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Abstract— The use of sensor technology constantly gathering
aircrafts’ status data has promoted the rapid development of
data-driven solutions in aerospace engineering. These methods
assist, for instance, with determining appropriate actions for
aircraft maintenance, repair and overhaul (MRO). Challenges
however are found when dealing with such large amounts of
data. Identifying patterns, anomalies and faults disambiguation,
with acceptable levels of accuracy and reliability are examples
of complex problems in this area. Experiments using deep
learning techniques, however, have demonstrated its usefulness
in assisting on the analysis aircraft health data. The purpose
of this paper therefore is to conduct a survey on deep learning
architectures and their application in aircraft MRO. Although
deep learning in general is not yet largely exploited for aircraft
health, from our search, we identified four main architectures
employed to MRO, namely, Deep Autoencoders, Long Short-
Term Memory, Convolutional Neural Networks and Deep Belief
Networks. For each architecture, we review their main concepts,
the types of problems to which these architectures are employed
to, the type of data used and their outcomes. We also discuss
how research in this area can be advanced by identifying cur-
rent research gaps and outlining future research opportunities.

I. INTRODUCTION

Intelligent Maintenance, Repair and Overhaul (MRO) have
become increasingly important in aviation industry. Aircrafts
are now fully equipped with sensors that constantly gather
information regarding their status, diagnosis and possible
faults. The ability to utilise sensor data to accurately predict
and diagnose problems facilitates effective maintenance man-
agement. In addition, the widespread of sensors in aircrafts
has allowed for the transition from time-based maintenance
(TBM) activities [1], where maintenance is scheduled un-
der fixed intervals, to condition-based maintenance (CBM),
where decisions are based on information collected via sen-
sor monitoring [2], [3]. CBM has enabled the development
of both model-based and data-driven methods for aerospace
maintenance. Model-based methods are mathematical models
of system for fault diagnosis and prognosis [4]. They require
domain knowledge to design the models [5]; however, the
time necessary to develop a model is higher than that from
data-driven methods in aerospace MRO applications [6].

Recently, deep learning approaches have been success-
fully applied to areas such as audio processing [7], image
recognition [8] and self-driving cars [9]. In addition, for
several of those examples, deep learning outperforms clas-
sical machine learning techniques when tackling large and

complex data. Our hypothesis is that these methods will
also be successful in big data problems for aircraft MRO,
specifically for challenges involving health monitoring [10]
and system health management [11]. However, as the area
has not been largely exploited and no large datasets have
been tested, there are several opportunities and research gaps
to be fulfilled to further demonstrate the effectiveness of deep
learning in MRO. Our objective with this paper is therefore
to study the current approaches and to identify what are their
shortcomings, future research, and how our hypothesis can be
verified in the future. To the best of our knowledge, there is
little literature regarding the survey of deep learning applied
to aircraft MRO.

Existing solutions to aircraft MRO problems use four main
architectures: Deep Autoencoders (DAE), Long Short-Term
Memory (LSTM), Convolutional Neural Networks (CNN)
and Deep Belief Networks (DBN). For each architecture,
we introduce their main concepts, the problems tackled, the
type of data used and their results (Section II). We also
identify current research gaps and discuss future research
opportunities (Section III).

II. SURVEY OF DEEP LEARNING APPROACHES

In this section we present our survey on deep learning
and deep neural network architectures employed in MRO for
aircrafts. Although there is not much work yet conducted in
the area, from our review we could identify research using
four main architectures: DAE, LSTM, CNN and DBN. Table
I contains a summary of the current work in the area, as
further discussed next.

A. Deep Autoencoders

DAE [23] is a neural network model that uses a func-
tion to map input data into their short/compressed version
subsequently decoded into a closest version of the original
input. This process forces the encoder to reduce data di-
mensionality, and in certain cases it learns how to ignore
noise. The codification represents the compressed features
of input data [24]. DAE therefore has 3 parts: an encoder,
a code and a decoder, as shown in Figure 1. DAE encodes
the input to the code through hidden layers for a compact
representation of the data. Compact representation of data
in DAE is used for dimensional reduction. Subsequently, the



TABLE I
DEEP LEARNING ARCHITECTURES FOR AIRCRAFT PROGNOSIS/DIAGNOSIS

Contribution Architecture Application

Reddy et al. [12] Deep autoencoder Anomaly detection and fault disambiguation for flyable
electromechanical actuators

Sarkar et al. [13] Deep autoencoder Crack detection in aircraft’s multi-layer composite
sub-elements

Gao et al. [14] Deep denoising autoencoder remaining useful life prediction in integrated modular
avionics.

Yuan et al. [15] Long Short-Term Memory Fault diagnosis and remaining useful life estimation of
aero-engine

ElSaid et al. [16] Long Short-Term Memory + Ant Colony Optimization [17] Prognosis of excess vibration in aero-engine
Li et al. [18] Convolutional Neural Network Fault diagnosis and remaining useful life estimation of

aero-engine
Fuan et al. [19] Convolutional Neural Network + Particle Swarm

Optimization
Rolling bearing fault diagnosis

Tamilselvan et al. [20] Deep Belief Network Classification of health condition in aero-engines
Zhang et al. [21] Multiobjective Deep Belief Network Ensemble Fault diagnosis and remaining useful life estimation of

aero-engine
Gao et al. [22] Deep Belief Networks + Deep Quantum Inspired Neural

Network
Fault diagnosis of aircraft’s fuel system

Fig. 1. Structure of a Deep Autoencoder

output is reconstructed from the code through decoder for
anomaly detection or generating new data.

For Aerospace MRO, DAEs are employed for structural
health monitoring and anomaly detection. Sarkar et al. [13],
for instance, uses DAE for Structural Health Monitoring
— specifically for detection of cracks in thick multi-layer
composites in aircrafts. The authors analyse videos of the
composite coupons slowly bent until full fracture. Those
video frames containing images of composite coupon without
cracks are used to train the DAE. Frames of images with
cracks are used as test. The crack detection is based on
the magnitude of reconstruction error between the input
and output images. The authors obtained good results for
crack detection using DAE; however, the weaknesses of
their approach were not assessed, as there is no performance

comparison with alternative methods.

Reddy et al. [12] employs DAE on aircraft data for
anomaly detection and fault disambiguation. Time series data
from multiple sensors (without faults) are first normalised to
zero mean and unit variance. Subsequently, DAE employs a
subsection of the data with a fixed time window as input. The
DAE training considers around 100,000 data points using the
Backpropagation algorithm with gradient descent to recon-
struct the inputs. The fault detection occurs based on the
reconstruction error between the input and the output using
the Root Mean Square (RMS) error as a metric for disparity.
When a fault is present in the data, the reconstruction error
is large because the DAE is trained to output data without
faults. The data set employed by the authors is obtained from
an experiment for fault scenarios, under various operating
conditions of Flyable Electromechanical Actuator (FLEA)
performed by Balaban et al. in [25] and [26]. The data set
contains 13 dimensions (time, actuator Z position, measured
load, motor X current, motor Y current, motor Z current,
motor X voltage, motor Y voltage, motor Y temperature,
motor Z temperature, nut X temperature, nut Y temperature,
ambient temperature), which are sampled at 100Hz. The data
employed for testing the DAE have a total of 95 nominal runs
and 255 faulty runs, with each run containing a window of
approximately 30s of data. The faulty runs contain examples
of both spall and ballscrew jam faults. Using an 11-layer
DAE and a 14-dimensional bottleneck layer, the trained
DAE is able to achieve a fault detection rate of 97.8%
and 0.0% of false positives. In addition, DAE is able to
cluster the different fault types based on the distribution of
reconstruction error over multiple sensors.

Gao et al. [14] utilizes a combination of stacked denoising
autoencoders [27] (SDAE) and Support Vector Machine
(SVM) to predict the Remaining Useful Life (RUL) of



integrated modular avionics (IMA). Degradation of IMA is
typically caused by the wearing out of electronics that lead
to electromigration and time-dependent dielectric breakdown
— the root cause of intermittent faults (IF) in IMA. IMA is a
network of multiple computing modules used in aircraft with
various functionalities of different critical levels. Therefore,
identifying faults and predicting the RUL of IMA are crucial
for maintaining the integrity of the aircraft. A simulation of
the IMA including IF and degradation is performed using
Simulink to collect the data. The simulation consists of
12000 fly cycles and IF are injected using the Monte Carlo
method. Subsequently, a SDAE is used to extract the most
salient features from the raw data. The structure of the SDAE
consists of 5 hidden layers with 48, 20 1, 20 and 48 nodes
for each hidden layer. In addition, the SDAE is pretrain and
fine-tune with 800 and 400 epochs respectively. Next, the
extract features are employed by SVM to construct a model
to predict the RUL. Finally, the results achieved by SDAE
with SVM outperform the conventional method by a wide
margin. However, the authors did not provide the model used
in the conventional method.

B. Long Short-Term Memory

LSTM [28] is a type of recurrent neural network designed
with chain units consisting of input, forget and output gates.
Each gate is wrapped with a sigmoid function. The input
gate controls the influence of the current input. The forget
gate within each unit controls how much information needs
to be retained. The output gate decides whether the flow
will be passed on to the next LSTM unit. This architecture
allows for the learning of long-term dependencies of data.
LSTM is currently employed in the aerospace MRO for fault
diagnosis, remaining useful life estimation and prognosis of
excess vibration in aero-engines.

ElSaid et al. [16], for example, uses a combination of
LSTM and Ant-Colony Optimization [17] (ACO) to predict
the occurrence of excess vibration in aero-engines. Domain
expertise assisted with selecting 15 features amongst 72 for
their model. The authors compare 3 LSTM architectures: (i)
10 time steps (current time unit + 9 previous time units)
for each feature and 2 hidden layers; (ii) 10 time steps and 1
hidden layer; and (iii) 20 time steps and 3 hidden layers. The
LSTM architectures are required to predict the magnitude of
the aero-engine vibration within 1, 5, 10 and 20 seconds. The
authors conclude that all architectures achieve good results.
Further improvement is achieved by LSTM optimisation via
ACO.

Yuan et al. [15] uses LSTM to predict RUL and to classify
faults of aircraft turbofan engines. A LSTM with 3 inputs and
2 outputs is considered. The inputs are the sample number,
the time-step and the engine’s sensor value. The outputs
are the RUL estimation and the fault diagnosis. A static
hidden layer is added to improve fault classification. The
cost function is the Mean Squared Error (MSE). Furthermore,
the authors use dropout and early stopping mechanisms to in-
crease generalisation and prevent overfitting. The Adam [29]
optimiser is employed to the gradient descent [30]. The

same optimisation process is applied to a standard RNN,
to a Gated Recurrent Unit (GRU) [31] and to an AdaBoost
LSTM model for results comparison. Aircraft gas turbine
engines and its damage propagation are simulated using the
Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS), developed by NASA. The data obtained from
the the simulation contains 21 engine variables, including
normal, fault onset and system failure operations. Among the
fault onset and system failure data, there are four different
classes: (i) high pressure compressor failure with single
operating condition in engines; (ii) high pressure compressor
failure with six operating conditions in engines; (iii) high
pressure compressor and fan degradation of engines with
a single operating condition; (iv) high pressure compressor
and fan degradation of engines with six operating conditions.
Faults are inserted at random times for each simulation. The
engine health is indicated by the efficiency and flow of its
components. When either efficiency or flow reaches zero, the
simulated engine has failed. A SVM is employed to label the
fault category for each time step. All labels prior to fault
have the maximum RUL value; and after the fault, RUL
value decreases according to a power function. Input data are
normalised using mean and variance; output is normalised by
dividing the RUL by the minimum lifespan of aero-engine
within the data set. The RUL estimation is evaluated using
a relative error between the actual and estimated error that
are less than or equal to 5%, 10% and 20% respectively. In
addition a score based on the standard asymmetric scoring
function, proposed by Saxena et al. in [32] is considered.
Results reveal that the LSTM outperforms all other methods
investigated for both RUL estimation and fault occurrence
predictions.

C. Convolutional Neural Networks

CNN [33] are neural networks that contain convolution
layers with nonlinear activation functions and a fully con-
nected layer at the end to compute the outputs. The input
data goes through each convolution layer with different filters
and is combined in the end for a result. This allows CNN
to perform better on data that has high spatial correlation
with its neighbourhood data-points. Figure 2 shows how
the spatial relationship within data are preserve through
convolution using a Kernel.

Fig. 2. Example of convolution operation on 2D data. Input data and
Kernel are convolved to produce a feature map.



In aerospace MRO, CNN is currently used for rolling
bearing fault diganosis, RUL estimation of aero-engines and
fault diagnosis in aero-engine.

Fuan et al. [19] employs adaptive deep CNN and Particle
Swarm Optimisation (PSO) [34] to diagnose and classify
fault in rolling bearing. PSO is employed to optimise the
parameters of the CNN. Experimental data are acquired from
an electrical locomotive rolling bearing test rig. The data
collected from test rig are vibration signals with 8 different
health condition that includes 1 normal condition and 7
faulty conditions. Subsequently, 4 different methods: (i) CNN
with PSO; (ii) CNN; (iii) SVM; and (iv) Artificial Neural
Networks (ANN) Multilayer Perceptron are compared using
both raw and pre-processed data. One of the main advantages
of CNN is that it does not require manual feature extraction.
The convolution layers automatically extract relevant fea-
tures, which are used to diagnose faults in rolling bearing.
Results comparison is based on the percentage of correct
classification. In both experiments, CNN+PSO achieved the
highest classification accuracy. Moreover, the experiment
shows that better results are achieved with pre-processed
data.

Li et al. [18] uses deep CNN to estimate RUL and fault
diagnosis of aircraft turbofan engines. The authors employ
a conventional CNN with 4 convolution layers for feature
extraction and a fully-connected layer for regression. The
network requires 2 inputs, comprising of the time sequence
of data and selected features. A 1-dimensional kernel filter
is applied to each convolution layer. The size of the kernel
filter corresponds to the data that represent local features. A
medium size and number kernel filter is chosen to balance
accuracy and computational cost. Furthermore, zero-padding
is added to each convolution layer to maintain the dimension
of the feature map. Subsequently, the feature map is flattened
into a one-dimensional feature vector to be added to the
full-connected layer for regression. The dropout technique
is used to prevent overfitting. In addition, the Xavier normal
initialiser [35] determines the initial weights, while the Adam
optimiser is employed for gradient descent. The data set is
normalised to [−1, 1] and given the RUL labels. Training is
conducted using mini-batch gradient descent [30]. Similarly
to Yuan et al. discussed in Section II-B, RUL is evaluated
using the asymmetric scoring function [32] and RMSE.
Results from the CNN are compared to other methods such
as LSTM, RULCLIPPER [36], Random Forest, Gradient
Boosting, SVM, Echo State Network with Kalman filter [37],
Multi-objective deep belief networks ensemble [21] and
Time window-based NN [38]. C-MAPSS data is employed
for testing. Results reveal that CNN outperforms LSTM,
RNN, Deep Neural Network (DNN) for RMSE. CNN also
achieved the lowest RMSE. The authors also show that
training time increases proportionally to the number of
convolution layers and conclude that the optimal number
layers is 5 for their problem.

D. Deep Belief Networks

DBN [39] is employed in aerospace MRO for applications
such as aero-engine fault classification, aero-engine RUL
estimation and aircraft fuel system fault diagnosis. The DBN
is a generative graphical model with stacked Restricted
Boltzmann Machine (RBM) [40]. Each RBM composes of
a hidden and visible layer with connections between layers
but not within each layer. DBN is trained in a greedy layer-
wise unsupervised manner to extract features from the input
data. Tamilselvan et al. [20] uses a DBN classifier to identify
the health state of aero-engine. C-MAPSS data is employed.
The DBN classifier used consists of 3 hidden-layers. Conju-
gate gradient approach [39] are used to fine-tune the DBN
classifier after it has been pre-trained and trained. DBN
fault classification of aero-engines is compared to SVM,
Backpropagation Neural Network (BNN), Self-Organizing
Maps [41] and Mahalanobis Distance. Results shows that
DBN achieves the best fault classification accuracy for 5 of
the 6 operating conditions.

Zhang et al. [21] uses Multiobjective Deep Belief Net-
works Ensemble (MODBNE) to estimate RUL of aero-
engines using the C-MAPSS data. Each DBN parameter is
generated by a Multiobjective Evolutionary Algorithm based
on Decomposition (MOEA/D). The parameters evolved are
(i) the number of hidden neurons per hidden layer; (ii)
the weight cost of contrastive divergence; (iii) the learning
rates to update weights and biases for backpropagation.
Contrastive divergence and backpropagation are employed
to train the DBNs. A population of 20 candidate solutions
for DBNs and their parameters are randomly initialised. The
trained DBNs are subject to optmization of two conflict-
ing objectives. The two objectives are minimisation of the
DBNs prediction error and maximisation of the diversity of
outputs between DBNs. High diversity among DBNs leads
to better generalisation performance of the ensemble [42].
Subsequently, MOEA/D is used to evolve the parameters of
DBNs; these new parameters are use to re-train the DBNs.
The optimised DBNs are combined using single-objective
differential evolution to create the ensemble. Results show
that MODBNE achieves the most accurate estimation of RUL
when compared to 10 other data-driven methods. The authors
also show that 3 hidden layers and time window size of 30
achieve the best performance.

One of the most important components in an aircraft is
the fuel system, as it controls the fuel flow to the engine.
Failure or fault in fuel system causes instability to the engine
and in the auxiliary power unit. Gao et al. [22] uses Deep
Quantum Inspired Neural Network (DQINN), a method
inspired by Deep Quantum Network (DQN) [43] for aircraft
fuel system fault diagnosis. DQINN is a combination of
DBN and Quantum Inspired Neural Network (QINN) [44].
QINN differs from traditional NN on its activation functions.
QINN have multilevel activation functions to assist in fuzzy
classification. To simulate faults in the aircraft fuel system
system, 4 common faults are added into the system: (i)
motor phase power turned off; (ii) rise in resistance of



motor phase stator; (iii) increase of fluid loss in vanes; and
(iv) increase in leakage of boost pump. After the faults
have been injected into the model, the pressure at the input
of the engine is recorded. Subsequently, DQINN uses the
data to form a fault classifier. In the initialisation step,
the DBN are pre-trained using unsupervised learning. This
allows for better generalisation of the training data set [45].
The output from DBN are the input for QINN. Each level
of multilevel activation function in QINN has a unique
quantum interval and each level require different parameters
for DBN. Therefore, DBN are duplicated at each level of
activation function in QINN to allow DBN parameters to be
updated accordingly. Using the MSE as the accuracy metric,
DQINN’s performance is compared to DQN, Classical Deep
Belief Network (CDBN) and BNN. The sampling frequency
of the aircraft fuel system’s Simulink model to obtain the
data is 8kHz and all 4 failure mode are simulated in 0.125s
resulting in a total 1000 data points split equally among 4
faults. Subsequently, features are extracted from the raw data
based on mean, root mean square, skewness and Kurtosis,
reducing the data to 400 points. Results reveal that DQINN
achieves the highest fault classification accuracy. DQINN
also achieves the lowest standard deviation compared to
DQN, CDBN and BNN.

III. FUTURE OPPORTUNITIES

Deep learning has enabled new research opportunities and
the development of novel tools to assist in aircraft’s MRO
activities. Our survey has revealed that the use of deep neural
networks leads to successful outcomes in this area. There are
however many possibilities for improvement, which have not
yet been investigated. In this section, we outline and discuss
some of these opportunities that we believe are relevant to
advance MRO research.

A. Alternative Deep Learning architectures

The previous section shows that for aerospace, currently
there is a small subset of deep neural networks architectures
employed to MRO activities. However, in the reviewed work
the rationale for the choice of deep learning as well as
a specific architecture is often unclear. Specific problems
in aerospace MRO require specialist deep neural network
architectures to achieve desirable results. A large knowledge
of different deep neural network architectures can reduce
time required to select the most suitable architecture. In Table
II, a list of popular deep learning architectures along with
its pros and cons are summarised to assist in the selection
of appropriate deep neural networks architecture.

B. Tackling Uncertainty

For safety-critical applications, it is important to know the
confidence level of the deep neural networks output. This
confidence level depends on the epistemic and aleatory un-
certainty inherent in the data set investigated. The epistemic
uncertainty refers to uncertainty in the model due to limited
data and knowledge — that is, the data the model has never

been exposed to. On the other hand, aleatory uncertainty
regards the natural randomness within a system that cannot
be explained with more data. Both types of uncertainty can
propagate through the deep learning model, affecting its out-
come. One alternative to overcome this issue is by employing
Bayesian approaches [48] or fuzzy methods [49] to tackle
uncertainty. In addition to quantifying the uncertainty of
the model’s prediction, the ability to explain and interpret
the predictions are often desirable. Greater interpretability in
prediction can be achieved by employing the method such
as Local Interpretable Model-Agnostic Explanations [50].

C. Active Learning for Data Labelling

Aircraft generate high volume of sensor data during each
flight. These data however are typically unlabelled; and the
training process of a supervised learning model requires
a large number of labelled instances. Labelling these data
sets manually is almost unfeasible, due to its cost and time
consumption. A possible strategy to overcome expensive
manual labelling is the application of Active Learning [51]
for this task. In this approach, algorithm such as query-
by-committee [52] determine the data point that optimises
learning and actively request data label from domain experts.
Thus, this allows active learning algorithms to learn from
substantially less data.

D. The Creation of a Benchmark Data Repository

A major hindrance for researchers in the aircraft MRO area
is the lack of benchmark/standard big data sets to evaluate
MRO solution approaches. Currently, C-MAPSS appears to
be the standard test data set to compare different deep neu-
ral networks architectures for aero-engine MRO problems.
However, this data set alone is not sufficient to attest the
effectiveness of the deep learning approach. In addition, other
parts and components of the aircraft monitored by sensors are
not yet being considered due to the lack of test benchmarks.
Therefore, a publicly available data repository for various
components of an aircraft would assist for better testing and
comparison of approaches, therefore advancing the research
in this area.

IV. CONCLUSIONS

The increased usage of sensors for data collection in
aircrafts has created the need for sophisticated solutions
to interpret the large volumes of data. In particular, for
aerospace engineering, these solutions are important for
MRO applications.

Although not yet largely exploited, deep learning achieved
relative success for MRO problems. In this paper we have
performed a survey of the current deep learning approaches
and applications to MRO. From our review we observed
that deep learning models often outperform model-based and
statistical machine learning techniques. Architectures such
as DAEs, LSTMs, CNNs, DBNs and some of their hybrid
forms are currently being employed for diagnosis, anomaly
detection and prognosis in parts of the aircraft, such as aero-
engines, fuel systems and actuators.



TABLE II
ALTERNATIVE DEEP LEARNING ARCHITECTURES: OPPORTUNITIES FOR AIRCRAFT MAINTENANCE, REPAIR AND OVERHAUL ACTIVITIES.

Architectures Descriptions Advantages Disadvantages

Variational autoencoder [46] A generative version of
autoencoder. It learns the original
data distribution and generates new
data with similar distribution.

It learns hidden representation and
generates new data

Difficult to implement and optimise
compared to other variants of
autoencoder.

Contractive autoencoder [47] Penalises autoencoder’s sensitivity
to training input.

Higher robustness and better
generalisation

Computation of Jacobian hidden
layer causes higher complexity
compared to denoising autoencoder.

Recurrent Neural Network (RNN) It has an internal state and memory
to process sequence or temporal
data

Easy implementation and suitable
for sequential data

Problems with connecting
long-term dependencies in data.

Gated Recurrent Unit (GRU) A variant of LSTM with simplified
hidden units and fewer parameters

Training occurs faster due to its
low complexity

Compared to RNNs, however, more
difficult to train and implement due
to higher complexity.

There are however, several gaps and research opportunities
yet to be pursued. Several alternative deep learning architec-
tures have not yet been tested for MRO problems. In particu-
lar, there is little literature on the application of methods such
as Deep Bayesian Neural Networks and hybridisations with
fuzzy logic. Active learning for targeted labelling of data is
also another avenue to facilitate classification. Finally, we
draw the attention to the fact that no large data has yet been
employed to confirm that deep learning outperforms other
intelligent MRO methods. The creation of a repository of
benchmark big data sets, where researchers could test and
compare their machine learning approaches for aerospace
MRO is therefore necessary.
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