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Abstract

We consider a broadcast communication over parallel channels where the transmitter sends K + 1

messages: one common message to all users, and K confidential messages to each user which need to

be kept secret from all unintended users. We assume partial channel state information at the transmitter,

stemming from noisy channel estimation. Our main goal is to design a power allocation algorithm in

order to maximize the weighted sum rate of common and confidential messages under a total power

constraint. The resulting problem for joint encoding across channels is formulated as the cascade of two

problems, the inner min problem being discrete, and the outer max problem being convex. Thereby,

efficient algorithms for this kind of optimization program can be used as solutions to our power allocation

problem. For the special case K = 2, we provide an almost closed-form solution, where only two single

variables must be optimized, e.g., through dichotomic searches. To reduce computational complexity, we

propose three new algorithms maximizing the weighted sum rate achievable by two sub-optimal schemes

that perform per-user and per-channel encoding. By numerical results, we assess the performance of all

proposed algorithms as a function of different system parameters.

Index Terms

Broadcast communication, physical layer security, parallel channels, power allocation, multiuser

system.
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I. INTRODUCTION

With the widespread adoption of wireless networks, security becomes an inherent issue of

nowadays communications. In this context, physical layer security arises as a promising tool to

complement traditional cryptographic solutions. The breakthrough idea behind this approach is

to exploit the characteristics of the wireless channel, in order to reinforce security in wireless

communications. The basic concepts were laid out by the pioneering work of Wyner [1]. He

introduced the wiretap channel model in which the transmitter aims at reliably sending a confi-

dential message to the legitimate receiver in presence of an eavesdropper. The secrecy capacity

measures the maximum information rate at which the transmitter can reliably communicate

a secret message to the receiver, while leaving the eavesdropper with no information on the

message. Recently, the wiretap channel has witnessed a renewed interest and many research

works have investigated the secrecy capacity of wireless fading [2]–[4], parallel [5]–[8] and

multiple-input multiple-output (MIMO) channels [9]–[12]. All of these works deal with the

point-to-point wiretap channel model. There has been also an effort to generalize physical layer

security to the multiuser context (see [13] for a survey).

An important scenario for multiuser physical layer security is the broadcast channel with

confidential messages (BCC) introduced in [14]. An extensive research work has been made to

characterize the secrecy capacity region of fading, parallel, and MIMO BCC for a system with

2 or 3 receivers [15]–[18]. Related works about the compound wiretap channel [19]–[21] offer a

general framework that captures the BCC scenario. In the last few years, many works have ap-

peared in literature for a larger BCC with practical number of receivers. In [22]–[25], the authors

attempted to characterize the complete secrecy capacity region when transmitting to an arbitrary

number of legitimate receivers for different channels and various network topologies. In [26], the

authors analyzed the role of multiuser diversity for secure communications in fading channel.

Several works [27]–[34] have examined physical layer security in multiuser MIMO networks.

Linear precoding [29], [30], [32] and non-linear Tomlinson-Harashima precoding [33] techniques

have been considered for secrecy rate maximization. In [31], the beamforming and user selection

problems were studied in multicast multiple-input single-output (MISO) channel, where the

transmitter broadcasts a common confidential message to legitimate users and unauthorized users

attempt to eavesdrop the message. The performance of low-complexity heuristic user selection
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algorithms in providing physical layer security was evaluated in [27]. Opportunistic scheduling

was introduced in [34] to enhance physical layer security with transmit antenna selection. In [35],

the authors solved the resource allocation problem in orthogonal frequency division multiple

access (OFDMA) broadcast network with the objective of maximizing average communication

rate to normal users while maintaining an average secrecy rate for each individual secure user

in the network. A resource allocation algorithm for OFDMA broadcast system was introduced

in [36] maximizing the average outage capacity in the presence of multiple eavesdroppers. In [37],

a power allocation algorithm was proposed for the orthogonal frequency division multiplexing

(OFDM) broadcast system, which increases the sum rate to multiple legitimate receivers in the

presence of an eavesdropper, while in [38] a multicarrier multicast system with multiple multicast

groups was considered where each multicast group may contain a different number of users.

In this paper, we consider parallel BCC with K receivers. This scenario can model some

practical wireless systems such as an OFDMA downlink in a cellular network. The transmitter

aims to reliably send a common message to all receiving users and K separate confidential

messages, one for each user. The confidential messages need to be kept secret from all unintended

users. All receivers are legitimate users in the network; but curious in the sense that they may

attempt to learn other users’ messages. We further consider the case in which only partial

channel state information is available before transmission, stemming from a noisy estimate of

the channels. To the best of authors’ knowledge, an analysis of this generic communication

scenario in multiuser setting is missing in literature. We generalize an earlier version of our

work [39] that considered parallel BCC with 2 receivers. We derive the achievable rates for the

common and confidential messages by joint encoding across channels, where partial channel

state information is addressed by adding a margin to the estimated channel gains. The problem

of interest is to design a power allocation algorithm maximizing the weighted sum rate under

a total power constraint. Note that this metric is of interest for resource allocation in OFDMA

systems with a fairness constraint, where the weights are selected in order to enforce the desired

fairness. The power allocation increasing the weighted sum rate achieved by joint encoding is

formulated as the cascade of two problems, the inner min problem being discrete, and the outer

max problem being convex. In the following we denote this kind of problems as convex discrete

max-min program problems. As a result, efficient algorithms solving this kind of program can

March 18, 2016 DRAFT



4

be used as solutions to our power allocation problem. For the special case K = 2, we are

able to provide an almost closed-form solution, where two real variables must be optimized,

e.g., through dichotomic searches. Due to the heavy computational cost of power allocation

for joint encoding, we propose three new algorithms with lower complexity. These sub-optimal

algorithms maximize the weighted sum rate achievable by letting encoded messages span only

groups of channels. For the generic case, the problem is solved using numerical tools and having

a significantly lower complexity with respect to joint coding. When messages are encoded on

each channel separately (i.e, groups comprise only one channel), we have an almost closed-form

solution with a single variable to be optimized. The performance of all proposed algorithms is

assessed in terms of achievable common and secrecy rates.

The rest of the paper is organized as follows. Section II sets up the system model and

formulates the problem. Section III introduces power allocation for joint encoding. In Sections IV

and V, three power allocation algorithms are proposed for per-user encoding and per-channel

encoding. In Section VI, numerical results are presented. Lastly, Section VII concludes the paper.

Notation: Vectors and matrices are written in bold letters. log and ln denote the base-2

and natural-base logarithms, respectively. We indicate the positive part of a real quantity x

as [x]+ = max{x; 0}. E[X] denotes the expectation of the random variable X , I(X;Y ) denotes

the mutual information between variables X and Y . For a finite set S, the cardinality of S is

denoted |S|.

II. SYSTEM MODEL

We consider a scenario where one transmitter aims at conveying K confidential messages to

K receivers over L parallel channels (BCCs scenario) [14], [40]. The parallel channels model

for example an OFDM system. As illustrated in Fig. 1, the transmitter sends a common message

and K separate confidential messages. The common message M0 is intended for all receivers,

while confidential message Mk is intended only for receiver k ∈ K = {1, . . . , K} and needs to

be kept secret from all other receivers.

The transmitter sends the complex symbol x` on channel ` = 1, . . . , L.The channel input is

subject to the statistical total power constraint

L∑
`=1

E[|x`|2] ≤ P . (1)
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Tx

...

{h1,`}

{h2,`}

{hK,`}

{n1,`}
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{nK,`}

Rx 1

Rx 2

Rx K

(M0,M1, . . . ,MK) {x`}

{y1,`}

{y2,`}

{yK,`}

(M
(1)
0 , M̂1)

(M
(2)
0 , M̂2)

(M
(K)
0 , M̂K)

Fig. 1. BCCs with one common message M0 and K confidential messages Mk, k ∈ K, mixers and adders operate in parallel
over the L channels.

The power pk,` is allocated on channel ` for message Mk, k = 0, . . . , K. Let p be the (K+1)×L

matrix with entries pk,`, k = 0, . . . , K, ` = 1, . . . , L. Set P includes all power allocation matrices

p that satisfy the power constraint (1), i.e.,

P =

{
p :

K∑
k=0

L∑
`=1

pk,` ≤ P

}
. (2)

Moreover, we assume that channels are quasi-static, i.e., they remain constant over the entire

duration of a single packet. On channel ` at receiver k ∈ K, we obtain

yk,` = hk,` x` + nk,` , (3)

where nk,` is a complex circularly symmetric zero-mean unit variance additive white Gaussian

noise (AWGN) term, and hk,` is the complex channel gain. Noise components for different

channels are independent. Let αk,` = |hk,`|2 be the channel power gains. We assume that the

transmitter has some partial channel state information. It knows the channel statistical distribution

and possesses estimates ĥk,` of the complex channel gains, that are corrupted by noise

ĥk,` = hk,` + ηk,` , (4)

where ηk,` are iid complex circularly symmetric zero-mean Gaussian noise with variance σ2. The
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conditional probability density function (pdf) of the channel power gain αk,` given the channel

estimate ĥk,` can be computed from a priori pdf of the complex channel gain fhk,` and that of

the estimation noise fη as

fαk,`|ĥk,`(a|b) =

∫ π
−π fη(b−

√
aejφ)fhk,`(

√
aejφ) dφ

2
[
fhk,` ⊗ fη

]
(b)

. (5)

where ⊗ denotes the convolution operation.

A (2nR0 , 2nR1 , . . . , 2nRK , n) code consists of the following:

1) K + 1 message sets: Mk = {1, 2, . . . , 2nRk} with each message Mk uniformly distributed

over the set Mk, k = 0, . . . , K.

2) one stochastic encoder at the transmitter that maps each message vector (M0,M1, . . . ,MK)

to a codeword Xn representing the group of vectors [X[1], . . . ,X[n]]. The vector X[m],

m = 1, . . . , n contains the symbols {x`} at the time index m.

3) K decoders: each at one receiver that maps a received sequence Y n
k to a couple of messages

(M
(k)
0 , M̂k) ∈ M0 ×Mk for k ∈ K. The received sequence Y n

k represents the group

of received vectors [Yk[1], . . . ,Yk[n]] where Yk[m], m = 1, . . . , n contains the received

symbols {yk,`} at time index m.

The reliability condition of the confidential message Mk at the intended receiver is ensured

when limn→∞ P [M̂k 6= Mk] = 0 and the reliability condition of the common message is ensured

when limn→∞ P [M
(k)
0 6= M0] = 0, k ∈ K. The weak secrecy to the unintended user j of the

confidential message Mk is guaranteed by ensuring a vanishing leakage rate as n→∞ [1], [14],

i.e., we require

lim
n→∞

1

n
I(Mk;Y

n
j ) = 0 (6)

for j 6= k. A rate vector (R0, R1, . . . , RK) is achievable if there exists a sequence of codes such

that as n goes to infinity, the reliability requirement is fulfilled for all intended receivers and the

secrecy requirement is fulfilled with respect to all unintended receivers.

A. Achievable Rates

Since the transmitter does not know the exact channel realization, secrecy outage may occur,

i.e., the transmitted message is either not secret or not decoded by the receiver. However,

computing the secrecy outage probability is an involved task, therefore we consider here a
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simpler approach where we add some margin to the channel estimates in order to keep the

outage probability under control.

In particular, the transmitter can compute upper and lower bounds on the channel power gains

α+
k,` and α−k,` that provide the desired outage probability. We consider here a simpler approach

where the same probability threshold ε is used on each channel, i.e.,

P
[
αk,` > α+

k,`

∣∣∣ĥk,`] < ε , P
[
αk,` < α−k,`

∣∣∣ĥk,`] < ε . (7)

Then, α−k,` will be considered as the channel power gain to the intended receiver, while α+
k,` is

the channel power gain to the unintended receiver. The probabilities in (7) can be computed

using the pdf (5). Note that when perfect CSI is available α+
k,` = α−k,`.

The multicast channel with multiple eavesdroppers can be seen as a compound wiretap

channel [19], [20], in which the transmitter sends common message to all receivers and keeps

the message secret from all eavesdroppers. When transmitting message Mk, the system can be

modeled as a parallel compound wiretap channels with one receiver and K − 1 eavesdroppers.

Let us define

Lk/j =
{
` : α−k,` ≥ α+

j,`; j 6= k
}

(8)

and

Rk/j(p) =
∑
`∈Lk/j

log
(
1 + α−k,` pk,`

)
− log

(
1 + α+

j,` pk,`
)
. (9)

By applying the results in [19] an outer bound on the achievable secrecy rate of message Mk

over the deterministic channels {α−k,`, α
+
k,`}, for a given power allocation p is

Rmax
k (p) = min

j 6=k;1≤j≤K
Rk/j(p) . (10)

From (7) we can conclude that with probability larger than (1 − ε)KL the channel gains are

such that the secrecy rate is upper bounded by (10). However, since we imposed a probabilistic

constraint on the channel gains rather than the secrecy rate itself, Rmax
k (p) is not an outage bound

on the secrecy rate. Al already mentioned, this approach leads to easier computations, while a

comparison with an outage secrecy bound is left for future study. Moreover, in the special case

of full CSI (ε = 0), (10) is an outer bound, and we will use it extensively in Section VI.

The work [41] studied the maximum common message rate over parallel broadcast channels
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and showed that the expression is given by the capacity of the worst user. In our scenario, the

common message is multiplexed with the confidential messages. The decoding strategy consists

to reconstruct the common message first, by treating confidential messages as noise. Then, the

common message is subtracted and the confidential message is decoded [15]. We define for

k ∈ K,

R0k(p) =
L∑
`=1

log
(
1 + α−k,`p0,` + α−k,`

K∑
i=1

pi,`
)
− log

(
1 + α−k,`

K∑
i=1

pi,`
)
. (11)

The maximum common message rate for a given power allocation p can be expressed as [41]

Rmax
0 (p) = min

k∈K

L∑
`=1

log

(
1 +

α−k,`p0,`

1 + α−k,`
∑K

i=1 pi,`

)

= min
k∈K

L∑
`=1

log

(
1 + α−k,`p0,` + α−k,`

∑K
i=1 pi,`

1 + α−k,`
∑K

i=1 pi,`

)
= min

k∈K
R0k(p) .

(12)

We point out that the above communication rates are achieved by using joint encoding across

the channels. Also (12) must be considered as a bound on the rate that can be achieved under

constraints (7) on the channel gain, and in general is not a secrecy outage bound.

B. Problem Statement

We define the rate region Router as follows

Router =
⋃
p∈P

{[R0, R1, . . . , RK ]| 0 ≤ Rk ≤ Rmax
k (p); k = 0, . . . , K} . (13)

The region Router is a convex set and any point on its boundary can be attained by maximizing

a weighted sum rate. In fact, for weights wk ≥ 0, k = 0, . . . , K, the corresponding boundary

point can be obtained by solving the following optimization problem

p∗ = arg max
p∈P

K∑
k=0

wkR
max
k (p). (14)

Then, the boundary point is given by the vector [Rmax
0 (p∗), Rmax

1 (p∗), . . . , Rmax
K (p∗)]. Varying

the weights allows to reach all the boundary points. With the above problem formulation, channel

` can be used to transmit multiple multiplexed confidential messages. When receiver k decodes
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its own confidential message, the secrecy rate of message Mk is reduced if interference from

other confidential messages is present. However, with the expression (10), we ignore interference

coming from multiplexed confidential messages on the same channel. Clearly, the boundary of

region Router provides an outer bound to the set of achievable communication rates in the

considered scenario.

III. POWER ALLOCATION FOR JOINT ENCODING

Our goal is to provide a solution to the power allocation problem (14). We first observe

that Rmax
0 (p) depends on the lowest channel power gain among all users. By defining the sets

Jk = {j = 1, . . . , K; j 6= k}, for k ∈ K and

Fa(p) = w0R0a0(p) +
K∑
k=1

wkRk/ak(p) , (15)

where a = [a0, . . . , aK ] ∈ A = K × J1 × . . .× JK . Problem (14) can be rewritten as

p∗ = arg max
p∈P

min
a∈A

Fa(p) . (16)

Therefore, the power allocation problem is formulated as the standard convex discrete max-

min optimization problem [42] where the number of variables is L(K + 1) and the cardinality

of the discrete space is |A| = K(K − 1)K . Since the objective function mina∈A Fa(p) is not

differentiable, max-min belongs to the class of non-differentiable optimization problem. However,

it can be converted to a smooth constrained optimization problem as follows

p∗ = arg max
p∈P

z

s.t. Fa(p) ≥ z, a ∈ A .
(17)

We can see from (17) that the cardinality of the discrete space is an important parameter as it

translates the number of constraints which grows exponentially versus the number of users in

our case.

A vast literature has investigated efficient algorithms solving the discrete max-min prob-

lem [43]–[47]. One common approach deeply studied [43]–[45] is sequential quadratic program-

ming (SQP). Starting from an initial approximation of the solution, a quadratic programming

problem is solved at each iteration, yielding a direction in the search space. To this direction,
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a vector is obtained in order to produce a sufficient increase of a merit function. Another

common approach in literature is smoothing techniques [46], [47]. A smoothing function called

the exponential penalty function or aggregate function is used to approximate the objective

function. Therefore, these algorithms can be implemented as solution to our power allocation

problem.

A. Power Allocation for K = 2

For the case of two users (K = 2), an almost closed-form solution to the power allocation

problem (14) is provided. In fact, the max-min formulation (16) in this case is performed over

a discrete space whose cardinality |A| = 2. The max-min optimization can be solved by using

an approach similar to that of [40]. The particular result is provided in the following lemma,

whose proof is not reported as it follows the same steps of [40].

Lemma 1. The solution of (16) when K = 2 also solves one of the following three sub-problems:

(P1) p(1) = arg max
p∈P

[w0R01(p) + w1R
max
1 (p) + w2R

max
2 (p)]

(P2) p(2) = arg max
p∈P

[w0R02(p) + w1R
max
1 (p) + w2R

max
2 (p)]

(P3) p(3) = arg max
p∈P
{w0 [ρR01(p) + (1− ρ)R02(p)] + w1R

max
1 (p) + w2R

max
2 (p)}

for some ρ ∈ (0, 1) in (P3). In particular,

p∗ =


p(1) if R01(p(1)) < R02(p(1))

p(2) if R01(p(2)) > R02(p(2))

p(3) if R01(p(3)) = R02(p(3))

. (18)

We now focus on the solution of sub-problems (P1)-(P3). For ` = 1, . . . , L and k = 1, 2, let

k̄ = 2 if k = 1 and k̄ = 1 if k = 2, let δk,` = 1/α+
k̄,`
−1/α−k,`, let ρk = ρ if k = 1 and ρk = 1− ρ

if k = 2, λ ≥ 0, and

Ωk,`(λ) =
1

2

[
δk,`

(
δk,` +

4wk
λ ln 2

)]1/2

− 1

2

(
1

α+
k̄,`

+
1

α−k,`

)
(19a)

Υk,`(λ) =
w0

λ ln 2
− 1

α−k,`
(19b)
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Ξk,` =
wk
w0

δk,` −
1

α+
k̄,`

(19c)

ωk,` =

(wk
w0

)2

+
wk
w0

2 · ( 2
α−
k̄,`

− 1
α−k,`
− 1

α+
k̄,`

)

1
α+
k̄,`

− 1
α−k,`

+ 1

 · [ 1

α+
k̄,`

− 1

α−k,`

]2

(19d)

Uk,` =

wk
w0

(
1

α+
k̄,`

− 1
α−k,`

)
−
(

1
α+
k̄,`

+ 1
α−k,`

)
+
√
ωk,`

2
(19e)

Tk,`(ρ) =
(
δk,`
)2
(
wk
w0

)2

+ 2
wk
w0

[
δk,`
(2− ρk
α−
k̄,`

− ρk̄
α−k,`
− 1

α+
k̄,`

)]

+
(
δk,`
)2

+ ρk
( 1

α−
k̄,`

− 1

α−k,`

) [
ρk
( 1

α−
k̄,`

− 1

α−k,`

)
− 2
( 1

α+
k̄,`

− 1

α−
k̄,`

)] (19f)

Φk,`(ρ) =

wk
w0
δk,` −

(
1

α+
k̄,`

+ 1
α−k,`

)
− ρk

(
1

α−
k̄,`

− 1
α−k,`

)
+
√
Tk,`(ρ)

2
(19g)

Ψk,`(λ, ρ) =
1

2

( 1

α−
k̄,`

− 1

α−k,`
− w0

λ ln 2

)2

+
4w0ρk
λ ln 2

(
1

α−
k̄,`

− 1

α−k,`
)

1/2

− 1

2

(
1

α−
k̄,`

+
1

α−k,`
− w0

λ ln 2

)
.

(19h)

The set L0 is defined by {1, . . . , L} \
(
L1/2 ∪ L2/1

)
. The main result for the solution of the

optimization problem is provided by the following theorem.

Theorem 1. The solutions of sub-problems (P1)-(P3) are:

(P1) For ` ∈ L1/2, if w1

w0
>

α−1,`
α−1,`−α

+
2,`

, then

p
(1)
0,` = [Υ1,`(λ)− Ξ1,`]

+ , p
(1)
1,` = [min {Ω1,`(λ); Ξ1,`}]+ . (20a)

Otherwise, if w1

w0
≤ α−1,`

α−1,`−α
+
2,`

, then

p
(1)
0,` = [Υ1,`(λ)]+ , p

(1)
1,` = 0 . (20b)

For ` ∈ L2/1, if w2

w0
>

α−1,`
α−2,`−α

+
1,`

, then

p
(1)
0,` = [Υ1,`(λ)− U2,`]

+ , p
(1)
2,` = [min {Ω2,`(λ);U2,`}]+ . (20c)
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Otherwise, if w2

w0
≤ α−1,`

α−2,`−α
+
1,`

, then

p
(1)
0,` = [Υ1,`(λ)]+ , p

(1)
2,` = 0 . (20d)

For ` ∈ L0,

p
(1)
0,` = [Υ1,`(λ)]+ , (20e)

where λ is chosen to satisfy the total power constraint with equality.

(P2) Due to the symmetry (with respect to the user index) of sub-problems (P1) and (P2),

solutions of (P2) and (P1) coincide, apart from an index (1 and 2) swap.

(P3) For ` ∈ Lk/k̄, if Tk,`(ρ) > 0, then

if wk
w0
>

ρkα
−
k,`+ρk̄α

−
k̄,`

α−k,`−α
+
k̄,`

, then

p
(3)
0,` = [Ψk,`(λ, ρ)− Φk,`(ρ)]+ , p

(3)
k,` = [min {Ωk,`(λ); Φk,`(ρ)}]+ . (21a)

Otherwise, if wk
w0
≤

ρkα
−
k,`+ρk̄α

−
k̄,`

α−k,`−α
+
k̄,`

, then

p
(3)
0,` = [Ψk,`(λ, ρ)]+ , p

(3)
k,` = 0 . (21b)

If Tk,`(ρ) = 0, then

if wk
w0
>

α−k,`+ρk̄α
+
k̄,`

+ρk
α−
k,`

α+
k̄,`

α−
k̄,`

α−k,`−α
+
k̄,`

, then (21a).

Otherwise, if wk
w0
≤

α−k,`+ρk̄α
+
k̄,`

+ρk
α−
k,`

α+
k̄,`

α−
k̄,`

α−k,`−α
+
k̄,`

, then (21b).

If Tk,`(ρ) < 0, then

if wk
w0
>

ρkα
−
k,`+ρk̄α

−
k̄,`

α−k,`−α
+
k̄,`

, then

p
(3)
0,` = 0 , p

(3)
k,` = [Ωk,`(λ)]+ . (21c)

Otherwise, if wk
w0
≤

ρkα
−
k,`+ρk̄α

−
k̄,`

α−k,`−α
+
k̄,`

, then

p
(3)
0,` = [Ψk,`(λ, ρ)]+ , p

(3)
k,` = 0 . (21d)

For ` ∈ L0,

p
(3)
0,` = [Ψ1,`(λ, ρ)]+ , (21e)

March 18, 2016 DRAFT



13

TABLE I
POWER ALLOCATION ALGORITHM FOR 2 USERS.

compute p(1) by (20)
if R01(p(1))<R02(p(1))

then p∗ = p(1)

else compute p(2) by (20) with user indices exchanged
if R01(p(2))>R02(p(2))

then p∗ = p(2)

else compute p∗ = p(3) by (21)

where ρ ∈ (0, 1) is chosen to satisfy R01

(
p(3)
)
=R02

(
p(3)
)

and λ is chosen to satisfy the total

power constraint with equality.

Proof. See Appendix A.

Table I summarizes the power allocation algorithm. It includes three steps consisting of simple

closed-form solutions of sub-problems (P1)-(P3). Steps 1 and 2 require the optimization of λ,

while Step 3 requires the optimization of both λ and ρ ∈ (0, 1). These optimizations can be

efficiently performed for instance by a dichotomic search. Moreover, the two searches can be

performed in cascade.

The approach considered here to solve the problem for the case K = 2 can be generalized

for an arbitrary number of users. For instance when K = 3, we should consider 224 − 1 sub-

problems such as the sub-problems provided by Lemma 1. In fact, this number corresponds to

all possible linear combinations of 3×23 = 24 objective functions. When K is large, the number

of sub-problems increases super-exponentially. The extremely high number of sub-problems to

consider limits the application of the approach even when K = 3. In addition, solving each

sub-problem returns into searching the roots of a polynomial with degree K for the common

message power allocation problem. It is not possible in this case to solve these sub-problems in

closed-form.

IV. POWER ALLOCATION FOR PER-USER ENCODING

We remind that power allocation for joint encoding providing the outer bound to the set of

achievable rates is formulated as the discrete max-min program where the cardinality of the
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discrete space is |A| = K(K − 1)K . As observed, the complexity is super-exponential versus

the number of users.

Let us partition the channel index set {1, . . . , L} into

Lk =
{
` : α−k,` ≥ α+

j,` ∀j ∈ K, j 6= k
}
, k ∈ K

L0 = {1, . . . , L} \ ∪k∈K Lk .
(22)

The idea behind per-user encoding is to encode the different messages jointly across channels

belonging to Lk and independently among the different sets Lk. In particular, message Mk is

encoded jointly only across channels belonging to the set Lk and pk,` = 0 if ` /∈ Lk where k ∈ K.

For ` ∈ L0, pk,` = 0 when k ∈ K, i.e., only the common message is transmitted over channels

` ∈ L0. Furthermore, we assign a fixed amount of power to each group of channels Lk, in order

to allow the parallel solutions of power allocation sub-problems. The resulting power allocation

maximizing the weighted sum rate achieved by per-user encoding is still formulated as the

discrete max-min program. However, the cardinality of the discrete space of each sub-problem

is now reduced.

Let us now formally define the optimization problem for per-user encoding. For k = 0, . . . , K,

let us define the (K + 1)× L power allocation matrix π(k) such that

π
(k)
i,` =

pi,` if i ∈ {0, k} and ` ∈ Lk ,

0 otherwise .
(23)

When the messages are encoded by per-user encoding, the achievable rate of the common

message for one group of channels Lk can be expressed as

R
(G)
0k (π(k)) = min

i∈K
R0i(π

(k)) . (24)

Then, the total common message rate is given by the sum over all groups of channels

R
(G)
0 (p) =

K∑
k=0

R
(G)
0k (π(k)) . (25)

The confidential rates R(G)
k

(
π(k)

)
are given by (9) and (10) but with replacing Lk/j by Lk .

Furthermore, we subdivide power uniformly among groups of channels, proportionally to the
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number of channels per group. This can be translated into the additional constraint (Ck)

(Ck)


∑

`∈Lk

(
π

(k)
0,` + π

(k)
k,`

)
≤ |Lk| PL if k ∈ K∑

`∈L0
π

(0)
0,` ≤ |L0| PL if k = 0

. (26)

The power allocation problem maximizing the weighted sum rate is then expressed as

p(G) = arg max
p

K∑
k=1

[
w0R

(G)
0k

(
π(k)

)
+ wkR

(G)
k

(
π(k)

)]
+ w0R

(G)
00

(
π(0)

)
s.t.

K∑
k=0

∑
`∈Lk

(
π

(k)
0,` + π

(k)
k,`

)
≤ P .

(27)

Problem (27) can be solved by considering K+1 independent sub-problems where each one is

reduced to channels belonging to the set Lk. The power allocation solving the k-th sub-problem,

k ∈ K consists in maximizing the weighted sum of a partial part of the common message rate

and the confidential message rate of user k. While the power allocation solving the sub-problem

for k = 0 consists in maximizing a partial part of the common message rate. In formulas, the

k-th sub-problem, k ∈ K is described as

π∗k = arg max
π(k)

w0R
(G)
0k

(
π(k)

)
+ wkR

(G)
k

(
π(k)

)
s.t. (Ck) .

(28)

For k = 0, the sub-problem is described as

π∗0 = arg max
π(0)

R
(G)
00

(
π(0)

)
s.t. (C0) .

(29)

With this formulation, sub-problem (28) is a convex discrete max-min problem, where the number

of unknowns is 2 |Lk| and the cardinality of the discrete space is K(K − 1). Meanwhile, sub-

problem (29) is a convex discrete max-min problem, where the number of unknowns is |L0|

and the cardinality of the discrete space is K. Again, standard algorithms for discrete max-min

program can be used. Therefore, the proposed algorithm consists in the solutions of K + 1

independent sub-problems. As a result, the complexity of the algorithm is cubic versus the

number of users. Compared to the outer bound provided by joint encoding, the complexity is

significantly reduced.

March 18, 2016 DRAFT



16

TABLE II
POWER ALLOCATION FOR PER-USER ENCODING WITH MODIFIED COMMON MESSAGE POWER ALLOCATION.

solve the K independent sub-problems (28)
p

(MG)
k,` = π∗k,`, for k ∈ K and ` ∈ Lk

compute constraint (D) by (30)
solve problem (31) given constraint (D)

p
(MG)
0,` = p∗0,`, for ` = 1, . . . , L

A. Modified Common Message Power Allocation

The idea is to exploit the allocated powers obtained by (27) and then perform joint encoding

for the common message, thus achieving common message rate (12) instead of (25). Therefore,

we can further increase the common message rate by optimizing the common message rate,

while not changing the power allocation of the confidential messages.

In particular, the power of the common message is allocated in order to maximize the common

message rate given by (12). Let p0 = {p0,`} denote the 1 × L power allocation vector for the

common message to be optimized. Once power allocation for confidential messages is fixed, the

total available power for the common message is

(D) :
L∑
`=1

p0,` = P −
K∑
i=1

∑
∪k∈KLk

p
(G)
i,` . (30)

Then, the optimization problem is expressed as

p∗0 = arg max
p0

min
k∈K

L∑
`=1

log

(
1 + α−k,`p0,` + α−k,`

K∑
i=1

p
(G)
i,`

)
s.t. (D) .

(31)

Problem (31) is a convex discrete max-min program, where the number of unknowns is L and

the cardinality of the discrete space is K. The steps of the new algorithm are summarized in

Table II.

The proposed modification requires to solve an additional discrete max-min program with

cardinality K. The complexity of this modification is still small when compared to the complexity

of power allocation for per-user encoding which is cubic versus the number of users.
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V. POWER ALLOCATION FOR PER-CHANNEL ENCODING

We now consider further simplification of the power allocation problem by considering a

separate encoding for both the confidential and the common messages on a per-channel basis. In

other words, the common message and the confidential messages are split into sub-messages, and

a separate encoder is used on each channel. This is clearly a further sub-optimal approach with

respect to the joint encoding, but it allows a simple implementation and significantly simplify

the power allocation problem, as detailed in the following.

Let us start by assessing the achievable rates of this scheme with a given power allocation.

We define βk,` = maxj 6=k α
+
j,` and γ` = mink α

−
k,`. The achievable confidential message rate for

user k is

R
(C)
k (p) =

∑
`∈Lk

[
log
(
1 + α−k,` pk,`

)
− log

(
1 + βk,` pk,`

)]
, (32)

while, the common message rate can be expressed as

R
(C)
0 (p) =

L∑
`=1

[
log
(
1 + γ`p0,` + γ`

K∑
i=1

pi,`
)
− log

(
1 + γ`

K∑
i=1

pi,`
)]

. (33)

The power allocation problem maximizing the weighted sum rate is now

p(C) = arg max
p∈P

K∑
k=0

wkR
(C)
k (p). (34)

Before providing its solution, for ` = 1, . . . , L, k ∈ K and λ ≥ 0, we define

Λk,`(λ) =
1

2

[( 1

βk,`
− 1

α−k,`

)( 1

βk,`
− 1

α−k,`
+

4wk
λ ln 2

)]1/2

− 1

2

( 1

βk,`
+

1

α−k,`

)
(35a)

Z`(λ) =
w0

λ ln 2
− 1

γ`
(35b)

∆k,` =

(
1

βk,`
− 1

α−k,`

)2
(wk
w0

)2
+ 2 · wk

w0

·
2
γ`
− 1

α−k,`
− 1

βk,`

1
βk,`
− 1

α−k,`

+ 1

 (35c)

Θk,` =
1

2

[
wk
w0

( 1

βk,`
− 1

α−k,`

)
−
( 1

βk,`
+

1

α−k,`

)
+
√

∆k,`

]
. (35d)

The main result is provided by the following theorem.
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Theorem 2. For ` ∈ Lk and k ∈ K, the solution of power allocation (34) is:

if α−k,` − βk,` >
γ` w0

wk
, then

p
(C)
0,` = [Z`(λ)−Θk,`]

+ , p
(C)
k,` = [min {Λk,`(λ); Θk,`}]+ , (36a)

otherwise,

p
(C)
0,` = [Z`(λ)]+ , p

(C)
k,` = 0 . (36b)

For ` ∈ L0,

p
(C)
0,` = [Z`(λ)]+ , (36c)

and λ is chosen to satisfy the total power constraint (1) with equality.

Proof. See Appendix B.

The theorem provides an almost closed-form solution to the problem where only one positive

real variable λ should be optimized numerically. Note that the total power is a decreasing function

versus λ, therefore the optimization of λ can be performed efficiently by a dichotomic search

as it only scales with the number of channels L. From the theorem, we also conclude that

no power is allocated to the confidential message when the difference between the channel

power gains of the intended receiver and the strongest unintended receiver is below a certain

threshold. On the other hand, in this case power allocation for the common message follows the

conventional water-filling principle, where the water level is determined by the weight w0 and

the total available power through λ. Finally, we highlight that the complexity of the proposed

algorithm is independent of the number of users.

VI. NUMERICAL RESULTS

This section offers the performance evaluation of the proposed sub-optimal algorithms and

comparison to the outer bound. We consider Rayleigh fading channel, i.e., hk,` are zero-mean

Gaussian with variance that coincides with the average signal-to-noise ratio (SNR), Γk = E[αk,`].

The number of channels and the total power are both set to L = P = 16. Unless otherwise

specified, we consider perfect CSI and α+
k,` = α−k,`. The discrete max-min optimization problem

is solved using MATLAB optimization toolbox which implements the goal attainment method of
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Fig. 2. Achievable secrecy rate region (E[R1],E[R2]) comparison: Γk = 10 dB, E[R0] = 1.5 bits/s/Hz, and (a) E[R3] = 0.33
bits/s/Hz (b) E[R3] = 0.4 bits/s/Hz .

Gembicki [43]. We use the notation GR-E, M-GR-E, C-E and UNI to denote respectively per-

user encoding, per-user encoding with modified common message power allocation, per-channel

encoding schemes and uniform power allocation.

A. System With 3 Users

a) Secrecy Rates: Fig. 2 shows the average confidential message rate region for the first two

users (E[R1] and E[R2]) achieved by the four power allocation algorithms. The average common

message rate is fixed to 1.5 bits/s/Hz and the average rate of the confidential message of the third

user is 0.33 and 0.4 bits/s/Hz in Figs. 2a and 2b respectively. The region is obtained by suitably

varying the barycentric weights w0, . . . , w3. We assume that all users have the same average

SNR, Γ1 = Γ2 = Γ3 = 10 dB. Although the sub-optimal algorithms do not approach the outer

bound in this case, we remark that M-GR-E still allows a significant performance improvement

over GR-E. C-E achieves a secrecy rate region substantially smaller than the other algorithms.

As expected, we also notice that by increasing E[R3] we shrink the achievable regions.

b) Users With the Same SNR: Fig. 3 shows the average sum rate with all equal weights

versus Γk = Γ (k = 1, . . . , 3) for the five power allocation algorithms. As expected, the

average sum rate grows logarithmically with Γ. The uniform power allocation shows the worst

performance. M-GR-E allows to achieve a performance level close to the outer bound (gap less
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Fig. 3. Average sum rate comparison versus Γ.

than 0.02 bits/s/Hz). The performance gap between the algorithms is distinguishable mainly at

the high SNR regime.

c) Unequal SNRs Among Users: Fig. 4 shows the average messages rates versus Γ1 for M-

GR-E and C-E when Γ2 and Γ3 are both fixed to 10 dB. We observe that the average confidential

messages rates cross at Γ1 = 10 dB when all users have the same average SNR, while E[R1] >

E[R2],E[R3] for Γ1 > 10 dB. E[R2] and E[R3] are similar as both users 2 and 3 have equal

SNRs. At the high Γ1 regime, E[R1] grows unbounded while E[R2] and E[R3] converge to 0.

E[R0] increases rapidly for Γ1 < 10 dB and reaches a fixed value different from 0 at the high Γ1

regime. This may be counter-intuitive as, when a user has a significantly higher average SNR

than the others, we would expect that the power devoted to the common message would be

vanishing and E[R0] converging to 0.

To understand the behavior of E[R0] at high Γ1 regime, we propose to consider a simplified

degraded deterministic scalar channel with one transmitter and two receivers whose channel

power gains are respectively α and β, with α > β. The transmitter sends one common message to

both receivers and one confidential message to receiver 1. The power allocated to the confidential

message is Ps and the power allocated to the common message is Pc such that P = Pc+Ps. The
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Fig. 4. Average messages rates versus Γ1, Γ2 = Γ3 = 10 dB, (a) M-GR-E (b) C-E.

common message rate Rc(Ps) and confidential message rate Rs(Ps) can be expressed as [41]

Rc(Ps) = log
(
1 + βP

)
− log

(
1 + βPs

)
; (37)

Rs(Ps) = log
(
1 + αPs

)
− log

(
1 + βPs

)
. (38)

Our goal is to determine P̄ ∗c maximizing the sum rate Rc(Ps) +Rs(Ps) at the high SNR regime

when α→∞. A simple computation allows to show that

P̄ ∗c =

P −
P
β

if β ≥ 1

0 else
. (39)

We deduce that P ∗c converges to a fixed value P̄ ∗c = P − P
β

when β is larger than a certain

threshold equal to 0 dB and P̄ ∗c = 0 otherwise. We conclude that the power devoted to the

common message is vanishing only if β is lower than a certain threshold. In Fig. 5, we show

E[R0] versus Γ1 achieved by C-E for some values of Γ2 and Γ3. The conclusion drawn from

the simplified case is confirmed: E[R0] tends to a fixed value different from 0 when Γ2 = Γ3 ∈

{5, 10} dB and E[R0] tends to 0 when Γ2 = Γ3 ∈ {−5,−10} dB at the high Γ1 regime.

In Fig. 6, we compare E[R0] and E[R1] versus Γ1 between the four power allocation algorithms;

Γ2 = Γ3 = 10 dB. We remark that GR-E and M-GR-E achieve very close secrecy rate as the
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Fig. 6. E[R0] and E[R1] versus Γ1 comparison between the four algorithms, Γ2 = Γ3 = 10 dB.

outer bound. The loss in performance of GR-E and M-GR-E compared to the outer bound is

observed mainly for the common message rate. Nevertheless, E[R0] tends to close values for all

power allocation algorithms at the high Γ1 regime.

d) Imperfect CSI : To investigate the impact of imperfect CSI, we show in Fig. 7 E[R0]

and E[R1] versus the outage probability ε with σ = 0.01 for joint encoding providing the outer

bound and M-GR-E. We notice that as ε is less than a cutoff (≈ 5 · 10−2), E[R0] and E[R1] are

March 18, 2016 DRAFT



23

10
−4

10
−3

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

ǫ

A
ve

ra
ge

 r
at

es
 [b

its
/s

/H
z]

 

 
E[R0], Outer bound

E[R1], Outer bound

E[R0], M-GR-E

E[R1], M-GR-E

Fig. 7. E[R0] and E[R1] versus ε for J-E and M-GR-E.

both constant. While for ε > the cutoff, the secrecy rate increases, as we are less restrictive on

the illegitimate receiver. On the other hand, the average rate of the common message decreases.

B. Multiuser System

e) Impact of the Number of Users: Fig. 8 shows the average sum secrecy rate and the

average common message rate versus K for all power allocation algorithms. We do not go

beyond K = 4 for the outer bound due to the heavy computational complexity of the power

allocation algorithm in this case. All users in the system are assumed to have the same Γk = 10

dB and we consider equal weights, wk = 1, for k = 0, . . . , K. We observe that the average

rates are decreasing functions versus K. In fact, the number of eavesdroppers increases with

K, which reduces the individual secrecy rate. As a result, the sum secrecy rate decreases too.

The common message rate depends on the capacity of the worst user, which decreases as K

increases thus E[R0] is reduced too.

Fig. 9 shows the average sum rate for the five solutions as a function of K. We observe

that we have same order as for the case of three users (see Fig. 3), except for the UNI power

allocation that as K > 3 outperforms the C-E solution. This is due to the fact that coding

per subchannel is in general suboptimal, although may provides some advantage in terms of

computational complexity.
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Fig. 8. Average sum rate, sum secrecy rate and E[R0] versus K, (a) Outer bound (b) GR-E (c) M-GR-E (d) C-E.

f) Computational Complexity Comparison: The computational complexity of the proposed

algorithms is related to the number of channels L and the number of users K. The complexity

depends mainly on the number of users K via the cardinality of the discrete space in the max-

min program. Table III reports the cardinality of the discrete space and the number of variables

for all algorithms. In fact, the solution of the outer bound has an exponential complexity, while

GR-E and M-GR-E reduce complexity from exponential to cubic and also reduce the number

of variables. On the other hand, the complexity of C-E is independent of K.
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Fig. 9. Average sum rate versus K comparison.

TABLE III
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN POWER ALLOCATION ALGORITHMS

Algorithm Cardinality of the max-min space Number of variablesgeneral K K = 3 K = 12

Outer bound K(K − 1)K 24 3.76 · 1013 L(K + 1)
GR-E K2(K − 1) 18 1584 2L

M-GR-E K2(K − 1) +K 21 1596 3L
C-E 1 1 1 2L

VII. CONCLUSION

We proposed four power allocation algorithms with the objective of maximizing the weighted

sum rate achievable by different encoding schemes. Moreover, we offered performance evaluation

and computational complexity comparison for all proposed algorithms. Numerical results have

shown the merit of power allocation for per-user encoding with modified common message power

allocation as it reaches close performance to the outer bound provided by joint encoding at much

lower complexity (cubic versus exponential function of the number of users). The performance

gap of power allocation for per-user encoding grows large when the number of users K increases

for a fixed number of channels L. The variant with modified common message power allocation

enables to correct this behavior and considerably reduces the gap. However, the correction may

not be as effective when power is over-allocated to confidential messages. Although power
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allocation for per-channel encoding has a poor performance, it can offer suitable solution for

computational constrained devices as the complexity is independent of the number of users.

We conclude also from the analysis that the growing number of users becomes detrimental to

performance for the studied communication scenario.

APPENDIX

A. Proof of Theorem 1

Solutions of (P1), (P2) and (P3) follow the same steps. We present only the solution of (P1)

for the sake of conciseness. (P1) is a convex optimization with concave objective function and

affine constraint. We solve the optimization by a technique based on deriving an upper bound

on the Lagrangian dual and establishing power allocations that achieve the upper bound.

The Lagrangian dual G(p, λ) of (P1) is given by

G(p, λ) =
L∑
`=1

w0 log
(
1 +

α−1,`p0,`

1 + α−1,`[p1,` + p2,`]

)
+
∑
`∈L1

w1 log
(
1 + α−1,`p1,`

)
− w1 log

(
1 + α+

2,`p1,`

)
+
∑
`∈L2

w2 log
(
1 + α−2,`p2,`

)
− w2 log

(
1 + α+

1,`p2,`

)
− λ

L∑
`=1

[
p0,` + p1,` + p2,`

]
(40)

where λ ≥ 0 is the Lagrange multiplier. For ` ∈ L1/2, we have p2,` = 0. In this case, p(1)
0,` and

p
(1)
1,` need to maximize :

G1(p0,`, p1,`, λ) = w0 log
(
1 +

α−1,`p0,`

1 + α−1,`p1,`

)
+ w1 log

(
1 + α−1,`p1,`

)
− w1 log

(
1 + α+

2,`p1,`

)
− λ(p0,` + p1,`). (41)

We denote by u0,`(·) and u1,`(·) the partial derivative of G1(p0,`, p1,`, λ) with respect to p0,` and

p1,`, respectively:

u0,`(x) =
w0

ln 2

α−1,`
1 + α−1,`x

− λ (42)
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uk,`(x) =
wk
ln 2

(
α−k,`

1 + α−k,`x
−

α+
k̄,`

1 + α+
k̄,`
x

)
− λ. (43)

Then, (41) can be rewritten as

G1(p0,`, p1,`, λ) =

∫ p1,`+p0,`

p1,`

u0,`(x) dx+

∫ p1,`

0

u1,`(x) dx (44)

and upper bounded as

G1(p0,`, p1,`, λ) ≤
∫ +∞

0

[max{u0,`(x), u1,`(x)}]+ dx. (45)

The root of u0,`(x) is Υ1,`(λ) defined in (19b) while the largest root of u1,`(x) is Ω1,`(λ) defined

in (19a). u0,`(x) and u1,`(x) intersect at the point Ξ1,` given by (19c). In the following, we

consider two cases.

1) w1

w0
>

α−1,`
α−1,`−α

+
2,`

, i.e., Ξ1,` is positive.

In this case, u1,`(0) > u0,`(0). There are three possibilities to consider depending on the

value of λ.

a) If u1,`(0) < 0, then both u0,`(x) and u1,`(x) are negative for x > 0, and (45) is

achieved by p(1)
0,` = 0 and p(1)

1,` = 0.

b) If u1,`(0) ≥ 0 and Υ1,`(λ) < Ξ1,`, then (45) is achieved by p(1)
0,` = 0 and p(1)

1,` = Ω1,`(λ).

c) If Υ1,`(λ) ≥ Ξ1,`, then (45) is achieved by p(1)
0,` = Υ1,`(λ)− Ξ1,` and p(1)

1,` = Ξ1,`.

In summary, we obtain (20a).

2) w1

w0
≤ α−1,`

α−1,`−α
+
2,`

, i.e., Ξ1,` is negative.

In this case, u0,`(0) ≥ u1,`(0).

a) If u0,`(0) ≤ 0, then (45) is achieved by p(1)
0,` = 0 and p(1)

1,` = 0.

b) If u0,`(0) > 0, then (45) is achieved by p(1)
0,` = Υ1,`(λ) and p(1)

1,` = 0.

In summary, we obtain (20b).

For ` ∈ L2/1, p(1)
0,` and p(1)

2,` need to maximize :

G2(p0,`, p2,`, λ) =w0 log
(
1 +

α−1,`p0,`

1 + α−1,`p2,`

)
+ w2 log

(
1 + α−2,`p2,`

)
− w2 log

(
1 + α+

1,`p2,`

)
− λ(p0,` + p2,`). (46)
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Then, we obtain, analogously to (45)

G2(p0,`, p2,`, λ) ≤
∫ +∞

0

[
max

{
u0,`(x), u2,`(x)

}]+
dx. (47)

The largest root of u2,`(x) is Ω2,`(λ) given by (19a). u0,`(x) and u2,`(x) intersect at two points.

The largest point U2,` is given by (19e). We consider two cases depending on the sign of the

two points.

1) w2

w0
>

α−1,`
α+

2,`−α
+
1,`

, i.e., one point is negative and the other is positive.

In this case, u2,`(0) > u0,`(0). There are three possibilities to consider.

a) If u2,`(0) < 0, then both u0,`(x) and u2,`(x) are negative for x > 0, and (47) is

achieved by p(1)
0,` = 0 and p(1)

2,` = 0.

b) If u2,`(0) ≥ 0 and Υ1,`(λ) < U2,`, then (47) is achieved by p(1)
0,` = 0 and p(1)

2,` = Ω2,`(λ).

c) If Υ1,`(λ) ≥ U2,`, then (47) is achieved by p(1)
0,` = Υ1,`(λ)− U2,` and p(1)

2,` = U2,`.

In summary, we obtain (20c).

2) w2

w0
≤ α−1,`

α+
2,`−α

+
1,`

, i.e., the two intersection points are negative.

In this case, u0,`(0) ≥ u2,`(0). There are two possibilities to consider.

a) If u0,`(0) ≤ 0, then (47) is achieved by p(1)
0,` = 0 and p(1)

2,` = 0.

b) If u0,`(0) > 0, then (47) is achieved by p(1)
0,` = Υ1,`(λ) and p(1)

2,` = 0.

In summary, we obtain (20d).

The case that the two points are positive is not possible.

For ` ∈ L0, p(1)
0,` need to maximize

G0(p0,`, λ) = w0 log
(
1 + α−1,`p0,`

)
− λ p0,`. (48)

G0(p0,`, λ) can be upper bounded by

G0(p0,`, λ) =

∫ p0,`

0

u0,`(x) dx ≤
∫ +∞

0

[u0,`(x)]+ dx. (49)

If u0,`(0) < 0, then the upper bound on G0(p0,`, λ) is achieved by p
(1)
0,` = 0. If u0,`(0) ≥ 0, the

upper bound is achieved in this case by p(1)
0,` = Υ1,`(λ). In summary, we obtain (20e).

The Lagrange parameter λ is chosen to satisfy the power constraint with equality.
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B. Proof of Theorem 2

Problem (34) is a convex optimization with concave objective function and affine constraint.

We solve this problem analytically by deriving an upper bound on the Lagrangian dual and

establishing power allocations that achieve this upper bound. The Lagrangian dual G(p, λ) of

the problem is given by

G(p, λ) =w0

L∑
`=1

log

(
1 +

γ` p0,`

1 + γ`[p1,` + . . . pK,`]

)

+
K∑
k=1

wk
∑
`∈Lk

log
(
1 + α−k,`pk,`

)
− log

(
1 + βk,`pk,`

)
− λ

K∑
k=1

L∑
`=1

[
p0,` + pk,`

]
(50)

where λ ≥ 0 is the Lagrange multiplier.

For ` ∈ Lk, k ∈ K, the transmitter sends the common message M0 and the confidential

message Mk. In this case, p(C)
0,` and p(C)

k,` need to maximize:

Gk(p0,`, pk,`, λ) =w0 log

(
1 +

γ` p0,`

1 + γ` pk,`

)
+ wk log

(
1 + α−k,` pk,`

)
− wk log

(
1 + βk,` pk,`

)
− λ[p0,` + pk,`] . (51)

We denote by M0,`(·) and Mk,`(·) the partial derivative of Gk(p0,`, pk,`, λ) with respect to p0,`

and pk,`, i.e.,

M0,`(x) =
w0

ln 2

γ`
1 + γ` x

− λ (52)

Mk,`(x) =
wk
ln 2

(
α−k,`

1 + α−k,` x
− βk,`

1 + βk,` x

)
− λ . (53)

Then, (51) can be rewritten as

Gk(p0,`, pk,`, λ) =

∫ pk,`+p0,`

pk,`

M0,`(x) dx+

∫ pk,`

0

Mk,`(x) dx (54)

and upper bounded by

Gk(p0,`, pk,`, λ) ≤
∫ +∞

0

[max{M0,`(x),Mk,`(x)}]+ dx . (55)
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The root of M0,`(·) is Z`(λ) defined in (35b) and the largest root of Mk,`(·) is Λk,`(λ) defined

in (35a). As the discriminant ∆k,` given by (35c) is strictly positive,M0,`(·) andMk,`(·) intersect

at two points. The largest one is Θk,` defined in (35d). We consider two cases depending on the

sign of both points.

1) α−k,` − βk,` >
γl w0

wk
, i.e., one point is negative and the other is positive.

In this case, Mk,`(0) > M0,`(0). There are three possibilities to consider depending on

the value of λ.

a) If Mk,`(0) < 0, then both M0,`(x) and Mk,`(x) are negative for x > 0. The upper

bound (55) is achieved by p(C)
0,` = 0 and p(C)

k,` = 0.

b) If Mk,`(0) ≥ 0 and Z`(λ) < Θk,`, then (55) is achieved by p
(C)
0,` = 0 and p

(C)
k,` =

Λk,`(λ).

c) If Z`(λ) ≥ Θk,`, then (55) is achieved by p(C)
0,` = Z`(λ)−Θk,` and p(C)

k,` = Θk,`.

In summary, we obtain (36a).

2) α−k,` − βk,` ≤
γl w0

wk
, i.e., both intersection points are negative.

In this case, M0,`(0) ≥Mk,`(0). There are two possibilities to consider.

a) If M0,`(0) ≤ 0, then (55) is achieved by p(C)
0,` = 0 and p(C)

k,` = 0.

b) If M0,`(0) > 0, then (55) is achieved by p(C)
0,` = Z`(λ) and p(C)

k,` = 0.

In summary, we obtain (36b).

The case that both intersection points are positive is not possible.

For ` ∈ L0, p(C)
0,` needs to maximize

G0(p0,`, λ) = w0 log
(
1 + γl p0,`

)
− λ p0,` . (56)

G0(p0,`, λ) can be upper bounded by

G0(p0,`, λ) =

∫ p0,`

0

M0,`(x) dx ≤
∫ +∞

0

[M0,`(x)]+ dx . (57)

If M0,`(0) < 0, then the upper bound (57) is achieved by p
(C)
0,` = 0. If M0,`(0) ≥ 0, (57) is

achieved in this case by p(C)
0,` = Z`(λ). In summary, we obtain (36c).

The KKT (Karush-Kuhn-Tucker) conditions impose that the Lagrange multiplier λ must be

chosen to satisfy the power constraint with equality.
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ANSWER TO EDITOR COMMENTS

Point 1

While I am ok with your explanation of how the bound in [19] is applied, the resulting

expression cannot be considered an outer bound as it is based on a thresholding scheme

of channel gains in Eq. (7). I feel that it is important to clarify this in your paper so that

the readers do not get confused with how the outer bound is derived. Please think of a

suitable way of presenting the results that you claim are outer bounds on the problem.

Ans: We agree with the Editor that the definition of (10) as maximum outage achievable

secrecy rate may be misleading. Therefore we have replaced it with the following sentences:

By applying the results in [19] an outer bound on the achievable secrecy rate of message Mk

over the deterministic channels {α−k,`, α
+
k,`}, for a given power allocation p is

Rmax
k (p) = min

j 6=k;1≤j≤K
Rk/j(p) . (10)

From (7) we can conclude that with probability larger than (1 − ε)KL the channel gains are

such that the secrecy rate is upper bounded by (10). However, since we imposed a probabilistic

constraint on the channel gains rather than the secrecy rate itself, Rmax
k (p) is not an outage

bound on the secrecy rate. Al already mentioned, this approach leads to easier computations,

while a comparison with an outage secrecy bound is left for future study. Moreover, in the special

case of full CSI (ε = 0), (10) is an outer bound, and we will use it extensively in Section VI.

At the end of the same sub-section, with reference to the common rate again we added the

following sentence:

Also (12) must be considered as a bound on the rate that can be achieved under constraints

(7) on the channel gain, and in general is not a secrecy outage bound.
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