
Published as a conference paper at ICLR 2018

DEEP ACTIVE LEARNING FOR NAMED ENTITY
RECOGNITION

Yanyao Shen
UT Austin
Austin, TX 78712
shenyanyao@utexas.edu

Hyokun Yun
Amazon Web Services
Seattle, WA 98101
yunhyoku@amazon.com

Zachary C. Lipton
Amazon Web Services
Seattle, WA 98101
liptoz@amazon.com

Yakov Kronrod
Amazon Web Services
Seattle, WA 98101
kronrod@amazon.com

Animashree Anandkumar
Amazon Web Services
Seattle, WA 98101
anima@amazon.com

ABSTRACT

Deep learning has yielded state-of-the-art performance on many natural language
processing tasks including named entity recognition (NER). However, this typically
requires large amounts of labeled data. In this work, we demonstrate that the
amount of labeled training data can be drastically reduced when deep learning is
combined with active learning. While active learning is sample-efficient, it can
be computationally expensive since it requires iterative retraining. To speed this
up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM
model consisting of convolutional character and word encoders and a long short
term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art
performance on standard datasets for the task while being computationally much
more efficient than best performing models. We carry out incremental active
learning, during the training process, and are able to nearly match state-of-the-art
performance with just 25% of the original training data.

1 INTRODUCTION

Over the past few years, papers applying deep neural networks (DNNs) to the task of named entity
recognition (NER) have successively advanced the state-of-the-art (Collobert et al., 2011; Huang
et al., 2015; Lample et al., 2016; Chiu & Nichols, 2016; Yang et al., 2016). However, under typical
training procedures, the advantages of deep learning diminish when working with small datasets.
For instance, on the OntoNotes-5.0 English dataset, whose training set contains 1,088,503 words,
a DNN model outperforms the best shallow model by 2.24% as measured by F1 score (Chiu &
Nichols, 2016). However, on the comparatively small CoNLL-2003 English dataset, whose training
set contains 203,621 words, the best DNN model enjoys only a 0.4% advantage. To make deep
learning more broadly useful, it is crucial to reduce its training data requirements.

Generally, the annotation budget for labeling is far less than the total number of available (unlabeled)
samples. For NER, getting unlabeled data is practically free, owing to the large amount of content
that can be efficiently scraped off the web. On the other hand, it is especially expensive to obtain
annotated data for NER since it requires multi-stage pipelines with sufficiently well-trained annotators
(Kilicoglu et al., 2016; Bontcheva et al., 2017). In such cases, active learning offers a promising
approach to efficiently select the set of samples for labeling. Unlike the supervised learning setting,
in which examples are drawn and labeled at random, in the active learning setting, the algorithm can
choose which examples to label.

Active learning aims to select a more informative set of examples in contrast to supervised learning,
which is trained on a set of randomly drawn examples. A central challenge in active learning is to
determine what constitutes more informative and how the active learner can recognize this based on
what it already knows. The most common approach is uncertainty sampling, in which the model
preferentially selects examples for which it’s current prediction is least confident. Other approaches

1

Published as a conference paper at ICLR 2018

include representativeness-based sampling where the model selects a diverse set that represent the
input space without adding too much redundancy.

In this work, we investigate practical active learning algorithms on lightweight deep neural network
architectures for the NER task. Training with active learning proceeds in multiple rounds. Traditional
active learning schemes are expensive for deep learning since they require complete retraining of
the classifier with newly annotated samples after each round. In our experiments, for example, the
model must be retrained 54 times. Because retraining from scratch is not practical, we instead carry
out incremental training with each batch of new labels: we mix newly annotated samples with the
older ones, and update our neural network weights for a small number of epochs, before querying for
labels in a new round. This modification drastically reduces the computational requirements of active
learning methods and makes it practical to deploy them.

We further reduce the computational complexity by selecting a lightweight architecture for NER. We
propose a new CNN-CNN-LSTM architecture for NER consisting of a convolutional character-level
encoder, convolutional word-level encoder, and long short term memory (LSTM) tag decoder. This
model handles out-of-vocabulary words gracefully and, owing to the greater reliance on convolutions
(vs recurrent layers), trains much faster than other deep models while performing competitively.

We introduce a simple uncertainty-based heuristic for active learning with sequence tagging. Our
model selects those sentences for which the length-normalized log probability of the current prediction
is the lowest. Our experiments with the Onto-Notes 5.0 English and Chinese datasets demonstrate
results comparable to the Bayesian active learning by disagreement method (Gal et al., 2017).
Moreover our heuristic is faster to compute since it does not require multiple forward passes. On
the OntoNotes-5.0 English dataset, our approach matches 99% of the F1 score achieved by the best
deep models trained in a standard, supervised fashion despite using only a 24.9% of the data. On the
OntoNotes-5.0 Chinese dataset, we match 99% performance with only 30.1% of the data. Thus, we
are able to achieve state of art performance with drastically lower number of samples.

2 RELATED WORK

Deep learning for named entity recognition The use of DNNs for NER was pioneered by
Collobert et al. (2011), who proposed an architecture based on temporal convolutional neural networks
(CNNs) over the sequence of words. Since then, many papers have proposed improvements to this
architecture. Huang et al. (2015) proposed to replace CNN encoder in Collobert et al. (2011) with
bidirectional LSTM encoder, while Lample et al. (2016) and Chiu & Nichols (2016) introduced
hierarchy in the architecture by replacing hand-engineered character-level features in prior works
with additional bidirectional LSTM and CNN encoders respectively. In other related work, Mesnil
et al. (2013) and Nguyen et al. (2016) pioneered the use of recurrent neural networks (RNNs) for
decoding tags. However, most recent competitive approaches rely upon CRFs as decoder (Lample
et al., 2016; Chiu & Nichols, 2016; Yang et al., 2016). In this work, we demonstrate that LSTM
decoders outperform CRF decoders and are faster to train when the number of entity types is large.

Active learning While learning-theoretic properties of active learning algorithms are well-
studied (Dasgupta et al., 2005; Balcan et al., 2009; Awasthi et al., 2014; Yan & Zhang, 2017;
Beygelzimer et al., 2009), classic algorithms and guarantees cannot be generalized to DNNs, which
are currently are the state-of-the-art techniques for NER. Owing to the limitations of current theoreti-
cal analysis, more practical active learning applications employ a range of heuristic procedures for
selecting examples to query. For example, Tong & Koller (2001) suggests a margin-based selection
criteria, while Settles & Craven (2008) while Shen et al. (2004) combines multiple criteria for NLP
tasks. Culotta & McCallum (2005) explores the application of least confidence criterion for linear
CRF models on sequence prediction tasks. For a more comprehensive review of the literature, we
refer to Settles (2010) and Olsson (2009).

Deep active learning While DNNs have achieved impressive empirical results across diverse
applications (Krizhevsky et al., 2012; Hinton et al., 2012; Manning, 2016), active learning approaches
for these models have yet to be well studied, and most current work addresses image classification.
Wang et al. (2016) claims to be the first to study active learning for image classification with CNNs
and proposes methods based on uncertainty-based sampling, while Gal et al. (2017) and Kendall &
Gal (2017) show that sampling based on a Bayesian uncertainty measure can be more advantageous.
In one related paper, Zhang et al. (2017) investigate active learning for sentence classification with

2

Published as a conference paper at ICLR 2018

Character-Level Encoder Word-Level Encoder Tag Decoder Reference

None CNN CRF Collobert et al. (2011)
None RNN RNN Mesnil et al. (2013)
None RNN GRU Nguyen et al. (2016)
None LSTM CRF Huang et al. (2015)

LSTM LSTM CRF Lample et al. (2016)
CNN LSTM CRF Chiu & Nichols (2016)
CNN LSTM LSTM, Pointer Networks Zhai et al. (2017)
GRU GRU CRF Yang et al. (2016)
None Dilated CNN Independent Softmax, CRF Strubell et al. (2017)
CNN CNN LSTM Ours

Table 1: Prior works on neural architectures for sequence tagging, and their corresponding design
choices.

CNNs. However, to our knowledge, prior to this work, deep active learning for sequence tagging
tasks, which often have structured output space and variable-length input, has not been studied.

3 NER MODEL DESCRIPTION

Most active learning methods require frequent retraining of the model as new labeled examples are
acquired. Therefore, it is crucial that the model can be efficiently retrained. On the other hand, we
would still like to reach the level of performance rivaling state-of-the-art DNNs.

To accomplish this, we first identify that many DNN architectures for NER can be decomposed
into three components: 1) the character-level encoder, which extracts features for each word from
characters, 2) the word-level encoder which extracts features from the surrounding sequence of words,
and 3) the tag decoder, which induces a probability distribution over any sequences of tags. This
conceptual framework allows us to view a variety of DNNs in a unified perspective; see Table 1.

Owing to the superior computational efficiency of CNNs over LSTMs, we propose a lightweight
neural network architecture for NER, which we name CNN-CNN-LSTM and describe below.

Formatted Sentence [BOS] Kate lives on Mars [EOS] [PAD]

Tag O S-PER O O S-LOC O O

Table 2: Example formatted sentence. To avoid clutter, [BOW] and [EOW] symbols are not shown.

Data Representation We represent each input sentence as follows; First, special [BOS] and
[EOS] tokens are added at the beginning and the end of the sentence, respectively. In order to
batch the computation of multiple sentences, sentences with similar length are grouped together into
buckets, and [PAD] tokens are added at the end of sentences to make their lengths uniform inside of
the bucket. We follow an analogous procedure to represent the characters in each word. For example,
the sentence ‘Kate lives on Mars’ is formatted as shown in Table 2. The formatted sentence is denoted
as {xij}, where xij is the one-hot encoding of the j-th character in the i-th word.

Character-Level Encoder For each word i, we use CNNs (LeCun et al., 1995) to extract character-
level features wchar

i (Figure 1). While LSTM recurrent neural network (Hochreiter & Schmidhuber,
1997) slightly outperforms CNN as a character-level encoder, the improvement is not statistically
significant and the computational cost of LSTM encoders is much higher than CNNs (see Section 5,
also Reimers & Gurevych (2017) for detailed analysis).

We apply ReLU nonlinearities (Nair & Hinton, 2010) and dropout (Srivastava et al., 2014) between
CNN layers, and include a residual connection between input and output of each layer (He et al.,
2016). So that our representation of the word is of fixed length, we apply max-pooling on the outputs
of the topmost layer of the character-level encoder (Kim, 2014).

3

Published as a conference paper at ICLR 2018

wchar
2

h
(2)
21 h

(2)
22 h

(2)
23 h

(2)
24 h

(2)
25 h

(2)
26 h

(2)
27

h
(1)
21 h

(1)
22 h

(1)
23 h

(1)
24 h

(1)
25 h

(1)
26 h

(1)
27

x21 x22 x23 x24 x25 x26 x27

[BOW] K a t e [EOW] [PAD]

max pooling

Figure 1: Example CNN architecture for Character-level Encoder with two layers.

Word-Level Encoder To complete our representation of each word, we concatenate its character-
level features with wemb

i , a latent word embedding corresponding to that word:

wfull
i :=

(
wchar
i ,wemb

i

)
.

We initialize the latent word embeddings with with word2vec training Mikolov et al. (2013) and then
update the embeddings over the course of training. In order to generalize to words unseen in the
training data, we replace each word with a special [UNK] (unknown) token with 50% probability
during training, an approach that resembles the word-drop method due to Lample et al. (2016).

Given the sequence of word-level input features wfull
1 ,wfull

2 , . . . ,wfull
n , we extract word-level rep-

resentations hEnc
1 ,hEnc

2 , . . . ,hEnc
n for each word position in the sentence using a CNN. In Figure 2,

we depict an instance of our architecture with two convolutional layers and kernels of width 3. We
concatenate the representation at the l-th convolutional layer h(l)

i , with the input features wfull
i :

hEnc
i =

(
h
(l)
i ,w

full
i

)

hEnc
1 hEnc

2 hEnc
3 hEnc

4 hEnc
5 hEnc

6 hEnc
7

h
(2)
1 h

(2)
2 h

(2)
3 h

(2)
4 h

(2)
5 h

(2)
6 h

(2)
7

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4 h

(1)
5 h

(1)
6 h

(1)
7

wfull
1 wfull

2 wfull
3 wfull

4 wfull
5 wfull

6 wfull
7

[BOS] Kate lives on Mars [EOS] [PAD]

Figure 2: Example CNN architecture for Word-level Encoder with two layers.

LSTM RNNs can also perform word-level encoding Huang et al. (2015), and models with LSTM
word-level encoding give a slight (but not significant) boost over CNN word-level encoders in terms
of F1 score (see Section 5). However, CNN word-level encoders are considerably faster (Strubell
et al., 2017), which is crucial for the iterative retraining in our active learning scheme.

Tag Decoder The tag decoder induces a probability distribution over sequences of tags, condi-
tioned on the word-level encoder features: P

[
y2, y3, . . . , yn−1 |

{
hEnc
i

}]
1. Chain CRF (Lafferty

et al., 2001) is a popular choice for tag decoder, adopted by most modern DNNs for NER:

P
[
t2, t3, . . . , tn−1 |

{
hEnc
i

}]
∝ exp

(
n−1∑
i=2

{
WhEnc

i + b
}
ti

+Ati−1,ti

)
, (1)

1y1 and yn are ignored because they correspond to auxiliary words [BOS] and [EOS]. If [PAD] words
are introduced, they are ignored as well.

4

Published as a conference paper at ICLR 2018

where W , A, b are learnable parameters, and {·}ti refers to the ti-th coordinate of the vector. To
compute the partition function of (1), which is required for training, usually dynamic programming is
employed, and its time complexity is O(nT 2) where T is the number of entity types (Collobert et al.,
2011).

Alternatively, we use an LSTM RNN for the tag decoder, as depicted in Figure 3. At the first time
step, the [GO]-symbol is provided as y1 to the decoder LSTM. At each time step i, the LSTM
decoder computes hDec

i+1, the hidden state for decoding word i+ 1, using the last tag yi, the current
decoder hidden state hDec

i , and the learned representation of next word hEnc
i+1. Using a softmax loss

function, yi+1 is decoded; this is further fed as an input to the next time step.

S-PER O O S-LOC

y2 y3 y4 y5

hDec
1 hDec

2 hDec
3 hDec

4 hDec
5

y1 y2 y3 y4

[GO] S-PER O O

hEnc
2 hEnc

3 hEnc
4 hEnc

5

Kate lives on Mars

Figure 3: LSTM architecture for Tag Decoder.

Since this is a locally normalized model (Andor et al., 2016), it does not require the costly computation
of partition function, and it allows us to significantly speed up training compared to using CRFs.
Also, we observed that while it is computationally intractable to find the best sequence of tags with an
LSTM decoder, greedily decoding tags from left to right yields the performance comparable to chain
CRF decoder (see Appendix A). While the use of RNNs tag decoders has been explored (Mesnil
et al., 2013; Nguyen et al., 2016; Zhai et al., 2017), we demonstrate for the first time that models
using RNNs instead of CRFs for tag decoder can achieve state-of-the-art performance. See Section 5.

4 ACTIVE LEARNING

Labeling data for NER usually requires manual annotations by human experts, which are costly to
acquire at scale. Active learning seeks to ameliorate this problem by strategically choosing which
examples to annotate, in the hope of getting greater performance with fewer annotations. To this
end, we consider the following setup for interactively acquiring annotations. The learning process
consists of multiple rounds: At the beginning of each round, the active learning algorithm chooses
sentences to be annotated up to the predefined budget. After receiving annotations, we update the
model parameters by training on the augmented dataset, and proceeds to the next round. We assume
that the cost of annotating a sentence is proportional to the number of words in the sentence and that
every word in the selected sentence must be annotated at once, i.e. we do not allow or account for
partially annotated sentences.

While various existing active learning strategies suit this setup (Settles, 2010), we explore the
uncertainty sampling strategy. With the uncertainty-based sampling strategy (Lewis & Gale, 1994),
we rank the unlabeled examples according to the current model’s uncertainty in its prediction of the
corresponding labels. We consider three ranking methods, each of which can be easily implemented
in the CNN-CNN-LSTM model or most other deep neural approaches to NER.

Least Confidence (LC): Culotta & McCallum (2005) proposed to sort examples in ascending order
according to the probability assigned by the model to the most likely sequence of tags:

1− max
y1,...,yn

P [y1, . . . , yn | {xij}] . (2)

Exactly computing (2) requires identifying the most likely sequence of tags according to the LSTM
decoder. Because determining the most likely sequence is intractable, we approximate the score by
using the probability assigned to the greedily decoded sequence.

5

Published as a conference paper at ICLR 2018

Maximum Normalized Log-Probability (MNLP): Preliminary analysis revealed that the LC
method disproportionately selects longer sentences. Note that sorting unlabeled examples in descend-
ing order by (2) is equivalent to sorting in ascending order by the following scores:

max
y1,...,yn

P [y1, . . . , yn | {xij}]⇔ max
y1,...,yn

n∏
i=1

P [yi | y1, . . . , yn−1, {xij}]

⇔ max
y1,...,yn

n∑
i=1

logP [yi |y1, . . . , yn−1, {xij}] . (3)

Since (3) contains summation over words, LC method naturally favors longer sentences. Because
longer sentences requires more labor for annotation, we find this undesirable, and propose to normalize
(3) as follows, which we call Maximum Normalized Log-Probability method:

max
y1,...,yn

1

n

n∑
i=1

logP [yi | y1, . . . , yn−1, {xij}] .

Bayesian Active Learning by Disagreement (BALD): We also consider sampling according to the
measure of uncertainty proposed by Gal et al. (2017). Observing a correspondence between dropout
(Srivastava et al., 2014) and deep Gaussian processes (Damianou & Lawrence, 2013), they propose
that the variability of the predictions over successive forward passes due to dropout can be interpreted
as a measure of the model’s uncertainty (Gal & Ghahramani, 2016). Denote P1,P2, . . .PM as models
resulting from applying M independently sampled dropout masks. One measure of our uncertainty
on the ith word is fi, the fraction of models which disagreed with the most popular choice:

fi = 1−
maxy

∣∣{m : argmaxy′ Pm [yi = y′] = y
}∣∣

M
,

where |·| denotes cardinality of a set. We normalize this by the number of words as 1
n

∑n
j=1 fj , In

this paper, we draw M = 100 independent dropout masks.

Other Sampling Strategies. Consider that the confidence of the model can help to distinguish
between hard and easy samples. Thus, sampling examples where the model is uncertain might save
us from sampling too heavily from regions where the model is already proficient. But intuitively,
when we query a batch of examples in each round, we might want to guard against querying examples
that are too similar to each other, thus collecting redundant information. We also might worry that a
purely uncertainty-based approach would oversample outliers. Thus we explore techniques to guard
against these problems by selecting a set of samples that is representative of the dataset. Following
Wei et al. (2015), we express the problem of maximizing representativeness of a labeled set as a
submodular optimization problem, and provide an efficient streaming algorithm adapted to use a
constraint suitable to the NER task.

Our approach to representativeness-based sampling proceeds as follows: Denote X as the set of all
samples, and XL,XU representing the set of labeled and unlabeled samples respectively. For an
unlabeled set S ∈ XU , the utility fw is defined as the summation of marginal utility gain over all
unlabeled points, weighted by their uncertainty. More formally,

fw(S) =
∑
i∈XU

US(i) ·
[

max
j∈S∪XL

w(i, j)−max
j∈XL

w(i, j)

]
, (4)

where US(i) is the uncertainty score on example i. In order to find a good set S with high fw
value, we exploit the submodularity of the function, and use an online algorithm under knapsack
constraint. More details of this method can be found in the supplementary material (Appendix C). In
our experiments, this approach fails to match the uncertainty-based heuristics or to improve upon
them when used in combination. Nevertheless, we describe the algorithm and include the negative
results for their scientific value.

6

Published as a conference paper at ICLR 2018

5 EXPERIMENTS

5.1 MODEL EFFICIENCY AND PERFORMANCE

In order to evaluate the efficiency and performance CNN-CNN-LSTM as well as other alternatives,
we run the experiments on two widely used NER datasets: CoNLL-2003 English (Tjong Kim Sang &
De Meulder, 2003) and OntoNotes-5.0 English (Pradhan et al., 2013). We use the standard split of
training/validation/test sets, and use the validation set performance to determine hyperparameters
such as the learning rate or the number of iterations for early stopping. Unlike Lample et al. (2016)
and Chiu & Nichols (2016), we do not train on the validation dataset. We report the F1 score for each
model, which is standard. We only consider neural models in this comparison, since they outperform
non-neural models for this task. Since our goal here is to compare neural network architectures, we
did not experiment with gazetteers.

For neural architectures previously explored by others, we simply cite reported metrics. For LSTM
word-level encoder, we use single-layer model with 100 hidden units for CoNLL-2003 English
(following Lample et al. (2016)) and two-layer model with 300 hidden units for OntoNotes 5.0
datasets (following Chiu & Nichols (2016)). For character-level LSTM encoder, we use single-layer
LSTM with 25 hidden units (following Lample et al. (2016)). For CNN word-level encoder, we use
two-layer CNNs with 800 filters and kernel width 5, and for CNN character-level encoder, we use
single-layer CNNs with 50 filters and kernel width 3 (following Chiu & Nichols (2016)). Dropout
probabilities are all set as 0.5. We use structured skip-gram model (Ling et al., 2015) trained on
Gigawords-English corpus (Graff & Cieri, 2003), which showed a good boost over vanilla skip-gram
model (Mikolov et al., 2013) we do not report here. We use vanilla stochastic gradient descent,
since it is commonly reported in the named entity recognition literature that this outperforms more
sophisticated methods at convergence (Lample et al., 2016; Chiu & Nichols, 2016). We uniformly
set the step size as 0.001 and the batch size as 128. When using LSTMs for the tag decoder, for
inference, we only use greedy decoding; beam search gave very marginal improvement in our initial
experiments. We repeat each experiment four times, and report mean and standard deviation. In
terms of measuring the training speed of our models, we compute the time spent for one iteration of
training on the dataset, with eight K80 GPUs in p2.8xlarge on Amazon Web Services2.

Table 3 and Table 4 show the comparison between our model and other best performing models.
LSTM tag decoder shows performance comparable to CRF tag decoder, and it works better than
the CRF decoder when used with CNN encoder; compare CNN-CNN-LSTM vs. CNN-CNN-CRF
on both tables. On the CoNLL-2003 English dataset which has only four entity types, the training
speed of CNN-CNN-LSTM and CNN-CNN-CRF are comparable. However, on the OntoNotes 5.0
English dataset which has 18 entity types, the training speed of CNN-CNN-LSTM is twice faster
than CNN-CNN-CRF because the time complexity of computing the partition function for CRF is
quadratic to the number of entity types. CNN-CNN-LSTM is also 44% faster than CNN-LSTM-
LSTM on OntoNotes, showing the advantage of CNN over LSTM as word encoder; on CoNLL-2003,
sentences tend to be shorter and this advantage was not clearly seen; its median number of words
in sentences is 12 opposed 17 of OntoNotes. Compared to the CNN-LSTM-CRF model, which is
considered as a state-of-the-art model in terms of performance (Chiu & Nichols, 2016; Strubell et al.,
2017), CNN-CNN-LSTM provides four times speedup in terms of the training speed, and achieves
comparatively high performance measured by F1 score.

5.2 PERFORMANCE OF DEEP ACTIVE LEARNING

We use OntoNotes-5.0 English and Chinese data (Pradhan et al., 2013) for our experiments. The
training datasets contain 1,088,503 words and 756,063 words respectively. State-of-the-art models
trained on the full training sets achieve F1 scores of 86.86 Strubell et al. (2017) and 75.63 (our
CNN-CNN-LSTM) on the test sets.

Comparisons of selection algorithms We empirically compare selection algorithms proposed in
Section 4, as well as uniformly random baseline (RAND). All algorithms start with an identical 1%
of original training data and a randomly initialized model. In each round, every algorithm chooses
sentences from the rest of the training data until 20,000 words have been selected, adding this data to

2https://aws.amazon.com/ec2/instance-types/p2/

7

https://aws.amazon.com/ec2/instance-types/p2/

Published as a conference paper at ICLR 2018

Char Word Tag Reference F1 Sec/Epoch

None CNN CRF Collobert et al. (2011) 88.67 -
None LSTM CRF Huang et al. (2015) 90.10 -

LSTM LSTM CRF Lample et al. (2016) 90.94 -
CNN LSTM CRF Chiu & Nichols (2016) 90.91 ± 0.20 -
GRU GRU CRF Yang et al. (2016) 90.94 -
None Dilated CNN CRF Strubell et al. (2017) 90.54 ± 0.18 -

LSTM LSTM LSTM 90.89 ± 0.19 49
CNN LSTM LSTM 90.58 ± 0.28 11
CNN CNN LSTM 90.69 ± 0.19 11
CNN CNN CRF 90.35 ± 0.24 12

Table 3: Evaluations on the test set of CoNLL-2003 English

Char Word Tag Reference F1 Sec/Epoch

CNN LSTM CRF Chiu & Nichols (2016) 86.28 ± 0.26 83∗
None Dilated CNN CRF Strubell et al. (2017) 86.84 ± 0.19 -

CNN LSTM LSTM 86.40 ± 0.48 76
CNN CNN LSTM 86.52 ± 0.25 22
CNN CNN CRF 86.15 ± 0.08 44

LSTM LSTM LSTM 86.63 ± 0.49 206

Table 4: Evaluations on the test set of OntoNotes 5.0 English. (*) Training speed of CNN-LSTM-CRF
model was measured with our own implementation of it.

its training set. We then update each model by stochastic gradient descent on its augmented training
dataset for 50 passes. We evaluate the performance of algorithm by its F1 score on the test dataset.

nw bc tc wb bn mz
0

100

200

300

400

500

#

half_data, F1=85.10
no_nw_data, F1=81.49
nw_only_data, F1=82.08

Figure 5: Genre distribution of top 1,000 sentences
chosen by an active learning algorithm

Figure 4 shows the results. All active learn-
ing algorithms perform significantly better than
the random baseline. Among active learners,
MNLP and BALD slightly outperformed tradi-
tional LC in early rounds. Note that MNLP
is computationally more efficient than BALD,
since it only requires a single forward pass on
the unlabeled dataset to compute uncertainty
scores, whereas BALD requires multiple for-
ward passes. Impressively, active learning al-
gorithms achieve 99% performance of the best
deep model trained on full data using only 24.9%
of the training data on the English dataset and
30.1% on Chinese. Also, 12.0% and 16.9% of
training data were enough for deep active learn-
ing algorithms to surpass the performance of
the shallow models from Pradhan et al. (2013)
trained on the full training data. We repeated the
experiment eight times and confirmed that the trend is replicated across multiple runs; see Appendix B
for details.

Detection of under-explored genres To better understand how active learning algorithms choose
informative examples, we designed the following experiment. The OntoNotes datasets consist of
six genres: broadcast conversation (bc), braodcast news (bn), magazine genre (mz), newswire (nw),
telephone conversation (tc), weblogs (wb). We created three training datasets: half-data, which
contains random 50% of the original training data, nw-data, which contains sentences only from
newswire (51.5% of words in the original data), and no-nw-data, which is the complement of nw-
data. Then, we trained CNN-CNN-LSTM model on each dataset. The model trained on half-data

8

Published as a conference paper at ICLR 2018

0 20 40 60 80

70

75

80

85

Percent of words annotated

Te
st

F1
sc

or
e

MNLP
LC

BALD
RAND

SUBMOD
Best Deep Model

Best Shallow Model

(a) OntoNotes-5.0 English

0 20 40 60 80 100

65

70

75

Percent of words annotated

Te
st

F1
sc

or
e

MNLP
LC

BALD
RAND

SUBMOD
Best Deep Model

Best Shallow Model

(b) OntoNotes-5.0 Chinese

Figure 4: F1 score on the test dataset, in terms of the number of words labeled.

achieved 85.10 F1, significantly outperforming others trained on biased datasets (no-nw-data: 81.49,
nw-only-data: 82.08). This showed the importance of good genre coverage in training data. Then,
we analyzed the genre distribution of 1,000 sentences MNLP chose for each model (see Figure 5).
For no-nw-data, the algorithm chose many more newswire (nw) sentences than it did for unbiased
half-data (367 vs. 217). On the other hand, it undersampled newswire sentences for nw-only-data
and increased the proportion of broadcast news and telephone conversation, which are genres distant
from newswire. Impressively, although we did not provide the genre of sentences to the algorithm, it
was able to automatically detect underexplored genres.

6 CONCLUSION

We proposed an efficient model for NER tasks which gives high performances on well-established
datasets. Further, we use deep active learning algorithms for NER and empirically demonstrated that
they achieve state-of-the-art performance with much less data than models trained in the standard
supervised fashion.

REFERENCES

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. Globally normalized transition-based neural networks. arXiv
preprint arXiv:1603.06042, 2016.

Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization for efficiently
learning linear separators with noise. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, pp. 449–458. ACM, 2014.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming
submodular maximization: Massive data summarization on the fly. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 671–680.
ACM, 2014.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. Journal of
Computer and System Sciences, 75(1):78–89, 2009.

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 49–56. ACM,
2009.

Kalina Bontcheva, Leon Derczynski, and Ian Roberts. Crowdsourcing named entity recognition and
entity linking corpora. In Handbook of Linguistic Annotation, pp. 875–892. Springer, 2017.

Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-cnns. Transactions
of the Association for Computational Linguistics, 4:357–370, 2016.

9

Published as a conference paper at ICLR 2018

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12
(Aug):2493–2537, 2011.

Aron Culotta and Andrew McCallum. Reducing labeling effort for structured prediction tasks. In
AAAI, volume 5, pp. 746–51, 2005.

Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence and
Statistics, pp. 207–215, 2013.

Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of perceptron-based active
learning. In International Conference on Computational Learning Theory, pp. 249–263. Springer,
2005.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information Processing Systems, pp. 1019–1027, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
arXiv preprint arXiv:1703.02910, 2017.

David Graff and Christopher Cieri. English gigaword, ldc catalog no. LDC2003T05. Linguistic Data
Consortium, University of Pennsylvania, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? arXiv preprint arXiv:1703.04977, 2017.

Halil Kilicoglu, Asma Ben Abacha, Yassine Mrabet, Kirk Roberts, Laritza Rodriguez, Sonya E
Shooshan, and Dina Demner-Fushman. Annotating named entities in consumer health questions.
In LREC, 2016.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,
2014.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability: Practical
Approaches to Hard Problems, 3(19):8, 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

John Lafferty, Andrew McCallum, Fernando Pereira, et al. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the eighteenth international
conference on machine learning, ICML, volume 1, pp. 282–289, 2001.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer.
Neural architectures for named entity recognition. In Proceedings of NAACL-HLT, pp. 260–270,
2016.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

10

Published as a conference paper at ICLR 2018

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 420–429. ACM, 2007.

David D Lewis and William A Gale. A sequential algorithm for training text classifiers. In Proceed-
ings of the 17th annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 3–12. Springer-Verlag New York, Inc., 1994.

Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. Two/too simple adaptations of word2vec
for syntax problems. In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 2015.

Christopher D Manning. Computational linguistics and deep learning. Computational Linguistics,
2016.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua Bengio. Investigation of recurrent-neural-
network architectures and learning methods for spoken language understanding. In Interspeech,
pp. 3771–3775, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pp. 3111–3119, 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978.

Thien Huu Nguyen, Avirup Sil, Georgiana Dinu, and Radu Florian. Toward mention detection
robustness with recurrent neural networks. arXiv preprint arXiv:1602.07749, 2016.

Fredrik Olsson. A literature survey of active machine learning in the context of natural language
processing. 2009.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Björkelund, Olga
Uryupina, Yuchen Zhang, and Zhi Zhong. Towards robust linguistic analysis using ontonotes. In
CoNLL, pp. 143–152, 2013.

Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 338–348, 2017.

Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-66):11, 2010.

Burr Settles and Mark Craven. An analysis of active learning strategies for sequence labeling
tasks. In Proceedings of the conference on empirical methods in natural language processing, pp.
1070–1079. Association for Computational Linguistics, 2008.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and Chew-Lim Tan. Multi-criteria-based active
learning for named entity recognition. In Proceedings of the 42nd Annual Meeting on Association
for Computational Linguistics, pp. 589. Association for Computational Linguistics, 2004.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. Fast and accurate entity
recognition with iterated dilated convolutions. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 2660–2670, 2017.

11

Published as a conference paper at ICLR 2018

Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4, pp. 142–147. Association for Computational
Linguistics, 2003.

Simon Tong and Daphne Koller. Support vector machine active learning with applications to text
classification. Journal of machine learning research, 2(Nov):45–66, 2001.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-effective active learning for
deep image classification. IEEE Transactions on Circuits and Systems for Video Technology, 2016.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1954–
1963, 2015.

Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal active learning
of halfspaces. arXiv preprint arXiv:1702.05581, 2017.

Zhilin Yang, Ruslan Salakhutdinov, and William Cohen. Multi-task cross-lingual sequence tagging
from scratch. arXiv preprint arXiv:1603.06270, 2016.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen Zhou. Neural models for sequence chunking. In
AAAI, pp. 3365–3371, 2017.

Ye Zhang, Matthew Lease, and Byron C Wallace. Active discriminative text representation learning.
In AAAI, pp. 3386–3392, 2017.

12

Published as a conference paper at ICLR 2018

A EFFECT OF BEAM SIZE ON LSTM DECODER

One potential concern when decoding with an LSTM decoder as compared to using a CRF decoder is
that finding the best sequence of labels that maximizes the probability P

[
t2, t3, . . . , tn−1 |

{
hEnc
i

}]
is computationally intractable. In practice, however, we find that simple greedy decoding, i.e., beam
search with beam size 1, works surprisingly well. Table 5 shows how changing the beam size of
decoder affects the performance of the model. It can be seen that the performance of the model
changes very little with respect to the beam size. Beam search with size 2 is marginally better
than greedy decoding, and further increasing the beam size did not help at all. Moreover, we note
that while it may be computationally efficient to pick the most likely tag sequence given a CRF
encoder, the LSTM decoder may give more accurate predictions, owing to it’s greater representational
power and ability to model long-range dependencies. Thus even if we do not always choose the
most probable tag sequence from the LSTM, we can still outperform the CRF (as our experiments
demonstrate).

Beam Size F1

1 87.26
2 87.34
4 87.33
8 87.33

16 87.33

Table 5: Effect of beam size in LSTM decoder. We used a single LSTM-LSTM-LSTM model, and
evaluated on OntoNotes 5.0 English dataset.

B LEARNING CURVE IN ACTIVE LEARNING EXPERIMENTS ACROSS
MULTIPLE RUNS

In order to understand the variability of learning curves in Figure 4a across experiments, we repeated
the active learning experiment on OntoNotes-5.0 English eight times, each of which started with
different initial dataset chosen randomly. Figure 6 shows the result in first nine rounds of labeled data
acquisition. While MNLP, LC and BALD are all competitive against each other, there is a noticeable
trend that MNLP and BALD outperforms LC in early rounds of data acquisition.

C REPRESENTATIVENESS-BASED ACTIVE LEARNING

Consider that the confidence of the model can help to distinguish between hard and easy samples.
Thus, sampling examples where the model is uncertain might save us from sampling too heavily from
regions where the model is already proficient. But intuitively, when we query a batch of examples
in each round, we might want to guard against querying examples that are too similar to each other,
thus collecting redundant information. We also might worry that a purely uncertainty-based approach
would oversample outliers. Thus we explore techniques to guard against these problems by selecting
a set of samples that is representative of the dataset. Following Wei et al. (2015), we express the
problem of maximizing representativeness of a labeled set as a submodular optimization problem,
and provide an efficient streaming algorithm adapted to use a constraint suitable to the NER task. We
also provide some with theoretical guarantees.

Submodular utility function In order to reason about the similarity between samples, we first
embed each sample i into a fixed-dimensional euclidean space as a vector xi. We consider two
embedding methods: 1) the average of pre-trained word embeddings, 1

n

∑n
t=1 w

emb
t , which can be

efficiently computed without training of the NER model, and 2) the average of activation maps at the
topmost layer of the encoder 1

n

∑n
t=1 h

Enc
t , an embedding which might be better suited to the context

of the NER task. Then, we consider the following options for defining similarity scores w(i, j)
between each pair of samples i and j: w(i, j) = d− ‖xi − xj‖p where d = maxi,j∈X ‖xi − xj‖p

13

Published as a conference paper at ICLR 2018

1 2 3 4 5 6 7 8 9
round

70.0

72.5

75.0

77.5

80.0

82.5

85.0
te

st
 F

1

method
RAND
MNLP
LC
BALD

Figure 6: Test F1 score in first nine rounds of labeled data acquisition on OntoNotes-5.0 English
dataset across multiple runs of the active learning experiment. The experiment was repeated eight
times, with different initial dataset. Error bars indicates standard deviation, and dots indicate
individual observation.

for p = 1, 2 which corresponds to closeness in L1 and L2 distance (Wei et al., 2015), and w(i, j) =
1 +

xi·xj

‖xi‖·‖xj‖ , which corresponds to cosine similarity.

Now, we formally define the utility function for labeling new samples. Denote X as the set of all
samples which can be partitioned into two disjoint sets XL, XU representing labeled and unlabeled
samples, respectively. Let S ⊆ XU be a subset of unlabeled samples, then, the utility of labeling the
set is defined as follows:

f(S) =
∑
i∈XU

[
max
j∈S∪XL

w(i, j)−max
j∈XL

w(i, j)

]
, (5)

where the function measures incremental gain of similarity between the labeled set and the rest. Given
such utility function f(·), choosing a set S that maximizes the function within the budget can be seen
as a monotone submodular maximization problem under a knapsack constraint (Krause & Golovin,
2012):

max
S⊆XU,

∑
e∈S k({e})≤K

f(S) (6)

where k(S) is the budget for the sample set S, and K is the total budget within each round. Note that
we need to consider the knapsack constraint instead of the cardinality constraint used in the prior
work (Wei et al., 2015), because the entire sentence needs to be labeled once selected and sequences
of length confer different labeling costs.

Combination with uncertainty sampling Representation-based sampling can benefit from
uncertainty-based sampling in the following two ways. First, we can re-weight each sample in
the utility function (5) to reflect current model’s uncertainty on it:

fw(S) =
∑
i

US(i) ·
[

max
j∈S∪XL

w(i, j)−max
j∈XL

w(i, j)

]
, (7)

14

Published as a conference paper at ICLR 2018

Algorithm 1 Representativeness-based Sampling

1: Input: Samples {XU,XL}, budget K,
pretrained model M using XL

2: while Test score of M less than th do
3: Rank XU according to Sec. 4,

X̃U = top samples S within budget t ·K.
4: Set f according to (5) or (7)
5: S = StreamSubmodMax(f, X̃U).
6: {X̃U,XL} = {XU − S,XL ∪ S}
7: Train M with XL.
8: Output: M

Algorithm 2 StreamSubmodMax

1: Input: Submodular function g, set X̃U

2: m = maxe∈X̃U g({e})/k({e})
3: O = {(1 + ε)i|i ∈ Z, (1 + ε)i ∈ [m,Km]}
4: Sv := ∅,∀v ∈ O
5: for e in X̃U do
6: for v ∈ O and k(Sv ∪ {e}) ≤ K do
7: if ∆g(e|Sv) ≥ k({e})(v/2−g(Sv))

K−k(Sv) then
8: Sv := Sv ∪ {e}
9: Output: arg maxv∈O f(Sv)

where US(i) is the uncertainty score on example i. Second, even with the state-of-the-art submodular
optimization algorithms, the optimization problem (6) can be computationally intractable. To improve
the computational efficiency, we restrict the set of unlabeled examples to top samples from uncertainty
sampling within budget t ·K, where t is a multiplication factor we set as 4 in our experiments.

Streaming algorithm for sample selection Even with the reduction of candidates with uncertainty
sampling, (6) is still a computationally challenging problem and requires careful design of optimiza-
tion algorithms. Suppose l is the number of samples we need to consider. In the simplistic case
in which all the samples have the same length and thus the knapsack constraint degenerates to the
cardinality constraint, the greedy algorithm (Nemhauser et al., 1978) has an (1− 1/e)-approximation
guarantee. However, it requires calculating the utility function O(l2n) times, where n is the number
of unlabeled samples. In practice, both l and n are large. Alternatively, we can use lazy evaluation to
decrease the computation complexity to O(ln) (Leskovec et al., 2007), but it requires an additional
hyperparameter to be chosen in advance. Instead of greedily selecting elements in an offline fashion,
we adopt the two-pass streaming algorithm of Badanidiyuru et al. (2014), whose complexity is
Õ(ln)3, and generalize it to the knapsack constraint (shown in Alg. 2). In the first pass, we calculate
the maximum function value of a single element normalized by its weight, which gives an estimate of
the optimal value. In the second pass, we create O(1

ε logK) buckets and greedily update each of the
bucket according to:

∆g(e|Sv) ≥
k({e})(v/2− g(Sv))

K − k(Sv)
, (8)

where each bucket has a different value v, and ∆g(e|Sv) := g({e} ∪ Sv) − g(Sv) is the marginal
improvement of submodular function g when adding element e to set Sv . The whole pipeline of the
active learning algorithm is shown in Alg. 1. The algorithm gives the following guarantee, which is
proven in Appendix.

Theorem 1. Alg. 2 gives a (1−ε)(1−δ)
2 -approximation guarantee for (6), where δ =

maxe∈S k({e})/K.

Proof sketch: The criterion (8) we use guarantees that each update we make is reasonably good.
The set Sv stops updating when either the current budget is almost K, or any sample in the stream
after we reach Sv does not provide enough marginal improvement. While it is easy to give guarantees
when the budget is exhausted, it is unlikely to happen; we use a difference expression between current
set Sv and the optimal set, and prove the gap between the two is under control.

In a practical label acquisition process, the budget we set for each round is usually much larger than
the length of the longest sentence in the unlabeled set, making δ negligible. In our experiments, δ
was around 0.01.

3Big O notation ignoring logarithmic factors.

15

	Introduction
	Related work
	NER Model Description
	Active Learning
	Experiments
	Model efficiency and performance
	Performance of deep active learning

	Conclusion
	Effect of Beam Size on LSTM Decoder
	Learning Curve in Active Learning Experiments across Multiple Runs
	Representativeness-based active learning

