belongs to the space L0(Y ,Q) of measurable maps.
Constraining the vector space L0(Y ,Q) to the subspace of linear maps L (Y ,Q),
the minimisation problem in Eq. (15) leads to a unique solution K. This gives an
affine approximation of Eq. (15)

qa(ω) = q f (ω)+K(z(ω)− y f (ω)), (16)

also known as a linear Bayesian posterior estimate. Here, q f represents the prior ran-
dom variable, qa is the posterior, y f is the forecasted measurement and K represents
the very well-known Kalman gain

K :=Cq f y f

(
Cy f +Cε

)−1 (17)

which can be easily evaluated if the appropriate covariance matrices Cq f y f , Cy f and
Cε are known. We would like to emphasise that the Hilbert-space setting of Q and
Y has made the formulation in Eq. (16) possible [12]. Therefore, the transformation
in Eq. (7) was neccesary.

It is interesting to note that the projection in Eq. (16) is performed over a smaller
space than Qsn. An implication of this is that available information is not completely
used in the process of updating. It is therefore likely that the minimisation error re-
mains larger. However, the computation of the projection becomes simpler. Another
advantage of Eq. (16) compared to Eq. (8) is that the inference in Eq. (16) is given
in terms of RVs instead of conditional densities. Namely, qa(ω), q f (ω), z(ω) and
y f (ω) denote the RVs used to model the posterior, prior, observation and forecasted
observation, respectively.

Having in mind that Y is in general nonlinear, one may improve the estimation in
Eq. (16) by linearising the measurement. In other words, one may apply the nonlinear
transformation

zt = Tz(z) = (Tz ◦H ◦T−1
q )(q) = G(q) (18)

such that the transformed measurement zt is linear in q. In our example in Eq. (1)
one has that

κ ∼ 1/z. (19)

Furthermore, if κ follows lognormal distribution

κ ∼ exp(q), (20)

the transformation in Eq. (18) reads

zt =−log(z)∼ q. (21)

6
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S(f ; q)

Y (q; f )
S

S
Lab

Bayes filter

q
qf(ω) u(ω) y(ω)

z(ω)

d
(ω

)

qa(ω)

Σ

Figure 1: Schematic representation of Bayesian approach to identification

The last relation coincides with the Gaussian anamorphosis because the non-
Gaussian z is transformed to a standard Gaussian zt . In this example the transfor-
mation is easy to achieve as it is purely algebraic. When an algebraic transformation
is not possible, one may apply empirical anamorphosis function as shown in [24].
Note that for the multivariate case, the transformation has to be applied to each of
random variables individually (locally).

After the measurement transformation, Bayes’s rule assimilates the measurement
data zt with the prior information q by means of the following formula:

p(q|zt) =
p(zt |q)
p(zt)

p(q). (22)

For a Gaussian measurement error, this means evaluation of the likelihood function

L(q) = exp
(
−1

2
(Tz(d))TC−1

εt (Tz(d))
)
, (23)

in which the distance d between the measurement z and the forecast y is transformed
to Tz(d), as well as the covariance function from Cε to Cεt . Hence, by transforming
observations, the measurement errors also transform. Such a transformation can lead
to an overestimation of the measurement error with respect to the transformed fore-
cast error as observed in [25]. Therefore, one often advises to compute the variance
of the measurement error in the assimilation space directly from the transformed
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measurements.

The linear Bayes’s rule corresponding to Eq. (22) is characterised by a solution be-
longing to Q⊗Sn, in which Sn := L2(Ω,S,P), where S := σ(G) denotes the sub-σ -
algebra generated by G. In our case G describes the linear relation between q and zt ,
and hence the linear Bayes’s rule in Eq. (16) becomes optimal. However, note that
the transformations introduce additional errors into the computation process. This is
especially the case for the measurement errors, as already explained.

The schematic representation of the Bayesian inference is shown in Fig. 1. The
scheme describes the closed loop of one Bayesian update. The loop starts by as-
suming the prior distribution q f (ω), which is then propagated through the model
S( f ;q) and the measurement operator Y to the forecasted (predicted) measurement
y(ω) read by sensor S. The prediction is then substracted from noisy data z(ω) com-
ing from real experiments, and the resulting difference is forwarded to the Bayesian
filter, which further produces the posterior distribution qa(ω), i.e. the updated value
of q f (ω).

4 Computational approaches

In recent years there has been an increasing amount of literature on computational
approaches related to Bayesian inference. However, this paper reviews only the re-
search conducted on MCMC [15, 10] and linear Bayesian filters [21, 19, 2]. The
main aim of this work is to contrast the linear Bayesian methods to a full MCMC
approach on a numerical example.

4.1 Markov chain Monte Carlo

Markov chain Monte Carlo is a sampling procedure used for the estimation of the
posterior probability density function via Eq. (5) or Eq. (8), respectively. The method
is very general as it does not require any model approximations in contrast to those
further described. Instead, MCMC constructs a Markov chain with the posterior as
an equilibrium distribution. The two most often used types of this algorithm are: the
Gibbs sampling technique [26] and the Metropolis-Hastings algorithm [4], the one
used in this paper.
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As shown in Algorithm 1, the Metropolis scheme generates a sequence of samples
(states) q(i) whose values solely depend on the previous sample in the chain. The
value of the new state q(i) is generated with the help of the proposal distribution
gk(q|q(i−1)), also known as the transition kernel. In practice the transition kernel is
very often chosen to be symmetric such that gk(q(∗)|q(i)) = gk(q(i)|q(∗)). A typical
example of such a kernel is the normal distribution centered at the previous state—
the random walk chain. However, other types of kernels can be used in a similar
manner, e.g. independence chains, rejection sampling chains, auto-regressive chains
or grid-based chains, see [30]. Once the new sample is drawn it is either accepted
with the probability r or rejected with probability 1− r.

1: procedure MHA(p(q),gk,L(q),N)
2: draw initial value q(0) from prior p(q)
3: for each i = 1→ N do

4: draw q(∗) from proposal distribution
5: gk(q(∗)|q(i−1))
6: evaluate the probability of acceptance

7: r = min{1, πa(q(∗))gk(q(i−1)|q(∗))
πa(q(i−1))gk(q(∗)|q(i−1))

}
8: accept the next state with probability r
9: q(i) = q(∗)

10: or reject with probability 1− r
11: q(i) = q(i−1)

end
12: end procedure

Algorithm 1: Metropolis-Hastings procedure

The advantage of the previous algorithm is that it does not need target probabilities
but only ratios of target probabilities to work. In this manner the computation of the
normalisation constant in Eq. (8) is avoided. However, the samples are not indepen-
dent any more as they are drawn from the proposal distribution with the probability r.
Even though this is the case, the obtained samples can still be used for the evaluation
of integrals in a Monte Carlo fashion. However, this works only if the Markov chain
is aperiodic, irreducible, and positive recurrent [32]. Under the previously men-
tioned regularity conditions the sampling sequence q(i) converges in distribution to
our target posterior distribution (Theorem 3 in [30]) regardless of the starting point.
However, the speed of the convergence greatly depends on the initial choice. Due to
this, a few starting samples have to be excluded from the chain a so-called “burn in
period”.

Computationally, the Markov chain Monte Carlo algorithm is a very demanding pro-
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Figure 2: The algorithmic scheme of an inverse problem solved by MCMC filtering

cedure because one has to evaluate the system response for each new proposed sam-
ple, see Fig. 2. The evaluation starts with samples that are used as input in the deter-
ministic model S( f ,q), which closely describes the system response u as a function
of the external loading f and the input parameters q. Once the response is computed,
the measurement operator Y is applied and the value of the observable quantity y is
diagnosed by a sensor. The predicted measurements are then compared to the real
data, which further results in the distance measure d entering the likelihood func-
tion, see Eq. (10). In this manner a posterior sample is obtained, and the process is
repeated all over again for the next sample.

4.2 Proxy modelling

To speed up the assimilation process one may introduce a proxy model for the
forecasted measurement. Usually, the proxy model is made with the help of a
functional approximation of random variables/fields entering the process, and a
stochastic Galerkin procedure [22]. To this end, both the predicted system response
u f and observation y f can be represented in a polynomial chaos expansion form
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[17, 35, 11, 33]

û f (ω) = ∑
J

u(α)
f Hα(ω),

ŷ f (ω) = ∑
J

y(α)
f Hα(ω), (24)

in which Hα(ω) represent the generalised orthogonal polynomials and J stands for
the set of all finite non-negative integer sequences, i.e. multi-indices α such that

J := {α = (α1, ...,α j, ...) | α j ∈ N0,

|α| :=
∞

∑
k=1

α j < ∞} (25)

holds. Due to computational reasons, only a finite subset of J is taken, i.e. the
expansion in Eq. (24) is truncated to a finite number of terms. This results in another
type of error which has to be added to the modelling error mentioned above.

To increase its efficiency, the MCMC cycle can be modified such that the forward
model is substituted with a less accurate but computationally cheaper proxy model
(see Fig. 3), as already reported in [14]. In this manner the forward model is not
individually solved for each MCMC sample, but apriori, see Fig. 3. After evaluating
the functional approximation of the measurement, the sampling occurs and the update
loop proceeds in the same manner as described previously, see Fig. 2 and Fig. 3.

4.3 Linear Bayesian inference

The advantage of the methods described in the previous section is that they are
model-independent. However, their main drawback is the slow convergence. The
issue of high computational cost can be improved via recently developed Bayesian
linear methods [21, 19, 22, 18] as shown in Eq. (16). Recalling that the RV qa(ω) can
be numerically represented by either sampling qa(ωi) or the functional approxima-
tion such as polynomial chaos expansion, one may distinguish at least two numerical
approaches to the problem given in Eq. (16): the ensemble Kalman filter [7] and the
polynomial chaos based update [21, 22].
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Proxy

Ŝ(q̂; û)
Ŷ (q̂; û)

S

S

Lab Σ

cL(d)p(qf)

q
q̂f û ŷ

ẑ

d
(ω

i)

qa(ωi)

Figure 3: The algorithmic scheme of an inverse problem solved by proxy MCMC
filtering

4.3.1 Ensemble Kalman filter

The simplest way to numerically estimate qa is to sample Eq. (16) in a Monte
Carlo fashion. Such a procedure starts by building ensembles of prior samples
QQQ f := [q f (ω1), . . . ,q f (ωZ)], forecasts YYY f := [y f (ω1), . . . ,y f (ωZ)] and measurements
ZZZ, such that Eq. (16) can be formulated in a matrix notation as

QQQa = QQQ f +KKK(ZZZ−YYY f ), (26)

in which KKK takes the form as in Eq. (16). Note that its corresponding covariances
may be estimated from the ensemble, i.e.

CCCq f ,y f ≈
1

Z−1
Q̃QQ f ỸYY

T
f and CCCy f ≈

1
Z−1

ỸYY f ỸYY
T
f . (27)

Here, Q̃QQ f = QQQ f − q̄ f 111T
Z and ỸYY f =YYY f − ȳ f 111T

Z represent the fluctuation parts of corre-
sponding RVs, where q̄ f =

1
Z ∑

Z
z=1 q f (ωz) and ȳ f =

1
Z ∑

Z
z=1 y f (ωz) are the estimated

means and 111Z is a vector of ones of size Z.

This method is a Monte Carlo method, hence it also suffers from the slow conver-
gence with increasing Z. On the other hand, it is fairly simple to implement: all it
needs are random samples, see Fig. 4. In practice the number of samples is often low,
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Model
S(f ; q)

Y (q;u) S
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Lab Σ

Σ
Kalman

q
qf(ωi) u(ωi) y(ωi)

z(ωi)
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(ω
i)

Gain

d(ωi)

Figure 4: The algorithmic scheme of an inverse problem solved by the ensemble
Kalman filter

and then special care is needed when computing the covariances and the Kalman gain
KKK, see [8]. To reduce the computation time one may use the proxy model instead of
a forward simulator in a similar way as it is done in the MCMC procedure. In this
manner only the update formula in Eq. (16) is sampled.

4.3.2 Polynomial chaos based linear Bayesian update

To avoid the sampling procedure presented previously in a form of the ensemble
Kalman filter (EnKF) algorithm, one may use the opportunity to functionally ap-
proximate the random variables (fields) in Eq. (16). In this light the linear Bayesian
procedure can be reduced to a simple algebraic method. Starting from the functional
representation of the prior

q̂ f = ∑
α

q(α)
f Hα(ω) (28)

and the proxy in Eq. (24), one may discretise Eq. (16) as:

q̂a = q̂ f +K
(
ẑzz− ŷyy f

)
, (29)
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Figure 5: The polynomial chaos based linear Bayesian scheme

where ẑzz ∈ RL×Z is the PCE of the measurement. Here, K in Eq. (29) is the Kalman
gain evaluated in an algebraic way knowing that

Cq f ,y f = ∑
α>0

α! q(α)
f (yyy(α)

f )T . (30)

Note that in the numerical computation q̂a ∈ RZ , q̂ f ∈ RZ , ŷyy f ∈ RL×Z and ẑzz ∈ RL×Z

are PCEs with cardinality Z determined by (L+ 1) RVs and polynomial order p.
Here, the number (L+ 1) subsumes all the RVs describing the prior and the RVs
{θi}L

i=1 used to model the measurement error ε .

The previous algorithm is shown in Fig. 5 where the whole update process can be
represented by only one loop.

4.3.3 Square root polynomial chaos based linear Bayesian update

The idea of linear Bayesian inference is allowing the computation of the posterior
in a quite efficient way, however the update requires the introduction of additional
RVs—corresponding to ε— into the update process. This essentially may enlarge
the dimension of the stochastic space one is working with, especially in case of se-
quential updating (for an illustration see [22, 18]). To avoid the presence of the
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observation RVs and corresponding PCE in Eq. (16), one may follow the idea of a
square root filter [1], as the authors already addressed in [19]. In such an algorithm
the evaluation of the posterior consists of two phases:

1. the estimation of the posterior mean via

E(q̂a) = E(q̂ f )+K(E(ẑzz)−E(yyy f )), (31)

2. the prediction of the varying part q̃a := q̂a−E(q̂a) via

q̃a =
Sqa√

∆
. (32)

Here,
√

∆= diag (
√

α!) stands for the square root of the Gram matrix ∆=E(Hα Hβ ),
while Sqa denotes the matrix square root of the posterior covariance Cqa = SqaST

qa .
The latter one represents a linear transformation of the prior matrix square root Sq f ,
i.e.

Sqa = Sq f V
√

I−ΣT ΣV T . (33)

The transformation essentially comes from the definition of the covariance structure
(Cy f +Cε) and its decomposition(

Cy f +Cε

)
= BΛBT , (34)

where BT rotates the simulated measurements into directions aligned with the covari-
ance structure (Cy f +Cε), while Λ

− 1
2 weights them accordingly. In this light matrices

V and Σ are obtained by the singular value decomposition of

W = Λ
− 1

2 BT HSq f , (35)

for more details on mathematical derivation please see [19].

Eq. (34) is exactly the place where the additional information (in the form of Cε ) en-
ters the update— Cε specifies directions and magnitude of the uncertainty (variance)
reduction induced by the observation. Thus, no additional random variables have to
be included into the update. However, note that the square-root formulation is only
equivalent to the standard linear filter form in case of Gaussianity. In addition, if
the random variable is represented by an ensemble, the previous algorithm is of the
ensemble square root type.
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5 Numerical results

To test the numerical procedures described previously, two benchmark problems are
introduced: a two point boundary value problem in one spatial dimension and a heat
conduction problem for a rectangular plate.

5.1 One dimensional heat problem

The thin metal rod of unit length is exposed to the deterministic heat source f (x) =
5(1− x) linearly dependent on the spatial coordinate x. The heat transfer in the rod
is assumed to be steady, i.e. described by the one-dimensional heat equation:

−div κ(ω)u(x,ω) = f (x,ω), (36)

with zero Dirichlet boundary conditions. Here, κ(x,ω) denotes the conductivity
coefficient one is uncertain about and u(x,ω) is the temperature response.

1 2 3 4 5 6 7

Te
m
pe
ra
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re

x
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2
T

Figure 6: The virtual measurement: the temperature dependence on the point position
x. The red crosses represent the sensor placements.

The true value of the thermal conductivity κt is taken to be one realisation of a log-
normal random variable described independently from the a priori distribution—so
called truth. The corresponding data set–observations–are then obtained with the
help of the deterministic finite-difference (FD) approach. The temperature is esti-
mated on a uniform mesh of 41 points, from which L = 7 randomly chosen nodes are
used to place the measurement sensors, see Fig. 6. Each measurement is subjected to
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Gaussian noise with zero mean and covariance Cε = σ2
ε I (I is the identity matrix of

size L).

For the purpose of measurement prediction, the prior conductivity κ f (ω) is assumed
to be a lognormally distributed RV with mean 2.3 and standard deviation 0.3. Once
the prior is chosen, the predicted measurement is evaluated on the uniform mesh of
21 spatial points with the help of the stochastic Galerkin approach, see Eq. (36). Note
that the spatial mesh is taken to be different than the one chosen for the computation
of the “virtual truth”. This is done in order to avoid the “inverse crime” problem
[34].

As depicted in Fig. 7 a), the “virtual truth” is taken to lie in

• C1: high probability (κt = 2),

• C2: 2σ ( κt = 1.7),

• and C3: low probability (κt = 1.4)

regions of the prior. While the first case scenario (i.e. when κt = 2) represents a
reliable assumption of the prior, the other two case scenarios are describing situations
in which one cannot have precise expert knowledge on the value of the parameter
κ .

Following this, Fig. 7 b) compares the predicted measurement and the observation
including the measurement noise for each of the previously mentioned scenarios.
These results argue how much of an impact the prior distribution has on the distance
between the measured and observed data sets. Namely, if the prior is such that the
truth lies in the high probability region then the distance is small, and vice versa.

5.1.1 Nonlinear measurement

The experimental set up as described previously introduces the temperature observa-
tions into the identification process. However, one may note that this kind of mea-
surement is inconsistent with the statement made in Section 3 where the linear de-
pendence between the measurement and the parameter has been assumed. According
to Fig. 8, this hypothesis does not hold. Even though this is the case, the objectives
of the following numerical computations are to determine whether and up to which
degree the truth can be identified from the nonlinear measurement data.
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Figure 7: a) Three case scenarios for the true value of the conductivity coefficient κ b)
the predicted vs. the virtual measurement: 99% probability regions of the
predicted temperature Tf and 99% probability regions of the measurement
Tm
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Figure 8: The dependence of temperature on the parameter set κ (left figure) and its
transformation q (right figure)

The six identification procedures—one random variable based (reduced) linear
Bayesian update (RLBU)1, full linear Bayesian update (FLBU), the square root up-
date (SQRT), ensemble Kalman filter (EnKF) with 1000 samples, square root en-
semble Kalman filter (EnKFS) with 1000 samples, and the full Bayesian MCMC
update with 105 samples—are used to estimate the value of the parameter κ given
seven temperature observations. The update process is performed only once using the
complete measurement data. The results obtained, as shown in Table 1 and Table 2,
indicate that the MCMC procedure is the only one which can identify the truth in all
three case scenarios. In contrast to this, the linear approximants are able to estimate
the truth only in the first case scenario although with an overestimated standard devi-
ation. The overestimation appears to be stronger in case of the square root posterior,
as well as posteriors obtained from the ensemble data (EnKF-kind of procedures).
Since the square root estimation is not equivalent to the linear Bayesian; and since
the ensemble Kalman filter estimates strongly depend on the chosen seed (here 1000
samples), this finding was expected. Contrary to the expectations, the one random
variable linear Bayesian update is underestimating the posterior variance. It seems
that the underestimation happens due to constraints put on the basis on which the pos-
terior is projected. Namely, one random variable linear Bayesian update is neglecting
(projecting out) the additional random variables coming from the measurement data
in the process of updating.

These findings are consistent with the plots of posterior probability density functions
given in Fig. 9 and Fig. 10, where one may clearly notice that the MCMC procedure

1random variables describing the measurement error are not taken into consideration—they are projected
out during the update process
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Table 1: Comparison of modes and standard deviations for the posterior κ obtained
by different update procedures

Parameter Method Mode Std

Case: C1 C2 C3 C1 C2 C3

Truth 2 1.7 1.4 0 0 0
MCMC 1.9979 1.6952 1.4102 0.0131 0.0123 0.0163

κ RLBU 1.9934 1.6338 1.2294 0.0117 0.0096 0.0072
FLBU 1.9976 1.6373 1.2314 0.0184 0.0151 0.0113
SQRT 1.9814 1.6236 1.2224 0.0274 0.0225 0.0169
EnKF 1.9994 1.6328 1.2341 0.0262 0.0202 0.0158

EnKFS 1.9859 1.6237 1.2311 0.0262 0.0207 0.0160

Table 2: Comparison of modes and standard deviations for the posterior q obtained
by different update procedures

Parameter Method Mode Std

Case: C1 C2 C3 C1 C2 C3

Truth 0.6931 0.5306 0.3365 0 0 0
MCMC 0.6921 0.5278 0.3437 0.0066 0.0069 0.0098

q RLBU 0.6899 0.4909 0.2065 0.0058 0.0058 0.0058
FLBU 0.6928 0.4935 0.2095 0.0092 0.0092 0.0092
SQRT 0.6839 0.4849 0.2004 0.0134 0.0134 0.0134
EnKF 0.6910 0.4928 0.2064 0.0119 0.0126 0.0124

EnKFS 0.6858 0.4892 0.2010 0.0121 0.0126 0.0120
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Figure 9: Comparison of posterior probability density functions describing κ
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outperforms other numerical techniques. Moreover, the linear Bayesian methods
“overshoot” when the truth is assumed to be κt = 1.7 or κt = 1.4. This issue can be
explained in part by a nonlinearity of the measurement operator. However, there are
other possible explanations, such as the prior which is “wrongly”assumed.

To determine the similarity between the MCMC (π1) and other posterior distributions
(πi), the Jensen-Shannon divergence (JSD):

JSD(πi‖π1) =
1
2

D(πi ‖
1
2
(πi +π1))

+
1
2

D(π1 ‖
1
2
(πi +π1)) (37)

is estimated. This metric is a smooth and symmetrised version of the Kullback-
Leibler divergence D(πi‖π1) defined as

D(πi‖π1) =
∫

∞

−∞

ln
(

ρi(x)
ρ1(x)

)
ρi(x)dx, (38)

where ρi and ρ1 represent the densities of the quantity obtained by one of the
Bayesian linear approximation methods and MCMC methods, respectively. In the
first case scenario of the truth, the JSD value between the MCMC and FLBU prob-
ability distributions is equal to the total area under a curve in Fig. 11. This value
corresponds to the error obtained by accumulation of sampling errors and the error
caused by a nonlinearity of the measurement operator.
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5.1.2 Linear measurement

To get an adequate understanding of the conclusions drawn in the previous sec-
tion, one has to consider the experiments in which the measurement operator is lin-
ear. Since the relationship between the parameter and the observation is explicitly
known

κ ∼ exp(q)∼ 1/z, (39)

one may linearise the measurement operator via the following transformation

logκ ∼ q∼ log(1/z). (40)

In such a case the estimation parameter q linearly depends on log(1/z). Following
this, the numerical analysis is repeated as in the previous section, only this time
with the new version of the measurement. Note that the nonlinear transformation is
applied on the measurement data solely without the measurement error.

This study produced results which confirm the findings of a great deal of previous
works in this field, see [21, 19, 22, 18]. Namely, as results in Table 3 and Table 4
show, the methods based on the linear Bayesian formula are able to identify the truth
in all three case scenarios without strong overestimations of variance. However,
this is not the case for the one random variable based linear Bayesian update. This
method underestimates the posterior variance similarly to the case study already dis-
cussed in the previous section. Therefore, the use of the one random variable based
linear Bayesian update is not advised in practice. Furthermore, the MCMC proce-
dure shows a slightly different behaviour than in the nonlinear case. The nonlinear
transformation of the predicted measurement and observation data in a polynomial
chaos form have resulted in a poor posterior estimation in the worst case scenario,
when the truth takes the value in the low probability region of the prior. The problem
appears due to large numerical errors caused by both sampling and transformation.
The previous findings are in agreement with the probability density plots shown in
Fig. 12 and Fig. 13, where one may clearly observe the described behaviour of the
linear procedures. The difference in the posterior estimates of the linear Bayesian
update and full MCMC procedure for the first case scenario can be seen in Fig. 14,
where the JSD area is plotted.

By having run several MCMC computations for the worst case scenario, we came
to the conclusion that the posterior distribution converges to the linear Bayes’s
posterior with the increase of the polynomial order of the proxy model. Increasing
the polynomial order from four to six, the MCMC posterior distribution approaches
the one obtained by the full linear Bayesian update of fourth order, as shown in
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Table 3: Comparison of modes and standard deviations for the posterior κ obtained
by different update procedures

Parameter Method Mode Std

C1 C2 C3 C1 C2 C3

MCMC 1.9982 1.7109 1.4878 0.0342 0.0269 0.0209
κ RLBU 2.0020 1.7044 1.4062 0.0054 0.0039 0.0034

FLBU 2.0023 1.7046 1.4064 0.0332 0.0281 0.0232
SQRT 2.0023 1.7046 1.4064 0.0339 0.0288 0.0241
EnKF 2.0024 1.7038 1.4046 0.0340 0.0294 0.0237

EnKFS 2.0022 1.7043 1.4054 0.0339 0.0290 0.0245

Table 4: Comparison of modes and standard deviations for the posterior κ obtained
by different update procedures

Parameter Method Mode Std

C1 C2 C3 C1 C2 C3

Truth 0.6931 0.5306 0.3365 0 0 0
MCMC 0.6921 0.5369 0.3972 0.0171 0.0155 0.0209

q RLBU 0.6942 0.5341 0.3407 0.0023 0.0027 0.0022
FLBU 0.6942 0.5341 0.3407 0.0165 0.0165 0.0165
SQRT 0.6942 0.5341 0.3407 0.0167 0.0174 0.0168
EnKF 0.6948 0.5339 0.3410 0.0167 0.0175 0.0170

EnKFS 0.6940 0.5346 0.3410 0.0166 0.0173 0.0167
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Figure 12: Comparison of posterior probability density functions describing κ
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Figure 13: Comparison of posterior probability density functions describing q
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Fig. 15. This further means that the modelling error can have a huge influence on the
MCMC result in the low probability regions of the prior.

Having the previous results in mind, the update procedure is repeated for all possi-
ble “truth scenarios” —for the values of κt between one and five—and the prior as
described in the beginning of this section. As shown in Fig. 16, the truth is inside
the 99% region of the posterior (red area) in case of linear measurement. However,
the same line crosses the 99% region of the posterior (red area) in case of nonlin-
ear measurement. For the former scenario, the posterior contains the truth only in a
small region around the 2.3 value (prior mean), where the truth line appears to be the
tangent. On the other hand, in the linear case the posterior better estimates the truth
although the variance can be over- or underestimated. This leads to the conclusion
that only the measurement operators with slight nonlinearities can be handled with
the linear Bayes procedure.

5.2 Two dimensional heat problem

In order to improve the previous qualitative analysis, the steady diffusion problem is
also examined on a two-dimensional rectangular domain, see Fig. 17. The boundary
conditions consist of a heat flux q = 100Wm−2 prescribed on the left boundary and a
constant temperature of twenty degrees Celsius imposed on the right boundary. The
computational domain is discretised with the help of 204 irregular finite elements and
N = 124 nodes.

Figure 17: Experimental setup

For the virtual truth, the thermal conductivity κt is taken to be one realisation of a
lognormal random variable described independently from the a priori distribution.
The temperature is evaluated with the help of a deterministic finite element (FE)
method, but only the values in 7 randomly chosen points (FE nodes highlighted by
red dots in Fig. 17) are taken into consideration. For reasons of simplicity, these
points (sensors) are not optimally placed, even though this can be achieved with
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Figure 18: The prior distribution and three case scenarios for the truth C1-C3

the help of the optimisation theory. The measured data are additionally disturbed by
Gaussian noise with zero mean and covariance Cε = σ2

ε I in order to simulate realistic
data.

For this study, the prior thermal conductivity κ f is designed with the help of the
maximum entropy approach which takes all available information about the conduc-
tivity parameter in the process of model selection. Thanks to the positive definiteness
of κ , the prior is taken to be a lognormal random variable with the mean κ̄ f = 2.3
and standard deviation σ f = 0.3. In a similar manner as before, the value of κt is
adopted such that the truth places in the one, two or three sigma region of the prior,
see Fig. 18. The reasons for this are the same as described before in Section 5.1.

5.3 Forward problem

For prediction purposes the stochastic diffusion problem described by uncertain con-
ductivity coefficient is solved with the help of the stochastic Galerkin method [22].
These results are verified with the help of a pure Monte Carlo approach with one
million samples, see Fig. 19 for its convergence in mean and variance. For further
investigation only one surrogate model is selected through a validation process: that
is the polynomial chaos expansion of order 4. Compared to the MC reference solu-
tion this approximation results in 0.3029e-4 for the relative error in the mean, and
0.0011 for the relative error in variance. The mean value and variance of such an
approximated solution are shown in Fig. 20. As expected, the mean is a linear and
the variance is a nonlinear function of the coordinates.
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Figure 19: Convergence of the a) mean and b) variance of the Monte Carlo method
with 106 samples

5.4 Identification

As in the previous example, the experimental analysis is run by measuring the
temperature, i.e. the nonlinear function of the conductivity parameter. For com-
parison purposes, several computational strategies as described in Section 5.1 are
implemented and tested: the one random variable based linear Bayesian update
(RLBU), full linear Bayesian update (FLBU), the square root update (SQRT), en-
semble Kalman filter (EnKF) with 1000 samples, square root ensemble Kalman filter
(EnKFS) with 1000 samples and the full Bayesian MCMC update with 105 samples.
The last procedure is declared as the reference solution. Its convergence with respect
to the number of samples can be seen in Fig. 21, where the relative errors of the mean
and variance

εm =
‖κ̄N

a − κ̄R
a ‖

‖κ̄R
a ‖

, εv =
‖var κN

a −var κR
a ‖

‖var κR
a ‖

, (41)

are plotted, respectively. Here, κ̄N
a ,var κN

a stand for the mean and variance of the
posterior distribution obtained with N samples, whereas κ̄R

a ,var κR
a denote the mean

and variance of the posterior distribution as a result of 105 runs. According to these
plots the relative errors are slowly converging with the number of samples, as ex-
pected. This results in an accuracy of ca. 1e-12 for the mean conductivity and 1e-8
for the conductivity variance.

A comparison of identification results in Fig. 22 reveals that the MCMC procedure is
the only one able to identify the truth in all three assumed cases. The methods based
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Figure 20: The second order statistics obtained with the help of the stochastic
Galerkin method
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Figure 21: The Markov chain Monte Carlo convergence of posterior κa for the Gaus-
sian measurement error described by a standard deviation 0.3

on the linear approximation behave well in cases when the truth lies in the high
probability region, otherwise an “overshooting” occurs. This lends weight to the pre-
viously given argument that the error of the linear approximant strongly depends on
the nonlinearity of the measurement operator, as well as on the prior assumption.

The previous results are also supported by the plots of posterior 99% confidence
intervals in Fig. 23. Initially, before the measurements are carried out, the 99% con-
fidence interval is assumed to be broad in order to “catch” the truth. With every new
successive measurement the probability region narrows down such that the interval
becomes almost deterministic after seven performed measurements. Even though
the truth is assumed to be deterministic, the posterior 99% confidence interval does
not disappear due to the measurement and model errors, as well as the error due to
the nonlinearity of the measurement operator. Additionally, the results, as seen in
Fig. 23, indicate that the full linear Bayesian update (FLBU), as well as the EnKF
almost match the MCMC results in the first scenario, whereas the one random vari-
able linear Bayesian update (RLBU) underestimates the posterior variance. On the
other hand, the square root filter and EnKF square root filter deliver similar results
with slightly shifted median.

The issues previously described can be resolved at the expense of improving the
prior description. This can be done by moving the mean of the prior distribution
towards the truth. Similar to the Kalman way of updating, we may obtain more
information about the prior mean using the existing measurement data. Once this
has been done, one may alternate the old prior with the newly obtained mean value
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Figure 22: Comparison of posterior probability density functions describing κ
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different number of measurement points
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Figure 25: Comparison of probability density functions of the posterior of κ for dif-
ferent numbers of measurement points after moving the prior
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Figure 26: The influence of the measurement error on the posterior quantiles: left is
the truth in C1 scenario and right in C2 scenario
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Figure 27: The influence of the measurement error on the posterior quantiles for case
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and continue the estimation as described previously. Even though the method just
described represents an oversimplification (especially in case of nonlinear functions),
it does work for slightly nonlinear functions (measurement operators). Such a case
is depicted in Fig. 24, where the process of identifying the truth in 2σ region is
illustrated. Here, the red line denotes the prior distribution, while the dashed black
line is the newly adopted prior (same statistics besides mean). From the resulting
plots of the posterior one may see that this time all procedures return similar results.
This point emphasizes the importance of the prior assumption. Also, one may note
in Fig. 25 that linear Bayesian updates are better than the MCMC update when the
number of measurement points is small.

As mentioned earlier, the estimation of the conductivity coefficient greatly depends
on the number of the measurement points, as well as on the measurement (model)
errors. The analysis and simulation of the updating procedures for different levels of
the measurement errors are shown in Fig. 26. From these figures, it is apparent that
the posterior estimate better complies the truth for smaller values of error. The same
is valid for second two case scenarios, see Fig. 27. However, these plots also reveal
that the bigger measurement error can regularise the estimation process such that the
99% confidence interval of posterior includes the truth value.

6 Conclusions

This contribution aimed to present and compare different numerical approaches to
Bayesian estimations of non-observable model parameters from noisy measurement
data. The model parameter stands for the thermal conductivity and is represented by
a random variable with a non-Gaussian prior distribution. The numerical findings
suggest that Markov chain Monte Carlo sampling of the posterior distribution is a
reliable way of computing the Bayesian update. However, the model simulation –
often time-consuming – has to be evaluated for each sample in the chain, which
makes the whole procedure computationally expensive. To overcome this problem,
the stochastic Galerkin method is employed in order to construct a polynomial chaos
based approximation of the model response. This is then used within the sampling
procedure, instead of full model simulations. From these numerical findings it is
evident that the proxy model may jeopardize the accuracy of the Markov chain Monte
Carlo procedure due to a combination of both approximation and sampling errors.
For reasons of efficiency the updating procedure is recasted into an alternative linear
Bayesian form thereby enabling a direct algebraic way of computing the posterior
distribution. While the sampling version of the linear filter—also known as ensemble
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Kalman filter—needs a considerably smaller number of samples than the MCMC
procedure, this approach is severely underestimating or overestimating the residual
uncertainty. On the other hand, the polynomial chaos linear Bayesian methods do not
seem to suffer from any of previously mentioned issues. They deliver more reliable
results than EnKF procedures and are better than proxy MCMC in case of linear
measurements. However, LBU may suffer from larger residual errors when applied
in nonlinear cases.

While the initial findings are promising, further research is necessary. Therefore,
future analysis will be needed to validate the mentioned numerical behaviour of the
presented computational procedures for the more complex diffusion problem when
the conductivity parameter is modelled in a form of random field. In addition, the
adaption of the polynomial chaos based linear Bayes filter has to be made in order to
handle the assimilation from the noisy nonlinear measurements.
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