
 

DRO  
Deakin Research Online, 
Deakin University’s Research Repository  Deakin University CRICOS Provider Code: 00113B 

A novel secure scheme for supporting complex SQL queries over encrypted 
databases in cloud computing 

Citation:  
Liu, Guoxiu, Yang, Geng, Wang, Huaqun, Xiang, Yang and Dai, Hua 2018, A novel secure 
scheme for supporting complex SQL queries over encrypted databases in cloud computing, 
Security and communication networks, vol. 2018, article ID: 7383514, pp. 1-15. 

DOI: http://www.dx.doi.org/10.1155/2018/7383514 

 

 

 

 

© 2018, The Authors 

Reproduced by Deakin University under the terms of the Creative Commons Attribution Licence 

 

 

 

 

 

 

Downloaded from DRO:  
http://hdl.handle.net/10536/DRO/DU:30113508 

http://www.dx.doi.org/10.1155/2018/7383514
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/10536/DRO/DU:30113508


Research Article
A Novel Secure Scheme for Supporting Complex SQL Queries
over Encrypted Databases in Cloud Computing

Guoxiu Liu,1,2 Geng Yang ,1,3 Huaqun Wang,1 Yang Xiang,4 and Hua Dai 1,3

1Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2School of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China
3Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing 210003, China
4School of Information Technology, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia

Correspondence should be addressed to Geng Yang; yangg@njupt.edu.cn

Received 6 January 2018; Revised 5 May 2018; Accepted 30 May 2018; Published 3 July 2018

Academic Editor: Emanuele Maiorana

Copyright © 2018 Guoxiu Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the advance of database-as-a-service (DaaS) and cloud computing, increasingly more data owners are motivated to outsource
their data to cloud database for great convenience and economic savings. Many encryption schemes have been proposed to process
SQL queries over encrypted data in the database. In order to obtain the desired data, the SQL queries contain some statements to
describe the requirement, e.g., arithmetic and comparison operators (+, −, ×, <, >, and =). However, to support different operators
(+, −, ×, <, >, and =) in SQL queries over encrypted data, multiple encryption schemes need to be combined and adjusted to
work together. Moreover, repeated encryptions will reduce the efficiency of execution. This paper presents a practical and secure
homomorphic order-preserving encryption (FHOPE) scheme, which allows cloud server to perform complex SQL queries that
contain different operators (such as addition, multiplication, order comparison, and equality checks) over encrypted data without
repeated encryption. These operators are data interoperable, so they can be combined to formulate complex SQL queries. We
conduct security analysis and efficiency evaluation of the proposed scheme FHOPE. The experiment results show that, compared
with the existing approaches, the FHOPE scheme incurs less overhead on computation and communication. It is suitable for large
batch complex SQL queries over encrypted data in cloud environment.

1. Introduction

With the advance of cloud storage and computing, the
business opportunity to offer a database as an outsourced
service is gaining momentum. Today numerous enterprises
and end users may outsource their data to those cloud
service providers for lower cost and better performance [1, 2].
Outsourced databases can be applied to many scenarios. For
example, one outsourced database application scenario is
shown in Figure 1, and, in this example, the data owners,
such as hospitals, may want to outsource the medical records
to the cloud databases. Patients’ medical records contain
sensitive information (e.g., blood pressure, bodymass index).
Based on the assumption that service provider is honest-but-
curious [3, 4], sensitive information needs to be encrypted
before being uploaded to the cloud database.The data owners
can query their data from cloud database. Then, the cloud

database should execute SQL queries over the encrypted
data. However, the encrypted data may also bring significant
difficulty in executing standard SQL and computing over
these data. For example, the encrypted data may lose the
original order, without the set of primitive operators, such as
equality checks, order comparisons, addition, multiplication,
aggregates (sums), and joins.

To date, many fully homomorphic encryption (FHE) and
order-preserving encryption (OPE) schemes were proposed
[5–10]. The FHE schemes are not practical for either cloud
database providers or users, because of high computational
overhead [11, 12], and these schemes only support homo-
morphic addition and homomorphic multiplication over
encrypted data.TheOPE schemes reveal the order and expose
some private information to the cloud service provider, which
support SQL range queries. On the contrary, CryptDB uses
onions to protect private data and support efficient SQL

Hindawi
Security and Communication Networks
Volume 2018, Article ID 7383514, 15 pages
https://doi.org/10.1155/2018/7383514

http://orcid.org/0000-0001-7740-2401
http://orcid.org/0000-0003-2465-8977
https://doi.org/10.1155/2018/7383514


2 Security and Communication Networks

Data owners
(client)

Outsourced
Data

Cloud Server

Figure 1: Data owners outsource their data (e.g., credit card details
and patient’s medical records) to the cloud database. The sensitive
data need to be encrypted. The cloud server provides storage and
query service.

queries over encrypted data. The onion encryption is a
multilayered encryption scheme, and for processing different
types of computationsmultiple onions are needed in practice,
because the computations are supported by different encryp-
tion schemes. For example, the CryptDB can perform range
queries while a column is encrypted with order-preserving
encryption, and if it performs aggregate queries, such column
is encrypted with homomorphic encryption. Furthermore,
the functionalities of CryptDB lack some useful features (e.g.,
there is no support for queries containingmultiplication, and
there are also some other limitations). As a result, a query
like SELECT ∗ FROM T1 WHERE 𝐴 = 100 AND 𝐴 + 𝐶 ×𝐷 > 𝐸 cannot be executed by CryptDB. How to design a
practical encrypted scheme that supports different operators
(+,−,×,<,>,=) in complex SQL queries over encrypted data
without privacy breaches remains a challenging and open
problem.

Motivated by the aforementioned problem, we design
a full homomorphic algorithm with the order-preserving
feature to support complex SQL queries that contain different
operators (such as addition, multiplication, order compari-
son, and equality checks) over encrypted data. Our proposed
FHOPE schememakes up for FHE’s shortcoming, which sup-
ports order comparison, enables range queries to be executed
in database operations, and reduces computational costs to
increase efficiency. Because it has order-preserving function,
the order of the plaintext values is inevitably revealed. The
ideal security goal for an order-preserving scheme, IND-
OCPA [13], is to reveal no additional information about the
plaintext values besides their order. Our proposed scheme is
an ideal security homomorphic order-preserving encryption
scheme where the ciphertexts reveal nothing except for the
order of the plaintext values. Regarding efficiency, we can
see that security and efficiency are contradictory; the higher
security, the lower efficiency. Practicality and efficiency are
very important for database applications. The FHOPE is effi-
cient and practical, satisfies the need of database applications,
and solves the complex queries problems that need to be
solved in the database. FHOPE can resist the homomorphic
order-preserving chosen-plaintext attack. Here, we summa-
rize our contributions as follows:

(i) In the cloud database environment, data is frequently
queried by users. It is critical to determine whether an

encryption scheme can provide complex SQL queries
like the predicates containing different operators
over encrypted data. We combine homomorphism
with order-preserving and design a novel FHOPE
scheme to support addition, multiplication, order
comparison, and equality checks. These operators
are data interoperable, so they can be combined to
formulate complex SQL queries. Then, the FHOPE
scheme enables a wide range of SQL queries over the
encrypted data to be expressed. As a result, it does
not require downloading the encrypted data to client.
Therefore, it can improve the efficiency in dealing
with data query and processing.

(ii) Furthermore, we optimize the FHOPE scheme by
adding some random noise with a certain probability𝑃 and by specifying any sub-ciphertext with order-
preserving property. Besides, we apply the FHOPE
scheme to the cloud database application.

(iii) We evaluate the proposed FHOPE scheme in terms
of security, efficiency, and complexity. The concrete
FHOPE scheme is provably secure according to the
formal security proof. The experiment results show
that the FHOPE scheme incurs less overhead in
computation and communication than the existing
approaches. It is suitable for large batch of SQL
queries over encrypted data in cloud environment.

The remainder of this paper is organized as follows.
Section 2 discusses some related work. In Section 3 we
describe the system model and attack model. Section 4 gives
the basic idea of FHOPE scheme and its construction. Sec-
tion 5 presents the correctness of FHOPE scheme. Section 6
describes the FHOPE’s application in a cloud database. In
Section 7 we give security analysis. Section 8 describes the
evaluations. Section 9 concludes the paper.

2. Related Work

The security of data and processing of the encrypted data in a
cloud database environment have causedmuch research con-
cern recently [14, 15]. Many schemes have been designed with
various techniques: fully homomorphic scheme (FHE) and
order-preserving encryption (OPE). Gentry had described a
FHE [7, 8] in 2009; the FHE supports various computations
over ciphertexts. Since Gentry’s result of research break-
through, a great many improvements [12, 16–21] have been
made; the performance was enhanced. However, since the
current FHE schemes have low efficiency, they are not suitable
for practical applications. Another encryption scheme is
OPE; it is primarily used in databases for supporting order
comparison on ciphertexts. OPE [5] solves the encrypted
query problems in database systems,whichwas first proposed
in 2004. Although a large number of researchers have made
great efforts on theOPE schemes [9, 13, 22, 23], these schemes
have failed to achieve ideal security. Until now, Popa et al.
proposed the mutable order-preserving encoding (mOPE)
scheme [24], which is an ideal security OPE scheme; it builds
a balanced search tree, which contains the plaintext values



Security and Communication Networks 3

encrypted by the application. mOPE is an ideal security
scheme, but it has the low efficiency due to the interaction
and tree balancing. Moreover, their works only process order
comparison on ciphertexts.

Some solutions were proposed for querying data over
the encrypted database [25–27]. One of the most important
fundamental schemes for processing queries on an encrypted
database is proposed by H. Hacig�̈�m�̈�s. et al. in [25]. It
encrypts the data at a tuple level, and then a predefined
set of attributes can be used in queries. Following H.
Hacig�̈�m�̈�s.’s idea, some improvements were proposed [28,
29]. The scheme [28] stores redundant data for querying
data over the encrypted database, and B. Hore et al. [29]
extended the model of H. Hacig�̈�m�̈�s. et al. and added range
queries over the encrypted database. To achieve the vari-
ous computations over encrypted data, some Paillier-based
improvements [8, 30–34] were presented. The schemes in
[30, 31] can support homomorphic addition, homomorphic
multiplication, and order comparison, but the order compar-
ison is realized by converting to subtraction operation; they
have high computation overhead. Yan et al. [33] can only
support the addition and cannot support other computation
operations. Peter et al. [34] proposed an efficient outsourcing
multiparty computation framework under multiple keys, but
the scheme only supports addition and multiplication and
cannot support other operations.

CryptDB [35] and SDB [36] are well-known systems for
processing queries over encrypted database. CryptDB uses
onions to support SQL queries over encrypted databases,
where range queries and equality condition queries rely on
order-preserving encryption [24] and deterministic encryp-
tion, respectively. It performs specific operations with homo-
morphic encryption, to support aggregate queries; it imple-
mented the Paillier cryptosystem [29], but it cannot sup-
port homomorphic multiplication. The CryptDB has the
following limitations: (1) its queries are processed on the
lowest-security level of data; (2) the same data needs to
be reencrypted according to different types of computation.
For example, it can perform range queries while a column
is encrypted with order-preserving encryption, and if it
performs aggregate queries, such column is encrypted with
homomorphic encryption. SDB [36] can process queries that
contain different kinds of operations; nevertheless, it requires
massive computation resources and communication cost.

Thus, it is always necessary to establish an efficient
scheme to process database queries without involving mul-
tiple incompatible encryption schemes.

3. System Model and Attack Model

In this section, we describe the system model and the
attack model and give formal definition of the scheme. The
prototype will be built based on the system model. The
security of the proposed schemewill be analyzed in Section 7.

3.1. System Model. Figure 2 shows the overall architecture.
The client receives queries from users, generates the private
key and encrypts the sensitive data, sends the SQL queries to

the cloud server, receives queries results, decrypts the results
using the corresponding keys, and sends the decrypted result
to the users.

A FHOPE scheme in this paper involves two different
entities which are described below.

Client (CL). The client is data owner. For protecting data
privacy, it uses the private key to encrypt the sensitive data
and then outsources the encrypted data to a cloud server.The
CL can also send the SQL queries to a CS and decrypt the
queries results from the CS.

Cloud Server (CS).ACS is hosted by the service provider that
stores the databases in cloud. It stores and manages the data
of users. ACS also stores the encrypted intermediate and final
results. Furthermore, a CS is able to perform homomorphic
addition, homomorphic multiplication, order comparison,
and equality checks over encrypted data and then process
complex SQL queries on encrypted data.

To describe our scheme, we give the formal definition of
FHOPE.

Definition 1 (FHOPE). A FHOPE scheme consists of four
phases (key generation, encryption, decryption, and compu-
tation). The detailed phases are described below.

(1) Key generation: 𝑠𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘). KeyGen runs at
the CL, takes as input the security 𝑘, and outputs a
private key 𝑠𝑘. The CS cannot get access to the private
key.

(2) Encryption: 𝑐 ← 𝐸𝑛𝑐(𝑠𝑘, V). Enc runs at the CL. The
inputs to the CL are 𝑠𝑘 and the sensitive data V in the
SQL queries, and the CL obtains a ciphertext 𝑐 and
then sends the SQL queries to a CS.

(3) Decryption: V← 𝐷𝑒𝑐(𝑠𝑘, 𝑐).TheCL runs Dec on the
private key and a ciphertext 𝑐 and obtains a plaintext
V.

(4) Computation: 𝑟𝑒𝑠 ← 𝐻𝐴𝑀𝑂𝐸(𝑐1, . . . , 𝑐𝑙). HAMOE
runs at the server, takes as input ciphertext 𝑐1, . . . , 𝑐𝑙,
and can perform addition, multiplication, order com-
parison, and equality checks over the ciphertext and
then output the result of the computation.

To describe the correctness of our scheme, we definewhat
it means for the scheme to be correct. Intuitively, the scheme
should decrypt the correct values and correctly support
homomorphic addition, homomorphic multiplication, and
order comparison on the ciphertext. Suppose that we have
a secret key vector 𝐾(𝑛) and that 𝑚 integers V𝑖 ∈ 𝑉(1 ≤𝑖 ≤ 𝑚) are encrypted into 𝑚 vectors 𝐶1, 𝐶2, . . . , 𝐶𝑚, where𝐶𝑖 = (𝑐𝑖1, . . . , 𝑐𝑖𝑛).
Definition 2 (correctness). A FHOPE scheme for plaintext
domain Z is correct if, for all security parameters k, for all𝐾(𝑛) ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘),

(1) for all V ∈ 𝑍 and for every C outcome of𝐹𝐻𝑂𝑃𝐸(V, 𝐾(𝑛)),𝐷𝑒𝑐(𝐾(𝑛), 𝐶) = V;



4 Security and Communication Networks

Applications

Outsourced
database

Key generation

Encryption

Decryption

Client
(2) Cloud ServerOriginal Query (1)

Query Results(5)

Query over
Encrypted Data(3)

Encrypted Query
Results(4)

Figure 2: System model for outsourced databases.

(2) for all V𝑖 ∈ 𝑍 and for every 𝐶𝑖 outcome of 𝐹𝐻𝑂𝑃𝐸(V𝑖,𝐾(𝑛)),𝐷𝑒𝑐(𝐾(𝑛), ∑𝑚𝑖=1 𝐶𝑖) = ∑𝑚𝑖=1 V𝑖;
(3) for all V𝑖 ∈ 𝑍 and for every 𝐶𝑖 outcome of 𝐹𝐻𝑂𝑃𝐸(V𝑖,𝐾(𝑛)),𝐷𝑒𝑐(𝐾(𝑛), 𝐶𝑖 × 𝐶𝑗) = V𝑖 × V𝑗;
(4) for all sequences 𝑠𝑒 = {V1, . . . , V𝑚} ∈ 𝑍𝑚, for all pairs

V𝑖, V𝑗 ∈ 𝑠𝑒, for all 𝐶𝑖, 𝐶𝑗 obtained as above, we have
V𝑖 < V𝑗 ⇐⇒ 𝐶𝑖 < 𝐶𝑗;

(5) for all V𝑖 ∈ 𝑍 and for every 𝐶𝑖 outcome of𝐹𝐻𝑂𝑃𝐸(V𝑖, 𝐾(𝑛)), we have V𝑖 + V𝑗 × V𝑘 > V𝑙 ⇐⇒𝐶𝑖 + 𝐶𝑗 × 𝐶𝑘 > 𝐶𝑙.
3.2. Attack Model. In this section, we present the potential
threats and the security requirements for database outsourc-
ing in the cloud. In our scheme, we assume the same security
model commonly adopted in related literatures in this field
(e.g., [35]), where the CL is the data owner. Thus, the CL is
trusted; theCS is honest-but-curious; that is, the computation
provided by the CS is able to be executed correctly, and it does
not change the data or query results, but the CS tries its best to
obtain the privacy information of the processed data. Order-
preserving encryption is primarily used in databases for
supporting order comparison on ciphertexts, it exposes the
order of data, and then the cloud can learn the statistical prop-
erties (like order) through repeated query requests.Therefore,
we introduce an adversary 𝐴 in our model, which aims to
decrypt the ciphertexts of a challenge sent to applications
with the following capabilities:

(1) 𝐴 may try to obtain the private key and guess the
plaintext values from ciphertexts outsourced from a
CL.

(2) 𝐴 may compromise the CS by guessing the plaintext
values of the computation results received from the
CS.

(3) 𝐴 may compromise the CS to guess the plaintext
values of the queries results based on statistical
properties (like order).

For satisfying the security requirements of the FHOPE
scheme, we formalize the security definition of a FHOPE
scheme for IND-HOCPA (indistinguishability under a
homomorphic order-preserving chosen-plaintext attack),

which intuitively says that the schememust not leak anything
besides order. The homomorphic order-preserving chosen-
plaintext attack is a restricted chosen-plaintext attack. We
remark that the restricted chosen-plaintext attack is used in
literature [10]. We adapt the security definition of literature
[13] to the syntax of our proposed scheme.

Definition 3 (IND-HOCPA security). A FHOPE scheme
is IND-HOCPA secure, if any probabilistic polynomial
time (PPT) adversary 𝐴 has only a negligible advantage𝐴𝑑V𝐼𝑁𝐷−𝐻𝑂𝐶𝑃𝐴𝐹𝐻𝑂𝑃𝐸,𝐴 to win in the following game. The FHOPE
game between the adversary𝐴 and the challenger𝐶𝐻 is given
below:

(1) For the secure parameter k, the challenger 𝐶𝐻 runs
the key generation algorithm KeyGen and generates𝑠𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘).

(2) The challenger 𝐶𝐻 and the adversary 𝐴 engage in
a polynomial number of rounds of interaction. For
round 𝑖,
(1) the adversary 𝐴 chooses two equal-length mes-

sages V0𝑖 , V1𝑖 ∈ 𝑍 and sends them to the chal-
lenger 𝐶𝐻;

(2) the challenger 𝐶𝐻 picks 𝑏 ∈ {0, 1} at random
and leads the interaction for the Enc algorithm
on inputs 𝑠𝑘 and V𝑏𝑖 with the server CS, with the
adversary 𝐴 observing all the ciphertexts at CS.

(3) The adversary 𝐴 outputs 𝑏, its guess for 𝑏.
We say that the adversary 𝐴 wins the game if (1) its

guess is correct (𝑏 = 𝑏) and (2) the sequences {V0𝑖 }𝑖 and{V1𝑖 }𝑖 have the same order relations (namely, for all 𝑖, 𝑗,V0𝑖 <
V0𝑗 ⇐⇒ V1𝑖 < V1𝑗). That is, 𝐴 wins the above game if𝐴𝑑V𝐼𝑁𝐷−𝐻𝑂𝐶𝑃𝐴𝐹𝐻𝑂𝑃𝐸,𝐴 (𝑘) is nonnegligible, where the adversary’s
advantage 𝐴𝑑V𝐼𝑁𝐷−𝐻𝑂𝐶𝑃𝐴𝐹𝐻𝑂𝑃𝐸,𝐴 (𝑘) in the above game is defined as𝐴𝑑V𝐼𝑁𝐷−𝐻𝑂𝐶𝑃𝐴𝐹𝐻𝑂𝑃𝐸,𝐴 (𝑘) = Pr [𝑤𝑖𝑛𝐴,𝑘] − 12  , (1)

where𝑤𝑖𝑛𝐴,𝑘 is the random variable indicating the success of
the adversary in the above game.



Security and Communication Networks 5

Table 1: Notation.𝑆𝑦𝑚𝑏𝑜𝑙 𝑀𝑒𝑎𝑛𝑖𝑛𝑔𝑉 the set of all input plaintexts
V a plaintext𝐶 a ciphertext is comprised of two or more sub-ciphertexts𝑐𝑖 i-th sub-ciphertext𝑘 security parameter𝐾(𝑛) a secret key is comprised of a set of key components𝑘𝑖 i-th key component𝐸𝑛𝑐() a function for encryption𝐷𝑒𝑐() a function for decryption𝐸𝑛𝑐𝑖() a strictly increasing function over𝐾(𝑛) and V𝑁𝑜𝑖𝑠𝑒𝑖() a function over𝐾(𝑛) and 𝑅𝑆 the sensitivity of input values V

4. Fully Homomorphic Order-Preserving
Encryption Scheme (FHOPE)

This section presents a novel fully homomorphic order-
preserving encryption (FHOPE) scheme to realize various
types of operations over encrypted data, such as addi-
tion, multiplication, order comparison, and equality checks.
Firstly, we describe the notations employed in the remainder
of the paper. Then, we construct the FHOPE scheme and
prove the correctness of decryption. For clear description,
Table 1 summarizes the notations employed in the paper.

4.1. Homomorphic Encryption Scheme. A practical homo-
morphic encryption scheme is presented by Liu in 2013 [37],
which contains three steps and can be described as follows.

KeyGen. The secret key 𝐾(𝑛) = (𝑘1, 𝑘2, . . . , 𝑘𝑛) is chosen
randomly from real number set 𝑅.
Encrypt. A message 𝑚 ∈ 𝑅 is encrypted into 𝐶 = 𝐸𝑛𝑐(V,𝐾(𝑛)) = (𝑐1, . . . , 𝑐𝑛); the encryption result is a tuple of 𝑛 com-
ponents, corresponding to 𝑛 sub-ciphertexts.
Decrypt. Take as input the secret key 𝐾(𝑛) and a ciphertext𝐶 = (𝑐1, . . . , 𝑐𝑛); compute and output a message𝑚:𝑚 = 𝐷𝑒𝑐 (𝐾 (𝑛) , (𝑐1, . . . , 𝑐𝑛)) . (2)

Our proposed scheme differs from that of [37] in that
we focus on designing an encryption scheme that supports
complex expressions containing different operators (+, −, ×,<, >, and =) in SQL queries over encrypted data and data
interoperable operators.

4.2. Construction of FHOPE Scheme. By using symmetric
encryption, a full homomorphic order-preserving encryption
is given as follows, which consists of three steps.

KeyGen(KG). Generate the secret key𝐾 (𝑛) = [→𝑘1, →𝑘2, . . . , →𝑘𝑛]= [(𝑎1, 𝑏1) , (𝑎2, 𝑏2) , . . . , (𝑎𝑛, 𝑏𝑛)] , (3)

where (𝑎𝑖, 𝑏𝑖)(1 ≤ 𝑖 ≤ 𝑛) is a list of pairs of integers, which
are large prime numbers, 𝑎𝑖 ∗ 𝑏𝑖 > 0, 𝑛 > 1, 𝑎𝑖 ̸= 0 for1 ≤ 𝑖 ≤ 𝑛, 𝑏1 + ⋅ ⋅ ⋅ + 𝑏𝑛−1 ̸= 0, and 𝑏𝑛 ̸= 0. The number of
key components in the key set is equal to the number of sub-
ciphertexts.

Encrypt (Enc). Encrypt the plaintext 𝐹𝐻𝑂𝑃𝐸(V, 𝐾(𝑛)) =(𝑐1, . . . , 𝑐𝑛), where V is a plaintext; the encryption result is a
tuple of 𝑛 components, corresponding to 𝑛 sub-ciphertexts.
The encryption algorithmuses the components𝐸𝑛𝑐𝑖(𝐾(𝑛), V),𝑁𝑜𝑖𝑠𝑒𝑖(𝐾(𝑛), 𝑅), and 𝜉𝑖 to define each 𝑐𝑖, as shown below,
where 𝐸𝑛𝑐𝑖 is a strictly increasing function over 𝐾(𝑛) and
V, in particular linear to V. 𝑁𝑜𝑖𝑠𝑒𝑖 is a function over 𝐾(𝑛)
and 𝑅, which calculates a random number for randomizing𝑐𝑖, 𝜉𝑖 denote the random noise, which is randomly sampled
from the range [−∞, +∞], and a set 𝑅 of n pairs of numbers{(𝑟1, 𝑝1), . . . , (𝑟𝑛, 𝑝𝑛)} is defined in a finite integer domain.
We define the functions 𝐸𝑛𝑐𝑖() and 𝑁𝑜𝑖𝑠𝑒𝑖() by (5) and (6),
respectively.𝑐𝑖 = 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅) + 𝜉𝑖, (4)𝐸𝑛𝑐𝑖 (𝑎𝑖, 𝑏𝑖, V) = 𝑎𝑖 ∗ 𝑏𝑖 ∗ V, (5)𝑁𝑜𝑖𝑠𝑒𝑖 (𝑎𝑖, 𝑟𝑖, 𝑝𝑖)
= {{{{{{{{{{{{{
𝑎1 × 𝑝1𝑎2 − 𝑎1 × 𝑟𝑛𝑎𝑛 + 𝑟1 − 𝑝𝑛 𝑖 = 1𝑎𝑖 × 𝑝𝑖𝑎𝑖+1 − 𝑎𝑖 × 𝑟𝑖−1𝑎𝑖−1 + 𝑟𝑖 − 𝑝𝑖−1 2 ≤ 𝑖 ≤ 𝑛 − 1𝑎𝑛 × 𝑝𝑛𝑎1 − 𝑎𝑛 × 𝑟𝑛−1𝑎𝑛−1 + 𝑟𝑛 − 𝑝𝑛−1 𝑖 = 𝑛

(6)

The noise defined in (6) should satisfy condition (7).0 < 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅)< (𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V + 𝑆) − 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V)) . (7)

Decrypt (Dec). Decrypt a ciphertext 𝐶 = (𝑐1, . . . , 𝑐𝑛), and get
the plaintext V. 𝐷𝑒𝑐 (𝐾 (𝑛) , (𝑐1, . . . , 𝑐𝑛)) = V, (8)

where𝐾(𝑛) = [(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑛, 𝑏𝑛)] is a secret key;
V is a plaintext.

Then, the decryption algorithm is defined as
𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝑎𝑖, 𝑏𝑖) ∗ 𝑐𝑖 = V, (9)

𝐷𝑒𝑐𝑖 (𝑎𝑖, 𝑏𝑖) = 1𝑎𝑖 × ∑𝑛𝑖=1 𝑏𝑖 , (10)

where 𝐷𝑒𝑐𝑖 is an 𝑖-th decryption function over the key
vector, and it has a linear time complexity with respect to 𝑛.
Based on the definition of 𝑐𝑖 in (4), (8) is rewritten into (9),
which is equal to
𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛))∗ (𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅) + 𝜉𝑖) = V. (11)



6 Security and Communication Networks

In order to ensure the validity of decryption steps in (9),
it has to satisfy the conditions

𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) ∗ (𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅) + 𝜉𝑖) = 0, (12)

𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) ∗ 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V) = V. (13)

Proof of Correctness for Decryption

Proof. To prove correctness of decryption, suppose that any
V1 ∈ 𝑍 is encrypted into 𝐶1 = (𝑐11, . . . , 𝑐1𝑛)with the key𝐾(𝑛),
as shown below.𝑐1𝑖 = 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V1) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅1𝑖 ) + 𝜉. (14)

Suppose that the first sub-ciphertext (𝑐11) has order-pre-
serving property, and random noise 𝜉 is added to the first and
second sub-ciphertext, respectively. Then, we have to prove𝐷𝑒𝑐(𝐾 (𝑛) , (𝑐11, . . . , 𝑐1𝑛) = V1. (15)

That is,
𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛))∗ (𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V1) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅) + 𝜉)= V1,
(16)

where 𝐷𝑒𝑐𝑖 (𝑎𝑖, 𝑏𝑖) = 1𝑎𝑖 ∗ ∑𝑛𝑖=1 𝑏𝑖 . (17)

We have
𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) ∗ 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅)
= 1∑𝑛𝑖=1 𝑏𝑖 ∗ (𝑝1𝑎2 − 𝑟𝑛𝑎𝑛 + 𝑟1𝑎1 + ⋅ ⋅ ⋅ − 𝑝𝑛−1𝑎𝑛 ) = 0. (18)

Because 𝑎2 = −𝑎1 and 𝜉 ̸= 0, then
𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) ∗ 𝜉 = 1𝑎𝑖 ∗ ∑𝑛𝑖=1 𝑏𝑖 ∗ 𝜉 = 0. (19)

Then
𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) ∗ 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V1)
= 𝑛∑
𝑖=1

1𝑎𝑖 ∗ ∑𝑛𝑖=1 𝑏𝑖 ∗ 𝑎𝑖 ∗ 𝑏𝑖 ∗ V1 = V1. (20)

Therefore, the correctness of decryption is proved.

To verify the correctness of operations supported by our
scheme, suppose that we have a secret key vector 𝐾(𝑛) and
that 𝑚 integers V𝑖 ∈ 𝑉(1 ≤ 𝑖 ≤ 𝑚) are encrypted into 𝑚
vectors 𝐶1, 𝐶2, . . . , 𝐶𝑚, where 𝐶𝑖 = (𝑐𝑖1, . . . , 𝑐𝑖𝑛).

5. Correctness of the FHOPE

Aquery operation can request arbitrary data with a statement
to describe the desired data. In order to obtain the desired
data, the query contains some statements to describe the
requirement, e.g., arithmetic and comparison operators (×,
+, −, =, >, and <). These operators are data interoperable, so
they can be combined to formulate complex queries, and we
are concerned with executing queries that contain multiple
different operations, such as WHERE 𝑎 + 𝑏 × 𝑐 < 𝑑. Our data
model is column-based in a table. In this section, we prove
the correctness of additive homomorphism, multiplicative
homomorphism, order-preserving, and data interoperability
and describe how these operators are implemented in our
scheme.

5.1. Addition (AD)/Subtraction. Assuming two sensitive
columns 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵 of a table𝑇, their values are integers.
We use V𝑖 and V𝑗 to denote the values of 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵 in
a row t, respectively. Let 𝐶𝑖 and 𝐶𝑗 be the encrypted values
of V𝑖 and V𝑗, respectively, where 𝐶𝑖 = (𝑐𝑖1, . . . , 𝑐𝑖𝑛) and 𝐶𝑗 =(𝑐𝑗1, . . . , 𝑐𝑗𝑛); they share the same secret key vector𝐾(𝑛).

Given two sensitive columns 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵, if the appli-
cation issues the query SELECT ∗ FROM Table 1 WHERE𝑐𝑜𝑙 𝐶 = 𝑐𝑜𝑙 𝐴+𝑐𝑜𝑙 𝐵, the SQL query processing is as follows.
Step 1. The CL receives the SQL query, it uses the encryption
algorithm Enc to encrypt the values of 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵 with
the private key 𝐾(𝑛); their ciphertexts are 𝐶𝑖 = (𝑐𝑖1, . . . , 𝑐𝑖𝑛)
and 𝐶𝑗 = (𝑐𝑗1, . . . , 𝑐𝑗𝑛), respectively.
Step 2. TheCS executes the SQL query on the encrypted data
just like on plaintext. Due to additive homomorphism, the
CS can directly add encrypted data one by one as follows:𝐶𝑖+𝐶𝑗 = (𝑐𝑖1+𝑐𝑗1, . . . , 𝑐𝑖𝑛+𝑐𝑗𝑛), where the homomorphic addition
of 𝐶𝑖 and 𝐶𝑗 is defined as a vector addition.

The FHOPE scheme guarantees homomorphic addition
according to the following theorem.

Theorem 4. The FHOPE scheme supports additive homomor-
phism; i.e.,𝐷𝑒𝑐((∑𝑚𝑖=1 𝑐𝑖1, . . . , ∑𝑚𝑖=1 𝑐𝑖𝑛), 𝐾(𝑛)) = ∑𝑚𝑖=1 V𝑖.
Proof.

𝐷𝑒𝑐(( 𝑚∑
𝑖=1

𝑐𝑖1, . . . , 𝑚∑
𝑖=1

𝑐𝑖𝑛) ,𝐾 (𝑛))
= 𝑛∑
𝑗=1

𝐷𝑒𝑐𝑗 (𝐾 (𝑛)) ∗ ( 𝑚∑
𝑖=1

𝑐𝑖𝑗)
= 𝑛∑
𝑗=1

( 𝑚∑
𝑖=1

(𝐷𝑒𝑐𝑗 (𝐾 (𝑛)) ∗ 𝑐𝑗𝑖))
= 𝑚∑
𝑖=1

( 𝑛∑
𝑗=1

𝐷e𝑐𝑗 (𝐾 (𝑛)) ∗ 𝑐𝑗𝑖) = 𝑚∑
𝑖=1

V𝑖.
(21)



Security and Communication Networks 7

The correctness of homomorphic addition is proved.
Subtraction operation can be converted to addition oper-

ation for processing, so it is omitted.

5.2. Multiplication (MU). We describe the FHOPE scheme
for “×”. Given two sensitive columns 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵 of a
table 𝑇, let V1 and V2 denote the values of 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵 in
a row t, respectively. Let 𝐶1 and 𝐶2 be the encrypted values
of V1 and V2, respectively, where 𝐶1 = (𝑐11, . . . , 𝑐1𝑛) and 𝐶2 =(𝑐21, . . . , 𝑐2𝑛); they share the same secret key vector𝐾(𝑛).

If the application issues the query SELECT ∗ FROM
Table 1 WHERE 𝑐𝑜𝑙 𝐶 = 𝑐𝑜𝑙 𝐴 × 𝑐𝑜𝑙 𝐵, the SQL query
processing is as follows.

Step 1. The CL receives the SQL query, it uses the encryption
algorithm Enc to encrypt the values of 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵
with the private key 𝐾(𝑛), and their ciphertexts are 𝐶1 =(𝑐11, . . . , 𝑐1𝑛) and 𝐶2 = (𝑐21, . . . , 𝑐2𝑛), respectively.
Step 2. TheCS executes the SQL query on the encrypted data
just like on plaintext. Due to multiplicative homomorphism,
the CS can directly multiply encrypted data one by one as
follows:

𝐶1 × 𝐶2 =(𝑐11 × 𝑐21 . . . 𝑐11 × 𝑐2𝑛. . .𝑐1𝑛 × 𝑐21 . . . 𝑐1𝑛 × 𝑐2𝑛), (22)

where the multiplication of two ciphertexts can be defined as
an outer product.

Our objective is to perform multiplication operations
on the encrypted data just like on plaintext. The FHOPE
scheme guarantees homomorphic multiplication according
to the following theorem.

Theorem 5. The FHOPE scheme supports multiplicative
homomorphism. That means 𝐷𝑒𝑐(𝐾(𝑛), 𝐶1 × 𝐶2) = V1 × V2.
Proof. To prove this theorem, we first need to show that

𝐷𝑒𝑐 (𝐾 (𝑛) , 𝐶1 × 𝐶2) = (𝑐11. . .𝑐1𝑛)× V2. (23)

Then, we prove𝐷𝑒𝑐(𝐾(𝑛), (𝑐11, 𝑐12, . . . , 𝑐1𝑛)×V2) = V1×V2.
The details are given below.

Step 1. Perform the following decryption for i, 1 ≤ 𝑖 ≤ 𝑛.
Because we have𝐷𝑒𝑐 (𝐾 (𝑛) , (𝑐1𝑖 × 𝑐21, . . . , 𝑐1𝑖 × 𝑐2𝑛))= 𝑛∑

𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) × (𝑐1𝑖 × 𝑐21, . . . , 𝑐1𝑖 × 𝑐2𝑛)

= 𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) × 𝑐1𝑖 × (𝑐21, . . . , 𝑐2𝑛) )
= 𝑐1𝑖 × 𝑛∑

𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) × (𝑐21, . . . , 𝑐2𝑛) = 𝑐1𝑖 × V2,
(24)

then it gives

𝐷𝑒𝑐 (𝐾 (𝑛) , 𝐶1 × 𝐶2) = (𝑐11. . .𝑐1𝑛)× V2. (25)

Step 2.We have from Step 1:𝐷𝑒𝑐 (𝐾 (𝑛) , (𝑐11 × V2, . . . , 𝑐1𝑛 × V2))= 𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) × (𝑐11 × V2, . . . , 𝑐1𝑛 × V2)
= 𝑛∑
𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) × V2 × (𝑐11, . . . , 𝑐1𝑛)
= V2 × 𝑛∑

𝑖=1

𝐷𝑒𝑐𝑖 (𝐾 (𝑛)) × (𝑐11, . . . , 𝑐1𝑛) = V2 × V1= V1 × V2.
(26)

Hence, 𝐷𝑒𝑐(𝐾(𝑛), 𝐶1 × 𝐶2) = V1 × V2. The correctness of
multiplicative homomorphism is proved.

5.3. Order Comparison (OC). We consider two comparison
operators, namely, operator “>” and operator “<”. They are
mostly used in select queries. Given two sensitive columns𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵 of table 𝑇. Let V1 and V2 denote the values
of 𝑐𝑜𝑙 𝐴 and 𝑐𝑜𝑙 𝐵 in a row t, respectively. Let 𝐶1 and 𝐶2
be the encrypted values of V1 and V2, respectively; they share
the same secret key vector 𝐾(𝑛). For privacy protection, we
calculate V1 > V2 or V1 < V2, the plaintexts need to be
encrypted, and we need to calculate 𝐶1 > 𝐶2 or 𝐶1 < 𝐶2.
That is, the goal of FHOPE scheme is that the sort order
of ciphertexts matches the sort order of the correspond-
ing plaintexts. Here we prove that our scheme has order-
preserving property.

Suppose that any two integers V1 and V2 are encrypted into𝐶1 = (𝑐11, . . . , 𝑐1𝑛) and 𝐶2 = (𝑐21, . . . , 𝑐2𝑛) with the key 𝐾(𝑛),
as shown below.𝑐1𝑖 = 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V1) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅1𝑖 ) + 𝜉, (27)𝑐2𝑖 = 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅2𝑖 ) + 𝜉. (28)

Definition 6. Let 𝑉 = {V1, V2, . . . , V𝑛} be the set of all input
plaintext values.The sensitivity of𝑉 is the minimum element
in the set {|V1 − V2| | V1 ∈ 𝑉, V2 ∈ 𝑉, V1 ̸= V2}. That is, the
sensitivity 𝑆 is defined as 𝑆 = min V

1
,V
2
∈𝑉

V
1
̸=V
2

|V1 − V2|.



8 Security and Communication Networks

In fact, the sensitivity is the least gap, whichwas evaluated
in different privacy protection [38]. And by its definition the
sensitivity is always bigger than 0.

Theorem 7. Given the sensitivity 𝑆 of input value 𝑉, for all
V1 ∈ 𝑉, V2 ∈ 𝑉, if V1 > V2, then 𝐶1 > 𝐶2.
Proof. We have 𝐶1 > 𝐶2 if 𝑐1𝑖 > 𝑐2𝑖, where 𝑐1𝑖 and 𝑐2𝑖 (1 ≤ 𝑖 ≤𝑛) are the sub-ciphertext of 𝐶1 and 𝐶2, respectively. Suppose
that the sub-ciphertexts 𝑐1𝑖 and 𝑐2𝑖 have the same random
noise 𝜉. To prove this theorem, we need to show 𝑐1𝑖 − 𝑐2𝑖 > 0;
that is,𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V1) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅1𝑖 ) + 𝜉− (𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅2𝑖 ) + 𝜉)> 0. (29)

In other words, we have to prove𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅2𝑖 ) − 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅1𝑖 )< 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V1) − 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2) . (30)

Because the linear expression 𝐸𝑛𝑐𝑖(𝐾(𝑛), V) is strictly increas-
ing for any plaintext V, we have

min {𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V1) − 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2)}= 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2 + 𝑆) − 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2) . (31)

Since V1 > V2, then the minimum V1 is V2 + 𝑆, which is bigger
than V2. Moreover,𝑁𝑜𝑖𝑠𝑒𝑖(𝐾(𝑛), 𝑅𝑖) > 0; then,

max {𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅2𝑖 ) − 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅1𝑖 )}= 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅2𝑖 ) . (32)

Hence, the theorem holds if𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅2𝑖 ) < 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2 + 𝑆)− 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , V2) . (33)

Because the noise for each sub-ciphertext satisfies condition
(7), the theorem is proved.

Therefore, the correctness of order-preserving property is
proved.

5.4. Equality (EQ). Equality operator (=) is a common
operator in SQL query, for example; a SQL operation is
“SELECT name FROM table WHERE score = 90”, which
requires equality checks on ciphertext.The existing solution is
to support equality checks by using deterministic encryption.
The FHOPE scheme can also support equality checks even
though some noise has been added, and it does not need to
use deterministic encryption.We can employ twomethods to
implement the equality checks. A simple solution is to remove
the random noise of existing ciphertexts in database. But the

problem is that this solution needs to modify the ciphertexts
in the database to increase the cost of computation;moreover,
it makes the ciphertexts in an unsafe state. Hence, we take
the second solution. Given a search keyword 𝑠𝑐𝑜𝑟𝑒 = 100, to
search a ciphertext whose plaintext value is 100 in encrypted
database, the following steps need to be executed.

Step 1. The CL uses FHOPE to encrypt the search keyword𝑠𝑐𝑜𝑟𝑒 into a ciphertext 𝐶 = (𝑐1, . . . , 𝑐𝑛) under the key 𝐾(𝑛);
the random noise is 𝜉, which is stored in the CL.Then the CL
computes the range of the sub-ciphertext 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑛) as
follows:

𝑐𝑖 = 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , 𝑠𝑐𝑜𝑟𝑒) + 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅𝑖) + 𝜉, (34)

and because0 < 𝑁𝑜𝑖𝑠𝑒𝑖 (𝐾 (𝑛) , 𝑅𝑖)< (𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , 𝑠𝑐𝑜𝑟𝑒 + 𝑆) − 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , 𝑠𝑐𝑜𝑟𝑒)) , (35)

we have 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , 𝑠𝑐𝑜𝑟𝑒) + 𝜉 < 𝑐𝑖< 𝐸𝑛𝑐𝑖 (𝐾 (𝑛) , 𝑠𝑐𝑜𝑟𝑒 + 𝑆) + 𝜉, (36)

and the range (𝐸𝑛𝑐𝑖(𝐾(𝑛), 𝑠𝑐𝑜𝑟𝑒)+𝜉, 𝐸𝑛𝑐𝑖(𝐾(𝑛), 𝑠𝑐𝑜𝑟𝑒+𝑆)+𝜉)
of the sub-ciphertext 𝑐𝑖 to the CS is sent.
Step 2. The CS compares the range of the sub-ciphertext𝑐𝑖 with the existing i-th sub-ciphertexts of ciphertexts in
encrypted database, if an existing i-th sub-ciphertext falls
within the range of the sub-ciphertext 𝑐𝑖, it has the same
plaintext value 100 as the search keyword 𝑠𝑐𝑜𝑟𝑒, and so they
are equal. The CS sends the search result to the CL.

Therefore, the second solution implements equality
checkswhile ensuring the security. Because the equality check
is based on the order comparison, the order comparison is
correct; then the equality check is correct.

5.5. Data Interoperability (DI). As that shown below, the
proposed scheme can also provide efficient operators with
data interoperability. The data interoperability has the fol-
lowing two characteristics: (1) different operators share the
same encryption scheme; (2) the output of an operator can
be taken as input of another. With the data interoperability,
these operators (×, +, −, =, >, and <) can be combined to
formulate complex expressions in SQL queries (e.g., SELECT∗ FROMTable 1WHERE 𝑐𝑜𝑙 𝐶+𝑐𝑜𝑙 𝐴×𝑐𝑜𝑙 𝐵 < 10000).The
FHOPE scheme guarantees data interoperability according to
the following theorem.

Theorem 8. The FHOPE scheme has the property of the data
interoperability; i.e., if V1+V2×V3 > V4, then𝐶1+𝐶2×𝐶3 > 𝐶4.



Security and Communication Networks 9

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e c
os

t (
m

s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1
Probability P

Time cost

Figure 3: The relationship between time cost and probability.

Proof. To prove this theorem, we need to show 𝐹𝐻𝑂𝑃𝐸(V1 +
V2×V3, 𝐾(𝑛)) > 𝐹𝐻𝑂𝑃𝐸(V4, 𝐾(𝑛)). According toTheorems 4,
5, and 7, we have𝐹𝐻𝑂𝑃𝐸 (V1 + V2 × V3, 𝐾 (𝑛)) > 𝐹𝐻𝑂𝑃𝐸 (V4, 𝐾 (𝑛)) →𝐹𝐻𝑂𝑃𝐸 (V1, 𝐾 (𝑛)) + 𝐹𝐻𝑂𝑃𝐸 (V2 × V3, 𝐾 (𝑛))> 𝐹𝐻𝑂𝑃𝐸 (V4, 𝐾 (𝑛)) →𝐹𝐻𝑂𝑃𝐸 (V1, 𝐾 (𝑛)) + 𝐹𝐻𝑂𝑃𝐸 (V2, 𝐾 (𝑛))× 𝐹𝐻𝑂𝑃𝐸 (V3, 𝐾 (𝑛)) > 𝐹𝐻𝑂𝑃𝐸 (V4, 𝐾 (𝑛)) →𝐶1 + 𝐶2 × 𝐶3 > 𝐶4.

(37)

The correctness of data interoperability is proved.

5.6. Improving Efficiency. In encryption algorithm Enc, some
random noise 𝜉𝑖 has been added in each sub-ciphertext
to augment the security of FHOPE scheme. However, this
process reduces the efficiency of the scheme. Here, we use
two measures to improve efficiency. One approach is that
two sub-ciphertexts in a ciphertext have order-preserving
function. For example, the plaintext V1 is encrypted into𝐶1 = (𝑐11 , . . . , 𝑐1𝑛 ) under the key 𝐾(𝑛), each sub-ciphertext
is a ciphertext of the plaintext, and the sub-ciphertexts are
independent of each other, so any sub-ciphertext of the
n sub-ciphertexts has order-preserving property; it means
that the ciphertext has order-preserving property. Then, we
can specify that the first sub-ciphertext (𝑐1𝑖 ) of the n sub-
ciphertexts has order-preserving property. Another approach
is to add randomnoise 𝜉𝑖 with a certain probability𝑃. Figure 3
shows that, with the growth of probability 𝑃, the time cost
increases while the length of the plaintext is fixed. We will
analyze the relationship between probability 𝑃 and the time
cost of inserting a ciphertext.

The cost of inserting a ciphertext includes encrypting
the plaintext to be inserted, inserting the ciphertext, and
updating random noise. Assume that the length of plaintext
V is 𝑚 and the plaintext V is encrypted into 𝐶. Let 𝑡𝑒, 𝑡𝑖, and𝑡𝑢 denote the time of encrypting, the time of inserting opera-
tion, and the time of updating randomnoise, respectively. For

Time cost

200 400 600 800 10000
Numbers N

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Ti
m

e c
os

t (
m

s)

Figure 4: The relationship between time cost and numbers.

𝑛 ciphertexts of 𝑎𝑡𝑡𝑢 stored in the database, the probability of
adding randomnoise in the ciphertext is𝑃.Then, the time for
inserting a ciphertext 𝐶 is 𝑇:𝑇 = 𝑡𝑒 + 𝑡𝑖 + 𝑛 × 𝑡𝑢 × 𝑃, (38)

where 𝑛 × 𝑡𝑢 × 𝑃 is generated by inserting the new random
noise; it is the time of updating the existing random noise.
When we insert 𝑁 encrypted values into the database, we
have 𝑘 = 1,𝑇 (1) = 𝑡𝑒 + 𝑡𝑖 + 𝑛 × 𝑡𝑢 × 𝑃, (39)

𝑘 = 2,𝑇 (2) = 𝑇 (1) + 𝑡𝑒 + 𝑡𝑖 + (𝑛 + 1) × 𝑡𝑢 × 𝑃, (40)

𝑘 = 3,𝑇 (3) = 𝑇 (2) + 𝑡𝑒 + 𝑡𝑖 + (𝑛 + 2) × 𝑡𝑢 × 𝑃, (41)

⋅ ⋅ ⋅ (42)𝑘 = 𝑁,𝑇 (𝑘) = 𝑇 (𝑘 − 1) + 𝑡𝑒 + 𝑡𝑖 + (𝑛 + 𝑘 − 1) × 𝑡𝑢 × 𝑃. (43)

Then,𝑇 (𝑁) = 𝑁 × (𝑡𝑒 + 𝑡𝑖) + (𝑛 × 𝑁 + 0.5 × 𝑁 × (𝑁 − 1))× 𝑡𝑢 × 𝑃. (44)

According to (44), we can infer the approximate linear
relationship between total time 𝑇(𝑁) and probability 𝑃when𝑁 is fixed, and it is consistent with Figure 3. Figure 4
shows that the total time 𝑇(𝑁) is exponentially related to 𝑁
when probability 𝑃 is fixed. For efficiency, we can conclude
that security and efficiency are contradictory; the higher the
security, the lower the efficiency.



10 Security and Communication Networks

6. Using FHOPE in a Database Application

The FHOPE is mainly used in the database; in this section,
we describe how to use FHOPE in a database. As mentioned
in Section 5, FHOPE allows efficient addition, multiplication,
order comparison, and equality checks computations on an
encrypted database in the same way as on unencrypted
database, and the database server software does not need to
be modified.

Setup. Using FHOPE in a database requires the following
setup:

(i) A CL uses the FHOPE to encrypt the sensitive data,
and the encrypted data is outsourced to be stored in a
cloud database. The CL stores the private keys.

(ii) User-defined functions (UDFs) in the database server
implement FHOPE’s computation function.

Insert Queries. To understand how values in a query are
encrypted, consider an application that wants to execute
the query INSERT INTO student VALUES (10). The CL
encrypts 10 using the FHOPE and issues the query INSERT
INTO student VALUES (FHOPE(10)), where FHOPE() is a
user-defined function that implements the encryption of the
FHOPE scheme.

Select Queries. Consider a query: SELECT ∗ FROM T
WHERE 𝑐𝑜𝑙1 × 𝑐𝑜𝑙2 + 1000 > 6800. 𝑐𝑜𝑙1 and 𝑐𝑜𝑙2 denote the
sensitive columns in a table 𝑇; their values are encrypted and
stored in a cloud database. The CL encrypts 1000 and 6800
using the FHOPE, and the values of 𝑐𝑜𝑙1 and 𝑐𝑜𝑙2, 1000 and
6800, share the same private key and randomnoise 𝜉. 𝑐𝑜𝑙1 and𝑐𝑜𝑙2 are encrypted as 𝑐𝑜𝑙1𝑐 and 𝑐𝑜𝑙2𝑐, respectively. It delivers
the query “SELECT ∗ FROM T WHERE 𝑐𝑜𝑙1𝑐 × 𝑐𝑜𝑙2𝑐 +𝐹𝐻𝑂𝑃𝐸(1000) > 𝐹𝐻𝑂𝑃𝐸(6800)” to a CS. The CS executes
the query on encrypted data as if the data were not encrypted
and returns the query results to CL. The CL decrypts the
query results and returns them to the applications.

7. Security Analysis

The security analysis of the FHOPE scheme focuses on the
security of the key 𝐾(𝑛), IND-HOCPA (indistinguishability
under a homomorphic order-preserving chosen-plaintext
attack) security and the security of FHOPE scheme. Assume
that a CL sends the SQL query to a CS via a secure channel.
First, we will prove that it is difficult to recover the secret
component

→𝑘𝑖 in a key 𝐾(𝑛) from ciphertexts. Then, based
on the difficulty of the key 𝐾(𝑛) recovery problem, we prove
the IND-HOCPA security of the scheme. We present the
privacy protection in queries. Finally, we demonstrate that the
security of FHOPE’s properties is guaranteed by the security
of key 𝐾(𝑛) and IND-HOCPA security of FHOPE.

7.1. Security of the Key 𝐾(𝑛). The hardness of the key search
problem is based on the approximate greatest common
divisors (AGCD) problem. The AGCD problem was pro-
posed by Howgrave-Graham [39]. Given any number of the
approximatemultiples𝑑𝑖 = ℎ∗𝑞𝑖+𝑙𝑖 of ℎ, where ℎ, 𝑞𝑖, and 𝑙𝑖 are

integers, the problem is to find the hidden common divisor ℎ.
Note that 𝑞𝑖 and 𝑙𝑖 change in each 𝑑𝑖. In particular, if 𝑙𝑖 can be
as large as ℎ, it is impossible to reconstruct ℎ fromanynumber
of approximate multiples 𝑑𝑖 [40].

As we know, 𝐾(𝑛) = [→𝑘1, →𝑘2, . . . , →𝑘𝑛], where →𝑘𝑖 = (𝑎𝑖, 𝑏𝑖)
is a secret vector. In the following, we prove that it is hard
to recover the secret component

→𝑘𝑖 in a key 𝐾(𝑛) from any
number of ciphertexts.

Theorem9. Given any number of ciphertexts from the FHOPE
encryption with𝐾(𝑛), it is difficult to recover

→𝑘𝑖 in a key𝐾(𝑛).
Proof. As shown in the FHOPE encryption, a ciphertext 𝐶 =(𝑐1, . . . , 𝑐𝑛) is defined as𝑐1 = 𝑎1 ∗ 𝑏1 ∗ V + 𝑁𝑜𝑖𝑠𝑒1 (𝐾 (𝑛) , 𝑅1) + 𝜉1,. . .𝑐𝑛 = 𝑎𝑛 ∗ 𝑏𝑛 ∗ V + 𝑁𝑜𝑖𝑠𝑒𝑛 (𝐾 (𝑛) , 𝑅𝑛) . (45)

In the first ciphertext element 𝑐1, 𝑎1 is the commondivisor
to be recovered.We are going to prove that it is difficult to find
the secret value 𝑎1 from the first element 𝑐1 of any number of
ciphertexts.

Let𝑁1 = 𝑁𝑜𝑖𝑠𝑒1(𝐾(𝑛), 𝑅1) + 𝜉1. Then, we have 𝑐1 = 𝑎1 ∗𝑏1 ∗ V+𝑁1. Since 𝑏1 ∗ V is random number generated for each
encryption,𝑁1 is a number that the adversary does not know,
and it randomly changes for each encryption of the plaintext.
Moreover, 𝑎1 can be less than 𝑁1. Hence, it is difficult
to recover 𝑎1 from the first element 𝑐1 of any number of
ciphertexts according to the hardness of the AGCD problem.
The proofs for other secret values 𝑎𝑖 and 𝑏𝑖 in𝐾(𝑛) are carried
out similarly.

7.2. IND-HOCPA Security. We analyze the semantic security
of the FHOPE scheme by proving the indistinguishability of
ciphertexts under a homomorphic order-preserving chosen-
plaintext attack.

Theorem 10. A FHOPE encryption scheme is IND-HOCPA
secure.

Proof. In the following game, the PPT adversary is denoted
as 𝐴 and the challenger is denoted as 𝐶𝐻. Consider any
adversary 𝐴 and any two sequences of values 𝐴 ask for in the
security game: V0 = (V01, . . . , V0𝑛) and V1 = (V11, . . . , V1𝑛).

(1) The key generation algorithm generates the key𝐾(𝑛) = [→𝑘1, →𝑘2, . . . , →𝑘𝑛] = [(𝑎1, 𝑏1), (𝑎2, 𝑏1), . . . , (𝑎𝑛,𝑏𝑛)], where (𝑎𝑖, 𝑏𝑖)(1 ≤ 𝑖 ≤ 𝑛) is a list of pairs of
integers, which are large prime numbers, 𝑎𝑖 ∗ 𝑏𝑖 > 0,𝑛 > 1, 𝑎𝑖 ̸= 0 for 1 ≤ 𝑖 ≤ 𝑛, 𝑏1 + ⋅ ⋅ ⋅ + 𝑏𝑛−1 ̸= 0, and𝑏𝑛 ̸= 0.

(2) The adversary 𝐴 chooses two equal-length sequences
of values V0 and V1 and sends them to the challenger𝐶𝐻.

(3) The challenger 𝐶𝐻 randomly encrypts V0𝑖 and V
1
𝑖 with

key𝐾(𝑛) and outputs the ciphertext𝐶0 = (𝑐01, . . . , 𝑐0𝑛)



Security and Communication Networks 11

or 𝐶1 = (𝑐11, . . . , 𝑐1𝑛), where 𝑐01 = 𝑎1 ∗ 𝑏1 ∗ V0𝑖 +𝑁𝑜𝑖𝑠𝑒1(𝑎1, 𝑟1, 𝑝1) + 𝜉0, 𝑐11 = 𝑎1 ∗ 𝑏1 ∗ V1𝑖 + 𝑁𝑜𝑖𝑠𝑒1(𝑎1,𝑟1, 𝑝1) + 𝜉1, and 𝜉𝑏(b ∈ {0, 1})∈ [−∞, +∞]. The
ciphertext 𝐶𝑏 (b ∈ {0, 1}) is sent to the adversary 𝐴.

(4) If V0𝑖 ̸= 0 and V1𝑖 ̸= 0, then the expressions of𝑎1 ∗ 𝑏1 ∗ V0𝑖 + 𝑁𝑜𝑖𝑠𝑒1(𝑎1, 𝑟1, 𝑝1) + 𝜉0 and 𝑎1 ∗ 𝑏1 ∗
V1𝑖 + 𝑁𝑜𝑖𝑠𝑒1(𝑎1, 𝑟1, 𝑝1) + 𝜉1 generate the same value
from −∞ to +∞with the same probability; since 𝜉𝑏 is
randomly sampled from the range [−∞, +∞], V0 and
V1 have the same order relation. Hence, the advantage𝐴𝑑V𝐼𝑁𝐷−𝐻𝑂𝐶𝑃𝐴𝐹𝐻𝑂𝑃𝐸,𝐴 (𝑘) of distinguishing is negligible.

In the following, we discuss the case where V0𝑖 = 0 and
V1𝑖 ̸= 0. The case where V0𝑖 ̸= 0 and V1𝑖 = 0 is similar.

If V0𝑖 = 0 and V1𝑖 ̸= 0, we have 𝑐01 = 𝑁𝑜𝑖𝑠𝑒1(𝑎1, 𝑟1, 𝑝1) + 𝜉0
or 𝑐11 = 𝑎1 ∗ 𝑏1 ∗ V1𝑖 + 𝑁𝑜𝑖𝑠𝑒1(𝑎1, 𝑟1, 𝑝1) + 𝜉1; depending on
whether V0𝑖 or V

1
𝑖 is encrypted, V

0 and V1 have the same order
relation. Then, the advantage 𝐴𝑑V𝐼𝑁𝐷−𝐻𝑂𝐶𝑃𝐴𝐹𝐻𝑂𝑃𝐸,𝐴 (𝑘) is negligible.

The proofs for other sub-ciphertexts 𝑐0𝑖 and 𝑐1𝑖 (2 ≤ 𝑖 ≤ 𝑛)
are carried out similarly; the advantage 𝐴𝑑V𝐼𝑁𝐷−𝐻𝑂𝐶𝑃𝐴𝐹𝐻𝑂𝑃𝐸,𝐴 (𝑘) is
negligible.

Therefore, the adversary 𝐴 cannot win the above game,
and hence a FHOPE is IND-HOCPA secure.

7.3. Privacy Protection in Queries. The adversary can collect
some useful statistical information after receiving query
requests; it tries to guess the plaintext corresponding to the
ciphertext based on statistical information. However, we will
describe that the FHOPE scheme can reduce the privacy
leakage greatly in this scenario.

To solve the mentioned problem, we add some random
noise in each sub-ciphertext. Let 𝜉𝑖 denote the random noise,
which is randomly sampled from the range [−∞, +∞], and𝑎𝑡𝑡𝑢 denote the column attribute of the database table. Then,
the sub-ciphertext 𝑐1𝑖 (1 ≤ 𝑖 ≤ 𝑛) of V1 is expressed as𝐸𝑛𝑐𝑖(𝐾(𝑛), V1) + 𝑁𝑜𝑖𝑠𝑒𝑖(𝐾(𝑛), 𝑅1𝑖 ) + 𝜉1; the range of noise is
different for different input values. Suppose 𝜉 (default value
is 0 if there are no sub-ciphertexts of 𝑎𝑡𝑡𝑢 stored on cloud
server) denotes the latest noise. To store 𝑐1𝑖 in the cloud server,
the following steps need to be executed (if no sub-ciphertexts
of 𝑎𝑡𝑡𝑢 are stored, jump to Step 2).

Step 1. Update all the stored sub-ciphertexts (𝑐𝑚𝑖 ) of 𝑎𝑡𝑡𝑢 by𝑐𝑚𝑖 = 𝑐𝑚𝑖 + 𝜉1 − 𝜉.
Step 2. Add random noise 𝜉1 in the new sub-ciphertexts by𝑐1𝑖 = 𝑐1𝑖 + 𝜉1.
Step 3. Update the value of 𝜉 by 𝜉 = 𝜉1.

Therefore, due to adding random noise, the ciphertext
value is random.The same plaintexts are mapped to different
ciphertexts. The random noise of the same attribute is
continuously updated with the insertion of new data in the
cloud database, and the adversary cannot guess the random
noise.

Consider a query SELECT 𝑐𝑜𝑙1 FROM TWHERE 𝑐𝑜𝑙1 >100. The 𝑐𝑜𝑙1 denotes the sensitive column in a table 𝑇; their
values are encrypted and stored in a cloud database. The CL
encrypts 100 using the FHOPE, and the values of 𝑐𝑜𝑙1, 100,
share the same private key and random noise 𝜉. And 𝑐𝑜𝑙1
is encrypted as 𝑐𝑜𝑙1𝑐. It delivers the query “SELECT 𝑐𝑜𝑙1𝑐
FROM T WHERE 𝑐𝑜𝑙1𝑐 > 𝐹𝐻𝑂𝑃𝐸(100)” to a CS. Since the
data is in the encrypted form and the random noise of each
ciphertext is different, the adversary cannot get any knowl-
edge of the order information.The random noise of the same
attribute is continuously updated with the insertion of new
data in the cloud database (that is, the random noise of the
same attribute is the same), and then the order of plaintexts
remains in the ciphertexts in the cloud database.Then, the CS
executes the query on encrypted data as if the data were not
encrypted, and the adversary obtains the query results. Since
the random noise is dynamically updated, the order of query
results loses freshness. In other words, the repeated query is
issued again, and the returned ciphertexts are different.More-
over, we used the restrictions of literature [10] for chosen-
plaintext attack, even if the adversary can get the ciphertext
of {V1, V2, . . . , V𝑘}, where {V1, V2, . . . , V𝑘} is a dense one, but the
ciphertexts are disordered because they are obtained at differ-
ent time.Therefore, previous query requests will not help the
adversary to learn the privacy information, and the adversary
cannot gradually find out the order information and get some
useful statistical information after many query requests.

7.4. The Security of FHOPE Properties. Our security model
securely realizes ideal properties in the presence of noncol-
luding semihonest adversary. For the sake of simplicity, we do
it for the specific scenario of our properties, which involves
CL and CS. We need to construct simulator 𝑆𝑖𝑚𝐶𝑆 against
adversary 𝐴𝐶𝑆 that corrupts CS.
Theorem 11. The AD can securely perform addition operation
on ciphertext in the presence of semihonest adversary 𝐴𝐶𝑆.
Proof. CL receives plaintexts V and V as input and then
generates ciphertexts 𝐶 of V and 𝐶 of V. Finally, 𝐶 and 𝐶
are returned to 𝑆𝑖𝑚𝐶𝑆.𝑆𝑖𝑚𝐶𝑆 simulates 𝐴𝐶𝑆 as follows: it receives 𝐶 and 𝐶 as
input and generates the sum of 𝐶 and 𝐶 by performing
addition operation. 𝑆𝑖𝑚𝐶𝑆 sends the sum of 𝐶 and 𝐶 to 𝐴𝐶𝑆.

The 𝐴𝐶𝑆’s view contains encrypted data. In the real and
ideal executions, the views of 𝐴𝐶𝑆 are indistinguishable,
because CL is trusted and the FHOPE is IND-HOCPA
secure.

The security proofs of MU, OC, EQ, and DI are similar
to that of AD under the semihonest adversary 𝐴𝐶𝑆. We give
only the theorems here.

Theorem 12. The MU can securely perform multiplication
operation on ciphertext in the presence of semihonest adversary𝐴𝐶𝑆.
Theorem 13. The OC can securely perform order comparison
on ciphertext in the presence of semihonest adversary 𝐴𝐶𝑆.



12 Security and Communication Networks

×10
4

0.8 1 1.2 1.4 1.6 1.8 20.6
Numbers N

FHOPE Encryption
AES Encryption

FHOPE Decryption
AES Decryption

10
−1

10
0

10
1

10
2

10
3

Ti
m

e (
m

s)

Figure 5: Performance of encryption and decryption.

Theorem 14. The EQ can securely perform equality checks on
ciphertext in the presence of semihonest adversary 𝐴𝐶𝑆.
Theorem 15. The DI can securely perform complex operation
on ciphertext in the presence of semihonest adversary 𝐴𝐶𝑆.
8. Evaluations

The section focuses on the testing of the FHOPE’s perfor-
mance. We design four experiments to test its performance.
Simultaneously, the correctness of FHOPE’s properties (such
as additive homomorphism, multiplicative homomorphism,
order-preserving, and data interoperability) is also checked
in these experiments.

The experiments configuration is under CentOS Linux
with an Intel Xeon CPU E3-1226 Processor (3.3GHz) and the
16.0GB RAM, which has 4 processor cores. The prototype
is built based on the architecture shown in Figure 2. We
implement the proposed prototype using Java language and
MySQL 5.6. In our experiment, the secret key 𝐾(𝑛) is
configured to have 𝑛 = 6, with selection of a list of pairs
of integers [(𝑎1, 𝑏1), (𝑎2, 𝑏2),(𝑎3, 𝑏3), (𝑎4, 𝑏4), (𝑎5, 𝑏5), (𝑎6, 𝑏6)],
[(𝑟1, 𝑝1), (𝑟2, 𝑝2), (𝑟3, 𝑝3), (𝑟4, 𝑝4), (𝑟5, 𝑝5), (𝑟6, 𝑝6)], and 𝜉𝑖,
where 𝑎𝑖 ∗ 𝑏𝑖 > 0, 𝑎𝑖 ̸= 0 for 1 ≤ 𝑖 ≤ 6, 𝑏1 + ⋅ ⋅ ⋅ + 𝑏5 ̸= 0, 𝑏6 ̸= 0,𝑝1 > −𝑎2∗𝑏1∗𝑆, 𝑝6 < 𝑎1∗𝑏1∗𝑆, 𝑟1 < 𝑎1∗𝑏1∗𝑆, and 𝑟6 < 𝑎6∗𝑏1∗𝑆. And a simple synthetic dataset is a table 𝑇𝑎𝑏with three
sensitive columns 𝐴, 𝐵, and 𝐶, which has 1 million records.
The values in each column are randomly generated integers.

8.1. Performance of Encryption and Decryption. The experi-
ment shows the performance of encryption and decryption
by comparing FHOPE scheme with the AES algorithm. In
our experiment, we randomly generate 20000 integers, each

2000 3000 4000 5000 6000 7000 8000 90001000
N

0

2

4

6

8

10

12

14

16

18

20

Ti
m

e (
se

c)

Figure 6: Time for running ∑𝑁𝑖=1 𝑥𝑖 over encrypted x.

of which has 6 digits. Then, we compare our scheme with
the AES algorithm by testing the time cost of encryption and
decryption. According to Figure 5, the time cost of AES’s
encryption and decryption exhibits exponential growth with
respect to the number of integers; it costs 230 milliseconds
to encrypt 20000 integers. And the FHOPE scheme costs 4
milliseconds to encrypt 20000 integers, which is about 57
times faster than AES algorithm for encryption. We can see
that FHOPE scheme is also faster than AES for decryption.
Thus our scheme is practically efficient and suitable for large
batch of data encryption and decryption.

8.2. Performance of Homomorphic Operations. The FHOPE
scheme has additive homomorphism, multiplicative homo-
morphism, and data interoperability.The polynomial evalua-
tion can demonstrate these properties of the FHOPE scheme.
Then, we test the performance of addition and multiplication
with high-degree polynomials over ciphertexts. The polyno-
mial is ∑𝑁𝑖=1 𝑥𝑖, where 𝑥 is the encryption of a randomly
generated integers and has eight digits.

Figure 6 shows the cost of testing ∑𝑁𝑖=1 𝑥𝑖 from 𝑁 =1000 to 𝑁 = 9000. The experiment result shows the
efficiency of FHOPE scheme for performing many addition
and multiplication operations. For instance, the addition and
multiplication operations for calculating ∑𝑁𝑖=1 𝑥𝑖 take about0.2 seconds while 𝑁 = 1000 and about 18.7 seconds while𝑁 = 9000.The correctness of homomorphic addition, homo-
morphic multiplication, and data interoperability is also
checked in the experiment.

8.3. Comparison with mOPE [24]. For evaluating the per-
formance of the FHOPE’s order-preserving, we compare
the FHOPE scheme with mOPE scheme using a simple
synthetic dataset onwhich data insertion is executed. In order
to test the performance of data insertion, we generate 𝑁
(𝑁 ∈ [500, 6000]) records and insert them into an encrypted
database as shown in Figure 7.

From Figure 7, we can see that the mOPE scheme has
the lowest performance.The FHOPE scheme ismore efficient



Security and Communication Networks 13

mOPE Encryption
FHOPE Encryption

0

500

1000

1500

2000

Ti
m

e (
se

c)

50
0

15
00

20
00

25
00

30
00

35
00

45
00

50
00

10
00

55
00

60
00

40
00

N Records

Figure 7: Comparison between FHOPE scheme andmOPE scheme.

than the mOPE scheme. In mOPE scheme, the client and the
server side need to interact with each other when encrypting
a message, and the server needs to adjust the encoding tree
to achieve balance when adding new nodes. Our scheme is
constructed by some linear mathematical functions without
any interaction, and it has a higher efficiency.

8.4. Comparison with CryptDB [35]. For testing, we select
10000 records randomly from table 𝑇𝑎𝑏. Our scheme is
compared with CryptDB by executing three queries.

[Range]: select 𝐴 from 𝑇𝑎𝑏 where 𝐴 < 𝑞.
[Sum]: select 𝑠𝑢𝑚(𝐴) from 𝑇𝑎𝑏 where 𝐴 < 𝑞.
[Avg]: select 𝑎V𝑔(𝐵) from 𝑇𝑎𝑏 where 𝐴 < 𝑞.

Let 𝑞 control the queries’ selectivity, which is randomly
sampled from the range [100, 10000]. Figure 8 shows the
time cost of FHOPE and CryptDB for performing the three
queries, where the size of the table grows from 1𝐾 to 8𝐾 rows.
The time cost is displayed as bar graph.

We can get some observations from the experimental
result. (1) CryptDB takes more time to execute the range
queries than FHOPE, because the CryptDB uses mOPE
to implement the comparison operations. The efficiency of
mOPE is lower than FHOPE as shown in Figure 7. (2) For
the sum and avg queries, the execution time of FHOPE is
lower than CryptDB, because CryptDB employs Paillier’s
homomorphic encryption scheme and UDFs (user-defined
functions) to compute sum aggregates and averages. The
low efficiency of Paillier’s homomorphic encryption scheme
leads to the low efficiency of CryptDB. (3) To perform range,
sum, and avg queries, CryptDB employs various encryption
schemes. FHOPE makes up for CryptDB’s shortcoming,
which can support homomorphic addition, homomorphic
multiplication, order comparison, and equality checks.

Moreover, CryptDB cannot support some operations,
such as “𝐴+𝐵 < 𝑞” and homomorphicmultiplication.There-
fore, CryptDB cannot support some complex SQLqueries, for
example, (1)query “select 𝑠𝑢𝑚(𝐴∗𝐵) from𝑇𝑎𝑏where𝐴 < 𝑞”,

(2) query “select A from 𝑇𝑎𝑏 where 𝐴∗𝐵 < 1000”, (3) query
“select B from 𝑇𝑎𝑏 where 𝐴 ∗ (𝐴 + 𝐵) > 100”, and (4) query
“select B from 𝑇𝑎𝑏 where 𝐴 ∗ 𝐵 − 100 > 10”. The FHOPE
can support the above complex SQL queries. Since FHOPE
can support addition, multiplication, order comparison, and
equality checks and the FHOPE scheme has the property of
the data interoperability, with the data interoperability, these
operators (+, −, ×, <, >, and =) can be combined to formulate
complex expressions (e.g., “𝐴 + 𝐵 ∗ 𝐶 < 𝑞”) in SQL queries.
Then, the FHOPE can support complex SQL queries.

The time cost of FHOPE and CryptDB for the range
queries while we change the selectivity of the queries (by
adjusting 𝑞) from 10% to 90% is shown in Figure 9. The
queries time of FHOPE is less than that of CryptDB. From
Figure 9, we can see that the queries overhead of FHOPE is
approximate linear growth as the selectivity of the queries
increases; it indicates that the FHOPE scheme has a good
stability.

9. Conclusion

In this paper, we have presented a novel FHOPE scheme that
can support direct homomorphic addition, homomorphic
multiplication, order comparison, and equality checks on the
ciphertext. The FHOPE scheme can be applied in a cloud
database environment, which still uses standard SQL state-
ments and allows the cloud server to perform complex SQL
queries over the encrypted data without repeated encryption.
We have proved the security of our FHOPE scheme from four
aspects: the security of the key 𝐾(𝑛), IND-HOCPA security,
the privacy protection in queries, and the security of FHOPE
properties.The security of the key𝐾(𝑛) is based on theAGCD
problem.Moreover, we have implemented a prototype in Java
and evaluated the performance of our scheme in terms of
encryption, decryption, and homomorphic operations, and
our scheme is compared with mOPE scheme and CryptDB.
Through experiment, we prove that the FHOPE scheme
incurs less overhead on computation. It is suitable for large
batch of data encryption and decryption in cloud database
systems.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 61572263, Grant
61502251, Grant 61502243, and Grant 61602263, the Nat-
ural Science Foundation of Jiangsu Province under Grant
BK20161516 and Grant BK20151511, the Natural Science
Foundation of Anhui Province under Grant 1608085MF127,
the Natural Science Foundation of Educational Commis-
sion of Anhui Province of China under Grant KJ2016B17,



14 Security and Communication Networks

CryptDB
FHOPE

2＋ 3＋ 4＋ 5＋ 6＋ 7＋ 8＋1＋

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Ti
m

e (
m

s)

(a) Range

CryptDB
FHOPE

2＋ 3＋ 4＋ 5＋ 6＋ 7＋ 8＋1＋

0
20
40
60
80

100
120
140
160
180

Ti
m

e (
m

s)
(b) Sum

CryptDB
FHOPE

2＋ 3＋ 4＋ 5＋ 6＋ 7＋ 8＋1＋

0
20
40
60
80

100
120
140
160
180
200

Ti
m

e (
m

s)

(c) Avg

Figure 8: Execution times of FHOPE and CryptDB for the three sample queries.

0

500

1000

1500

2000

2500

Ti
m

e (
m

s)

CryptDB
FHOPE

20% 30% 40% 50% 60% 70% 80% 90%10%
Selectivity

Figure 9: Execution times versus selectivity.

Grant KJ2015B19, and Grant KJ2017B15, China Postdoctoral
Science Foundation under Grant 2016M601859 and Grant
2015M581794, Qing Lan Project of Jiangsu Province, 1311
Talent Plan Foundation of NUPT, NUPTSF, under Grant
NY216001, and the Natural Science Foundation of the
Jiangsu Higher Education Institutions of China under Grant
14KJB520031 and Grant 15KJB520027.

References

[1] H. Wang, D. He, J. Yu, and Z. Wang, “Incentive and Uncon-
ditionally Anonymous Identity-Based Public Provable Data
Possession,” IEEE Transactions on Services Computing, pp. 1-1.

[2] H. Wang, D. He, and J. Han, “VOD-ADAC: Anonymous Dis-
tributed Fine-Grained Access Control Protocol with Verifiable
Outsourced Decryption in Public Cloud,” IEEE Transactions on
Services Computing, pp. 1-1.

[3] W. Li, K. Xue, Y. Xue, and J. Hong, “TMACS: A Robust and
Verifiable Threshold Multi-Authority Access Control System

in Public Cloud Storage,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 5, pp. 1484–1496, 2016.

[4] K. Xue, Y. Xue, J. Hong et al., “RAAC: Robust and Auditable
Access Control with Multiple Attribute Authorities for Public
Cloud Storage,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 4, pp. 953–967, 2017.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. R. Xu, “Order
preserving encryption for numeric data,” in Proceedings of the
ACM SIGMOD International Conference on Management of
Data (SIGMOD ’04), pp. 563–574, ACM, Paris, France, June
2004.

[6] K. Li, W. Zhang, C. Yang, and N. Yu, “Security Analysis
on One-to-Many Order Preserving Encryption-Based Cloud
Data Search,” IEEE Transactions on Information Forensics and
Security, vol. 10, no. 9, pp. 1918–1926, 2015.

[7] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st annual ACM symposium on Theory of
Computing (STOC ’09), vol. 9, pp. 169–178, ACM, Bethesda,Md,
USA, 2009.

[8] X. Liu, K. R. Choo, R.H.Deng, R. Lu, and J.Weng, “Efficient and
Privacy-Preserving Outsourced Calculation of Rational Num-
bers,” IEEE Transactions on Dependable and Secure Computing,
vol. 99, 2016.

[9] D. Liu and S. Wang, “Nonlinear order preserving index for
encrypted database query in service cloud environments,”
Concurrency and Computation: Practice and Experience, vol. 25,
no. 13, pp. 1967–1984, 2013.

[10] Z. Liu, X. Chen, J. Yang, C. Jia, and I. You, “New order pre-
serving encryption model for outsourced databases in cloud
environments,” Journal of Network and Computer Applications,
vol. 59, pp. 198–207, 2016.

[11] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic
encryption with polylog overhead,” in Proceedings of the 31st
Annual International Conference on theTheory and Applications
of Cryptographic Techniques, pp. 465–482, 2012.

[12] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring
the feasibility of fully homomorphic encryption,” Institute of
Electrical and Electronics Engineers. Transactions on Computers,
vol. 64, no. 3, pp. 698–706, 2015.

[13] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
preserving symmetric encryption,” in Advances in Cryptology-
EUROCRYPT 2009, vol. 5479, pp. 224–241, Springer, Berlin,
Germany, 2009.

[14] H. Wang, D. He, and S. Tang, “Identity-Based Proxy-Oriented
Data Uploading and Remote Data Integrity Checking in Public



Security and Communication Networks 15

Cloud,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 11, no. 6, pp. 1165–1176, 2016.

[15] H. Wang, “Identity-based distributed provable data possession
in multi-cloud storage,” IEEE Transactions on Services Comput-
ing, vol. 8, no. 2, pp. 328–340, 2015.

[16] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homo-
morphic encryption from (standard) LWE,” Foundations of
Computer Science IEEE, vol. 2011, pp. 97–106, 2011.

[17] N. Smart and F. Vercauteren, “Fully Homomorphic Encryption
with Relatively Small Key and Ciphertext Sizes,” in Proceedings
of the International Conference on Practice andTheory in Public
Key Cryptography Springer-Verlag, vol. 6056, pp. 420–443, 2010.

[18] Y. n. Doröz, Y. Hu, and B. Sunar, “Homomorphic AES eval-
uation using the modified LTV scheme,” Designs, Codes and
Cryptography. An International Journal, vol. 80, no. 2, pp. 333–
358, 2016.

[19] J. H. Cheon, J.-S. Coron, J. Kim et al., “Batch fully homomorphic
encryption over the integers,” in Proceedings of the Advances in
Cryptology-EUROCRYPT 2013, vol. 7881, pp. 315–335, Springer,
New York, NY, USA, 2013.

[20] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley,
“Optimised multiplication architectures for accelerating fully
homomorphic encryption,” Institute of Electrical and Electronics
Engineers. Transactions on Computers, vol. 65, no. 9, pp. 2794–
2806, 2016.

[21] J. H. Cheon andD. Stehl’E, “Fully homomophic encryption over
the integers revisited,” in Advances in Cryptology-EUROCRYPT
2015, vol. 9056, pp. 513–536, Springer, NewYork, NY,USA, 2015.

[22] L. Xiao, I.-L. Yen, and D. T. Huynh, “A note for the ideal order-
preserving encryption object and generalized order-preserving
encryption,” in IACR Cryptology Eprint Archive, 2012.

[23] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: improved security analysis and alternative
solutions,” in Proceedings of the 31st annual conference on
Advances in cryptology, vol. 6841, pp. 578–595, Springer-Verlag,
2011.

[24] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security proto-
col for order-preserving encoding,” in Proceedings of the 34th
IEEE Symposium on Security and Privacy, SP 2013, pp. 463–477,
May 2013.

[25] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over encrypted data in the database-service-providermodel,” in
Proceedings of the ACM SIGMOD International Conference on
Management ofData (SIGMOD ’02), pp. 216–227,NewYork,NY,
USA, June 2002.

[26] R. Popa, N. Zeldovich, and H. Balakrishnan, “CryptDB: A
Practical Encrypted Relational DBMS,” Tech. Rep.MIT-CSAIL-
TR-2011-005, MIT, 2011.

[27] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-
EncDB: A lightweight framework for privacy-preserving data
queries in cloud computing,” Knowledge-Based Systems, vol. 79,
pp. 18–26, 2015.

[28] Z. Yang, S. Zhong, and R. Wright, “Privacy-preserving queries
on encrypted data,” in Proceedings of the Computer Security
CESORICS, pp. 479–495, 2006.

[29] B.Hore, S.Mehrotra, andG. Tsudik, “A privacypreserving index
for range queries,” in Proceedings of the Thirtieth International
Conference onVery Large Data Bases, VLDB’04, vol. 30, pp. 720–
731, 2004.

[30] K. Xue, S. Li, J. Hong, Y. Xue, N. Yu, and P. Hong, “Two-Cloud
Secure Database for Numeric-Related SQL Range Queries with

Privacy Preserving,” IEEETransactions on Information Forensics
and Security, vol. 12, no. 7, pp. 1596–1608, 2017.

[31] W. Ding, Z. Yan, and R. H. Deng, “Encrypted data processing
with Homomorphic Re-Encryption,” Information Sciences, vol.
409-410, pp. 35–55, 2017.

[32] X. Liu, R. H. Deng, W. DIng, R. Lu, and B. Qin, “Privacy-pre-
serving outsourced calculation on floating point numbers,”
IEEE Transactions on Information Forensics and Security, vol. 11,
no. 11, pp. 2513–2527, 2017.

[33] Z. Yan, W. Ding, V. Niemi, and A. V. Vasilakos, “Two schemes
of privacy-preserving trust evaluation,”FutureGenerationCom-
puter Systems, vol. 62, pp. 175–189, 2015.

[34] A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently outsourcing
multiparty computation under multiple keys,” IEEE Transac-
tions on Information Forensics and Security, vol. 8, no. 12, pp.
2046–2058, 2013.

[35] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr-
ishnan, “CryptDB: Protecting confidentiality with encrypted
query processing,” in Proceedings of the 23rd ACM Symposium
on Operating Systems Principles, SOSP 2011, pp. 85–100, prt,
October 2011.

[36] W. K. Wong, B. Kao, D. W. L. Cheung, R. Li, and S. M.
Yiu, “Secure query processing with data interoperability in a
cloud database environment,” in Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data,
SIGMOD 2014, pp. 1395–1406, June 2014.

[37] D. Liu, Homomorphic Encryption for Database Querying:Aus-
tralian, WO/2013/188929, 2013.

[38] F. D. McSherry, “Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis,” in Proceedings of the
35th SIGMOD international conference on Management of data,
SIGMOD’09, pp. 19–30, Providence, Rhode Island, USA, June
2009.

[39] J. H. Silverman, “Cryptography and lattices,” in Lecture Notes
in Computer Science, vol. 2146 of chapter Approximate Integer
Common Divisors, pp. 51–66, 2001.

[40] H. Cohn and N. Heninger, “Approximate common divisors via
lattices,” in IACR Cryptology Eprint Archive, 2011.



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

	coversheet
	xiang-anovelsecure-2018

