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Abstract

In this paper, we develop a Naı̈ve Bayes classification model integrated with temporal association

rules (TARs). A temporal pattern mining algorithm is used to detect TARs by identifying the most

frequent temporal relationships among the derived basic temporal abstractions (TA). We develop

and compare three classifiers that use as features the most frequent TARs as follows: i) representing

the most frequent TARs detected within the target class (‘Disease = Present’), ii) representing the

most frequent TARs from both classes (‘Disease = Present’, ‘Disease = Absent’), iii) representing

the most frequent TARs, after removing the ones that are low-risk predictors for the disease. These

classifiers incorporate the horizontal support of TARs, which defines the number of times that a

particular temporal pattern is found in some patient’s record, as their features. All of the developed

classifiers are applied for diagnosis of coronary heart disease (CHD) using a longitudinal dataset.

We compare two ways of feature representation, using horizontal support or the mean duration of

each TAR, on a single patient. The results obtained from this comparison show that the horizon-

tal support representation outperforms the mean duration. The main effort of our research is to

∗Corresponding author

Preprint submitted to Elsevier February 14, 2018



  

demonstrate that where long time periods are of significance in some medical domain, such as the

CHD domain, the detection of the repeated occurrences of the most frequent TARs can yield better

performances. We compared the classifier that uses the horizontal support representation and has

the best performance with a Baseline Classifier which uses the binary representation of the most

frequent TARs. The results obtained illustrate the comparatively high performance of the classifier

representing the horizontal support, over the Baseline Classifier.

Keywords: Bayesian models, time series classification, temporal abstraction, temporal reasoning,

temporal association rules

1. Introduction

Temporal abstraction (TA) is useful for abstracting time point data into interval-based se-

quences of events [1]. Temporal abstracted events were shown to be helpful in various clinical

tasks and domains such as summarizing and managing patient data in oncology [2], monitoring of

children’s growth [3], management of insulin-dependent diabetes [4] and interpreting online patient

data for monitoring purposes in intensive care units (ICUs) [5]. Bayesian networks (BNs) [6–8]

belong to the family of probabilistic models and they were widely used in many clinical domains as

they can handle well uncertainty in medical knowledge and data. Both Bayesian models and TAs

demonstrated their effectiveness as standalone engines predominantly for medical problem solving

and for medical data processing respectively, but not in conjunction. A detailed survey on TAs

and BNs approaches applied to clinical domains and the benefits of their integration can be found

in [9].

Temporal association rules (TARs) are special types of association rules extracted by applying

a temporal operator between the antecedent and the consequent of the rule. TARs characterize

the temporal relation between the time-interval events defined in the antecedent and consequent.

Both the antecedent and consequent represent temporal abstraction events and the aim of the TARs

is to extract complex abstractions that are mined from data in a knowledge-based fashion [10,

11]. Related works [12, 13] introduced symbolic time-interval events that extract knowledge-based
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abstractions such as TIRPs which are discussed in Section 2.

In our previous work [14], we developed a Naı̈ve Bayes classifier [15, 16], using as features the

most meaningful TARs from patient records and utilize them to improve the classification perfor-

mance. We applied the developed classifier for predicting a future risk of Coronary Heart Disease

(CHD). The notion of horizontal support that was introduced in [12, 13] and defines the number

of times that a particular temporal pattern is found in some patient’s record, was incorporated in

the values of the features. As an extension of that work, the focus of this paper is to demonstrate

how the classification performance changes due to the feature selection and the feature represen-

tation process. In this paper, we introduce two more classifiers where the features represent the

most frequent TARs that better discriminate the target class and where the TARs that are not good

predictors for the disease, based on the medical knowledge for the specific domain, were excluded

from the selected features. We also develop a classifier that uses the mean duration of the TARs as

its features and finally we compare the classifier with the best performance, to a Baseline Classifier

which uses a binary representation of the TARs.

The rest of the paper is organized as follows: In Section 2, we present an overview of temporal

data mining in biomedicine and temporal patterns mining, while in Section 3 we describe the

methods used for the development of the classifiers. A discussion of our experiments for selecting

the most frequent and predictive TARs for the disease, to be represented as features to the network

is given in Section 4. In the same section, we describe the dataset used as a testbed. In Section 5,

the obtained results for the evaluation of all the developed classifiers are presented. Finally, a

discussion about the results is given in Section 6, while conclusions and future work are presented

in Section 7.

2. Background

2.1. Temporal Data Mining in Biomedical Data

The medical history of some individual is a repository of time-stamped data/information of

diverse format/content and storage medium. Such data are invariably expressed at different levels
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of semantic detail and sampling frequency, they could have gaps or be excessively voluminous, and

they are not amenable to direct processing and reasoning with. The recent advances in technology

enabled the collection and storage on electronic platforms (e.g. electronic health records (EHR))

of large volumes of such data, while the development of temporal data mining techniques enabled

the analysis, representation, interpretation and reasoning with the EHR longitudinal data [17–20].

A variety of temporal data mining techniques is proposed in the literature to deal with biomed-

ical data, such as phenotyping [18], machine learning techniques such as Gaussian kernel smooth-

ing and differential entropy [21], temporal abstraction over time intervals [1, 9, 22] and dynamic

Bayesian networks [23, 24]. The aim of temporal data mining techniques is to induce new temporal

knowledge from the time-series in EHR data and to develop accurate classification and predictive

models.

2.2. Temporal Abstraction and Time Intervals Mining

Temporal Abstraction (TA) refers to a set of techniques that allow describing a set of time

series data and external events through sequences of context-specific temporal intervals [1, 25].

TAs can be divided into two main categories: basic and complex. Basic TAs take as input time

point events and return as output time intervals on the basis of some predefined rules, known as TA

mechanisms. The derived symbolic time intervals can then be combined into complex temporal

patterns representing their temporal relationships (complex TAs).

Although mining time-intervals is a relatively young research field, many automated tools have

already been proposed in the literature to automatically discover frequent temporal patterns derived

as the conjunction of temporal relations between pairs of intervals. Most of the methods use a sub-

set or all of Allen’s 13 interval relations to discover the temporal relationships among events. Kam

and Fu [26] were the first who proposed the discovery of temporal patterns using all of Allen’s

interval relations, however their discovered patterns were ambiguous, since only the temporal rela-

tions among all the pairs of consecutive intervals were defined. Following, Hoppner [27] resolves

this issue, by defining a non-ambiguous representation where all the possible pairwise temporal

relations are represented in a k-intervals pattern.
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The work proposed by Batal et al [28] follows the approach by Hoppner by deriving temporal

patterns using a subset of Allen’s temporal operators. They detect temporal patterns based on the

sliding window method. This algorithm is based on the assumption that events occurring far enough

from each other, have no temporal relationship. Adam et al. [29, 30] proposed ‘Frequence’, a web-

based interface that integrates a data mining algorithm with a visualization tool. The interface aims

at discovering frequent patterns from temporal event sequences and then to present the patterns

mined in a user friendly way. The ‘Frequence’ system considers the sequence and the duration of

temporal events, but it does not explicitly use any temporal relation to mine the frequent patterns.

In [31], a fast symbolic time intervals mining algorithm, KarmaLego, is presented to mine

Time Intervals Related Patterns (TIRPs). In that work, KarmaLego is included in a process that

implements a knowledge based temporal abstraction (KBTA) [13] framework for deriving basic

TAs and then the algorithm is iteratively applied to the derived abstractions to detect TIRPs. In

addition, other methods have been proposed that do not use Allen’s temporal relations [29, 30, 32].

In the current work, we use the method proposed by Sacchi et al. [11] to extract temporal

patterns as a set of TARs. As mentioned in the introduction, TARs are a special type of association

rules extracted by applying a temporal operator between the antecedent and the consequent of the

rule. In a TAR, the members of the antecedent are characterized by a co-occurrence of the temporal

patterns that compose it. In the current work, we only use the Precedes operator which synthesizes

the Before, Meets, Overlaps, Equal, Starts and Finished-by temporal relations, and we only extract

TARs consisting of two symbolic time intervals. From the related work, TIRPs are the most similar

technique to the one we are presenting. Differently from TARs, in TIRPs mining the temporal

operator is applied among each interval that builds up the pattern. According to its definition, any

TAR involves only two elements (an antecedent and a consequent), and as such only one temporal

relation is considered between the two, albeit a disjunctive one. In addition, while TIRPs are mined

by using as input an interval based representation, to mine the TARs herein proposed, raw time

series go through a temporal abstraction step that results in the definition of arbitrarily complex

abstractions that are extracted from data in a knowledge-based fashion. Thanks to this procedure,
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the extracted TARs provide more compact patterns, where the necessary complexity is included

in the temporal abstractions that make up the antecedent and the consequent, rather than in the

temporal operator that links them. The idea of defining a set of complex abstractions of interest

that are then used to create the antecedents and the consequents of the TARs allows pursuing a

knowledge-based approach, where the users can define the patterns on the basis of what they have

in mind and interpret the final results in terms of such knowledge.

2.3. Time Intervals Related Patterns Based Classification

The use of the discovered temporal patterns as features for classification is becoming increas-

ingly popular in data mining literature. The classification task has been performed by using differ-

ent methods such as decision trees [33], Naı̈ve Bayes [12, 28, 34], recurrent neural networks [35]

and random forest [12]. Patterns extracted by using temporal relations have been included as fea-

tures for classification in [13, 36–39]. Batal et al. [28] used two temporal relations, Before and

Co-occurs to discover the most recent and frequent patterns and they proposed an Apriori-like

mining algorithm, called STF-Mine. The aim of this approach is to find the most predictive tempo-

ral patterns based on the fact that the most recent ones are the most predictive and then to use them

as features to the classifier.

Most recent approaches for using time interval related patterns to classify multivariate time

series data were proposed in [33, 35]. Nancya et. al. [33] propose a new approach which handles the

irregularity of time series data during the mining process and uses a decision tree as a classification

method, while Che et al’s. [35] approach handles missing data and uses a recurrent neural network

to classify the mined patterns. Another recent approach was proposed by Guo et al. [40] to combine

temporal pattern mining with feature selection to identify temporal risk factors that can predict the

acute ischemic stroke, as well as temporal treatment patterns.

Patel et al. [36] proposed a feature selection method, GAIN, for classifying multivariate data.

GAIN is an entropy-based measure which defines that temporal patterns that occur in only one class

are more discriminative. Moskovitch et. al. [32] also present the detection of the most frequent

temporal patterns in one class which usually is the target class. In this work, we also validate this
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assumption for our benchmark dataset.

The utilization of knowledge-based temporal abstractions to detect temporal relation patterns

such as frequent time interval patterns, and to incorporate them as features for classification was

recently proposed in [12, 28, 32, 34, 41–43].

3. Methods

TAs are divided into two main categories: basic and complex. Basic TAs are used to extract

simple patterns in a time series, such as time intervals where a state or trend can be detected.

Complex TAs represent the temporal relationship between the extracted basic or other complex

TAs using temporal operators [44], e.g.‘‘Diabetes Before Hypertension’’.

3.1. Basic TAs

In the current study, we use two different types of basic TA algorithms: state and trend TAs.

State abstractions determine the state of a parameter over a time period. Each state is defined on

the basis of thresholds selected by clinical experts. For instance, the value of Total cholesterol is

defined as v = Normal at a specific time point t, when its raw value (rv) at t is rv < 200mg,

v = Borderline high when 200 < rv < 260mg, otherwise v = High. On the other hand, trend

abstractions detect decreasing, increasing or stationary patterns in numerical time series, such as the

value of Total cholesterol when its raw value at t0 is 200mg and at t1 is 260mg, is v = Increasing

from [t0, t1].

To extract symbolic time intervals from time series raw data, in the current study, we use

the Java Time Series Abstractor (JTSA) [45] software. JTSA is a standalone application for the

definition and execution of a complete time series analysis workflow to detect temporal patterns.

The framework incorporates an algorithm taxonomy that includes both algorithms for time-series

preprocessing and algorithms for symbolic time intervals detection. The resulting symbolic time

intervals are defined by a pair: interval of occurrence and a label for the pattern. The following

parameters should be defined before using the framework: granularity of the data, minimum trend

7



  

slope for trend abstractions detection (or the thresholds for state TAs), the minimum length of a

pattern and the maximum gap between consecutive time points to keep them in the same pattern.

Aggregation TA is a category of TA algorithms used in the JTSA tool [45] to merge consecutive

time intervals. The intervals merged by an aggregation algorithm can either have the same label

or two different labels, which we want in the end to have the same value (for example ‘High’ and

‘Very High’ to be simply called ‘Out of Range’). To perform intervals aggregation, Aggregation

TA algorithms take into consideration a specific parameter, the maximum gap. For instance, if

the value of ‘Total cholesterol’ is v = High at time t0 and time t1, (with t1 > t0) and (t1 −

t0) ≤ maximum gap then the resulting aggregation TA is a symbolic time interval characterized

by I = [t0, t1], L = High, where I is the interval of occurrence of the time-interval and L is

the label associated with the temporal pattern and maximum gap, is a user-defined parameter. For

example, if the granularity of the dataset is MONTHS and maximum gap is set to 12, it means that

two consecutive high values that are collected within a year can be merged in the same interval

after (I = [t0, t1], L = High).

3.2. Temporal Association Rules

According to [10], a TAR can be viewed as a temporal pattern that describes an association

between two events, the antecedent and the consequent. Differently from traditional association

rules [46, 47], the relationship that holds between the antecedent and the consequent of a TAR

is expressed through a temporal operator (e.g. Before). Frequent TARs can be mined from data

through an algorithm that relies on the notions of confidence and support [11]. The support is

defined as the proportion of cases verifying the TAR (SR) over the total number of cases involved

in the study (S) (Equation (1)) while the confidence is defined as the ratio between the support of a

TAR (A→ C) and the support of its antecedent (A) as defined in Equation (2). More specifically,

the confidence represents the conditional probability for a case to verify the TAR given that the

antecedent is detected for that case.

Support = SR/S (1)
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Confidence = Support(A→ C)/Support(A) (2)

TARs are automatically extracted using a miner software tool [10]. In this paper, we apply the

TARs miner software tool, to discover frequent TARs (support and confidence > 0.9) among the

basic TA episodes on the basis of the given temporal relationship. We exclusively use the temporal

operator Precedes as defined in [11, 48] and illustrated in Figure 1. To compute support in the

TARs mining phase, we refer to the definition given in Concaro et al. [10], where the number of

subjects that verify a specific TAR (SR) is computed as the number of subjects who satisfy TARs

that meet a minimum duration threshold (spanth), added to the number of subjects who satisfy

TARs that meet a minimum frequency threshold (fth). In this way, the symbolic time interval

events supporting a rule can be either long-lasting symbolic interval events with low frequency or

highly frequent short symbolic interval events. Moreover, the notion of a frequent rule includes

both an evaluation of the rule along the temporal dimension of the sequences (f > fth or span >

spanth) and an evaluation of the frequency of the rule on the population, given by the proportion of

subjects supporting the rule (support > minsup). In this work, we have set fth = spanth = 1, thus

uniforming our definition of support to the definition of horizontal support given by Moskovitch et

al. [12, 13].

Besides the temporal operators that define the temporal relationships among the TAs, the soft-

ware tool also uses three temporal constraints (left shift, right shift, gap) to properly control the

mutual distance between the antecedent (A) verified on the interval IA = [A.start, A.end] and

the consequent (C) of a TAR verified on the interval IC = [C.start, C.end] [11]. The parame-

ter left shift, is defined as the maximum allowed distance between the start time of the antecedent

(A.start) and the start time of the consequent (C.start). The right shift, is defined as the maximum

allowed distance between the end time of the antecedent (A.end) and the end time of the conse-

quent (C.end). The gap is similarly defined as the maximum allowed distance between A.end and

C.start. Using any temporal operators apart from ’MEETS’ and ’BEFORE’, the gap is a negative

number since C.start < A.end. These three parameters can be conveniently used to constrain the
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mutual position of the operands in the relation, being careful to comply with the specific character-

istics of the temporal operator that is being used, as detailed in [11]. Figure 2 graphically displays

the meaning of these three temporal constraints.

[Figure 1 about here.]

[Figure 2 about here.]

3.3. Naı̈ve Bayes Classifier

As a classification method, we use the Naı̈ve Bayes network [15, 16] which is a simple Bayesian

network with the ‘‘naı̈ve’’ independence assumption that the effect of an attribute value on a given

class is independent of the values of the other attributes. It is one of the most widely used classifiers

with many applications in medical expert systems for different clinical domains [49–51].

The parameters of the classifier are learned from data using the maximum likelihood algo-

rithm [52]. Once the network structure is defined and the network is quantified with the learned

parameters, the next step is to predict the probability of the class variable. Each feature in the

network is instantiated with the corresponding feature value. Then the model derives the belief:

P (Disease|tar1, tar2, tar3, . . . , tarN)

As shown in Figure 3, 1 in this paper we use the disease (CHD event) as the class variable, whereas

all the TARs mined on the dataset are used as attributes and connected to the class. The Disease

is a binary node taking the values: i) 0: Absence of CHD event and ii) 1: Presence of CHD event.

The goal is to classify the presence or absence of a CHD event, given the repeated occurrences of

each TAR in the analyzed history.

[Figure 3 about here.]

1The models presented in this paper were created and tested using the GeNIe Modeler available at:

http://www.bayesfusion.com/ [Date accessed: 30 September 2017]
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3.4. Feature Selection and Representation Methods

In the current study, we use feature selection to explore possible improvement in the classifi-

cation performance. In particular, we use two ways of selecting the most frequent and the most

predictive TARs to the disease, which are then incorporated as features to the Naı̈ve Bayes classi-

fiers. The two feature selection strategies are better detailed in the following:

1. TARs Selection A: Selection of the most frequent TARs, based on the support and confi-

dence values, which are detected only on the set of patients who have been diagnosed with

the disease (and not for the patients who did not experience the disease). The aim is to

discover frequent TARs that better discriminate the target class: ‘‘Disease = Present’’.

2. TARs Selection B: Detection of the frequent TARs on the target class, ‘‘Disease = Present’’

and then we remove the ones which are not good predictors for the disease. The aim is to

compare the performance of the classifier in the presence or absence of TARs that define

the precedence of two decreasing variables such as ‘‘Total cholesterol decreasing Precedes

Triglycerides decreasing’’. As it is known from medical literature [53, 54], such associations

are not considered good predictors for the CHD because they represent risk factors with low

impact on the disease.

Another aim of this study is to investigate how the feature representation method can affect the

classification performance. Thus, we compare the use of the horizontal support of the TARs against

the use of the mean duration which defines the average duration of each TAR within a single patient

entity. In order to test our claim that for medical domains where long time periods are significant,

considering the horizontal support of the TARs can yield better performance, we develop another

Naı̈ve Bayes classifier whose features are binary TARs, expressing the occurrence or not of the

same set of TARs.
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4. Evaluation

4.1. Research Questions

There are three main research questions that we aim to validate through this paper. The first

two refer to the feature selection method whereas the last one refers to the feature representation

method used for modeling the TARs into the classifiers.

• Research Question 1: Will the classification performance be improved by selecting as fea-

tures only the most frequent TARs that better discriminate the target class? In that case the

target class represents the patients who have been diagnosed with the disease.

• Research Question 2: Will the classification performance be improved by selecting as fea-

tures the most frequent TARs after removing the ones which are not good predictors for the

disease, based on medical knowledge?

• Research Question 3:Which feature representation method is better? A binary representa-

tion, representing the existence or not of TARs, the horizontal support or the mean duration

of the TARs?

4.2. Experiments Plan

Regarding the first type of TARs selection (TARs Selection A), we develop two classifiers

where the features are selected as follows:

• Classifier top10freq − allClasses: We select the 10 most frequent TARs on the entire

dataset. The selected TARs are displayed in Table 4.

• Classifier top10freq − targetClass: We select the 10 most frequent TARs on the target

class: ‘‘Disease = Present’’, as displayed in Table 5.

From both of the classifiers, we select the 10 most frequent TARs, in order to avoid overfitting

by selecting a large number of features but also to have a satisfying number of features for the

classification. Regarding the second type of TARs selection (TARs selection B), we developed
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another classifier by excluding those TARs that, on the basis of the clinical knowledge, are known

to be not good predictors of the disease:

• Classifier top10freq − targetClass Pred: We select the same TARs as on the classifier

top10freq − targetClass. Out of these, we then select the most predictive ones for the

disease by excluding those TARs that define the precedence of two decreasing variables (or

HDL increasing, since HDL is considered as a risk factor when its levels are low). The

resulting number of TARs is nine and they are displayed in Table 6.

To assign a value to each of the selected features for each patient, the horizontal support of each

TAR is used. More specifically, discretization techniques are used for categorizing the horizontal

support of each TAR [55]. One well-known measure which characterizes the purity of the class

membership of different variable states is entropy [56]. The number and range of values which

result in the minimum total weighted entropy are chosen to quantize each variable. This mini-

mum entropy principle is applied on all the variables (nodes) of the network, as illustrated in the

following example.

For classifier top10freq − allClasses, for instance, for all the TARs tar1 − tar10, the dis-

cretization resulted in four values, corresponding to their potential horizontal support, as follows:

• 0: the TAR does not occur

• 1: the TAR occurs once or twice

• 2: the TAR recurs between three and four times

• 3: the TAR recurs at least five times

Regarding the mean duration feature representation, another classifier has been developed,

top10freq − targetClass Pred MD. Since the values of the mean duration of each TAR vary

from 1 to 7 years, the minimum entropy principle is applied on all the variables in the network, on

a similar way as for the horizontal support and the discretization resulted in four values.
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Following, we compare the performance of the classifier with the highest classification perfor-

mance, top10freq − targetClass Pred, against that of the Baseline Classifier, that uses a binary

representation of the TARs. All of the classifiers have the same network structure (see Figure 3),

however, the nodes of the Baseline Classifier are binary taking the following two values:

• 0: The TAR does not occur at all in the relevant patient history

• 1: The TAR occurs at least once in the relevant patient history (but the recurrence pattern is

not categorized)

The goal of both classifiers is to predict the value of the class variable.

TARs are detected and selected as features from the whole dataset, according to the feature

selection and representation method. The 10-fold cross validation is then applied to the training of

the classification models on the data instances representing the selected TARs.

4.3. Dataset Overview

In the current study, we evaluate the performance of the framework on CHD diagnosis. CHD

occurs when atherosclerosis affects the arteries of the heart, and is a disease that leads to a large

number of deaths worldwide [57]. The benchmark dataset used for the evaluation of the frame-

work is the STULONG 2 which was collected from a longitudinal study of atherosclerosis primary

prevention.

The dataset includes 1427 male patients who were 38 - 53 years old, at their first examination.

The number of visits of a single patient ranges from 1 to 20 and the follow-up time spans from

1 to 24 years. The first patient visit included blood pressure measuring, basic anthropometric

measurements (e.g. weight and height) and an electrocardiogram test (ECG). Furthermore, patients

were asked about their level of education and responsibility in job, their general habits such as

smoking, physical activity, alcohol drinking as well as family and personal medical history related

to cardiovascular diseases, chest and legs pain, and breathlessness.

2The data resource is available at: http://euromise.vse.cz/challenge2004/ [Date accessed: 30 September 2017]
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4.3.1. Data Preprocessing and Feature Selection

In medical datasets, usually, the most recent patterns are the most significant ones, since the

temporal observations that are close to the time of the disease event are typically the most important

for prediction [58, 59]. On the basis of this assumptions and relevant medical literature, we detected

TARs in a time window of 10 year before the last observation of the patient [58, 59]. For each

patient, we consider the last observation to be the one before the first diagnosis of the disease (for

patients who were diagnosed) or the last visit (for patients who were not diagnosed with CHD).

In addition, the derivation of basic TAs would require a time period of at least two observations,

i.e. at least two years, while the derivation of complex TAs would require even longer time periods

than the basic TAs. As such, the selected dataset is further reduced by removing records of patients

who had less than three observations, i.e. that spanned less than three years. The resulting target

group consists of 709 patients, out of which 154 were diagnosed with the disease.

The data are characterized with missing values and in order to impute them, we use the missfor-

est method [60], a non-parametric imputation method based on the random forest algorithm [61].

Regarding the feature selection process, we base our selection of features on the domain knowl-

edge that we acquired from a CHD expert and from the medical literature. The selected features

which are CHD risk factors are displayed in Table 1.

[Table 1 about here.]

4.3.2. Extracted Symbolic Time Intervals

State, trend and aggregation TAs are derived using the JTSA software tool [45], on all the

mentioned risk factors for CHD, using a fixed six-months granularity (finest granularity). State

TAs along with their determined thresholds are displayed in Table 2 and trend TAs in Table 3. As

displayed in Table 3, the sorted list of trend values in ascending order, based on the impact of the

variables on the disease is: i) Decreasing, ii) Stationary and iii) Increasing. It should be noted that,

contrary to the rest of the variables, HDL is considered a CHD risk factor when its levels are low,

thus its sorted list of trend values is: i) Increasing, ii) Stationary and iii) Decreasing. In the current
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study, aggregation TA algorithms have only been used to merge consecutive time intervals with the

same label.

[Table 2 about here.]

[Table 3 about here.]

4.3.3. Selected TARs

The selected TARs for the classifiers: top10freq − allClasses, top10freq − targetClass

and top10freq − targetClass Pred are displayed in Tables 4, 5 and 6 respectively.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

In our testbed dataset, patients who did not suffer a CHD event are the majority class (4:1) [62].

The approach that we follow in this study, for tackling this issue, is to use the undersampling based

on clustering (SBC) technique [63] to remove examples from the majority class of the dataset in

order to select a balanced sample. The ratio of the whole dataset was 555/154 (around 4:1) whereas

the resulting balanced sample ratio is 154/154. The technique is applied to all the classifiers until a

balanced subset of the dataset is obtained.

5. Results

For the evaluation of the performance of all the developed classifiers, we adopt metrics that are

commonly used for imbalanced datasets: precision, recall, the F1 score, the Matthews correlation

coefficient (MCC) and also the area under ROC curve (AUC) [55].

[Table 7 about here.]
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As illustrated in Table 7, the classifier top10freq− targetClass has the best obtained results,

compared to top10freq − allClasses, which indicates that by discovering the TARs only on the

patients who have been diagnosed with the disease, the classification performance is improved.

Table 8 displays the results of comparing the classifier top10freq − targetClass against the

Classifier top10freq − targetClass Pred.

[Table 8 about here.]

As displayed in Table 8, the classifier top10freq−targetClass Pred has the best obtained results,

compared to top10freq−allClasses. This indicates that by excluding those TARs, that define the

precedence of two decreasing variables is significant for the diagnosis of CHD, and as a result the

injection of medical knowledge influences the improvement of the performance of the classifier.

Table 9 displays the results of comparing the classifier top10freq−targetClass Pred against

the classifier top10freq − targetClass Pred MD

[Table 9 about here.]

As displayed in Table 9, the use of the horizontal support in the feature representation obtained

higher classification results rather than the use of the mean duration.

Table 10, displays the results of comparing the classifier top10freq − targetClass Pred

against the Baseline Classifier.

[Table 10 about here.]

As displayed in Table 10, the classifier top10freq − targetClass Pred has the best obtained re-

sults, compared to the Baseline Classifier. The higher performance of the classifier top10freq −

targetClass Pred, compared to the Baseline Classifier further supports our belief that the incor-

poration of the horizontal support of the TARs can improve the classification of CHD. The dif-

ference between the performance of the two classifiers is assessed using the McNemar’s test [64]

(p<<0.01) and shown to be statistically significant. Thus, it is important for the classifier to detect

and consider the recurrence patterns of the discovered TARs, and not just to detect the occurrence

or not of a TAR.
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6. Discussion

In this paper we described the incorporation of frequent TARs as features to a Naı̈ve Bayes

classifier as an extension of our previous work [14]. We exploited different methods of selecting

the most predictive TARs to CHD. TARs are represented as features in the network either using the

binary representation, or using the horizontal support, or the mean duration, of each TAR in the

patient history, as it was defined in [12, 13].

The discovered TARs represent associations that combine symbolic time intervals using exclu-

sively the temporal relation Precedes, which is a disjuctive temporal relation of a number of Allen’s

interval relations. The symbolic time interval events were extracted by applying knowledge-based

TA techniques to the raw data, using the JTSA framework [45]. Several data driven discretiza-

tion techniques were used in related works to extract symbolic time intervals such as EWD and

SAX [12, 65], however the focus of this paper was to utilize knowledge-based temporal abstractions

for the detection of TARs and to incorporate knowledge-based TARs as features to the classifier.

The selection of the most frequent TARs was based on their support and confidence values

while for the selection of the most predictive TARs, we used two different methods. We discovered

frequent TARs a) on each class separately in order to detect the ones that better discriminate the

target class which was also tested in related works [32, 36] and b) by removing TARs which have

low impact on the CHD and they are not good predictors (i.e. representing the precedence of

decreasing variables). The choice of removing this type of abstractions was mainly driven by

the medical knowledge on the CHD domain. When extending the methodology to other clinical

domains, this choice should be carefully adapted by considering the available knowledge, in order

to prevent the exclusion of some interesting patterns.

In the current work, for classification purposes, feature selection (in the form of TARs extrac-

tion) is performed on the whole dataset before training the model, which is then validated using 10

fold cross validation. However, according to [12], the classification performance would be more

accurate, if the selection of the TARs is repeated over each fold. Considering that this is a limitation

of our approach, as a future work, we are going to implement the cross validation by selecting a
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different subset of the features (TARs) on every run.

Considering the results from our experiments, the detection of the frequent TARs only from the

class of interest had higher classification performance than the detection of the frequent TARs from

both classes, which indicates that the most predictive TARs for the disease are extracted from the

target class (from the patients who have been diagnosed with the disease). In addition, by removing

the TARs that define the precedence of two decreasing variables, the performance of the classifier

was improved. This points out that by excluding those TARs, that define the precedence of two

decreasing variables is significant for the diagnosis of CHD, and as a result the injection of medical

knowledge influences the improvement of the performance of the classifier.

In contrast to the results presented in Moskovitch et. al [12], in the present work, the repre-

sentation of the mean duration of the TARs as features to the classifier, had lower performance

rather than the representation of the horizontal support. Therefore, for the comparison with the

Baseline Classifier, we used the classifier with the best performance, using the horizontal support

representation, top10freq− targetClass Pred, which had the best obtained results, compared to

the Baseline Classifier. The McNemar’s test was also used and the results validate the significance

of the difference between the performance of the two classifiers. This further supports our belief

that the incorporation of complex TARs can improve the classification of CHD.

7. Conclusions and Future Work

The proposed classifier is a Naı̈ve Bayes model where its features represent TARs and their

recurrence patterns, constructed for the purpose of CHD diagnosis. A strength of our approach is

that the developed classifier can work efficiently with irregularly sampled temporal datasets [66,

67].

The framework handled successfully the class imbalance problem, in the training and evalua-

tion stages. We compared different methods of selecting and representing the most frequent and

predictive TARs, and the performance of the best classifier was compared against that of a Base-

line Classifier. Considering the results from these experiments, the detection of the frequent TARs
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only from the class of interest and by removing the TARs with low impact on the disease, im-

proved the performance of the classifier. Regarding the feature representation, horizontal support

outperforms the mean duration. Furthermore, the better results of the classifier representing the

horizontal support of the TARs (complex TARs) against the Baseline Classifier, support the claim

that the incorporation of complex TARs, as features to the classifier can improve medical problem

solving in domains where long time periods are significant.

As future work, we are going to derive all the possible features from the extracted basic TAs

and to apply wrapper feature selection methods, running the entire experiment for each wrapper

iteration, to select those to be represented in the classifier. In addition, we are going to use a

different number of selected TARs as features to compare the performance of the classifiers. Some

other factors can be taken into consideration combined with horizontal support and mean duration,

such as the time period of the TARs occurrence by assigning a higher impact to the most recent

TARs, or the duration of the most recent TAR, or the confidence of each TAR on each patient

instance. Methods for handling consecutive events such as the ones proposed in [68] will also be

considered for future work. In addition, we plan to compare the proposed framework with the

integration of TARs with other classification methods such as decision trees and neural networks.

Exploring new medical and other application domains is also a future consideration.
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Variable Min Value Max Value
Smoking Non Smoker Current Smoker

Medicines for Taken Not taken
Reducing Cholesterol

Medicines for Taken Not taken
Reducing Blood Pressure

Systolic Blood Pressure (mmHg) 80 240
Diastolic Blood Pressure (mmHg) 40 130

Glucose Levels (mmol/l) 0.1 51
Family History Absent Present

History of Coronary Absent Present
Heart Disease

Body Mass Index (kg/m2) 17 40
Low-density lipoprotein 11 306
cholesterol (LDL mg)

Triglycerides (mg) 17 5129
High-density lipoprotein 9 391
cholesterol (HDL mg)

Total Cholesterol (TCH mg) 102 878
Age (years) 38 62

Diet Following a Diet Not Following a Diet
Exercise Exercising Not Exercising

Table 1: Features selected with the minimum and maximum value of the continuous features
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Variable Variable v = 1 v = 2

Code

Q1 Medicines for Taken Not taken

blood pressure

Q2 Total cholesterol Normal High

(TCH) (Q2 < 260) (Q2 ≥ 260)

Q3 High-density Low High

lipoprotein (Q3 < 40) (Q3 ≥ 40)

cholesterol (HDL)

Q4 Low-density Normal High

lipoprotein (Q4 < 130) (Q4 ≥ 130)

Q5 Triglycerides Normal High

(Q5 < 199) (Q5 ≥ 199)

Q6 Obesity Absent (Q6 ≤ 25) Present (Q6 > 25)

Q7 Age Young Old

(Q7 < 45) (Q7 ≥ 45)

Q8 Diet Following a diet Not following a diet

Q9 Exercise Exercising Not exercising

Q10 Diabetes Absent Present

Q11 Systolic blood Normal Hypertension

pressure (SBP) (Q11 <140) (Q11 ≥ 140)

Q12 Diastolic blood Normal Hypertension

pressure (DBP) (Q12 <90) (Q12 ≥ 90)

Table 2: State TA variables and their values
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Variable Code Variable Name L = 1 L = 2 L = 3

T1 BMI decreasing stationary increasing

T2 Systolic blood pressure (SBP) decreasing stationary increasing

T3 Diastolic blood pressure (DBP) decreasing stationary increasing

T4 Smoking decreasing stationary increasing

T5 Low-density lipoprotein cholesterol (LDL) decreasing stationary increasing

T6 Triglycerides (TRIG) decreasing stationary increasing

T7 High-density lipoprotein cholesterol (HDL) increasing stationary decreasing

T8 Total cholesterol (TCH) decreasing stationary increasing

Table 3: Trend TA variables and their labels
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TAR Code Trend TA Code 1 Relation Operator Trend TA Code 2 Confidence Support
tar1 HDL = increasing Precedes Triglycerides = increasing 0.962 0.925
tar2 Triglycerides = increasing Precedes LDL = decreasing 0.957 0.942
tar3 SBP = decreasing Precedes LDL = increasing 0.957 0.931
tar4 SBP = increasing Precedes Total cholesterol = decreasing 0.955 0.925
tar5 HDL = increasing Precedes LDL = increasing 0.955 0.918
tar6 DBP = decreasing Precedes SBP = decreasing 0.954 0.911
tar7 SBP = decreasing Precedes Triglycerides= increasing 0.952 0.927
tar8 SBP = decreasing Precedes Total cholesterol = increasing 0.952 0.922
tar9 SBP = increasing Precedes Triglycerides= increasing 0.952 0.922
tar10 HDL = increasing Precedes Total cholesterol = increasing 0.952 0.915

Table 4: Selected TARs for classifier top10freq − allClasses
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TAR Code Trend TA Code 1 Relation Operator Trend TA Code 2 Confidence Support
tar1 HDL =decreasing Precedes Triglycerides= increasing 0.922 0.979
tar2 HDL= increasing Precedes LDL =increasing 0.922 0.973
tar3 HDL= increasing Precedes SBP= increasing 0.922 0.973
tar4 SBP =decreasing Precedes LDL=increasing 0.928 0.966
tar5 SBP= decreasing Precedes Triglycerides=increasing 0.928 0.966
tar6 HDL =increasing Precedes Triglycerides = decreasing 0.916 0.966
tar7 HDL =decreasing Precedes LDL =decreasing 0.909 0.966
tar8 DBP = decreasing Precedes Triglycerides =increasing 0.909 0.966
tar9 SBP = increasing Precedes Triglycerides= increasing 0.948 0.960

tar10 LDL= increasing Precedes Triglycerides = decreasing 0.942 0.960

Table 5: Selected TARs for classifier top10freq − targetClass

32



  

TAR Code Trend TA Code 1 Relation Operator Trend TA Code 2 Confidence Support
tar1 HDL =decreasing Precedes Triglycerides= increasing 0.922 0.979
tar2 HDL= increasing Precedes LDL =increasing 0.922 0.973
tar3 HDL= increasing Precedes SBP= increasing 0.922 0.973
tar4 SBP=decreasing Precedes LDL=increasing 0.928 0.966
tar5 SBP= decreasing Precedes Triglycerides=increasing 0.928 0.966
tar6 HDL =decreasing Precedes LDL =decreasing 0.909 0.966
tar7 DBP = decreasing Precedes Triglycerides =increasing 0.909 0.966
tar8 SBP = increasing Precedes Triglycerides= increasing 0.948 0.960
tar9 LDL= increasing Precedes Triglycerides = decreasing 0.942 0.960

Table 6: Selected TARs for classifier top10freq − targetClass Pred
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Classifier Classifier

top10freq − targetClass top10freq − allClasses

Precision 0.72 0.80
Recall 0.79 0.80
F-score 0.75 0.80
AUC 0.79 0.84
MCC 0.43 0.60

Table 7: The performance for the classifiers: top10freq − targetClass and top10freq − allClasses
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Classifier Classifier
top10freq − targetClass top10freq − targetClass Pred

Precision 0.80 0.81
Recall 0.80 0.83
F-score 0.80 0.82
AUC 0.84 0.86
MCC 0.60 0.64

Table 8: The performance for the classifier top10freq − targetClass and top10freq − targetClass Pred
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Classifier Classifier
top10freq − targetClass Pred top10freq − targetClass Pred MD

Precision 0.81 0.61
Recall 0.83 0.64
F-score 0.82 0.63
AUC 0.86 0.62
MCC 0.64 0.19

Table 9: The performance for the classifier top10freq − targetClass Pred and top10freq −
targetClass Pred MD
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Classifier Baseline Classifier

top10freq − targetClass Pred

Precision 0.81 0.75

Recall 0.83 0.68

F-score 0.82 0.71

AUC 0.86 0.80

MCC 0.64 0.46

Table 10: The performance for the Classifier top10freq − targetClass Pred and the Baseline classifier
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Figure 1: Precedes temporal operator
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Figure 2: Representation of the three temporal constraints (left shift, gap, right shift) used in the TARs mining tool, to
constrain the mutual distances between the antecedent (A) and the consequent (C)
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Figure 3: Naı̈ve Bayes structure representing TARs as features
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Highlights 

 

 Three Naïve Bayes classifiers representing temporal association rules (TARs) as 

features are developed using different feature representation methods. 

 

 The selection of the most frequent TARs was based on their support and confidence 

values while for the selection of the most predictive TARs, we discovered frequent 

TARs on each class separately in order to detect the ones that discriminate better the 

target class and by removing TARs which have low impact on the CHD and they are 

not good predictors. 

 

 The most predictive TARs for the disease are extracted from the target class and by 

excluding those TARs, that define the precedence of two decreasing variables is 

significant for the diagnosis of CHD. 

 

 The representation of the mean duration of the TARs as features to the classifier, had 

lower performance rather than the representation of the horizontal support. 

 

 The horizontal support representation had also obtained better results than binary 

representation 


